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ABSTRACT

As large language models (LLMs) are increasingly used for factual question-
answering, it becomes more important for LLMs to have the capability to com-
municate the likelihood that their answer is correct. For these verbalized expres-
sions of uncertainty to be meaningful, they should reflect the error rates at the ex-
pressed level of confidence. However, when prompted to express confidence, the
error rates of current LLMs are inconsistent with their communicated confidences,
highlighting the need for uncertainty quantification methods. Many prior methods
calculate lexical uncertainty, estimating a model’s confidence in the specific string
it generated. In some cases, however, it may be more useful to estimate semantic
uncertainty, or the model’s confidence in the answer regardless of how it is verbal-
ized. We propose a simple procedure, uncertainty distillation, to teach an LLM
to verbalize calibrated semantic confidences. Using held-out data to map initial
uncertainty estimates to meaningful probabilities, we create examples annotated
with verbalized probabilities for supervised fine-tuning. We find that our method
yields verbalized confidences that correlate well with observed error rates, even
when compared to strong baselines, some of which are more than twenty times
slower at inference time.

1 INTRODUCTION

Advances in LLM research have led to instruction-tuned generative models with impressive capabil-
ities on many challenging tasks (OpenAI et al., 2024; Jiang et al., 2023; Dubey et al., 2024). While
the flexibility and quality of these models is appealing, they may still hallucinate or give incorrect
answers (Rawte et al., 2023; Bai et al., 2024). However, language models do not readily provide
an interpretable measure of a model’s likelihood of correctness. LLMs tend to produce poorly-
calibrated confidences when prompted to do so, and are often confidently incorrect (Xiong et al.,
2024). Furthermore, the elicited confidences may be impacted in unexpected ways by the choice of
prompt (Sclar et al., 2023), such as the interpretation of “very confident” being dependent on the
wording of the prompt.

There are several other approaches as an alternative to prompting. Models’ token-level probabilities
can be used to provide information as a measure of lexical uncertainty, which gives information
about the likelihood of a generated string. This is often useful; however, the same fact can be
expressed in any number of ways—“Berlin’s the capital of Germany” or “The capital of Germany
is Berlin!” or “Die Hauptstadt Deutschlands ist Berlin”—all capturing the same meaning (Kuhn
et al., 2023). Semantic uncertainty is therefore challenging to capture, as token-level probabilities
are influenced by the phrasing of an answer just as much as the semantics of the answer itself.
This issue is particularly challenging for models employing large vocabularies such as multilingual
language models, language models employing byte or character-level tokenization, or when using
LLMs that are prone to producing extraneous outputs (Xue et al., 2021; Wang et al., 2024a).

We present uncertainty distillation1, a scheme for fine-tuning a language model to verbalize uncer-
tainty based on its own internal state. Notably, uncertainty distillation teaches models to estimate
their semantic—rather than lexical—uncertainty, as the distilled confidences are estimated from the

1We choose this name to evoke model distillation, a process which like uncertainty distillation requires an
offline cost to generate data to train a more efficient model.
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• We successfully elicit good-quality verbalized uncertainty from models by 
augmenting training data. 

• Uncertainty distillation has similar or better performance than lexical 
uncertainty baselines on simple QA tasks while operating independently of 
token probabilities.

• Uncertainty distillation functions even without unseen calibration data.
• Hyperparameter choices made during uncertainty distillation can be 

adjusted with various tradeoffs
• Better uncertainty estimation versus efficiency
• Better uncertainty estimation versus overall model accuracy

Summary

Overview

• The model’s confidence is approximated using Monte Carlo sampling and 
normalized into semantic clusters.

• We use isotonic regression to learn a post-hoc calibration map on a calibration set.
• We augment our training and calibration sets with verbalized representations of 

the confidence scores and finetune on this augmented dataset.
• We measure success in verbalizing confidences using the area under the receiver 

operating characteristic curve (AUROC).

• LLMs are more reliable and safer if they know what they don’t know; however, 
previous work has shown LLMs tend to overestimate their own confidence[1].

• Lexical uncertainty (derived from token probabilities) works well on short answers, 
but is problematic when answers can use variable numbers of tokens[2].

• Prompting does not successfully elicit well-calibrated confidences[1][3].
• Can we replicate the success of lexical uncertainty on short answers without using 

token-level probabilities?

Motivation Method

• [1] Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs. In 
The Twelfth International Conference on Learning Representations, 2024.

• [2]  Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for uncertainty estimation in natural language generation. arXiv preprint 
arXiv:2302.09664, 2023.

• [3] Kaitlyn Zhou, Jena Hwang, Xiang Ren, and Maarten Sap. Relying on the unreliable: The impact of language models’ reluctance to express uncertainty. In Lun-Wei Ku, Andre Martins, 
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3623–3643, Bangkok, Thailand, 
August 2024.Association for Computational Linguistics.

References

• How does uncertainty distillation perform on tasks where lexical uncertainty 
methods fail? 

• How to handle tasks where binary correctness isn’t available (e.g. machine 
translation)?

Future Work

The sampling process results in both correct and incorrect answers, both of which 
could potentially be added to the dataset.

We find that adding incorrect answers increases AUROC while decreasing accuracy, 
regardless of model.

Q: What is the 
capital of 
Germany?

Append All
A: Berlin

A: Paris

A: Berlin

A: Berlin

Berlin (with very high 
confidence)

Paris (with very low 
confidence)🤖

Adding Incorrect Answers
Sampling from the model is costly; we examine AUROC as a function of number of 
samples. We find increasing the number of samples improves AUROC, but that 
there are diminishing returns as number of samples increases.

Number of samples

A: London
A: Rome

A: …

Q: What is the 
capital of Germany?

A: London
A: Rome

A: …

Q: What is the 
capital of Germany?

Q1: What is the 
capital of Italy? 

🤖
A: Rome!
A: rome.

A: …

Monte Carlo sampling with semantic 
normalization

Answer Probability

rome 650/1000

munich 200/1000

paris 150/1000

Answer Probability

rome f(65%) =85%

munich f(20%) =6%

paris f(15%) =4%

Post-hoc calibration

Learned 
mapping f(x)

London (with very 
low confidence)

Q: What is the 
capital of Italy? 

London (with very 
low confidence)

Q: What is the 
capital of Italy? 

Self-annotation and fine-tuning

rome (with high 
confidence)

Q1: What is the 
capital of Italy? 

Inference

Q2: What is the 
capital of 
Germany?

A: berlin (with high 
confidence)

🤖

Training 
Inference 

Training 
Inference 

user study where one of the main takeaways was that users want more transparency
from agentic systems. Delacroix et al. [2025] discuss how professionals might want un-
certainty to be communicated in professional AI situations beyond simple uncertainty
quantification.

5 Miscellaneous
Ji et al. [2023] use an iterative process where language models analyze their own an-
swers for factuality to reduce the likelihood of hallucination in the medical domain–
not explicitly labelled as confidence but similar. In robotics Meera and Lanillos [2024]
use a confidence estimation to improve a robot’s performance in a tool selection task.
In computer vision Yang et al. [2021] use representations of uncertainty to guide cam-
ouflaged object detection.

Table 1: Comparison of existing datasets and ShiftySpeech with respect to key charac-
teristics for evaluating distribution shifts.

Method One forward pass
at inference?

Uses a
single model?

Doesn’t require
open weights?

Length
agnostic?

Aligns with
error rates?

P(True) ✗ ✓ ✓ ✓ ✓
Semantic clustering ✗ ✗ ✓ ✓ ✓
Token-level probabilities ✓ ✓ ✗ ✗ ✓
P(IK) ✓ ✗ ✗ ✓ ✓
Prompting ✓ ✓ ✓ ✓ ✗

Uncertainty Distillation ✓ ✓ ✓ ✓ ✓
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Figure 1: An overview of our method, Uncertainty Distillation. At training time, in Monte Carlo
sampling with semantic normalization, we sample repeatedly from our language model, and use
a normalization function to consolidate answers with the same semantic meaning. By consolidating
the counts, we obtain a Monte Carlo estimate of each answer’s probability. In post-hoc calibration,
we pass this estimate through a learned post-hoc calibration function to better align it with its like-
lihood of correctness. Finally, in self-annotation and fine-tuning, we translate these probabilities
to verbalized signifiers and fine-tune a model to output verbalized confidences in addition to the an-
swer. This method confers several advantages, listed in the table: at inference time, a single model
generates the confidence efficiently in a single pass, providing high discriminative power with lit-
tle computational overhead. The length of the answer does not directly impact the confidence, and
white-box access to weights is not required.

probabilities of semantically normalized outputs, rather than relying on token-level probabilities. At
inference time, models trained using uncertainty distillation efficiently generate a well-calibrated
and interpretable statement of confidence in their answers, such as “Berlin is the capital of Germany
[high confidence].”2 Our approach enables semantically equivalent but lexically different predic-
tions to be assigned the same confidence, and a single generation with multiple claims can each be
assigned different confidences. Uncertainty distillation is computationally inexpensive at inference
time, generating only a handful of additional tokens. Compared to methods such as P(IK) (Far-
quhar et al., 2024), we do not require a separate uncertainty network; our approach uses standard
supervised fine-tuning recipes for LLMs. Our method can be applied to open-source LLMs as well
as proprietary LLMs that allow fine-tuning; white-box access to model weights is not required.

