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Abstract

Multimodal Large Language Model (MLLM) has
demonstrated strong generalization capabilities
across diverse distributions and tasks, largely due
to extensive pre-training datasets. Fine-tuning
MLLM has become a common practice to im-
prove performance on specific downstream tasks.
However, during fine-tuning, MLLM often faces
the risk of forgetting knowledge acquired dur-
ing pre-training, which can result in a decline in
generalization abilities. To balance the trade-off
between generalization and specialization, we pro-
pose measuring the parameter importance for both
pre-trained and fine-tuning distributions, based on
frozen pre-trained weight magnitude and accumu-
lated fine-tuning gradient values. We further apply
an importance-aware weight allocation strategy,
selectively updating relatively important parame-
ters for downstream tasks. We conduct empirical
evaluations on both image captioning and visual
question-answering tasks using various MLLM
architectures. The comprehensive experimental
analysis demonstrates the effectiveness of the pro-
posed solution, highlighting the efficiency of the
crucial modules in enhancing downstream special-
ization performance while mitigating generaliza-
tion degradation in MLLM Fine-Tuning.

1. Introduction
Recent years have witnessed remarkable progress in Mul-
timodal Large Language Model (MLLM), which have
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Figure 1: Background and Motivation. Fine-tuning Multimodal
Large Language Model (MLLM) on downstream tasks typically
involves training ( ) the connector and LLM modules, and freez-
ing ( ) the visual encoder. We reveal a higher parameter im-
portance difference (PID) on unseen downstream distributions,
e.g., Flickr30k, compared to seen upstream distribution, e.g.,
OKVQA. PID = cos(|w∗|, |g|)−2. We utilize the absolute value
of the pre-trained weight |w∗| and fine-tuning gradients |g| to rep-
resent the upstream and downstream parameter importance.

demonstrated impressive competency in various vision-
understanding tasks (Liu et al., 2023b; Dai et al., 2023;
Lin et al., 2023a; Liu et al., 2023a). MLLM generally fol-
lows the paradigm to fuse the pre-trained vision encoder
(Radford et al., 2021; Dosovitskiy et al., 2021) into the repre-
sentation space of the Large Language Models (LLM), e.g.,
LLaMA (Touvron et al., 2023) and Vicuna (Chiang et al.,
2023), via the connector module (Dai et al., 2023; Liu et al.,
2023b; Luo et al., 2024). Considering that Multimodal
Large Language Model is optimized on huge-scale and
various-type multimodality instruction-following datasets
(Lin et al., 2014; Singh et al., 2019; Mishra et al., 2019), it
brings powerful generalization ability on different related
tasks. Despite this, MLLM still performs poorly on down-
stream datasets (Lin et al., 2023b; Luo et al., 2023; Zhai
et al., 2024; Tang et al., 2024; Lu et al., 2024).

The common practice is to fine-tune foundation models
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on specific tasks to enhance task performance or align the
model behavior with human expectations (Zhou et al., 2024;
Han et al., 2024). Specifically, existing solutions normally
freeze the visual encoder, focusing solely on connector lay-
ers and the LLM component (Su et al., 2023; Cha et al.,
2024; Lin et al., 2024). Thus, during the fine-tuning stage,
the MLLM gains specialization ability to achieve excep-
tional performance on the fine-tuning task. However, since
the small fine-tuning dataset does not have sufficient cover-
age of the distribution as well as tasks, the fine-tuned model
can potentially lose its generality which is acquired through
pre-training stage. The effect of deteriorating the model
previous generic knowledge upon new learning is a well-
documented challenge, referred as catastrophic forgetting
(Ratcliff, 1990; McCloskey & Cohen, 1989; French, 1999;
Luo et al., 2023; Zhai et al., 2024). Consequently, a pivotal
question raises: How to enhance the specialization ability
on target tasks while maintaining generalization knowledge
for Multimodal Large Language Model Fine-Tuning?

In our work, we propose a simple yet effective method,
Specialization via Importance Discrepancy Evaluation for
Refinement, abbreviated as SPIDER ( ) to simultaneously
accommodate task-oriented properties and maintain task-
generic knowledge to alleviate the catastrophic forgetting
phenomenon. Own to the over-parameterized characteris-
tics of the deep neural network (Guo et al., 2017; Lakshmi-
narayanan et al., 2017), we notice that not all parameters
contribute equally to fit the target distribution, which has
confirmed soundness in the relative researches (Li et al.,
2017; Frankle & Carbin, 2019; Liu et al., 2019; Sung et al.,
2021; Yin et al., 2023; Sun et al., 2023b). Consequently,
we assert that pre-training and fine-tuning distributions ex-
hibit distinct parameter importance degrees for representing
generic and specialized knowledge. In line with this, we
are motivated to selectively update relatively important pa-
rameters for the downstream task while preserving the
remaining for generalization and specialization ability.

