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Abstract

We study the off-policy evaluation (OPE) problem in reinforcement learning with
linear function approximation, which aims to estimate the value function of a target
policy based on the offline data collected by a behavior policy. We propose to
incorporate the variance information of the value function to improve the sample
efficiency of OPE. More specifically, for time-inhomogeneous episodic linear
Markov decision processes (MDPs), we propose an algorithm, VA-OPE, which
uses the estimated variance of the value function to reweight the Bellman residual
in Fitted Q-Iteration. We show that our algorithm achieves a tighter error bound
than the best-known result. We also provide a fine-grained characterization of
the distribution shift between the behavior policy and the target policy. Extensive
numerical experiments corroborate our theory.

1 Introduction

Reinforcement learning (RL) has been a hot spot in both theory and practice in the past decade. Many
efficient algorithms have been proposed and theoretically analyzed for finding the optimal policy
adopted by an agent to maximize the long-term cumulative rewards. In contrast to online RL where
the agent actively interacts with the environment, offline RL (a.k.a., batch RL) [25, 24] aims to extract
information from past data and use this information to learn the optimal policy. There has been much
empirical success of offline RL in various application domains [4, 6, 37, 40, 36].

Among various tasks of offline RL, an important task is called off-policy evaluation (OPE), which
evaluates the performance of a target policy π given offline data generated by a behavior policy π̄.
Most existing theoretical works on OPE are in the setting of tabular MDPs [34, 26, 11, 16, 45, 47–49],
where the state space S and the action space A are both finite. However, real-world applications
often have high-dimensional or even infinite-dimensional state and action spaces, where function
approximation is required for computational tractability and generalization. While provably efficient
online RL with linear function approximation has been widely studied recently [46, 17, 50, 15, 3, 54],
little work has been done for analyzing OPE with linear function approximation, with one notable
exception by Duan et al. [10]. More specifically, Duan et al. [10] analyzed a regression-based
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Fitted Q-Iteration method (FQI-OPE) that achieves an Õ(H2
√

(1 + d(π, π̄))/N) error for linear
MDPs [46, 17], where H is the planning horizon, N is the sample size, and d(π, π̄) represents the
distribution shift between the behavior policy and the target policy. They also proved a sample
complexity lower bound for a subclass of linear MDPs, for which their algorithm is nearly minimax
optimal. However, as we will show later, the H2 dependence is not tight since they discard the useful
variance information contained in the offline data. Consequently, their result is only optimal for a
small class of MDPs of which the value functions have large variance. The H2 dependence in the
sample complexity also makes their algorithm less sample-efficient for long-horizon problems, which
is one of the major challenges in RL.

Extracting useful information from the data is particularly important for offline RL since the agent
cannot sample additional data by interacting with the environment, as compared to online RL. In this
paper, we propose a new algorithm that incorporates the variance information of the value functions
to improve the sample efficiency of OPE. This allows us to achieve a deeper understanding and tighter
error bounds of OPE with linear function approximation. In detail, we consider time-inhomogeneous
linear MDPs [46, 17] where the transition probability and reward function are assumed to be linear
functions of a known feature mapping and may vary from stage to stage.

The main contributions of this paper are summarized as follows:

• We develop VA-OPE (Variance-Aware Off-Policy Evaluation), an algorithm for OPE that effectively
utilizes the variance information from the offline data. The core idea behind the proposed algorithm
is to calibrate the Bellman residual in the regression by an estimator of the conditional variance of
the value functions, such that data points of higher quality can receive larger important weights.

• We show that our algorithm achieves Õ(
∑
h(v>h Λ−1

h vh)1/2/
√
K) policy evaluation error, where

vh is the expectation of the feature vectors under target policy and Λh is the uncentered covariance
matrix under behavior policy weighted by the conditional variance of the value function. Our
algorithm achieves a tighter error bound and milder dependence on H than FQI-OPE [10], and
provides a tighter characterization of the distribution shift between the behavior policy and the
target policy, which is also verified by extensive numerical experiments.

• Our analysis is based on a novel two-step proof technique. In the first step, we use backward
induction to establish worst-case uniform convergence2 results for the estimators of the value
functions. In the second step, the convergence of OPE estimator is proved by tightening the uniform
convergence result based on an average-case analysis. Our proof strategy provides a generic way
for analyzing (weighted) ridge regression methods that are carried out in a backward and iterated
fashion. The analyses in both steps might be of independent interest.