Uncertainty distillation involves self-annotation of any desired QA dataset with the base model’s
calibrated uncertainties, which are then used to fine-tune that model to produce verbalized confi-
dences. At a high level (Figure 1), our approach consists of three steps: (1) obtaining semantic
uncertainty estimates from the model; (2) post-hoc calibrating these into meaningful probabilities;
and (3) teaching the model via supervised fine-tuning to output verbalized confidences along with
its predictions.

Summary of contributions

• We propose uncertainty distillation, a simple yet effective scheme which uses supervised fine-
tuning to teach LLMs to output calibrated semantic confidence statements along with their predic-
tions. We publish our code and trained models.3

2The uncertainty could be expressed in a variety of ways, including using special characters or numeric
values.

3https://anonymous.4open.science/r/uncertainty-distillation-anon-05CB/
README.md
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• We demonstrate that uncertainty distillation achieves easily interpretable results and compares
favorably to several powerful baselines.

• We analyze whether models trained with uncertainty distillation can apply their representations of
uncertainty to unseen topics at inference time without further fine-tuning.

2 RELATED WORK

Linguistic calibration and verbalized confidences Generally, calibration refers to the concept
that predicted probabilities should align with the probability of correctness (Guo et al., 2017).
Mielke et al. (2022) additionally propose the conception of “linguistic calibration”—that models
demonstrate uncertainty or doubt through natural language when they are incorrect, determining this
uncertainty by using a predictor to determine the likelihood that an answer is correct and consider-
ing that to be the model’s uncertainty. There are significant advantages to verbalizing uncertainty:
for one, there is relatively low computational overhead to generate several extra tokens, while using
a separate calibration model to estimate confidence and then communicate this information to the
user requires more computation at inference time (Yang et al., 2024). Verbalized confidences are
also readily interpretable to an LLM when reasoning about uncertainty, or to an average end-user
regardless of experience or background.

Lexical uncertainty quantification Lexical uncertainty quantification metrics using information
from token-level probabilities are commonly used and frequently effective (Hu et al., 2023; Malinin
& Gales, 2021). These probabilities are easily obtainable, do not require additional inference-time
compute to generate, and often provide sufficient information for downstream use cases: e.g. error
correction in chain of thought (Yin et al., 2024), hallucination detection (Arteaga et al., 2024), or out-
of-distribution data detection (Hendrycks et al., 2020b). However, there are several disadvantages to
lexical uncertainty quantification: it relies on model probabilities which may not be well-calibrated
(Guo et al., 2017), and is often ineffective on calculating uncertainty of long generations (Zhang
et al., 2024). The latter, in particular, may present problems for end users, as models trained using
Reinforcement Learning from Human Feedback (RLHF) are often incentivized to produce long out-
puts (Singhal et al., 2024). It is therefore important to consider uncertainty quantification methods
that do not rely on token-level probabilities to estimate uncertainty.

Semantic uncertainty quantification In contexts where lexical uncertainty falls short, a natural
method to obtain verbalized confidences might be to simply prompt a model to output confidences,
providing an estimate of uncertainty without explicitly using token-level probabilities. However, in
practice, LLMs tend to overestimate their own confidence, possibly because human annotators tend
to prefer texts with fewer markers of uncertainty (Zhou et al., 2024). This, in turn, suggests while
simply altering prompts may result in improved confidence estimates (Xiong et al., 2024; Tian et al.,
2023), models may be fundamentally limited in their ability to acknowledge uncertainty without
further training.

Running multiple steps at inference time may provide a better estimate of semantic probability.
Xiong et al. (2024) investigate several inference-time strategies which use multiple steps to estimate
model uncertainty, such as sampling several answers on the same question or noting if a model
changes its answer when prompted with a misleading alternative. While these methods do lead
to improvements in LLM calibration, no single intervention consistently emerges as the most suc-
cessful, and the authors note there is significant scope for improvement. Kuhn et al. (2023) and
Farquhar et al. (2024) more explicitly relate this to semantic uncertainty, and find that sampling m
predictions from the model and clustering by semantic equivalence results in a robust measure of
semantic uncertainty that compares favorably to lexical uncertainty. A major disadvantage of these
sampling-based approaches is their increased computational complexity at inference time, however;
for instance, the semantic clustering approach of Farquhar et al. (2024), which we compare to in our
experiments, requires 20 samples and calls to a separate entailment model at inference time.

3 METHOD

We propose a simple training recipe, illustrated in Figure 1 and described below, to allow a language
model to express confidences that correlate with expected error rates on held-out data.

3
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3.1 MONTE CARLO SAMPLING WITH SEMANTIC NORMALIZATION

Assuming input x and output y, we are looking to find
∑

y∈Yequivalent
P (y | x), the model’s likeli-

hood of producing this answer or one that is semantically equivalent; however this would require
marginalization over an infinite set of strings Y . To make this a tractable problem, we use a Monte
Carlo approximation, where our estimate of the models’ predictive distribution improves with N , at
the expense of additional offline computation. Note however that we do not assume this quantity is a
meaningful probability out-of-the-box due to potential overfitting or underfitting of the base model.
To diagnose potential miscalibration of the base model as well as correct for it, we may fit a post-hoc
calibrator if the training data demonstrates miscalibration.

In more detail, to fit a post-hoc calibrator, we need a supervised dataset of datapoints not seen at
training time {Xcal, Y cal}. For each example x ∈ Xcal we sample N candidate answers {ŷi}Ni=1 ∼
Pθ(Y | X = x) from a model’s predictive distribution4. Before calculating the relative frequency
of strings, we apply a normalization function (or set of normalization functions) to consolidate
semantically similar outputs. In the short-form QA tasks we consider in §4, we use the simple
normalization function of isolating a multiple choice answer using tags, removing punctuation and
standardizing capitalization; we demonstrate how semantic normalization can be applied to more
complex tasks in Appendix A. After consolidating strings belonging to the same event, the relative
frequency f of these events is a measure of the LLM’s uncertainty in those events, although this
may not be a well-calibrated probability.

3.2 POST-HOC CALIBRATION

Neural networks are prone to miscalibration. A common remedy is to apply post-hoc calibration
methods, which usually involve some form of regression on predicted scores to transform them into
meaningful probabilities. Specifically, we post-hoc calibrate the relative frequencies of each se-
mantic cluster found in the previous step. Two common options for post-hoc calibration are isotonic
regression and Platt scaling (sometimes called temperature scaling) (Guo et al., 2017). Our approach
uses a model’s predictions on {Xcal, Y cal} to diagnose and mitigate badly-calibrated initial model
probabilities. We fit an isotonic regression model5 on our calibration set by comparing the predicted
scores to observed labels.6 We compare each prediction ŷ with score f to observed events y. This
yields a calibration map c : R → [0, 1] we apply to the relative frequencies of events from samples
in the previous step to yield probabilities.

3.3 SELF-ANNOTATION AND FINE-TUNING

We compute the calibrated probability p = c(f) associated with each prediction in the held-out
calibration data, and choose a mapping into discrete confidence bins. Several options are possible
for this binning function b, including adaptive schemes as well as uniform schemes, the number
of bins B, and so on. In our experiments, we focus on a simple fixed-width scheme with 5 bins.
Let Ŷ denote the set of all predictions on Xcal, and, if the model was previously fine-tuned on a
supervised training set X train, we include predictions on X train. We transform each prediction and
calibrated confidence into a training example for a round of supervised fine-tuning by verbalizing
the corresponding bin in the answer. For example, the fifth of five bins may correspond to “very
high confidence.” The token sequences chosen to encode each bin are arbitrary, as we discuss in
Appendix F; for easy interpretability, we use short confidence descriptors in this paper, namely
“very low,” “low,” “medium,” “high,” and “very high.”

In our scheme, we simply append the verbalized confidence to all answers. For instance, if the
model generates 900 correct answers and 100 incorrect answers, there are two available data points
that could potentially be added to the dataset:

4This model may have been fine-tuned on the specific task as in Appendix C or instruction-tuned as in §4
andAppendix B.

