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ABSTRACT

Double Q-learning is a classical method for reducing overestimation bias, which is
caused by taking maximum estimated values in the Bellman operator. Its variants
in the deep Q-learning paradigm have shown great promise in producing reliable
value prediction and improving learning performance. However, as shown by
prior work, double Q-learning is not fully unbiased and still suffers from underes-
timation bias. In this paper, we show that such underestimation bias may lead to
multiple non-optimal fixed points under an approximated Bellman operation. To
address the concerns of converging to non-optimal stationary solutions, we pro-
pose a simple and effective approach as a partial fix for underestimation bias in
double Q-learning. This approach leverages real returns to bound the target value.
We extensively evaluate the proposed method in the Atari benchmark tasks and
demonstrate its significant improvement over baseline algorithms.

1 INTRODUCTION

Value-based reinforcement learning with neural networks as function approximators has become
a widely-used paradigm and shown great promise in solving complicated decision-making prob-
lems in various real-world applications, including robotics control (Lillicrap et al., 2016), molecular
structure design (Zhou et al., 2019), and recommendation systems (Chen et al., 2018). Towards un-
derstanding the foundation of these successes, investigating algorithmic properties of deep-learning-
based value function approximation has been seen a growth of attention in recent years (Van Hasselt
et al., 2018; Fu et al., 2019; Achiam et al., 2019; Dong et al., 2020). One of the phenomena of inter-
est is that Q-learning (Watkins, 1989) is known to suffer from overestimation issues, since it takes
a maximum operator over estimated action-values. Comparing with underestimated values, overes-
timation errors are more likely to be propagated through greedy action selections, which leads to
an overestimation bias in value prediction (Thrun & Schwartz, 1993). This overoptimistic behavior
of decision making has also been investigated in the literature of management science (Smith &
Winkler, 2006) and economics (Thaler, 1988).

From a statistical perspective, the value estimation error may come from many sources, such as the
stochasticity of the environment and the imperfection of the function expressivity. However, for deep
Q-learning algorithms, even if most benchmark environments are nearly deterministic (Brockman
et al., 2016) and millions of samples are collected, the overestimation phenomenon is still dramatic
(Hasselt et al., 2016). One cause of this problematic issue is the difficulty of optimization. Although
a deep neural network may have a sufficient expressiveness power to represent an accurate value
function, the back-end optimization is hard to solve. As a result of computational considerations,
stochastic gradient descent is almost the default choice for deep reinforcement learning algorithms.
The high variance of such stochastic methods in gradient estimation would lead to an unavoidable
approximation error in value prediction. This kind of approximation error cannot be addressed by
simply increasing sample size and network capacity, which is a major source of overestimation bias.

Double Q-learning is a classical method to reduce the risk of overestimation, which is a specific vari-
ant of the double estimator (Stone, 1974) in the Q-learning paradigm. It uses a second value function
to construct an independent action-value evaluation as cross validation. With proper assumptions,
double Q-learning was proved to underestimate rather than overestimate the maximum expected
values (Van Hasselt, 2010). However, in practice, obtaining two independent value estimators is
usually intractable in large-scale tasks, which makes double Q-learning still suffer from overesti-
mation in some situations. To address these empirical concerns, Fujimoto et al. (2018) proposed
a variant named clipped double Q-learning, which takes the minimum over two value estimations.
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This approach implicitly penalizes regions with high uncertainty (Fujimoto et al., 2019) and thus
significantly repress the incentive of overestimation.

In this paper, we first review an analytical model adopted by prior work (Thrun & Schwartz, 1993;
Lan et al., 2020) and reveal a fact that, due to the existence of underestimation biases, both double
Q-learning and clipped double Q-learning have multiple approximated fixed points in this model.
This result raises a concern that double Q-learning may easily get stuck in some local stationary
regions and become inefficient in searching for the optimal policy. To bootstrap the ability of double
Q-learning, we propose a simple heuristic that utilizes real return signals as a lower bound estimation
to rule out the potential non-optimal fixed points. Benefiting from its simplicity, this method is easy
to be combined with other existing techniques such as clipped double Q-learning. In the experiments
on Atari benchmark tasks, we demonstrate that this simple approach is effective both in improving
sample efficiency and convergence performance.

2 BACKGROUND

Markov Decision Process (MDP; Bellman, 1957) is a classical framework to formalize an agent-
environment interaction system which can be defined as a tuple M = 〈S,A, P,R, γ〉. We use S
andA to denote the state and action space, respectively. P (s′|s, a) and R(s, a) denote the transition
and reward functions, which are initially unknown to the agent. γ is the discount factor. The goal
of reinforcement learning is to construct a policy π : S → A maximizing discounted cumulative
rewards,

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s, st+1 ∼ P (·|st, π(st))

]
.

Another quantity of interest in policy learning can be defined through the Bellman equation
Qπ(s, a) = R(s, a) + γEs′∼P (·|s,a) [V π(s′)]. The optimal value function Q∗ corresponds to the
unique solution of the Bellman optimality equation,

∀(s, a) ∈ S ×A, Q∗(s, a) = R(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q∗(s′, a′)

]
.