Notation We use lower case letters to denote scalars and use lower and upper case boldface letters
to denote vectors and matrices respectively. For any vector x ∈ Rd and any positive semi-definite
matrix Σ ∈ Rd×d, we denote by ‖x‖2 the Euclidean norm and ‖Σ‖ the operator norm, and define
‖x‖Σ =

√
x>Σx. For any positive integer n, we denote by [n] the set {1, . . . , n}. For any finite set

A, we denote by |A| the cardinality of A. For two sequences {an} and {bn}, we write an = O(bn)
if there exists an absolute constant C such that an ≤ Cbn, and we write an = Ω(bn) if there exists
an absolute constant C such that an ≥ Cbn. We use Õ(·) to further hide the logarithmic factors.

2 Preliminaries

2.1 Markov Decision Processes

We consider the time-inhomogeneous episodic Markov Decision Process (MDP), which is represented
by a tuple M(S,A, H, {rh}Hh=1, {Ph}Hh=1). In specific, we denote the state space by S and the
action space by A, and H > 0 is the horizon length of each episode. At each stage h ∈ [H],
rh : S × A → [0, 1] is the reward function, and Ph(s′|s, a) is the transition probability function
which represents the probability for state s to transit to state s′ given action a. A policy π consists of
H mappings {πh}Hh=1 from S to the simplex on A, such that for any (h, s) ∈ [H]× S, πh(·|s) is a
probability distribution over A. Here a policy can be either deterministic (point mass) or stochastic.

2By uniform convergence we mean the convergence of the estimated value functions in `∞-norm to their
true values, which is different from the uniform convergence over all policies in Yin et al. [48].
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For any policy π, we define the associated action-value function Qπh(s, a) and value function V πh (s)
at each stage h ∈ [H] as follows:

Qπh(s, a) = Eπ
[ H∑
i=h

ri(si, ai)

∣∣∣∣sh = s, ah = a

]
, V πh (s) =

∫
A
Qπh(s, a)dπh(a|s), (2.1)

where ai ∼ πi(·|si) and si+1 ∼ Pi(·|si, ai). For any function V : S → R, we introduce the
following shorthand notation for the conditional expectation and variance of V :

[PhV ](s, a) = Es′∼Ph(·|s,a)[V (s′)], [VhV ](s, a) = [PhV 2](s, a)− ([PhV ](s, a))2. (2.2)

Time-inhomogeneous linear MDPs. We consider a special class of MDPs called linear MDPs [46,
17]. Note that most of the existing works on RL with linear function approximation rely on this
assumption.
Assumption 2.1. M(S,A, H, {rh}Hh=1, {Ph}Hh=1) is called a linear MDP with a known feature
mapping φ : S × A → Rd, if for any h ∈ [H], there exist γh and µh ∈ Rd, such that for any
state-action pair (s, a) ∈ S ×A, it holds that

Ph(· | s, a) = 〈φ(s, a),µh(·)〉, rh(s, a) = 〈φ(s, a),γh〉. (2.3)
We assume that at any stage h, for any state-action pair (s, a) ∈ S ×A, the reward received by the
agent is given by r = rh(s, a) + εh(s, a), where rh(s, a) ∈ [0, 1] is the expected reward and εh(s, a)
is the random noise. We assume that the noise is zero-mean and independent of anything else.

Without loss of generality, we assume that ‖γh‖2 ≤ 1 and ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S × A.
We also assume that rh(s, a) + εh(s, a) ≤ 1, |εh(s, a)| ≤ 1 almost surely and thus Var(εh(s, a)) ≤ 1

for all h ∈ [H] and (s, a) ∈ S ×A. Moreover, we assume that maxh∈[H]

∥∥∫
S f(s)dµh(s)

∥∥
2
≤
√
d

for all bounded function f : S → R such that sups∈S |f(s)| ≤ 1.

The above assumption on linear MDPs implies the following proposition for the action-value func-
tions.
Proposition 2.2 (Proposition 2.3, [17]). For a linear MDP, for any policy π, there exist weights
{wπ

h , h ∈ [H]} such that for any (s, a, h) ∈ S × A × [H], we have Qπh(s, a) = 〈φ(s, a),wπ
h〉.