5We use isotonic regression for ease of training and use; this could be replaced with a different post-hoc
calibration method, or omitted entirely as discussed in Appendix G. We use the scikit-learn 1.5.2
with no modification.

6We discuss the effect of post-hoc calibration further in Appendix G.
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<correct answer> (with very high confidence)

<incorrect answer> (with very low confidence)

While correct answers should be added as training data, appending the confidence scores to incorrect
answers may improve the model’s ability to correctly verbalize its own confidence. However, it may
also decrease the accuracy of the QA model. We introduce a hyperparameter to control the number
of incorrect answers added to the training data. In §B.2, we further investigate the impact of this
hyperparameter.

Starting from the sampled model, we perform supervised fine-tuning on these self-annotated targets
with verbalized confidences to estimate a second model capable of verbalizing its confidence. If
training an instruction-tuned model, we append an additional instruction such as “Additionally state
how confident you are in your answer.” to the preexisting instruction7. If a reasoning trace has been
generated during sampling, we randomly select a reasoning trace to add to the target answer from
all possible options. At inference time, we obtain predictions and verbalized confidences from this
new model on held-out test data. This test data has no overlap with the post-hoc calibrated training
set, and can even be drawn from an entirely different dataset, as in §6. We remark that our model
incurs little additional cost at inference time, as opposed to other confidence elicitation methods
which require inference-time sampling (Farquhar et al., 2024; Xiong et al., 2024).

4 EXPERIMENTAL SETUP

DATASET MODEL METHOD AUROC ACC HIGH ACC HIGH %

MMLU

MINISTRAL-8B

UD (OURS) 0.693 0.601 0.766 49.7
LEXICAL BASELINE 0.627 0.551 0.555 99.2

PROMPTING 0.587 0.637 0.643 97.4
P(IK) 0.670 0.566 0.639 83.1

P(TRUE) 0.471 0.585 0.583 96.6
SEM. CLUSTERING 0.667 0.577 0.821 34.6

LLAMA-3B

UD (OURS) 0.743 0.532 0.759 42.4
LEXICAL BASELINE 0.644 0.511 0.600 62.0

PROMPTING 0.548 0.613 0.647 73.9
P(IK) 0.692 0.567 0.688 59.8

P(TRUE) 0.550 0.554 0.558 98.6
SEM. CLUSTERING 0.646 0.560 0.727 63.8

SOCIALIQA

MINISTRAL-8B

UD (OURS) 0.671 0.713 0.792 53.7
LEXICAL BASELINE 0.600 0.738 0.760 85.7

PROMPTING 0.539 0.721 0.738 95.8
P(IK) 0.676 0.650 0.713 85.0

P(TRUE) 0.491 0.712 0.710 92.5
SEM. CLUSTERING 0.603 0.659 0.780 17.7

LLAMA-3B

UD (OURS) 0.784 0.653 0.833 55.1
LEXICAL BASELINE 0.531 0.673 0.687 95.3

PROMPTING 0.545 0.685 0.712 67.2
P(IK) 0.669 0.664 0.839 26.4

P(TRUE) 0.505 0.681 0.682 99.1
SEM. CLUSTERING 0.601 0.675 0.758 34.0

Table 1: Binned AUROC and accuracy metrics for our large models and datasets. We find that
uncertainty distillation (UD) leads to increased AUROC and accuracy in high-confidence categories.
Accuracy is the overall accuracy, and High Accuracy is the accuracy for the most confident
predictions. We find that uncertainty distillation with one generation achieves similar or improved
High Accuracy compared to other methods, including those using multiple samples.

We examine the efficacy of uncertainty distillation in two settings. First, we demonstrate the success
of uncertainty quantification with large language models trained on several standard QA bench-

7See Appendix E for details on the specific prompts used in each experiment.
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marks. Second, we examine whether the models can still accurately forecast uncertainty when
applied to datasets not seen during uncertainty distillation.

4.1 UNCERTAINTY DISTILLATION IN-DOMAIN

Datasets We demonstrate uncertainty distillation using two multiple-choice question answering
datasets, the Massive Multitask Language Understanding benchmark (MMLU) (Hendrycks et al.,
2020a) and the Social Interaction Question Answering dataset (SocialIQA) (Sap et al., 2019).
MMLU consists of multiple choice questions over 57 subjects such as high school psychology or
formal logic. We take a subset of 20,000 questions from the training set to act as our calibration
data, a subset of 500 questions from the validation set to act as our validation data, and a subset of
2,000 quesions from the test set to act as our test data. SocialIQA is a dataset consisting of ques-
tion/answer pairs about social situations. We take a subset of 20,000 questions from the training set
to act as our calibration data, a subset of 500 questions from the training set to act as our validation
data, and use the existing validation split as our test data. For both datasets we set N = 100, i.e. we
take 100 samples per question to construct our initial Monte Carlo estimate of confidence8

Models and baselines We validate uncertainty distillation on these datasets using two modern
instruction-tuned LLMs, Llama-3.2-3B-Instruct (Dubey et al., 2024) and Ministral-8B-Instruct-
2410 (Jiang et al., 2023). When performing uncertainty distillation with Ministral-8B, we use
LoRA (Hu et al., 2021). For the Lexical baseline, we extract token-level probabilities from the
language model on our training/calibration split9 and use this to train an isotonic regression model
to calibrate the average token-level probability for each answer.10 To measure the model’s ability to
verbalize its confidence prior to uncertainty distillation , in Prompting we prompt the base model
to output its own confidence in its answer. We report this baseline for these models, and discuss the
prompts used in Appendix E. We also compare to P(IK) from Farquhar et al. (2024) which learns
a mapping from hidden states to uncertainty scores, and P(True) from Kadavath et al. (2022). Fi-
nally, we compare to the Semantic Clustering (SC) approach from Farquhar et al. (2024).
Both P(True) and Semantic Clustering generate 20 samples from the model to compute
uncertainty scores, unlike our approach which uses a single generation.

4.2 UNCERTAINTY DISTILLATION UNDER DOMAIN SHIFTS

We have discussed uncertainty distillation as a method that allows a model to forecast its own cer-
tainty. However, one potential reason for its success is if it is instead learning information about
the dataset, and is learning to associate low confidence with types of questions that it has previ-
ously gotten wrong.11 By changing the evaluation dataset, we demonstrate that the representation of
uncertainty is not limited to only the domain of the training dataset.

Datasets We use SocialIQA and MMLU as described above. We also evaluate our models on the
500 examples in the test split of OpenbookQA(Mihaylov et al., 2018), an elementary-level science
multiple choice question answering dataset.

Models and baselines In this experiments, we use the models described in §4.1 without further
fine-tuning. Models trained on MMLU are tested on SocialIQA and OpenbookQA; Models trained
on SocialIQA are tested on MMLU and OpenbookQA. We compare to the Lexical and P(IK)
baselines described above, as these are the only two methods that require supervised data (Lexical
to fit a calibration map and P(IK) to train a regressor) and would be affected by domain shifts.

8We chose N based on the small-scale experiments described in Appendix D.
9As we do not have an initial fine-tuning step, these are equivalent.

10We use the average probability rather than the sequence probability to normalize over different lengths, as
Kuhn et al. (2023) find this improves performance.

11For instance, if models perform particularly poorly on chemistry questions, it might output low uncertainty
only because the question uses words such as “hydrogen”, rather than learning an innate representation of
uncertainty.
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4.3 METRICS

We report the area under the receiver operating characteristic curve (AUROC),12 which represents
the probability that a randomly chosen correct answer will be in a higher-confidence bin than a ran-
domly chosen incorrect answer. This metric is well established in previous literature (see e.g., Hu
et al. (2023)), and compares the relative rather than absolute probabilities, which allows us to use it
effectively with discrete verbalized confidences.13 Baseline methods that return a continuous score
are binned to five categories to represent converting to a comparable verbalized confidence14. For
all methods, we plot the percentage of accurate answers in each bin to examine if confidence corre-
sponds well with accuracy. We also report overall model accuracy, to evaluate the tradeoff between
accuracy and calibration. Finally, we report high accuracy (accuracy of predictions in “very
high” and “high” bins) and high % (percentage of predictions in “very high” and “high” bins).
As an established use-case for verbalized confidences is to reject lower-confidence predictions, this
provides information about how useful the LLM’s predictions in rejecting incorrect answers and
preserving a high number of correct answers.15
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Figure 2: Average accuracy within each confidence bin for our experiments with Llama (Mistral
results in Figure 6). We find that our confidence bins correspond well with accuracy within the bin,
while our baselines may not exhibit similar correspondence. We do not plot bins with fewer than 10
samples.