Q-learning algorithms are based on the Bellman operator T stated as follows:

(T Q)(s, a) = R(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
. (1)

By iterating this operator, value iteration is proved to converge to the optimal value function Q∗. To
extend Q-learning methods to real-world applications, function approximation is indispensable to
deal with a high-dimensional state space. Deep Q-learning (Mnih et al., 2015) considers a sample-
based objective function and constructs an iterative optimization framework:

θt+1 ← arg min
θ∈Θ

E
(s,a,r,s′)∼D

[(
r + γ max

a′∈A
Qθt(s

′, a′)−Qθ(s, a)

)2
]
, (2)

in which Θ denotes the parameter space of the value network, and θ0 ∈ Θ is initialized by some
predetermined method. D is the data distribution which is changing during exploration. With infinite
samples and a sufficiently rich function class, the update rule stated in Eq. (2) is asymptotically
equivalent to applying the Bellman operator T , but the underlying optimization is usually inefficient
in practice. In deep Q-learning, Eq. (2) is optimized by mini-batch gradient descent and thus its
value estimation suffers from unavoidable approximation errors.

3 EFFECTS OF UNDERESTIMATION BIAS IN DOUBLE Q-LEARNING

In this section, we will first review a common analytical model used by previous work studying
estimation bias (Thrun & Schwartz, 1993; Lan et al., 2020), in which double Q-learning is known
to have underestimation bias. Based on this analytical model, we show that its underestimation
bias could make double Q-learning have multiple fixed point solutions under an approximated Bell-
man operation. This result suggests that double Q-learning may have extra non-optimal stationary
solutions under the effects of the approximation error.
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3.1 MODELING APPROXIMATION ERROR IN Q-LEARNING

Following Thrun & Schwartz (1993) and Lan et al. (2020), we formalize the underlying approxima-
tion error e(t)(s, a) of target value regression as a set of random noises impacting on the Bellman
operation,

Q(t+1)(s, a) = (T̃ Q(t))(s, a) = (T Q(t))(s, a) + e(t)(s, a), (3)

where T denotes the ground truth Bellman operator using full information of the MDP (see Eq. (1)),
and T̃ denotes a stochastic operator with noisy outputs. The main purpose of introducing the ex-
plicit noise term e(t)(s, a) is to emphasize that the approximation error discussed here is different
from the sampling error. In an information-theoretic perspective, the sampling error can be reduced
asymptotically as the sample size increases. However, there is a barrier of optimization difficulty to
establish a precise estimation in practice, which leads to an unavoidable approximation error in opti-
mization. By integrating the noise term e(t)(s, a) into the Bellman operation, we set up an analytical
model to investigate how Q-learning algorithms interact with the inherent approximation error.

In this model, double Q-learning (Van Hasselt, 2010) can be modeled by two estimator instances
{Q(t)

i }i∈{1,2} with separated noise variables {e(t)
i }i∈{1,2}. For simplification, we introduce a policy

function π(t)(s) = arg maxaQ
(t)
1 (s, a) to override the state value function as follows:

∀i ∈ {1, 2}, Q
(t+1)
i (s, a) = R(s, a) + γ E

s′∼P (·|s,a)

[
V (t)(s′)

]
+ e

(t)
i (s, a),

V (t)(s) = Q
(t)
2 (s, π(s)) = Q

(t)
2

(
s, arg maxa∈AQ

(t)
1 (s, a)

)
.

(4)

The difference of Eq. (4) from the definition of double Q-learning given by Van Hasselt (2010) is
using a unified target value V (t)(s′) for both two estimators. This simplification does not affect the
derived implications of double Q-learning, and is also implemented by advanced variants of double
Q-learning (Fujimoto et al., 2018; Lan et al., 2020).

Note that the target value can be constructed only using the state-value function. Based on this
observation, we can define the fixed point of a stochastic operators on the target value.

Definition 1 (Approximated Fixed Points). Let T̃ denote a stochastic Bellman operator, such as
what are stated in Eq. (3) and Eq. (4). A state-value function V is regarded as an approximated
fixed point under a stochastic Bellman operator T̃ if it satisfies E[T̃ V ] = V , where T̃ V denotes the
output state-value function while applying the Bellman operator T̃ on V .

The fixed point defined above is named approximated since they are not truly static, but is invariant
under the stochastic Bellman operation in expectation. In Appendix A.2, we will prove the existence
of such fixed points as the following statement.
Proposition 1. Assume the probability density functions of the noise terms {e(s, a)} are continuous.
The stochastic Bellman operators defined by Eq. (3) and Eq. (4) have approximated fixed points
defined as Definition 1.

3.2 EXISTENCE OF MULTIPLE APPROXIMATED FIXED POINTS IN DOUBLE Q-LEARNING

Given the definition of the approximated fixed point, a natural question is whether such kind of
fixed points are unique or not. Recall that the optimal value function Q∗ is the unique solution of
the Bellman optimality equation, which is the foundation of Q-learning algorithms. However, in
this section, we will show that, under the effects of the approximation error, the approximated fixed
points of double Q-learning may not be unique.