Moreover, we have ‖wπ
h‖2 ≤ 2H

√
d for all h ∈ [H].

Following this proposition, we may further show that the value functions are also linear functions,
but of different features. We define φπh(s) =

∫
A φ(s, a)dπh(a|s) for all s ∈ [S] and h ∈ [H]. Then

by (2.1) we have

V πh (s) =

∫
A
φ(s, a)>wπ

hdπ(a|s) = 〈φπh(s),wπ
h〉.

2.2 Off-policy Evaluation

The purpose of OPE is to evaluate a (known) target policy π given an offline dataset generated by a
different (unknown) behavior policy π̄. In this paper, our goal is to estimate the expectation of the
value function induced by π over a fixed initial distribution ξ1, i.e.,

vπ1 = Es∼ξ1 [V π1 (s)].

To faciliate the presentation, we further introduce some important notations. For all h ∈ [H], let νh
be the occupancy measure over S ×A at stage h induced by the transition P and the behavior policy
π̄, that is, for any E ⊆ S ×A,

νh(E) = E [(sh, ah) ∈ E | s1 ∼ ξ1, ai ∼ π̄(·|si), si+1 ∼ Pi(·|si, ai), 1 ≤ i ≤ h] . (2.4)

For simplicity, we write Eh[f(s, a)] = Eπ̄,h[f(s, a)] =
∫
S×A f(s, a)dνh(s, a) for any function f on

S ×A. Similarly, we use Eπ,h[f(s, a)] to denote the expectation of f with respect to the occupancy
measure at stage h induced by the transition P and the target policy π.

We define the following uncentered covariance matrix under behavior policy for all h ∈ [H]:

Σh = Eπ̄,h
[
φ(s, a)φ(s, a)>

]
. (2.5)

Intuitively, these matrices measure the coverage of the offline data in the state-action space. It is
known that the success of OPE necessitates a good coverage [10, 43]. Therefore here we make the
same coverage assumption on the offline data.
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Assumption 2.3 (Coverage). For all h ∈ [H], κh := λmin(Σh) > 0. Denote κ = minh∈[H] κh.

A key difference in our result is that, instead of depending on Σh directly, the error bound depends
on the following weighted version of the covariance matrices defined as

Λh := Eπ̄,h
[
σh(s, a)−2φ(s, a)φ(s, a)>

]
, (2.6)

for all h ∈ [H], where each σh : S ×A → R is defined as

σh(s, a) :=
√

max{1,VhV πh+1(s, a)}+ 1. (2.7)

Note that in the definition of σh(·, ·), taking the maximum and adding an extra 1 is purely for technical
reason and is related to its estimator σ̂h(·, ·), which we will introduce and explain later in Section 3.2.
In general, one can think of σ2

h(s, a) ≈ VhV πh+1(s, a). Therefore, compared with the raw covariance
matrix Σh, Λh further incorporates the variance of the value functions under the target policy. This
is the key to obtaining a tighter instance-dependent error bound.

Definition 2.4 (Variance-aware coverage). We define ιh := λmin(Λh) and ι = minh∈[H] ιh.

Since sup(s,a)∈S×A σh(s, a)2 is bounded from above, by (2.6) and Assumption 2.3, we immediately
have ιh ≥ κh/[sup(s,a)∈S×A σh(s, a)2] > 0 for all h ∈ [H], and thus ι > 0. Even if Assump-
tion 2.3 does not hold, we can always restrict to the subspace span{φ(sh, ah)}. For convenience of
presentation, we make Assumption 2.3 in this paper.

Next, we introduce the assumption on the sampling process of the offline data.

Assumption 2.5 (Stage-sampling Data). We have two offline datasets D and Ď where each
dataset consists of data from H stages: D = {Dh}h∈[H] and Ď = {Ďh}h∈[H]. For the
dataset D, we assume Dh1

is independent of Dh2
for h1 6= h2. For each stage h, we have

Dh = {(sk,h, ak,h, rk,h, s′k,h)}k∈[K], where we assume for each k ∈ [K], the data point
(sk,h, ak,h, rk,h, s

′
k,h) is sampled identically and independently in the following way: (sk,h, ak,h) ∼

νh(·, ·) where νh(·, ·) is the occupancy measure defined in (2.4), and s′k,h ∼ Ph(·|sk,h, ak,h). The
same holds for Ď, and we write Ďh = {(šk,h, ǎk,h, řk,h, š′k,h)}k∈[K]. Note that here s′k,h 6= sk,h+1.