5 RESULTS AND DISCUSSION

Figure 2 shows some of our results comparing uncertainty distillation to the lexical uncertainty
baseline in terms of average accuracies in each confidence bin16. In plots like this, an ideal model
would exhibit a diagonal trend line where outputs reported to have high confidence indeed have
high accuracy, and those in the low confidence bins have lower accuracy. We find that the verbalized
confidences produced by uncertainty distillation are highly interpretable, with high correspondence
between accuracy of answers within a bin and that bins confidence. In contrast, confidence scores
generated by the baselines may not correspond well with the actual accuracies within that bin. For

12Calculated using scikit-learn 1.5.2
13We do not report Expected Calibration Error (ECE), as it requires comparing a numerical probability to

the prediction’s true label, while our method and the semantic clustering baseline do not output numerical
probabilities. Furthermore, many forms of calibration error require the choice of several hyperparameters such
as binning strategy or regularization, which can have a large impact on performance (Nixon et al., 2019).

14If the probability is not normalized, we learn a binner using the range from validation data.
15The fact that high accuracy is not perfect also highlights a risk of confidence estimation: namely, that it

increases trust in an answer that still may be incorrect.
16We present the remaining two settings in Appendix I.
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instance, accuracy within the lowest confidence bin for the prompting baseline is 0.684 with Llama-
3B on SocialIQA, while accuracy within the highest confidence bin is 0.651.

Table 1 summarizes these plots in terms of AUROC score. AUROC is consistently high with uncer-
tainty distillation, generally outperforming other methods. We conclude that uncertainty distillation
is effective for estimating confidence in an answer. AUROC is highest for uncertainty distillation for
all experiments except Ministral-8B on SocialIQA, where it outperforms all baselines bu P(IK). In
particular, we note that uncertainty distillation consistently achieves higher AUROC than semantic
clustering(Kuhn et al., 2023), despite semantic clustering requiring 20 samples and a computation-
ally intensive clustering step at inference time: for instance, uncertainty distillation achieves AU-
ROC of 0.784 with Llama-3B on SocialIQA, while semantic clustering achieves AUROC of 0.601.

The table also reports the accuracy of the highest confidence bin and the overall accuracy across
all bins. While AUROC is the main metric for assessing performance, accuracy is also useful for
understanding the nuances of the result. We find that uncertainty distillation does not lead to no-
table drops in overall accuracy, and that accuracy in the highest bins increases dramatically without
restricting to drastically low amount high-confidence predictions (High % stays consistently above
40%). Uncertainty distillation achieves the best High Accuracy most cases. The exceptions are
Ministral-8B on MMLU and Llama-3B on SocialIQA. In both these cases, the comparatively strong
high accuracy results from notably smaller percentage of samples in high-confidence bins for these
baselines, with only 34.6% of predictions being high-confidence for the baseline for MMLU com-
pared to 49.7% for uncertainty distillation, and only 26.4% of predictions being high-confidence for
the baseline for SocialIQA, compared to 55.1% for uncertainty distillation.

6 SUCCESS UNDER DOMAIN SHIFTS

Table 2 shows uncertainty distillation results compared to supervised baselines. We find that uncer-
tainty distillation (UD) consistently achieves high AUROC despite the domain shifts, outperforming
in all cases but Ministral-8B trained on SocialIQA and tested on OpenbookQA, which is outper-
formed by the lexical baseline and marginally by P(IK).

In Table 2, we compare only to similarly out-of-domain baselines (i.e., also fit on data from a dif-
ferent distribution). A priori, one might expect that our approach fine-tuned for a specific dataset
would significantly degrade in performance on a different dataset due to biases or spurious corre-
lation. However, we find that out-of-domain uncertainty distillation outperforms all unsupervised
baselines (semantic clustering, prompting, and P(True)), with the sole exception of Ministral-8B
semantic clustering on MMLU. Notably, semantic clustering requires 20 samples from the language
model, making uncertainty distillation more efficient at inference time by an order of magnitude.
This result demonstrates that the representations of uncertainty learned by the model during uncer-
tainty distillation are not limited to the training dataset, but can be applied to new datasets while still
outperforming baselines unaffected by domain shifts.

7 UNCERTAINTY DISTILLATION WITH BLACK-BOX MODELS

Increasingly, large foundation models are not being released publicly, and even if they were, few
groups posses the hardware to run large mixture-of-experts models efficiently. One advantage of
uncertainty distillation is that it does not require open access to model weights; therefore, if there
is an option to tune a model through an API, uncertainty distillation can still be used. Here, we
demonstrate the success of uncertainty distillation in this case.

Model and dataset To strike a balance between cost and quality, we use Google’s
gemini-2.5-flash-lite model. Since this is a significantly more capable model than the
open-weight models used elsewhere in this paper, we use a more challenging benchmark: MMLU-
Pro (Wang et al., 2024b), a variant of MMLU designed to be more challenging and which includes
a broader set of questions, including questions requiring reasoning. Note that the original MMLU
dataset already covers a wide range of topics, so this benchmark helps us understand whether a sin-
gle model can successfully estimate uncertainty across a wide range of settings, given only a a few
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TRAIN DATASET TEST DATASET MODEL METHOD AUROC ACC

MMLU

SOCIALIQA

MINISTRAL-8B
UD (OURS) 0.657 0.676

LEXICAL BASELINE 0.593 0.738
P(IK) 0.618 0.636

LLAMA-3B
UD (OURS) 0.717 0.627

LEXICAL BASELINE 0.574 0.670
P(IK) 0.675 0.655

OPENBOOKQA

MINISTRAL-8B
UD (OURS) 0.757 0.734

LEXICAL BASELINE 0.676 0.812
P(IK) 0.683 0.736

LLAMA-3B
UD (OURS) 0.834 0.733

LEXICAL BASELINE 0.647 0.680
P(IK) 0.770 0.722

SOCIALIQA

MMLU

MINISTRAL-8B
UD (OURS) 0.644 0.599

LEXICAL BASELINE 0.635 0.551
P(IK) 0.605 0.553

LLAMA-3B
UD (OURS) 0.714 0.547

LEXICAL BASELINE 0.569 0.528
P(IK) 0.687 0.572

OPENBOOKQA

MINISTRAL-8B
UD (OURS) 0.700 0.746

LEXICAL BASELINE 0.719 0.812
P(IK) 0.704 0.718

LLAMA-3B
UD (OURS) 0.758 0.755

LEXICAL BASELINE 0.549 0.680
P(IK) 0.693 0.694

Table 2: AUROC and accuracy metrics for Uncertainty Distillation (UD) tested on out-of-domain
datasets compared to out-of-domain supervised baselines tested. Uncertainty distillation consis-
tently achieve high AUROC on the novel test set in comparison to the supervised baselines, which
are more inconsistent when dealing with domain shifts.

hundred demonstrations from each domain. We use an existing split of the data into training and
evaluation sets, and we further split the evaluation set into 50% validation data and 50% test data17.

Baselines The API restrictions preclude uncertainty estimation approaches that inspect model ac-
tivations such as P(IK) or approaches that require next-token logits such as the lexical baseline.
Nonetheless, we can fairly compare to baselines involving prompting or repeated sampling, so we
include comparisons to prompting for verbalized confidences and semantic clustering. For semantic
clustering, we include results for 8, 16, and 32 samples at inference time.

Procedure The procedure is identical using a commercial API or fine-tuning models locally. First,
we generate 128 samples on the training split and then apply semantic clustering to estimate the
relative frequency of each prediction. We then post-hoc calibrate the relative frequencies using either
temperature scaling or isotonic regression. Finally, we create a fine-tuning dataset consisting of
predictions and their calibrated confidences. On the validation data, we compare the performance of
models trained with varying numbers of incorrect predictions, as described in §3.3 and Appendix L.
The base model is then fine-tuned using LoRA via the Google Generative AI SDK18, and this fine-
tuned model is then used to make predictions on validation or test data.

Results and analysis The cost of running the entire pipeline was approximately $20, including
generating samples, fine-tuning, and generating predictions on held-out data. For experimenting
with different fine-tuning hyper-parameters, we could re-use samples, further controlling costs. We

17https://huggingface.co/datasets/answerdotai/MMLU-SemiPro
18https://docs.cloud.google.com/vertex-ai/generative-ai/docs/models/

gemini-use-supervised-tuning
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show results in Table 3, demonstrating that uncertainty distillation outperforms the other black-box
methods. In particular, we note that at inference uncertainty distillation only requires a single pass,
while semantic clustering requires eight to thirty-two.