Figure 1a illustrates a simple MDP in which double Q-learning stated as Eq. (4) has multiple ap-
proximated fixed points. This MDP is fully deterministic and contains only two states s0 and s1.
All actions in state s1 lead to a self-loop and produce a unit reward signal. On state s0, the result of
executing action a0 is a self-loop with a slightly larger reward signal than choosing action a1 which
leads to state s1. The only challenge for decision making in this MDP is to distinguish the outcomes
of executing action a0 and a1 on state s0. To make the example more accessible, we assume the
approximation errors {e(t)(s, a)}t,s,a are a set of independent random variables following a uniform
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s0

R0,0=1.1

�� R0,1=1 // s1
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ε = 1.0 γ = 0.99

(a) A simple construction

V (s0) V (s1) π̃(a0|s0)

100.162 100.0 62.2%
101.159 100.0 92.9%

110.0 100.0 100.0%

(b) Numerical solutions of fixed points

97.5 98.0 98.5 99.0 99.5 100.0 100.5
V
t(s0)

99.8

100.0

100.2

100.4

100.6

Vt+1(s0)

(c) Visualizing non-monotonicity

Figure 1: (a) A simple infinite-horizon MDP where double Q-learning stated as Eq. (4) has multiple
approximated fixed points. Ri,j is a shorthand of R(si, aj). (b) The numerical solutions of the fixed
points produced by double Q-learning in the MDP presented above. π̃ refers to Definition 3. (c) The
relation between the input state-value V (t)(s0) and the expected output state-value E[V (t+1)(s0)]
generated by double Q-learning in the constructed MDP, in which we assume V (t)(s1) = 100.

distribution Uniform(−ε, ε). This simplification is also adopted by Thrun & Schwartz (1993) and
Lan et al. (2020) in case studies. Here, we select the magnitude of noise as ε = 1.0 and the discount
factor as γ = 0.99 to balance the scale of involved amounts.

Considering to solve the equation E[T̃ V ] = V according to the definition of the approximated
fixed point (see Definition 1), the numerical solutions of such fixed points are presented in Table
1b. There are three different fixed point solutions. The first thing to notice is that the optimal fixed
point V ∗ is retained in this MDP (see the last row of Table 1b), since the noise magnitude ε = 1.0
is much smaller than the optimality gap Q∗(s0, a0) −Q∗(s0, a1) = 10. The other two fixed points
are non-optimal and very close to Q(s0, a0) ≈ Q(s0, a1) = 100, in which the agent cannot fully
distinguish the difference between choosing a0 and a1. To illustrate this example, we first present
a sufficient condition for a stochastic Bellman operator to have multiple fixed points, and then we
give an intuitive explanation to connect this condition with the constructed MDP.

Mathematical Condition. Note that the definition of the stochastic Bellman operator is a model
of an imprecise target value regression. From this perspective, the input of a stochastic Bellman
operator can be defined as a set of ground truth target values {(T Q(t))(s, a)}s,a. Based on this
notation, a sufficient condition for the existence of multiple fixed points is stated as follows.

Proposition 2. Let fs ({(T Q)(s, a)}a∈A) = E[(T̃ V )(s)] denote the expected output value of the
stochastic Bellman operator T̃ on state s, and assume fs(·) is differentiable. If a stochastic Bellman
operator T̃ satisfies Eq. (5), there exists an MDP such that T̃ has multiple fixed points.

∃i, ∃X ∈ R|A|,
∂

∂xi
fs(X) > 1, (5)

where X = {xi}|A|i=1 denotes the input of the function fs.

The proof of Proposition 2 is deferred to Appendix A.4. This proposition suggests that, in order to
determine whether a given stochastic Bellman operator T̃ may have multiple fixed points, we need
to check whether its expected output values could change dramatically with a slight alter of the input
values.

Intuitive Explanation. To provide the intuition for understanding the constructed MDP in Fig-
ure 1, we introduce a simple property of a Bellman operator, named monotonicity, which helps to
illustrate how the sufficient condition in Eq. (5) are met in double Q-learning.

Definition 2 (Monotonicity). A stochastic Bellman operator T̃ is called approximately monotonic
if it satisfies the following property:

∀M,∀V1, V2 ∈ RS , (∀s ∈ S, V1(s) ≥ V2(s))⇒
(
∀s ∈ S, E[(T̃ V1)(s)] ≥ E[(T̃ V2)(s)]

)
.

Although this monotonicity property holds for vanilla Q-learning (Watkins, 1989) and a recent vari-
ant called maxmin Q-learning (Lan et al., 2020), it absents from double Q-learning (Van Hasselt,
2010) and a famous variant called clipped double Q-learning (Fujimoto et al., 2018). The mono-
tonicity property is not a sufficient condition for Eq. (5) but it is quite important for understanding
the constructed example in Figure 1.

4



Under review as a conference paper at ICLR 2021

Considering the constructed MDP as an example, Figure 1c visualizes the relation between the input
state-value V (t)(s0) and the expected output state-value E[V (t+1)(s0)] while assuming V (t)(s1) =
100 has converged to its stationary point. The minima point of the output value is located at the sit-
uation where V (t)(s0) is slightly smaller than V (t)(s1), since the expected policy derived by T̃ V (t)

will have a remarkable probability to choose sub-optimal actions. This local minima suffers from
the most dramatic underestimation among the whole curve, and the underestimation will eventually
vanish as the value of V (t)(s0) increases. During this process, a large magnitude of the first-order
derivative could be found to meet the condition stated in Eq. (5).