Assumptions 2.5 is standard in the offline RL literature [48, 10]. Note that in the assumption, there
is a data splitting, i.e., one can view it as the whole dataset D ∪ Ď being split into two halves. The
datasets D and Ď will then be used for two different purposes in Algorithm 1 as will be made clear in
the next section. We would like to remark that the only purpose of the splitting is to avoid a lengthy
analysis. There is no need to perform the data splitting in practice. Also, in our implementation and
experiments, we do not split the data.

3 Algorithm

To ease the notation, we denote φk,h = φ(sk,h, ak,h), φ̌k,h = φ(šk,h, ǎk,h), σ̂k,h = σ̂h(sk,h, ak,h)
and rk,h = rh(sk,h, ak,h) + εk,h for all (h, k) ∈ [H] × [K]. Recall that we use the check mark to
denote the other half of the splitted dataset. How the splitted data is utilized will be clear in Section
3.2 when we introduce the proposed algorithm.

3.1 Regression-Based Value Function Estimation

By Proposition 2.2, it suffices to estimate the vectors {wπ
h , h ∈ [H]}. A popular approach is to apply

the Least-Square Value Iteration (LSVI) [17] which relies on the Bellman equation, Qπh(s, a) =
rh(s, a) + [PhV πh+1](s, a), that holds for all h ∈ [H] and (s, a) ∈ S × A. By viewing V πh+1(s′k,h)

as an unbiased estimate of [PhV πh+1](sk,h, ak,h), the idea of the LSVI-type method is to solve the
following ridge regression problem:

ŵπ
h := argmin

w∈Rd
λ‖w‖22 +

K∑
k=1

[
〈φk,h,w〉 − rk,h − V πh+1(s′k,h)

]2
, (3.1)
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for some regularization parameter λ > 0. Since we do not know the exact values of V πh+1 in (3.1), we
replace it by an estimator V̂ πh+1, and then recursively solve the lease-square problem in a backward
manner, which enjoys a closed-form solution as follows

ŵπ
h =

[
K∑
k=1

φk,hφ
>
k,h + λId

]−1 K∑
k=1

φk,h

[
rk,h + V̂ πh+1(s′k,h)

]
.

This has been used in the LSVI-UCB algorithm proposed by Jin et al. [17] and the FQI-OPE algorithm
studied by Duan et al. [10], for online learning and OPE of linear MDPs respectively. For this kind of
algorithms, the key difficulty in the analysis lies in bounding the Bellman error:[

K∑
k=1

φk,hφ
>
k,h + λId

]−1 K∑
k=1

φk,h
(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)

)
.

Jin et al. [17] applied a Hoeffding-type inequality to bound the Bellman error. Although Duan
et al. [10] applied Freedman’s inequality in their analysis, their algorithm design overlooks the
variance information in the data and consequently they can only adopt a crude upper bound on the
conditional variance of the value function, i.e., VhV πh+1 ≤ (H − h)2, which simply comes from
sups∈S V

π
h+1(s) ≤ H − h. Therefore, it prevents [10] from getting a tight instance-dependent error

bound for OPE. This is further verified by our numerical experiments in Appendix A which show
that the performance of FQI-OPE degrades for large H . This motivates us to utilize the variance
information in the data for OPE.

3.2 The Proposed Algorithm

In particular, we present our main algorithm as displayed in Algorithm 1. Due to the greedy nature of
the value functions, we adopt a backward estimation scheme.

Weighted ridge regression. For any h ∈ [H], let ŵπ
h+1 be the estimate of wπ

h+1 computed at
the previous step, and correspondingly V̂ πh+1(·) = 〈φπh+1(·), ŵπ

h+1〉. Instead of the ordinary ridge
regression (3.1), we consider the following weighted ridge regression:

ŵπ
h := argmin

w∈Rd
λ‖w‖22 +

K∑
k=1

[
〈φk,h,w〉 − rk,h − V̂ πh+1(s′k,h)

]2 /
σ̂2
k,h, (3.2)

where σ̂k,h = σ̂h(sk,h, ak,h) for all (h, k) ∈ [H] × [K] with σ̂h(·, ·) being a proper estimate of
σh(·, ·) defined in (2.7). We then have the following closed-form solution (Line 9 and 7 of Alg. 1):

ŵπ
h = Λ̂−1

h

K∑
k=1

φk,h

(
rk,h + V̂ πh+1(s′k,h)

)/
σ̂2
k,h, with Λ̂h =

K∑
k=1

σ̂−2
k,hφk,hφ

>
k,h + λId. (3.3)

In the above estimator, we use the dataset D to estimate the value functions. Next, we apply an
LSVI-type method to estimate σh using the dataset Ď.