METHOD AUROC ACC HIGH ACC COST PER ANSWER

UD (OURS) 0.762 0.490 0.706 1X
PROMPTING 0.582 0.498 0.503 1X

SEM. CLUSTERING (8) 0.713 0.508 0.562 8X
SEM. CLUSTERING (16) 0.715 0.505 0.575 16X
SEM. CLUSTERING (32) 0.718 0.505 0.581 32X

Table 3: AUROC and accuracy metrics for the API-tuning experiments for
gemini-2.5-flash-lite. We find that uncertainty distillation (UD) significantly out-
performs all baselines in AUROC and high accuracy, and achieves similar accuracy to the only
single-generation baseline, prompting. With the multi-generation baseline of semantic clustering
increasing the number of samples to 32 does not cause semantic clustering to approach the
performance of uncertainty distillation. We also note that semantic clustering costs 8-32x more than
uncertainty distillation.

The limitations in applicable baselines demonstrate an appealing feature of uncertainty distillation;
specifically, that for black-box models such as Gemini it is possible to achieve high performance bet-
ter than semantic clustering with the efficiency of prompting, while most other accurate uncertainty
quantification measures cannot be applied without open access to model weights.

8 CONCLUSION

Findings We find that uncertainty distillation leads to improved estimates of uncertainty in com-
parison to many strong baselines, including baselines that require considerably more samples at
inference-time. Additionally, we demonstrate that the representations of uncertainty learned during
uncertainty distillation are applicable to unfamiliar test sets, showing that the model is learning to
predict its own uncertainty independent of the subject of the dataset. Overall, we view our contribu-
tion as a significant step towards LLMs that can reliably reason about uncertainty, without requiring
any auxiliary models or incurring additional inference-time compute.

Future work While we focus on QA tasks, our method could be applied to tasks outside simple
QA through the use of LLM verifiers to calculate binary correctness, as discussed in Appendix A.
Future work may also investigate the robustness of the model’s internal representation of uncer-
tainty to even more dramatic domain shifts, such as different types of QA tasks or even tasks such
as machine translation that bear no similarity to question answering. Looking beyond these imme-
diate questions, LLMs that are able to verbalize meaningful confidences, for example thanks to our
method, may be useful in a variety of applications requiring reasoning about uncertainty, such as
medical diagnosis.

LIMITATIONS

Our experiments focus on established QA tasks which admit straightforward ways to assess correct-
ness. In principle, our approach generalizes to more complex tasks involving longer-form genera-
tions than the open-answer QA task described here; we leave it as future work to experiment in these
settings with LLM verification. Separately, the proposed approach may be useful in cases where a
single generation involves multiple distinct claims that each need to be associated with distinct
confidences. Future work should identify appropriate datasets to evaluate multi-claim uncertainty
estimation. We hope that our findings will encourage further study into uncertainty distillation in
more general settings.
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REPRODUCIBILITY STATEMENT

We have endeavored to make reproducing our results straightforward. We describe our datasets,
models, and metrics in detail in §4.1; we provide the prompts used in Appendix E; we provide the
used hyperparameters in Appendix L and Appendix J; and we report the compute resources and
dataset licensing in Appendix K. We plan to release our code upon publication.
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jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

14

http://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2303.08774


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

P Rajpurkar. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=GhVS8_yPeEa.

Vipula Rawte, Swagata Chakraborty, Agnibh Pathak, Anubhav Sarkar, S.M Towhidul Islam Ton-
moy, Aman Chadha, Amit Sheth, and Amitava Das. The troubling emergence of hallucination in
large language models - an extensive definition, quantification, and prescriptive remediations.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 2541–2573, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.155. URL
https://aclanthology.org/2023.emnlp-main.155.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. CoRR, abs/1904.09728, 2019. URL http:
//arxiv.org/abs/1904.09728.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
formatting. arXiv preprint arXiv:2310.11324, 2023.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in RLHF. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=G8LaO1P0xv.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated con-
fidence scores from language models fine-tuned with human feedback. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5433–5442, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL https:
//aclanthology.org/2023.emnlp-main.330.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mambabyte:
Token-free selective state space model. arXiv preprint arXiv:2401.13660, 2024a.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Es-
haan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob An-
derson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi,
Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravse-
haj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 5085–5109, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.340. URL
https://aclanthology.org/2022.emnlp-main.340/.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024b. URL https://arxiv.org/abs/2406.01574.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can
LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=gjeQKFxFpZ.

15

https://openreview.net/forum?id=GhVS8_yPeEa
https://aclanthology.org/2023.emnlp-main.155
http://arxiv.org/abs/1904.09728
http://arxiv.org/abs/1904.09728
https://openreview.net/forum?id=G8LaO1P0xv
https://openreview.net/forum?id=G8LaO1P0xv
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2023.emnlp-main.330
https://aclanthology.org/2022.emnlp-main.340/
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer, 2021.
URL https://arxiv.org/abs/2010.11934.

Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Yamada. On verbalized confidence scores for
llms, 2024. URL https://arxiv.org/abs/2412.14737.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng, Xiaonan Li, Junqi Dai, Qinyuan Cheng,
Xuanjing Huang, and Xipeng Qiu. Reasoning in flux: Enhancing large language models rea-
soning through uncertainty-aware adaptive guidance. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 2401–2416, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.131. URL
https://aclanthology.org/2024.acl-long.131/.

Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. Luq: Long-text uncertainty quan-
tification for llms, 2024. URL https://arxiv.org/abs/2403.20279.

Kaitlyn Zhou, Jena Hwang, Xiang Ren, and Maarten Sap. Relying on the unreliable: The im-
pact of language models’ reluctance to express uncertainty. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 3623–3643, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-long.198.

A DISCUSSING SEMANTIC REPRESENTATIONS

In this paper, we generally focus on the relatively easy task of consolidating semantically similar
answers for multiple-choice question answering datasets. In this case, semantic normalization is
trivial, as it simply requires isolating the letter of the multiple-choice option, removing the reasoning
and punctuation that affect lexical uncertainty quantification methods. However, for more complex
tasks other approaches may be required (Huang et al., 2024). Previous research has established how
normalization might be applied: for example, Kuhn et al. (2023) use natural language inference to
cluster semantically equivalent answers and Tian et al. (2023) use an LLM as a judge of correctness.
To demonstrate this variant, we set up an experiment to demonstrate how uncertainty distillation can
be applied to an open-answer dataset.

A.1 OPEN-ANSWER EXPERIMENTS

Model and dataset We run these experiments with Llama-3B-Instruct. For the open dataset, we
use GSM8K (Cobbe et al., 2021), an open math QA dataset consisting of grade-school level math
problems. This dataset presents input variance that prevent exact match metrics from working ef-
fectively: even assuming the model correctly only encloses the final answer in the tags, an answer
might be expressed as “10”, “10 dollars”, “$10”, “10.00”, and so on. All of these answers are se-
mantically equivalent, but “10” would be the only accepted answer. We take the first 7000 examples
of the training set as training data, the remaining 473 examples as validation data, and the existing
test set as the unseen test set.

Semantic normalization To make the clusters, we use code from Kuhn et al. (2023), specifically
the EntailmentDeberta with minor changes to look for the absence of contradiction rather than en-
tailment19. Once each sample has been generated, we compare answers pairwise, first to the correct
answer (Formatted as “The correct answer is” followed by the simple numerical answer), and then to
existing clusters. If none match, the answer is assigned to a new cluster. We choose a random answer
to represent each cluster when constructing training data. The remainder of uncertainty distillation
proceeds as normal.

19As Deberta (He et al., 2020) is trained for natural language inference, rather than comparing two numbers,
absence of contradiction works better to cluster than entailment.
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Baselines and metrics The baselines are described in §4. For P(IK), rather than using exact match
to assign correctness labels to train the probe, we use EntailmentDeberta. At inference, to evaluate
generated answers for all baselines, we query GPT-3.5-turbo as a judge.

Results and analysis We find that uncertainty distillation in this setting outperforms all baselines
by a wide margin, achieving AUROC of 0.787. Both AUROC and high accuracy are significantly
higher than the two baselines we compare to, and AUROC is similarly high to our multiple-choice
question answering results, demonstrating that uncertainty distillation can be successfully applied to
open-answer tasks by using semantic clustering to normalize answers at data generation.

METHOD AUROC ACC HIGH ACC HIGH %

UD (OURS) 0.787 0.752 0.935 58.0
LEXICAL BASELINE 0.542 0.829 0.832 98.2

PROMPTING 0.587 0.763 0.803 63.5

Table 4: AUROC and accuracy metrics for the open-answer experiments with Llama-3B-Instruct.
We find that uncertainty distillation (UD) leads to increased AUROC and accuracy in high-
confidence categories.