A heuristics to verify the condition in Eq. (5) is to check the nearby regions of the local minima and
maxima in a non-monotonic function E[T̃ V ]. In Appendix A.5, we also show that clipped double
Q-learning, another method with non-monotonicity, has multiple fixed points in an MDP slightly
modified from Figure 1a.

Implications To facilitate discussions, we introduce a concept, named induced policy, to charac-
terize how the agent behaves and evolves around these approximated fixed points.

Definition 3 (Induced Policy). Given a target state-value function V , its induced policy π̃ is defined
as a stochastic action selection according to the value estimation produced by a stochastic Bellman
operation,

π̃(a|s) = P
[
a = arg max

a′∈A

(
R(s, a′) + γ E

s′∼P (·|s,a′)
[V (s′)]︸ ︷︷ ︸

(TQ)(s,a′)

+e1(s, a′)

)]
,

where {e1(s, a)}s,a are drawing from the same noise distribution as what is used by double Q-
learning stated in Eq. (4).

Proposition 3. Assume the noise terms e1 and e2 are independently generated in the double estima-
tor stated in Eq. (4). Every approximated fixed point V is equal to the ground truth value function
V π̃ with respect to an induced policy π̃.

The proof of Proposition 3 is deferred to Appendix A.3. As shown by this proposition, the estimated
value of a non-optimal fixed point is corresponding to the value of a stochastic policy, which revisits
the incentive of double Q-learning to underestimate true maximum values. Based on Proposition
3, the concept of induced policy can provide a snapshot to infer the algorithmic properties of ap-
proximated fixed points. Taking the third column of Table 1b as an example, due to the existence of
the approximation error, the induced policy π̃ suffers from a remarkable uncertainty in determining
the best action on state s0. This phenomenon suggests that the approximation error would make
the greedy action selection become competitive among actions with near-maximum values. Once
the approximation error leads the policy to select a non-optimal action, the learning of the value
function would get stuck in non-optimal fixed points. Note that, according to the characterization
given by Definition 3, the stationary property of such kind of fixed points might be similar to that of
saddle points in the literature of optimization. Whether the agent gets stuck in non-optimal solutions
depends on the actual behavior of approximation error. In section 4, we will introduce a method to
provide incentives for escaping non-optimal fixed points by reducing underestimation bias.

3.3 APPROXIMATION ERROR IN DEEP Q-LEARNING

Table 1: Evaluating the mean
absolute TD-error of DDQN in
WizardOfWor.

samples |Q| TD-error

3M 0.310 0.014
5M 0.303 0.014

10M 0.471 0.015

In the MDP example presented in the previous section, the noise
terms {e(t)(s, a)}t,s,a are modeled by a set of uniform random
variables Uniform(−ε, ε). The noise magnitude ε = 1.0 seems to
a bit large when it compares with the scale of one-step reward sig-
nal, but it is actually quite small in terms of the scale of the value
function. Considering an MDP only containing positive rewards,
the scale of value functions would be in [0, Rmax/(1− γ)] where
Rmax denotes the upper bound of reward signals. In this setting,
if the relative error of solving the target value regression achieves
the order of 1/(1−γ), the induced approximation error will reach
the same scale of reward signals. Revisiting the MDP introduced in the previous section with the
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discount factor γ = 0.99, the noise magnitude ε = 1.0 is only an 1% relative error comparing to
the scale of the value function, which finally leads to a 10% relative error in value estimation. It
is worth noticing that such a small approximation error can cause significantly sub-optimal fixed
points. Table 1 presents the scale of the estimation error of DDQN in a deterministic version of
one Atari benchmark task. We evaluate the average absolute TD-error E[|Q − T Q̂|] using a batch
of transitions sampling from the replay buffer. The evaluation is processed before the target value
switches. As shown in Table 1, the value estimation of DDQN suffers from a constant approxima-
tion error, which may cause the potential risk of multiple non-optimal fixed points according to our
analysis.

4 LOWER BOUNDED DOUBLE Q-LEARNING

As discussed in the last section, the underestimation bias of double Q-learning may lead to mul-
tiple non-optimal fixed points in the analytical model. A major source of such underestimation is
the inherent approximation error caused by the difficulty of optimization. In this section, we will
introduce a simple heuristic, named lower bounded double Q-learning, which helps to reduce the
negative effects of underestimation.

The main idea is motivated by a fact that the value prediction produced by double Q-learning does
not tend to overestimate the true maximum value. It is a major difference from the overestimation
bias of vanilla Q-learning. When the environment is deterministic, the return values of collected
trajectories can naturally serve as a lower bound for value estimation. To utilize this lower bound,
we modify the objective function of deep Q-learning as follows,

L(θ) = E
(st,at,rt,st+1)∼D

[(
rt + γmax

(
Vθ̂(st+1), Vτ (st+1)

)
−Qθ(st, at)

)2]
,

where the target value is computed by taking the maximum over two sources of estimation. The
first term Vθ̂(st+1) is the target state-value computed by the frozen parameter θ̂. The second term
Vτ (st+1) is the discounted return value of the corresponding trajectory τ in the replay buffer. For-
mally, Vτ (st+1) =

∑H−t
k=0 γ

krt+k+1 where H denotes the length of the trajectory.