Variance estimator. By (2.2), we can write

[VhV πh+1](s, a) =[Ph(V πh+1)2](s, a)−
(
[PhV πh+1](s, a)

)2
. (3.4)

For the first term in (3.4), by Assumption 2.1 we have

[Ph(V πh+1)2](s, a) =

∫
S
V πh+1(s′)2dPh(s′|s, a) = φ(s, a)>

∫
S
V πh+1(s′)2 dµh(s′),

which suggests that Ph(V πh+1)2 also has a linear representation. Thus we adopt a linear estimator
〈φ(s, a), β̂πh〉 where β̂πh (Line 4) is the solution to the following ridge regression problem:

β̂πh = argmin
β∈Rd

K∑
k=1

[〈
φ̌k,h,β

〉
− [V̂ πh+1]2(š′k,h)

]2
+ λ‖β‖22 = Σ̂−1

h

K∑
k=1

φ̌k,hV̂
π
h+1(š′k,h)2. (3.5)
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Algorithm 1 Variance-Aware Off-Policy Evaluation (VA-OPE)

1: Input: target policy π = {πh}h∈[H], datasets D = {{(sk,h, ak,h, rk,h, s′k,h)}h∈[H]}k∈[K] and
Ď = {{(šk,h, ǎk,h, řk,h, š′k,h)}h∈[H]}k∈[K], initial distribution ξ1, ŵπ

H+1 = 0
2: for h = H,H − 1, . . . , 1 do
3: Σ̂h ←

∑K
k=1 φ̌k,hφ̌

>
k,h + λId

4: β̂h ← Σ̂−1
h

∑K
k=1 φ̌k,hV̂

π
h+1(š′k,h)2

5: θ̂h ← Σ̂−1
h

∑K
k=1 φ̌k,hV̂

π
h+1(š′k,h)

6: σ̂h(·, ·)←
√

max{1, V̂hV̂ πh+1(·, ·)}+ 1

7: Λ̂h ←
∑K
k=1 φk,hφ

>
k,h/σ̂

2
k,h + λId

8: Yk,h ← rk,h + 〈φπh(s′k,h), ŵπ
h+1〉

9: ŵπ
h ← Λ̂−1

h

∑K
k=1 φk,hYk,h/σ̂

2
k,h

10: Q̂πh(·, ·)← 〈φ(·, ·), ŵπ
h〉, V̂ πh (·)← 〈φπh(·), ŵπ

h〉
11: end for
12: Output: v̂π1 ←

∫
S V̂

π
1 (s) dξ1(s)

Similarly, we estimate the second term in (3.4) by 〈φ(s, a), θ̂πh〉, where θ̂πh (Line 5) is given by

θ̂h = argmin
θ∈Rd

K∑
k=1

[〈
φ̌k,h,θ

〉
− V̂ πh+1(š′k,h)

]2
+ λ‖θ‖22 = Σ̂−1

h

K∑
k=1

φ̌k,hV̂
π
h+1(š′k,h), (3.6)

with Σ̂h =
∑K
k=1 φ̌k,hφ̌

>
k,h + λId. Combining (3.5) and (3.6), we estimate VhV πh+1 by

[V̂hV̂ πh+1](·, ·) = 〈φ(·, ·), β̂πh〉[0,(H−h+1)2] −
[
〈φ(·, ·), θ̂πh〉[0,H−h+1]

]2
, (3.7)

where the subscript [0, (H − h+ 1)2] denotes the clipping into the given range, and similar for the
subscript [0, H − h+ 1]. We do such clipping due to the fact that V πh+1 ∈ [0, H − h]. We add 1 to
deal with the approximation error in V̂ πh+1.