A.2 GENERALIZATION TO LONG-FORM TASKS

For longer-form generation tasks, a single binary confidence judgment may be inadequate. The
uncertainty distillation procedure is straightforward to extend to settings involving more than one
prediction per generation, providing more granular feedback at the level of individual claims. As a
concrete example, consider the task of extracting key facts from a news article. To apply our frame-
work to this setting, we use a structured output consisting of a set of independent predictions, each of
which associated with a different confidence. For a document from the CNN/DailyMail corpus20, we
show how gemini-2.5-flash-lite extracts key facts out-of-the-box using a suitable prompt
and JSON output. However, as shown in §7, the calibration of the verbalized confidences is poor.
By sampling multiple sets of claims for the same document, we can estimate the probability of each
fact independently, and then apply our calibration and data augmentation procedure to fine-tune a
model that outputs better calibrated confidences without incurring any additional runtime overhead.
This requires using a semantic clustering approach which groups together equivalent factual state-
ments expressed differently, which may be the same base model or a more efficient natural language
inference model (Kuhn et al., 2023).

Prompt: Read the following document and summarize at most 5 key facts of the story as a list of
claims (fewer is fine). Keep the claims short, simple, and in canonical format. Return your answer
in JSON format with the field ’claims’, which is a list of objects containing ’text’ and ’confidence’.

Document: Solar flares can cause widespread disruption on Earth, but scientists have struggled to
understand how they are formed. Now, a team from from the California Institute of Technology
(Caltech) have taken a huge step forward by recreated the phenomenon that leads to solar flares in a
lab. They hope their work could lead to improved space weather forecasts. The US team amanged
to recreate plasma loops (above) in a lab for the first time [...]

1 {
2 "claims": [
3 {
4 "text": "Scientists have recreated the phenomenon that leads

to solar flares in a lab.",
5 "confidence": "VERY HIGH"
6 },
7 {
8 "text": "The laboratory recreation involved creating plasma

loops, which are precursors to solar flares.",
9 "confidence": "VERY HIGH"

20abisee/cnn_dailymail
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10 },
11 {
12 "text": "The Caltech team hopes this research will lead to

improved space weather forecasts and warnings.",
13 "confidence": "VERY HIGH"
14 },
15 {
16 "text": "Two magnetic forces were identified as controlling

the behavior of the arching plasma loops.",
17 "confidence": "HIGH"
18 },
19 {
20 "text": "A novel technique using color-coded, inflowing

plasma was employed to visualize the plasma loop
behavior.",

21 "confidence": "HIGH"
22 }
23 ]
24 }

B TARGETED ANALYSIS

B.1 EXPERIMENTAL SETTING

In §3, we assume that we have access to held-out calibration data. However, due to the unknown
composition and size of pretraining datasets, it is increasingly challenging to guarantee that this
assumption holds. We therefore test uncertainty distillation in a setting where we can know with
certainty whether the calibration set is in a model’s pretraining data. We examine this question
and the impact of adding varying numbers of incorrect answers during uncertainty distillation in
Appendix B.

Dataset In this setting, we use the Super-NaturalInstructions dataset (SNI; Wang et al., 2022). We
select 15 English Q&A tasks with short-form answers. We focus on Q&A tasks for which a single
correct answer exists (e.g. multiple choice problems, short-form span extraction, math problems,
etc.) and thus for which correctness of a model’s prediction can reliably and efficiently be computed
after normalizing lexical forms without resorting to methods such as LLM verification. We use
1,000 samples to obtain our Monte Carlo estimate of confidence (see Appendix D for details on how
number of samples affects successful confidence estimation).

Models We perform uncertainty distillation on FLAN-T5 (Chung et al., 2022), an instruction-
tuned model trained on a dataset containing the SNI tasks. Importantly, we not only verify that
Flan-T5 has been instruction-tuned on our tasks, but has seen samples from the calibration set of our
test tasks. This allows us to investigate the effect of data contamination on calibration of verbalized
confidences.

To construct a similar model which has not seen our calibration data, we instruction-tune a T5-Large
model on a remaining subset of the English tasks in the SNI dataset, making sure to explicitly hold
out the 15 tasks we use in our uncertainty distillation experiments. The result is an instruction-tuned
model which we refer to as Instruct-T5, capable of performing our target Q&A tasks without having
seen these tasks during training. In other words, the samples we obtain from this model do not
require Instruct-T5 to be pre-trained on that specific task. See Appendix H for more details on our
data selection and instruction-tuning. We train and evaluate uncertainty distillation on the combined
dataset of these tasks and report the performance over the metrics described in §4.3.

Baselines We report a comparison to the lexical baseline described above in order to provide
context for the performance of the small models.
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B.2 RESULTS

Assumption of calibration set We compare the performance of FLAN-T5, which has been
instruction-tuned on the calibration set, with the performance of Instruct-T5, which has not, in
Table 5. We find that while uncertainty distillation still produces meaningful confidence bins for
FLAN-T5, it no longer outperforms lexical uncertainty. We conclude that uncertainty distillation
works in the absence of held-out calibration data, but not as effectively as token-level probabilities,
which are likely well-calibrated due to the model’s previous training on these examples. We discuss
results for these two models further in §B.2 and Appendix G, and find that the behavior of FLAN-T5
differs significantly from results on models where we have an unseen calibration set.

MODEL METHOD AUROC OVERALL ACCURACY HIGH ACCURACY

INSTRUCT-T5 UNCERTAINTY DISTILLATION 0.751 0.449 0.839
LEXICAL BASELINE 0.667 0.387 0.754

FLAN-T5 UNCERTAINTY DISTILLATION 0.873 0.614 0.875
LEXICAL BASELINE 0.892 0.657 0.912

Table 5: AUROC and accuracy metrics when using FLAN-T5, which does not have an unseen
calibration set. We find that while uncertainty distillation outperforms our lexical baseline with a
model with an unseen calibration set, it does not outperform the baseline on FLAN-T5, which was
instruction-tuned on the data previously.

Adding incorrect examples While adding incorrect examples into the training data has the po-
tential to provide more examples at different levels of confidences, it also is likely to increase the
likelihood that a model generates an incorrect answer. To demonstrate this effect, in Table 6, we
show the AUROC and accuracy for models trained with different amounts of incorrect samples.
With Instruct-T5, we find that adding only two incorrect samples per correct sample dramatically
increases AUROC while decreasing accuracy. While this would seem to indicate a fundamental
tradeoff between accuracy and calibration, we find that the same is not as obviously true for FLAN-
T5; while the accuracy may decrease and AUROC may increase, the effects are not as significant as
they are for Instruct-T5. One possible interpretation of this is that its predictions are shaped by the
fact that the data was included in its instruction-tuning corpus, leading to less dramatic shifts when
trained.

While adding incorrect samples may improve AUROC, it increases the number of training examples
by a factor of the number of incorrect examples added (e.g. a training set with 100 examples would
train on 100 augmented answers with 0 incorrect examples added, 200 augmented answers with one
incorrect example added, etc.) This leads to increased compute at training time. For this reason, in
addition to the decreased accuracy, we recommend adding a low number of incorrect examples to
the training dataset, and in our main experiments limit to at most one incorrect answer per question.

0 1 2 3

INSTRUCT-T5

AUROC 0.723 0.737 0.751 0.757
ACCURACY 0.529 0.486 0.449 0.447

FLAN-T5

AUROC 0.868 0.876 0.873 0.883
ACCURACY 0.609 0.620 0.614 0.611

Table 6: AUROC of models trained with varying numbers of incorrect examples allowed per ques-
tion. There is a general trend towards increasing AUROC and decreasing accuracy when incorrect
examples are included, although this is less pronounced for FLAN-T5.
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B.3 ANALYSIS

One high-level takeaway is that with small models there appears to be a tradeoff between an LLM’s
ability to predict its own confidence and overall model accuracy, but that this effect is less obvi-
ous with increasing model sizes. In our small-scale analysis, interventions that improve AUROC
decrease accuracy and vice versa; however, with larger models we do not note as noticeable a de-
crease in accuracy compared to our baselines. Functionally, UD combines aspects of two tasks: the
model’s original question answering ability and uncertainty quantification. Large models are both
less prone to catastrophic forgetting(Ramasesh et al., 2022)and more effective at multitask learning
than smaller models(Chung et al., 2022). With this framing, the fact that larger models’ accuracy
is less impaired by the finetuning process of uncertainty distillation indicates that model scale plays
a significant role in an accuracy/performance tradeoff, and increasing model scale or training in an
explicitly multi-task setting may decrease the likelihood of drops in accuracy.

C UNCERTAINTY DISTILLATION ON SUPERVISED FINE-TUNED MODELS

We here examine uncertainty distillation’s efficacy when performed on a small fine-tuned model,
rather than large instruction-tuned models.