This lower bounded objective has three potential impacts on the value estimation:

• Considering the non-optimal fixed points of double Q-learning discussed in the previous
section, the values of these fixed points are corresponding to some sub-optimal polices
which underestimate the optimal action-values (see Proposition 3). Under the effects of
exploration, some of the collected trajectories may have higher returns than the current
policy, which would provide an incentive to get rid of the non-optimal fixed points through
the lower bounded objective.

• When the return signal Vτ has approached the ground truth maximum value V ∗, the lower
bounded objective will lead to an overestimation bias, since only underestimated values
are cut off by the maximum operator. In practice, the effects of such overestimation bias
are manageable, because all trajectories are collected by an exploratory policy which can
hardly produce the ground truth maximum values.

• In addition, when the environment carries some extent of stochasticity, the trajectories with
high return values would cause additional risks of overestimation through the proposed
lower bounded objective. In the other hand, our method excels at addressing the issue of
non-optimal fixed points, which is exacerbated by the environment stochasticity. This is
because the environment stochasticity increases the difficulty of optimization in the target
regression and leads to larger approximation error that generates non-optimal fixed points.
From this perspective, our method is a trade-off between the underestimation bias of double
Q-learning and the overestimation of the trajectory-based lower-bound estimation. The
effectiveness of such trade-off will investigated empirically in section 5.

In this paper, we investigate two methods to compute the estimated target value Vθ̂(st+1). The first
choice V DDQN

θ̂
(s′) corresponds to the implementation proposed by double deep Q-network (DDQN;
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Hasselt et al., 2016),

V DDQN
θ̂

(s′) = Qθ̂

(
s′, arg max

a′∈A
Qθ(s

′, a′)

)
.

It is an adaption of double Q-learning to the framework of deep Q-network (DQN; Mnih et al.,
2015), in which the action selection of target values are produced by the online parameter θ.

An imperfection of the combination with DDQN is that, DDQN is known to suffer from overesti-
mation sometimes since value predictions produced by θ and θ̂ are not fully independent. When
the overestimation happens, the real return signal Vτ (st+1) cannot provide any benefits to the value
prediction. To address these concerns, we also adopt another advanced technique called clipped
double Q-learning (Fujimoto et al., 2018):

V CDDQN
θ̂

(s′) = min
i∈{1,2}

Qθ̂i

(
s′, arg max

a′∈A
Qθ̂1(s′, a′)

)
.

This formulation of computing target values is adapted from its actor-critic version, and we name
it clipped double deep Q-network (Clipped DDQN). This method uses a shared objective function
to optimize two copies of value networks Qθ1 and Qθ2 , in which the target values are computed
by taking the minimum over two separated estimations Qθ̂1 and Qθ̂2 . This minimum operator will
introduces an underestimation bias (Ciosek et al., 2019) which significantly repress the incentive
of overestimation in all sources. This underestimated estimator is appropriate to combine with the
lower bounded objective since the lower bound provide by trajectory returns can help to prevent the
underestimation error from propagation.

5 EXPERIMENTS

Our experiment environments are based on the Atari benchmark tasks in OpenAI Gym (Brock-
man et al., 2016). All baselines and our approaches are implemented using the same set of hyper-
parameters. A detailed description of experiment settings is deferred to Appendix B.

Overall performance comparison. We investigated six variants of deep Q-learning algorithms,
including DQN (Mnih et al., 2015), double DQN (DDQN; Hasselt et al., 2016), dueling DDQN
(Wang et al., 2016), averaged DQN (Anschel et al., 2017), maxmin DQN (Lan et al., 2020), and
clipped double DQN adapted from Fujimoto et al. (2018). Our proposed lower bounded objective
is built upon two variants of double Q-learning which have clear incentive of underestimation. As
shown in Figure 2, the proposed lower bounded objective has great promise in bootstrapping the
performance of double Q-learning algorithms. The improvement can be observed both in terms of
sample efficiency and final performance. This advance may credit to the removal of potential non-
optimal fixed points. Another notable observation is that, the effects of adopting clipped double
Q-learning are environment-dependent, since it has an underestimation bias which cannot be fully
eliminated by the lower bounded objective. In Appendix C, we present more experimental results to
reveal the superiority of the proposed method.
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Figure 3: Learning curves of DDQN with n-step
bootstrapping.