Based on V̂hV̂ πh+1, the final variance estimator σ̂h(·, ·) (Line 6) is defined as

σ̂h(·, ·) =

√
max{1, V̂hV̂ πh+1(·, ·)}+ 1.

In order to deal with the situation where V̂hV̂ πh+1 < 0 or is very close to 0, we take maximum
between V̂hV̂ πh+1 and 1. Also, to account for the noise in the observed rewards, we add an extra 1
which is an upper bound of the noise variance by Assumption 2.1.

Final estimator. Recursively repeat the above procedure for h = H,H − 1, . . . , 1, and we obtain
V̂1. Then the final estimator for vπ1 (Line 12) is defined as v̂π1 =

∫
S V̂

π
1 (s) dξ1(s).

Intuition behind Λh. To illustrate the intuition behind the weighted covariance matrix Λh, here we
provide some brief heuristics. Let {(sk,h, ak,h, s′k,h)}k∈[K] be i.i.d. samples such that (sk,h, ak,h) ∼
ν for some distribution ν over S ×A and s′k,h ∼ Ph(·|sk,h, ak,h). Define

ek = φ(sk,h, ak,h)
(
[PhV πh+1](sk,h, ak,h)− V πh+1(s′k,h)

) /
[VhV πh+1](sk,h, ak,h)2

for all k ∈ [K]. Note that ek’s are i.i.d zero-mean random vectors and a simple calculation yields

Cov(ek) = E
[
[VhV πh+1](sk,h, ak,h)−2φ(sk,h, ak,h)φ(sk,h, ak,h)>

]
.

This coincides with (2.6). Suppose Cov(ek) � 0, then by the central limit theorem, it holds that

1√
K

K∑
k=1

ek
d−→ N (0,Cov(ek)).

Therefore, Cov(ek)−1, or equivalently Λ−1
h , can be seen as the Fisher information matrix asso-

ciated with the weighted product of the Bellman error and the feature vectors. This is a tighter
characterization of the convergence rate than bounding VhV πh+1 by its naive upper bound (H − h)2.
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4 Theoretical Results

In this section, we introduce our main theoretical results and give an overview of the proof technique.

4.1 OPE Error Bound

Our main result is a refined average-case OPE analysis that yields a tighter error bound in Theorem 4.1.
The proof is in Appendix D. To simplify the notation, we define:

Ch,2 =

H∑
i=h

H − h+ 1√
2ιh

, Ch,3 =
(H − h+ 1)2

2
, Ch,4 =

(
‖Λh‖ · ‖Λ−1

h ‖
)1/2

.

Theorem 4.1. Set λ = 1. Under Assumptions 2.1, 2.3 and 2.5, if K satisfies

K ≥ C · C3 · d2

[
log

(
dH2K

κδ

)]2

, (4.1)

where C is some problem-independent universal constant and

C3 := max

{
max
h∈[H]

Ch,3 · C2
h,2

8ι2h
,
H4

κ2
,
H2

κ2
· max
h∈[H]

Ch,3
2
· max
h∈[H]

Ch,3
ιh

}
,

then with probability at least 1− δ, the output of Algorithm 1 satisfies

|vπ1 − v̂π1 | ≤C ·

[
H∑
h=1

‖vπh‖Λ−1
h

]
·
√

log(16H/δ)

K
+ C · C4 · log

(
16H

δ

)
·
(

1

K3/4
+

1

K

)
,

where vπh := Eπ,h[φ(sh, ah)] and C4 :=
∑H
h=1

√
Ch,4 · Ch,2 · (H−h+1)d

4ιh
· log

(
dH2K
κδ

)
· ‖vπh‖Λ−1

h
.

Theorem 4.1 suggests that Algorithm 1 provably achieves a tighter instance-dependent error bound
for OPE than that in [10]. In detail, the dominant term in our bound is Õ(

∑H
h=1 ‖vπh‖Λ−1

h
/
√
K),

as compared to the Õ(
∑H
h=1(H − h + 1)‖vπh‖Σ−1

h
/
√
K) term in [10]. By (2.5) and (2.6), our

bound is at least as good as the latter since Σh � [(H − h + 1)2 + 1]Λh. More importantly, it
is instance-dependent and tight for the general class of linear MDPs: for those where VhV πh+1 is
close to its crude upper bound (H − h+ 1)2, our bound recovers the prior result. When VhV πh+1 is
small, VA-OPE benefits from incorporating the variance information and our bound gets tightened
accordingly.