Dataset We perform these experiments using the SQuAD benchmark (Rajpurkar, 2016). This is a
machine-reading task where each question consists of a passage of text and one or more associated
questions, each of which is answerable based on the text itself. As the test set has not been publicly
released, we use the splits proposed by Du et al. (2017), which divides the publicly available avail-
able training and validation splits into train, test, and validation splits. We consider the first 60,000
examples in the training set to be training data, and the remainder to be our calibration set.

Model We apply uncertainty distillation to T5-base (Raffel et al., 2020) finetuned on a portion of
SQUAD. We use defaults for most hyperparameters, and report hyperparameters in Appendix L.

Results Table 7 shows the results on the fine-tuned T5-base model. Uncertainty distillation
achieves AUROC of 0.805 in the T5-base SQUAD experiment, slightly outperforming the lexical
baseline’s AUROC of 0.771.

MODEL METHOD AUROC OVERALL ACCURACY HIGH ACCURACY

T5-BASE
UNCERTAINTY DISTILLATION 0.805 0.711 0.852

LEXICAL BASELINE 0.771 0.811 0.865

Table 7: AUROC and accuracy metrics for T5-base, trained on SQUAD. We find that even in this
setting, a model trained with uncertainty distillation outperforms lexical uncertainty in verbalizing
confidences on SQUAD-T5

D NUMBER OF SAMPLES

Our Monte Carlo estimation of probability requires sampling repeatedly from a model before nor-
malizing and calculating probability. In Figure 3, we show that the number of samples used to
estimate the initial probabilities has a significant impact if chosen to be too low; however, there are
diminishing returns as the number of samples increases. We therefore choose to use 1,000 samples
in all of our experiments with FLAN-T5 and Instruct-T5, as more than that is unlikely to achieve
anything but marginal improvement. For the larger models, we select 100 samples, as this appears
to be the elbow of the curve in Figure 3, and as sampling 1000 samples from the large models would
be computationally prohibitive. We note, however, that based on these results, this hyperparameter
can be changed to improve efficiency or effectiveness of the method as is required by each task.
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Figure 3: Curve showing the AUROC as a function of number of samples on the SQUAD dataset.

E PROMPTS

E.1 MISTRAL, LLAMA

Prompt baselines, uncertainty distillation (MC) Answer the following question
and state confidence in the answer (very low, low, medium, high,
very high). Enclose concise reasoning in <reasoning> </reasoning>
tags, confidence in <confidence> </confidence> tags, and the
letter of your FINAL answer in <answer> </answer> tags without
any of your work, like this: "If each of Lisa’s 7 chickens lays 6
eggs, how many eggs does Lisa have?
A) 24
B) 35
C) 42
D) 50
<reasoning> This can be solved with multiplication. The answer is
7*6, or 42.</reasoning> <answer> C) 42 </answer> <confidence>very
high</confidence>." Your answer should not include words.

Prompt baseline, uncertainty distillation (open) "You are a helpful AI
assistant. Answer the following math question as briefly as
possible and accurately. Enclose confidence in the answer
(very low, low, medium, high, very high) after the answer in
<confidence> </confidence> tags, like so: <confidence> very high
</confidence>."

Sampling, lexical baseline Answer the following question. Enclose
concise reasoning in <reasoning> </reasoning> tags and the letter
of your FINAL answer in <answer> </answer> tags without any of
your work, like this: "If each of Lisa’s 7 chickens lays 6 eggs,
how many eggs does Lisa have?
A) 24
B) 35
C) 42
D) 50
<reasoning> This can be solved with multiplication. The answer
is 7*6, or 42.</reasoning> <answer> C) 42 </answer>." Your answer
should not include words.

Sampling, lexical baseline (open) "You are a helpful AI assistant.
Answer the following math question as briefly as possible and
accurately."
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E.2 INSTRUCT-T5, FLAN-T5

Each task in SNI has an associated instruction. For sampling and the lexical baseline, we simply
use this instruction. For uncertainty distillation, we append ‘‘Additionally state how
confident you are in your answer’’ to the instruction.

E.3 LLM-AS-A-JUDGE

We are evaluating answers to the question {̈question}¨
Here are two possible answers:
Possible Answer 1: {text1}
Possible Answer 2: {text2}
Is Possible Answer 1 equivalent to Possible Answer 2, or do
the answers contradict? Respond only with ’equivalent’ or
’contradictory’.

F BIN AND LABEL CHOICE

In the main experiments, we examine the effect of UD with five bins and a verbalized naming
scheme. However, in Figure 4, we examine the effect of running UD on SocialIQA with Llama-
3B while varying the number of bins (and thus necessarily changing the labeling scheme). Here,
we find appropriate calibration regardless of number of bins. Notably, even changing the labeling
scheme to numerical percentages does not result in a change in performance, suggesting that UD is
robust to variance in labeling schemes. We use five bins as the default, as it offers enough bins to
be challenging while avoiding the problems of sparsity (and thus noisiness) in bins that arise with
larger bin sizes.

G EFFECTS OF POST-HOC CALIBRATION

If the model’s initial predictions are poorly calibrated, the post-hoc calibration step should help to
better align probabilities in the training data with the true likelihood of success. In Table 8, we
compare the miscalibration of the training data (measured through ECE with 30 bins) to the per-
formance of models with and without post-hoc calibration during data generation. Unsurprisingly,
we find that post-hoc calibration has positive effect corresponding to the initial miscalibration of
the training data. For instance, Llama-3B on SocialIQA achieves 0.784 AUROC when trained on
post-hoc calibrated data, and only 0.691 when identically trained on data without post-hoc calibra-
tion, with an ECE of 0.10. However, Ministral-8B on SocialIQA has a comparatively small ECE
of 0.026, and the performance without post-hoc calibration is equivalent to the performance with
post-hoc calibration. We conclude that the decision to include post-hoc calibration can be quickly
and cheaply made by simply measuring the calibration of the annotated training data.

DATASET MODEL WITH POST-HOC NO POST-HOC TRAINING DATA ECE

MMLU MINISTRAL-8B 0.693 0.689 0.033
LLAMA-3B 0.743 0.714 0.039

SIQA MINISTRAL-8B 0.671 0.673 0.026
LLAMA-3B 0.784 0.691 0.100

Table 8: AUROC of large models with and without post-hoc calibration at training time. We find
that post-hoc calibration tends to improve performance, most dramatically with Llama-3B on SIQA.

We further analyze how post-hoc calibration impacts the model when small models are already well-
calibrated on the specific task. Figure 5 shows the reliability diagrams for T5-base on SQUAD and
Instruct-T5 on SNI. The models’ predicted confidences align well with their actual accuracies; this
allows us to investigate whether post-hoc calibration has a significant impact on AUROC for smaller
models. Additionally, FLAN-T5 has been previously tuned on our calibration set; this gives us a
setting to investigate the impact of post-hoc calibration when unseen calibration data is unavailable
and the model is presumably correctly confident in its predictions.
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Figure 4: Running UD on SIQA with Llama-3B and changing the number of the bins, or the labeling
scheme, has no noticeable effect on the efficacy of UD aside from increased sparsity in bins. As in
other figures, bins with fewer than 10 samples are not plotted.

In Table 9, we show the results of the smaller models trained with and without this post-hoc calibra-
tion step. We find no apparent benefit of post-hoc calibration for Instruct-T5 or fine-tuned T5-base.
These models are already well-calibrated on their domains; similarly to large models, a post-hoc
calibrator does not significantly alter the output probabilities.

In the case of FLAN-T5, post-hoc calibration decreases AUROC. This suggests that in cases when
unseen calibration data cannot be obtained for small models, uncertainty distillation may be more
effective without the post-hoc calibration step.

H SUPERNATURAL-INSTRUCTIONS TASKS

H.1 TARGET CALIBRATION TASKS

As we describe in §3, in this work we rely on the assumption that our target-tasks have a correct
answer, in the sense that it can be easily verified that an answer is right or wrong. Although this
is not a strict necessity for calibration, it allows for us to define our buckets in terms of expected
accuracy, rather than e.g. an expected score. We therefore focus on short-form Q&A tasks, question-
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DATASET MODEL WITH POST-HOC NO POST-HOC

SQUAD T5-BASE 0.804 0.800

SNI INSTRUCT-T5 0.751 0.751
FLAN-T5 0.873 0.883

Table 9: AUROC of well-calibrated models with and without post-hoc calibration at training time.
We find that there is no notable performance increase with post-hoc calibration, and that there is a
performance decrease when the model has previously been tuned on the calibration data.
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Figure 5: Initial calibration of our T5-base and Instruct-T5 model. Both models are well-calibrated
in their respective domains, indicating that post-hoc calibration may not be necessary.

answer pairs whose answers consist of either selection from a fixed answer set (e.g. multiple choice
or fixed choice) or single-word answers. We identify 15 tasks from the SuperNatural-Instructions
dataset (Wang et al., 2022) that fit our criteria, and hold out these tasks as our uncertainty prediction
tasks.