Comparison with n-step bootstrapping. In
addition to our proposed lower bounded objec-
tive, n-step bootstrapping (Sutton, 1988) also
has potential to attenuate the issue of non-
optimal fixed points by utilizing real returns.
An advantage of our method is that the per-
formance of n-step bootstrapping is sensitive to
the choice of the hyper-parameter n. In Figure
3, we evaluate the performance of DDQN with
different values of n chosen by Hessel et al.
(2018). The results indicate that our proposed
lower bounded objective is compatible with n-
step bootstrapping. The performance can be
further improved by combing two approaches. More experimental results on the comparison with
n-step bootstrapping are provided in Appendix D.
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Figure 2: Learning curves on a suite of Atari benchmark tasks, in which the “+LB” version corre-
sponds to the combination with the proposed lower bounded objective. All curves presented in this
paper are plotted from the median performance over 5 runs with random initialization. To make the
comparison more clear, the curves are smoothed by averaging 10 most recent checkpoints. More
experiment results are included in Appendix C.
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Figure 4: Learning curves on a suite of stochastic Atari benchmark tasks with sticky actions, in
which “ours” version corresponds to the combination of the proposed lower bounded objective with
clipped double Q-learning and multi-step bootstrapping. “ours - LB” corresponds to the ablation
study without the lower bounded objective. The curves of Rainbow, C51, and DQN are released by
Castro et al. (2018) using the same environment setting.

Performance comparison in stochastic environments with sticky actions The experiments pre-
sented in Figure 2 and Figure 3 are based on the standard environment setting used by Mnih et al.
(2015), in which the environment stochasticity only comes from the partial observability of visual
observations. When the environment is stochastic, the trajectories with high return values would
cause additional risks of overestimation through the proposed lower bounded objective. To inves-
tigate the performance of our method in stochastic environments, we adopt a stochastic variant
of Atari environment setting with sticky actions Machado et al. (2018), in which every environ-
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ment step will execute the agent’s previous action with probability 0.25. In this experiment, we
investigate two state-of-the-art baselines, Rainbow (Hessel et al., 2018) and C51 (Bellemare et al.,
2017), which use distributional representation to address the optimization difficulty of environment
stochasticity. To fairly compare with these state-of-the-art baselines that integrates many standard
techniques, we also combine our proposed lower bounded objective with clipped double Q-learning
and multi-step bootstrapping. As shown in Figure 4, our proposed method still outperform baselines
in stochastic environments. This result suggests that, comparing to the overestimation bias intro-
duced by the lower bounded objective, stuck in non-optimal fixed points is a more critical issue for
deep Q-learning algorithms. Another explanation is that the environment stochasticity may increase
the difficulty of optimization and lead to larger approximation error for generating non-optimal fixed
points. Our proposed method is an effective trade-off between the risks of overestimation and non-
optimal fixed points.

6 RELATED WORK

Correcting the estimation bias in double Q-learning is an active topic which induces a series of
approaches. Weighted double Q-learning (Zhang et al., 2017) considers an importance weight pa-
rameter to integrate the overestimated and underestimated estimators. Clipped double Q-learning
(Fujimoto et al., 2018), which uses a minimum operator in target values, has become the default
implementation of most advanced actor-critic algorithms (Haarnoja et al., 2018). Based on clipped
double Q-learning, several methods have been investigated to reduce the its underestimation and
achieve promising performance Ciosek et al. (2019); Li & Hou (2019).

Besides the variants of double Q-learning, there are lots of other techniques proposed regarding the
bias-variance trade-off in Q-learning algorithms. Similar to our proposed approach, most of existing
methods focus on the construction of target values. Averaged DQN (Anschel et al., 2017) uses
multiple historical copies of target networks to reduce the variance of estimation. The target used by
truncated quantile critics (TQC; Kuznetsov et al., 2020) is based on a distributional representation
of value functions, which contributes to reduce the overestimation of actor-critic methods. Using
the softmax operator in Bellman operation is also considered as an effective approach to reduce the
effects of approximation error (Fox et al., 2016; Asadi & Littman, 2017; Song et al., 2019; Kim
et al., 2019).

The characteristic of our approach is the usage of real return signals, which uses the environment
prior to break statistical barriers. Our method is a variant of self-imitation (Oh et al., 2018) and is
integrated with the Bellman operation. The effectiveness of such a ground truth lower bound is also
observed by a recent work (Fujita et al., 2020). When the environment carries stochasticity, taking
the average return among similar states is a plausible approach to reducing the bias of the trajectory-
based estimation. From this perspective, the proposed method is also related to the memory-based
approaches for nearly deterministic environments, such as episodic control (Blundell et al., 2016;
Pritzel et al., 2017) and graph-based planning (Huang et al., 2019; Eysenbach et al., 2019).

7 CONCLUSION

In this paper, we reveal an interesting fact that, under the effects of approximation error, double
Q-learning may have multiple non-optimal fixed points. The main cause of such non-optimal fixed
points is the underestimation bias of double Q-learning. Regarding this issue, we provide some
analysis to characterize what kind of Bellman operators may suffer from the same problem, and
how the hard cases are constructed. To address the potential risk of converging to non-optimal
solutions, we propose an alternative objective function to reduce the underestimation in double Q-
learning. The main idea of this approach is to leverage real environment returns as a lower bound
for value estimation. Our proposed method is simple and easy to be combined with other advanced
techniques in deep Q-learning. The experiments show that the proposed method has shown great
promise in improving both sample efficiency and convergence performance. It achieves a significant
improvement over baselines algorithms on Atari benchmark environments.
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Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458, 2017.