Remark 4.2. Note that we do not require VhV πh+1(s, a) to be uniformly small for all s, a, and h.
From the bound and (2.6), as long as the variances are smaller than (H − h + 1)2 on average of
(s, a) ∈ S ×A and in sum of h, the bound is improved. It is also worth noting that the lower bound
proved in [10] only holds for a subclass of linear MDPs with VhV πh+1 = Ω((H − h+ 1)2), and thus
their minimax-optimality does not hold for general linear MDPs. For more detailed comparison we
refer the reader to Appendix B.

Remark 4.3. Conceptually, the term ‖vπh‖Λ−1
h

serves as a more precise characterization of the
distribution shift between the behavior policy π̄ and the target policy π in a variance-aware manner.
This enables our algorithm to utilize the data more effectively. Compared with online RL where one
can sample new data, OPE is more ‘data-hungry’: one cannot decide the overall quality of the data.
Thus it is especially beneficial to put more focus on targeted values with less uncertainty. This is also
the intuitive reason why our algorithm can achieve a tighter error bound.

4.2 Overview of the Proof Technique

Here we provide an overview of the proof for Theorem 4.1. Due to the parallel estimation of the
the value functions and their variances, the analysis of VA-OPE is much more challenging compared
with that of FQI-OPE. As a result, we need to develop a novel proof technique. First, we have the
following error decomposition.
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Lemma 4.4. For any h ∈ [H], let V̂ πh be the output of Algorithm 1. Then it holds that

V πh (s)− V̂ πh (s) =

∫
A

[Ph(V πh+1 − V̂ πh+1)](s, a)dπh(a|s) + λφπh(s)>Λ̂−1
h wπ

h (4.2)

+ φπh(s)>Λ̂−1
h

[
−λ
∫
S

(
V πh+1(s′)− V̂ πh+1(s′)

)
dµh(s′) +

K∑
k=1

φk,hσ̂
−2
k,h∆k,h

]
,

where ∆k,h = [PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h. In particular, recall that v̂π1 = E[V̂ π1 (s1) |
s1 ∼ ξ1] and the OPE error can be decomposed as

vπ1 − v̂π1 =− λ
H∑
h=1

(vπh)>Λ̂−1
h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

+

H∑
h=1

(vπh)>Λ̂−1
h

K∑
k=1

φk,hσ̂
−2
k,h∆k,h + λ

H∑
h=1

(vπh)>Λ̂−1
h wπ

h . (4.3)

The OPE error bound (Theorem 4.1) is proved by bounding the three terms separately in (4.3). This
decomposition is different from [10] in that Σ̂h is replaced by Λ̂h. This prevents us from adopting a
matrix embedding-type proof as used in the prior work.

The key is to show the convergence of Λ̂h to its population counterpart. However, by definition of Λ̂h,
to establish such a result, it first requires the convergence of V̂ πh+1 to V πh+1 in a uniform manner, i.e.,
a high probability bound for sups∈S |V̂ πh (s)− V πh (s)|. To show this, we leverage the decomposition
in (4.2) and a backward induction technique, and prove a uniform convergence result which states
that with high probability, for all h ∈ [H], Algorithm 1 can guarantee

sup
s∈S

∣∣∣V̂ πh (s)− V πh (s)
∣∣∣ ≤ Õ( 1√

K

)
.

This result is formalized as Theorem C.2 and proved in Appendix C. To the best of our knowledge,
Theorem C.2 is the first to establish the uniform convergence of the estimation error for the value
functions in offline RL with linear function approximation. We believe this result is of independent
interest and may be broadly useful in OPE.

5 Numerical Experiments

In this section, we provide numerical experiments to evaluate our algorithm VA-OPE, and compare it
with FQI-OPE.

We construct a linear MDP instance as follows. The MDP has |S| = 2 states and |A| = 100 actions,
with the feature dimension d = 10. The behavior policy then chooses action a = 0 with probability
p and a ∈ {1, · · · , 99} with probability 1− p and uniformly over {1, · · · , 99}. The target policy π
always chooses a = 0 no matter which state it is, making state 0 and 1 absorbing. The parameter p
can be used to control the distribution shift between the behavior and target policies. Here p → 0
leads to small distribution shift, and p→ 1 leads to large distribution shift. The initial distribution
ξ1 is uniform over |S|. For more details about the construction of the linear MDP and parameter
configuration, please refer to Appendix A.