These tasks are split across 4 rough task types: Multiple Choice tasks involve selecting an answer
from a set of choices, where the response is either a number or letter indicating the choice; Fixed
Choice tasks involve selecting an answer from a pre-defined set of choices that are constant across
the task (e.g. respond with either True or False); Span Selection tasks involve selecting the cor-
rect span of text from context and responding with that span as the answer; Open Answer involves
generating the answer to the question in an open-ended way, i.e. the answer is not provided in the
context.

For all tasks, we ensure that the answers are no more than 2 words long, making it easy to perform
normalization and verify accuracy for each question. The tasks are shown in Table 10; for each task,
we use 10% of the samples as a validation set, 10% of the samples as a held-out test set, use the
remaining 80% of the data to form our calibration set.

H.2 INSTRUCTION-TUNING TASKS

Because most modern instruction-tuned models are trained on all of Super-NaturalInstructions, they
have seen the our calibration target tasks during instruction-tuning. Therefore, we instruction-tune
our own T5 model to test the effectiveness of our method on unseen tasks. Our model is trained on a
subset of the SuperNatural-Instructions dataset (Wang et al., 2022). Specifically, we instruction-tune
on the English split used in the original paper but we take out our target calibration tasks identified
in §H.1. This gives us a training dataset of 879 instruction-tuning tasks, with a total of roughly 1.2M
training samples total.
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Task Type Task Name

Multiple Choice

task580-socialiqa-answer-generation
task309-race-answer-generation
task1297-qasc-question-answering

task1420-mathqa-general
task228-arc-answer-generation-easy

task1286-openbookqa-question-answering
task1431-head-qa-answer-generation
task1731-quartz-question-answering

task750-aqua-multiple-choice-answering

Fixed Choice task380-boolq-yes-no-question
task1661-super-glue-classification

Span Selection task002-quoref-answer-generation
task041-qasc-answer-generation

Open Answer task591-sciq-answer-generation
task898-freebase-qa-answer-generation

Table 10: The tasks and task types that we select from the SuperNatural-Instructions dataset for
validating and testing our calibration method.

To validate our models instruction-following capabilities, we use the in-context learning test set from
SuperNatural-Instructions, which contains 95 additional held out tasks from task categories that are
not seen in the training dataset.

I MINISTRAL PLOTS

In Figure 6 we display the plots with Ministral-8B. As reflected in the AUROC score in Table 1,
calibration is slightly worse; however, compared to baselines, it still does a more accurate job of
forecasting accuracy.
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Figure 6: Average accuracy within each confidence bin for our main experiments. We do not plot
bins with fewer than 10 samples.
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J INSTRUCTION-TUNING T5

We follow a standard recipe for instruction-tuning T5-Large, established in Wang et al. (2022).
Specifically, we tune the model for 3 epochs with a batch size of 16 and a learning rate of 5× 10−3.
We use the AdamW optimizer, and a constant learning rate schedule after a warmup period of
500 steps. During instruction-tuning, we train the model with the semantic definition of each task
prepended to the task input, and we similarly prompt the model when performing our target Q&A
tasks.

K RESOURCE REPORTING

K.1 COMPUTE RESOURCES

Here we report the compute resources used in this work. Instruction-tuning T5 took a total of 200
GPU hours across 4 NVIDIA-V100s. Running uncertainty distillation on Instruct-T5 and FLAN-
T5 took 16 hours per model on a single NVIDIA-H100. Finetuning T5-base on SQUAD for our
initial model took 3 hours on a single NVIDIA RTX 2080, and training using uncertainty distillation
took 8 hours on a single NVIDIA-V100. Finetuning Ministral-8B (LoRA) and finetuning Llama-
3B each took took three hours on two NVIDIA-A100s. Our lexical baseline for SQUAD took one
hour on one NVIDIA RTX 2080; for SNI took three hours on one NVIDIA RTX 2080; for MMLU
took three hours on one NVIDIA-A100; for SocialIQA took three hours on one NVIDIA-A100;
for GSM8K took four hours on one NVIDIA-A100. Prompting for MMLU and prompting for
SocialIQA took 1 hour on one NVIDIA-A100. Sampling for SQUAD took a total of 60 GPU hours
on NVIDIA-V100s; for SNI took 45 GPU hours on NVIDIA-A100s; for SocialIQA took 350 hours
on NVIDIA-A100s; for MMLU took 350 hours on NVIDIA-A100s; for GSM8k took 80 hours on
NVIDIA-A100s.

K.2 RESOURCE INTENDED USE

Super-NaturalInstructions (SNI) is an open-source instruction tuning dataset, released under the
Apache License.21 The intended use of SNI is to instruction-tune language models to learn to follow
instructions, and to evaluate a model’s ability to follow instructions on unseen tasks. While we use
the SNI dataset for precisely this purpose during instruction-tuning, we also use 15 held-out tasks
to serve as uncertainty quantification tasks. This does not necessarily fall under the intended use of
instruction-tuning; however, the authors of SNI also mention that the dataset may serve as a large,
multi-task natural language resource (Wang et al., 2022), and our usage of the target calibration tasks
does fall under this use case.

The Stanford Question Answering Dataset (SQUAD) (Rajpurkar, 2016) is distributed under the
Creative Commons Attribution-Sharealike 4.0 license, which permits use of the dataset as long as it
is properly attributed and as long as the results are distributed under the same license. As we cite the
paper and plan to publically release our code and models after acceptance, our use of this dataset is
permitted under this license.

SocialIQA (Sap et al., 2019) is not explicitly licensed, but they state that they “ establish Social IQa
as a resource” for future models.

MMLU (Hendrycks et al., 2020a), GSM8K(Cobbe et al., 2021), and MMLU-pro(Wang et al., 2024b)
are published under the MIT license, which allows users to freely copy, use, and change the licensed
material.

L UNCERTAINTY DISTILLATION HYPERPARAMETERS

In Table 11 and Table 12, we show the training hyperparameters for uncertainty distillation training.
All experiments in Table 11 added two incorrect answers per question, and in Table 12 added one
incorrect answer per question.

21Available here: https://github.com/allenai/natural-instructions
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Hyperparameters for fine-tuning via API For the experiments reported in §7, we fine-tune the
gemini-2.5-flash-lite model using LoRA with rank 4 for 10 epochs and defaults for other
hyperparameters. On validation data, we compared performance for different numbers of incor-
rect examples (§3.3), finding that augmenting the tuning set with a single incorrect prediction had
marginal impact on accuracy while significantly improving calibration. We also compared both
temperature scaling and isotonic regression, finding that isotonic scaling produced better calibra-
tion, while temperature scaling produced higher accuracy. To fit the calibration map, we held out
10% of the training data.

Model Epochs Learning rate Batch size Grad accum steps

T5-base (initial) 1 3e-5 12 1
T5-base (Uncertainty distillation) 3 3e-5 12 1

Instruct-T5 (Uncertainty distillation) 3 3e-5 1 32
FLAN-T5 (Uncertainty distillation) 3 3e-5 1 32

Table 11: Hyperparameters for training all T5 models but Instruct-T5 (see Appendix J for details).
All models are trained with the AdamW optimizer.

Model Epochs Learning rate Batch size LoRA rank LoRA alpha

Llama-3B/MMLU 3 4e-5 4 - -
Llama-3B/SocialIQA 1 3e-5 4 - -
Ministral-8B/MMLU 3 5e-5 4 16 32

Ministral-8B/SocialIQA 1 3e-5 4 8 16
Llama-3B/GSM8K 1 8e-6 4 - -

Table 12: Hyperparameters for training all Llama and Ministral models. Gradient accumulation
steps is 1 for each model. All models are trained with the AdamW optimizer.
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Algorithm 1 Uncertainty distillation

Require: Language model fθ with params θ0
Require: Calibration set Scal = {Xcal, Y cal}

Sscored ← ∅
for (x, y) ∈ Scal do

D ← {ŷi}Ni=1 ∼ fθ(x)
Normalize D by semantics, and count
for ŷ ∈ D with count n do

f ← n
N

Sscored ← Sscored ∪ {(x, ŷ, y, f)}
end for

end for
c()← isotonic regression(Sscored)
Svc = ∅
for (x, ŷ, y, f) ∈ Sscored do

if filter(ŷ, y) then
continue

end if
p← c(f)
b← bin(p)
z ← verbalize confidence map(ŷ, b)
Svc ← Svc ∪ {(x, z)}

end for
L(θ)← E(x,z)∈Svc [NLL(fθ(x), z)]
θcal ← train(θ0,L)
Return θcal
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