Richard Bellman. Dynamic programming. Princeton University Press, 89:92, 1957.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.
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A OMITTED STATEMENTS AND PROOFS

A.1 THE RELATION BETWEEN ESTIMATION BIAS AND APPROXIMATED FIXED POINTS

An intuitive characterization of such fixed point solutions is considering one-step estimation bias
with respect to the maximum expected value, which is defined as

E(T̃ , V, s) = E[(T̃ V )(s)]− (T V )(s), (6)

where (T V )(s) corresponds to the precise state value after applying the ground truth Bellman op-
eration. The amount of estimation bias E characterizes the deviation from the standard Bellman
operator T , which can be regarded as imaginary rewards in fixed point solutions.

Every approximated fixed point solution under a stochastic Bellman operator can be characterized
as the optimal value function in a modified MDP where only the reward function is changed.

Proposition 4. Let Ṽ denote an approximation fixed point under a stochastic Bellman operator T̃ .
Define a modified MDP M̃ = 〈S,A, P,R + R̃, γ〉 based on M, where the extra reward term is
defined as

R̃(s, a) = E(T̃ , Ṽ , s) = E[(T̃ Ṽ )(s)]− (T Ṽ )(s),

where E is the one-step estimation bias defined in Eq. (6). Then Ṽ is the optimal state-value function
of the modified MDP M̃.

Proof. Define a value function Q̃ based on Ṽ , ∀(s, a) ∈ S ×A,

Q̃(s, a) = R(s, a) + R̃(s, a) + E
s′∼P (·|s,a)

[Ṽ (s′)].

We can verify Q̃ is consistent with Ṽ , ∀s ∈ S,

Ṽ (s) = E[(T̃ Ṽ )(s)]

= E[(T̃ Ṽ )(s)]− (T Ṽ )(s) + max
a∈A

(
R(s, a) + γ E

s′∼P (·|s,a)
[Ṽ (s′)]

)
= max

a∈A

(
R(s, a) + R̃(s, a) + γ E

s′∼P (·|s,a)
[Ṽ (s′)]

)
= max

a∈A
Q̃(s, a).

Let TM̃ denote the Bellman operator of M̃. We can verify Q̃ satisfies Bellman optimality equation
to prove the given statement, ∀(s, a) ∈ S ×A,

(TM̃Q̃)(s, a) = R(s, a) + R̃(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q̃(s′, a′)

]
= R(s, a) + R̃(s, a) + γ E

s′∼P (·|s,a)
[Ṽ (s′)]

= Q̃(s, a).

Thus we can see Ṽ is the solution of Bellman optimality equation in M̃.

A.2 THE EXISTENCE OF APPROXIMATED FIXED POINTS

The key technique for proving the existence of approximated fixed points is Brouwer’s fixed point
theorem.

Lemma 1. Let B = [−L,−L]d denote a d-dimensional bounding box. For any continuous function
f : B → B, there exists a fixed point x such that f(x) = x ∈ B.

13



Under review as a conference paper at ICLR 2021

Proof. It refers to a special case of Brouwer’s fixed point theorem (Brouwer, 1911).

Lemma 2. Let T̃ denote the stochastic Bellman operator defined by Eq. (3). There exists a real
range L, ∀V ∈ [L,−L]|S|, E[T̃ V ] ∈ [L,−L]|S|.

Proof. Let Rmax denote the range of the reward function for MDPM. Let Re denote the range of
the noisy term. Formally,

Rmax = max
(s,a)∈S×A

|R(s, a)|,

Re = max
s∈S

E
[
max
a∈A
|e(s, a)|

]
.

Note that the L∞-norm of state value functions satisfies ∀V ∈ R|S|,
‖E[T̃ V ]‖∞ ≤ Rmax +Re + γ‖V ‖∞.

We can construct the range L = (Rmax +Re)/(1− γ) to prove the given statement.

Lemma 3. Let T̃ denote the stochastic Bellman operator defined by Eq. (4). There exists a real
range L, ∀V ∈ [L,−L]|S|, E[T̃ V ] ∈ [L,−L]|S|.

Proof. Let Rmax denote the range of the reward function for MDPM. Formally,
Rmax = max

(s,a)∈S×A
|R(s, a)|.

Note that the L∞-norm of state value functions satisfies ∀V ∈ R|S|,
‖E[T̃ V ]‖∞ ≤ Rmax + γ‖V ‖∞.

We can construct the range L = Rmax/(1− γ) to prove the given statement.

Proposition 1. Assume the probability density functions of the noise terms {e(s, a)} are continuous.
The stochastic Bellman operators defined by Eq. (3) and Eq. (4) have approximated fixed points
defined as Definition 1.

Proof. Let f(V ) = E[T̃ V ] denote the expected return of a stochastic Bellman operation. This
function is continuous because all involved formulas only contain elementary functions. The given
statement is proved by combining Lemma 1, 2, and 3.

A.3 THE INDUCED POLICY OF DOUBLE Q-LEARNING

Proposition 3. Assume the noise terms e1 and e2 are independently generated in the double estima-
tor stated in Eq. (4). Every approximated fixed point V is equal to the ground truth value function
V π̃ with respect to an induced policy π̃.