We compare the performance of the two algorithms on the synthetic MDP described above under
different choices of horizon length H . We plot the log-scaled OPE error versus

√
K in Figure 1. It is

clear that VA-OPE is at least as good as FQI-OPE in all the cases. Specifically, for small H (Figure
1a), their performance is very comparable, which is as expected. As H increases, we can see from
Figure 1a, 1b and 1c that VA-OPE starts to dominate FQI-OPE, and the advantage is more significant
for larger H , as suggested by Theorem 4.1. Due to space limit, a comprehensive comparison under
different parameter settings is deferred to Appendix A.

6 Related Work

Off-policy evaluation. There is a large body of literature on OPE for tabular MDPs. Since the
seminal work by Precup [34], various importance sampling-based estimators have been studied in
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Figure 1: Comparison of VA-OPE and FQI-OPE under different settings of horizon length H .
VA-OPE’s advantage becomes more significant as H increases, matching the theoretical predic-
tion. The results are averaged over 50 trials and the error bars denote an empirical [10%,90%]
confidence interval. The y-axis is log-scaled OPE error and x-axis is

√
K. For more details please

see Appendix A.

the literature [26, 27, 39]. By using marginalized importance sampling methods [28, 45, 21, 47],
one is able to further break the “curse-of-horizon”. Moreover, various doubly robust estimators
[11, 16, 12, 38, 49] have been developed to achieve variance reduction. Most recently, it is shown
by Yin et al. [48] that uniform convergence over all possible policy is also achievable. However, all
the aforementioned works are limited to tabular MDPs. There is also a notable line of work on the
estimation of the stationary distribution ratio between the target policy and the behavior policy using
a primal-dual formulation [30, 51, 8]. However, a theoretical guarantee for the OPE error is not given
in the work. More recently, Chen et al. [7] studied OPE in the infinite-horizon setting with linear
function approximation.

There are many others topics related to OPE, for example, policy gradient [20, 31, 2], conservative
policy iteration [19], off-policy temporal-difference learning [35], off-policy Q-learning [23], safe
policy iteration [33] and pessimism in RL [22, 18], to mention a few. We refer the reader to the
excellent survey by Levine et al. [25] for a more detailed introduction.

Online RL with linear function approximation. RL with function approximation has been ac-
tively studied as an extension of the tabular setting. Yang and Wang [46] studied discounted linear
MDPs with a generative model, and Jin et al. [17] proposed an efficient LSVI-UCB algorithm for linear
MDPs without a generative model. It has been shown by Du et al. [9] that MDP with misspecified
linear function approximation could be exponentially hard to learn. Linear MDPs under various
settings have also been studied by [50, 32, 14, 44].

A parallel line of work studies linear mixture MDPs [15, 3, 5, 53, 29] (a.k.a., linear kernel MDPs [54])
where the transition kernel is a linear function of a ternary feature mapping ψ : S ×A×S → Rd. In
particular, Zhou et al. [53] achieved a nearly minimax regret bound by carefully utilizing the variance
information of the value functions. Zhang et al. [52] constructed a variance-aware confidence set for
time-homogeneous linear mixture MDPs. However, both works are focused on online RL rather than
offline RL. It requires novel algorithm designs to exploit the variance information for offline tasks
like OPE. What’s more, the analysis in the offline setting deviates a lot from that for online RL where
one can easily apply the law of total variance to obtain tighter bounds.

7 Conclusion and Future Work

In this paper, we incorporate the variance information into OPE and propose VA-OPE, an algorithm
that provably achieves tighter error bound. Our Õ(

∑
h(v>h Λ−1

h vh)1/2/
√
K) error bound has a

sharper dependence on the distribution shift between the behavior policy and the target policy.

Our work suggests several promising future directions. Theoretically, it remains open to provide an
instance-dependent lower bound for the OPE error. Also, beyond the linear function approximation,
it is interesting to establish similar results under more general function approximation schemes.
Empirically, can we exploit the algorithmic insight of our algorithm to develop practically more
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data-effective OPE algorithms for complex real-world RL tasks? We wish to explore these directions
in the future.
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