Proof. Let V denote an approximated fixed point under the stochastic Bellman operator T̃ defined
by Eq. (4). By plugging the definition of the induced policy into the stochastic operator of double
Q-learning, we can get

V (s) = E[T̃ V (s)]

= E
[
(T̃ Q2)

(
s, arg maxa∈A(T̃ Q1)(s, a)

)]
= E

[
(T̃ Q2) (s, arg maxa∈A ((T Q1)(s, a) + e1(s, a)))

]
= E
a∼π̃(·|s)

[
(T̃ Q2)(s, a)

]
= E
a∼π̃(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)
V (s′) + e2(s, a)

]
= E
a∼π̃(·|s)

[
R(s, a) + γ E

s′∼P (·|s,a)
V (s′)

]
,

which matches the Bellman expectation equation.
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As shown by this proposition, the estimated value of a non-optimal fixed point is corresponding to
the value of a stochastic policy, which revisits the incentive of double Q-learning to underestimate
true maximum values.

A.4 A SUFFICIENT CONDITION FOR MULTIPLE FIXED POINTS

Proposition 2. Let fs ({(T Q)(s, a)}a∈A) = E[(T̃ V )(s)] denote the expected output value of the
stochastic Bellman operator T̃ on state s, and assume fs(·) is differentiable. If a stochastic Bellman
operator T̃ satisfies Eq. (5), there exists an MDP such that T̃ has multiple fixed points.

∃i, ∃X ∈ R|A|,
∂

∂xi
fs(X) > 1, (5)

where X = {xi}|A|i=1 denotes the input of the function fs.

Proof. Suppose fs is a function satisfying the given condition, and xi = x̄ and X denote the corre-
sponding point satisfying Eq. (5).

Let g(x) denote the value of fs while only changes the input value of xi to x, so that g′(x̄) > 1.

Since fs is differentiable, we can find a small region x̄L < x̄ < x̄R around x̄ such that ∀x ∈
[x̄L, x̄R], g′(x) > 1. And then, we have g(x̄R)− g(x̄L) > x̄R − x̄L.

Consider to construct an MDP with only one state. We can use the action corresponding to xi to
construct a self-loop transition with reward r. All other actions lead to a termination signal and an
immediate reward where the immediate rewards correspond to other components of X . By setting
the discount factor as γ = x̄R−x̄L

g(x̄R)−g(x̄L) < 1 and the reward as r = x̄L − γg(x̄L) = x̄R − γg(x̄R),
we can find both x̄L and x̄R are solutions of the equation x = r+γg(x), in which g(x̄L) and g(x̄R)
correspond to two fixed points of the constructed MDP.

A.5 A BAD CASE FOR CLIPPED DOUBLE Q-LEARNING

The stochastic Bellman operator corresponding to clipped double Q-learning is stated as follows.

∀i ∈ {1, 2}, Q
(t+1)
i (s, a) = R(s, a) + γ E

s′∼P (·|s,a)

[
V (t)(s′)

]
+ e

(t)
i (s, a),

V (t)(s) = min
i∈{1,2}

Q
(t)
i

(
s, arg maxa∈AQ

(t)
1 (s, a)

)
.

(7)

An MDP where clipped double Q-learning has multiple fixed points is illustrated as Figure 5.

s0

R0,0=1.35

�� R0,1=100// done

ε = 1.0 γ = 0.99

(a) A simple construction

V (s0) V (s1)
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(b) Numerical solutions of fixed points
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(c) Visualizing non-monotonicity

Figure 5: (a) A simple MDP where clipped double Q-learning stated as Eq. (7) has multiple approx-
imated fixed points. Ri,j is a shorthand of R(si, aj). (b) The numerical solutions of the fixed points
produced by clipped double Q-learning in the MDP presented above. (c) The relation between the
input state-value V (t)(s0) and the expected output state-value E[V (t+1)(s0)] generated by clipped
double Q-learning in the constructed MDP.
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B EXPERIMENT SETTINGS

B.1 EVALUATION SETTINGS

All curves presented in this paper are plotted from the median performance of 5 runs with ran-
dom initialization. The shaded region indicates 60% population around median. The evaluation is
processed in every 50000 timesteps. Every evaluation point is averaged from 5 trajectories. The
evaluated policy is combined with a 0.1% random execution.

B.2 HYPER-PARAMETERS

All algorithm investigated in this paper use the same set of hyper-parameters.

• Number of noop actions while starting a new episode: 30;
• Number of stacked frames in observations: 4;
• Scale of rewards: clipping to [−1, 1];
• Buffer size: 106;
• Batch size: 32;
• Start training: after collecting 20000 transitions;
• Training frequency: 4 timesteps;
• Target updating frequency: 8000 timesteps;
• ε decaying: from 1.0 to 0.01 in the first 250000 timesteps;
• Optimizer: Adam with ε = 1.5 · 10−4;
• Learning rate: 0.625 · 10−4.
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C ADDITIONAL EXPERIMENTS ON STANDARD ATARI BENCHMARK TASKS
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Figure 6: Learning curves on a suite of Atari benchmark tasks for comparing DDQN with or without
lower bounded objective.
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Figure 7: Learning curves on a suite of Atari benchmark tasks for comparing DDQN with n-step
bootstrapping and the proposed lower bounded objective.
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