Driven by this motivation, the above problem becomes more
fundamental: I): How to measure parameter importance for
generic and specialized knowledge? II): How to selectively
maintain and optimize during downstream learning. To
respond to question I), we introduce the Importance Dis-
crepancy Measurement (IDM) to quantify the parameter
importance degree towards the generalized and specialized
knowledge. With respect to the prior generic information,
we take inspiration from (Han et al., 2015; Frankle & Carbin,
2019; Sun et al., 2023b) and argue that weight magnitude
positive correlates with the prediction tendency. Thus, we
adopt the MLLM pretrained weight magnitude to mea-
sure the parameter importance towards the generalization
attitude. Towards the posterior specialized behavior, we uti-
lize current gradient norm to pinpoint regions that learn
crucial downstream knowledge. The rationale behind this

is that gradients trajectories directly provides intensity in-
formation of the learning signal imposed on each parameter
element for optimization objective (Fisher, 1922; Pascanu
& Bengio, 2013; Kirkpatrick et al., 2017; Lee et al., 2019;
Mirzadeh et al., 2020; Sanh et al., 2020; Song et al., 2024).
By comparing the parameter importance rank, we can differ-
entiate between generic and task-specific parameters, As il-
lustrated in Fig. 1. tuning on the unseen fine-tuning datasets,
e.g., Flickr30k, exhibits a more pronounced parameter im-
portance discrepancy than the seen OKVQA distributions.
This observation further supports our motivation to miti-
gate catastrophic forgetting in MLLM by considering pa-
rameter importance discrepancy. Driven by question II),
we then propose the Importance Selection Mask (ISM) to
selectively consolidate or optimize candidate parameters
for the target distribution. Specifically, during the network
backward pass, we identify and consolidate parameters that
exhibit relatively higher importance for general task knowl-
edge, while optimizing the remaining elements to enhance
task-specific performance. For thorough examination, we
conduct experiments on two representative MLLM: VILA
(Lin et al., 2023a) and LLaVA (Liu et al., 2023b;a). We
fine-tune on two major tasks image-captioning and visual
question answering and evaluate the generic knowledge on
the pre-trained seen datasets (Goyal et al., 2017; Marino
et al., 2019; Hudson & Manning, 2019; Singh et al., 2019).
The main contributions are summarized as follows:
• We focus on addressing the catastrophic forgetting prob-

lem in fine-tuning Multimodal Large Language Model
(MLLM) for downstream tasks. We reveal that due to the
distribution shift between upstream and downstream pat-
terns, parameters exhibit varying degrees of importance.

• We introduce SPIDER, which measures generalization
and specialization based on the behavior of frozen weights
and updating gradients. Our method identifies relatively
important elements for the downstream task and conduct
critical-aware weight allocation on candidate parameters.
By selecting and ranking these elements, our approach
offers a novel solution to effectively tackle the generaliza-
tion and specialization dilemma in MLLM.

• We conduct a comprehensive analysis on four downstream
datasets: Flickr30k (Young et al., 2014), COCO-Capation
(Lin et al., 2014), ScienceQA (Lu et al., 2022), and
IconQA (Lu et al., 2021), using VILA (Lin et al., 2023a)
and LLaVA (Liu et al., 2023b). Along with a series of
ablation studies, the promising results empirically vali-
date the effectiveness of SPIDER in improving fine-tuning
performance and mitigating generalization forgetting.

2. Related Works
2.1. Multimodal Large Language Models

With the impressive success of Large Language Models
(LLM), such as GPT (Radford et al., 2019; Brown et al.,
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2020; OpenAI, 2023), LLaMA (Touvron et al., 2023), Vi-
cuna (Chiang et al., 2023), PaLM (Chowdhery et al., 2022;
Anil et al., 2023), growing interest has been aroused in
building end-to-end Multimodal Large Language Model
(MLLM), e.g., Flamingo (Alayrac et al., 2022), BLIP-2
(Li et al., 2022a; 2023a), InstructBLIP (Dai et al., 2023),
QWen-VL (Bai et al., 2023), LLaVA (Liu et al., 2023b;a;
?), VILA (Lin et al., 2023a). Existing MLLM solutions nor-
mally follow to utilize the visual extractor (Radford et al.,
2021; Dosovitskiy et al., 2021) to encode visual features
and utilize the connector module to project visual tokens
into word embedding space of the LLM, i.e., treating visual
input as the foreign language (Wang et al., 2023c). Then,
the visual and textual tokens are concatenated and fed into
the LLM. The LLM is used to accomplish various vision-
language tasks in an auto-regressive manner. For example,
the famous MLLM work, LLaVA (Liu et al., 2023b) adopts
a linear projection layer to connect the visual encoder and
the LLM (Chiang et al., 2023; Touvron et al., 2023). De-
spite their effectiveness, existing works primarily emphasize
the generalization ability across various tasks, resulting in
the constrained performance on specific downstream target
tasks. Therefore, it is an intuitive solution to fine-tune the
MLLM in order to enhance the particular task performance.

2.2. Catastrophic Forgetting in Multimodal Large
Language Model Fine-Tuning

Commonly optimized on downstream tasks (De Boer et al.,
2005), deep neural network is empirically proved to suffer
from the catastrophic forgetting problem (Ratcliff, 1990;
McCloskey & Cohen, 1989; French, 1999; Luo et al., 2023;
Kirkpatrick et al., 2017; Zhai et al., 2024), a significant
issue where models forget previously learned information
when exposed to new data. In the context of MLLM, this re-
sults in catastrophic forgetting of generic knowledge, which
severely impairs the model transferability across previously
learned datasets. Therefore, balancing the ability to fit down-
stream tasks while maintaining generalization becomes a
crucial challenge for Multimodal Large Language Model.
Existing methods could be roughly divided into four cat-
egories (Lin et al., 2023b; Han et al., 2024; Xin et al.,
2024; Huang et al., 2025). i) Additive Parameter Learn-
ing (Houlsby et al., 2019; Yi-Lin Sung, 2022; Lester et al.,
2021; Liu et al., 2022; Zhou et al., 2022b;a; Zhang et al.,
2022) primarily focus on strategically incorporating addi-
tional trainable parameters within the architecture. For ex-
ample, adapter (Houlsby et al., 2019; Zhang et al., 2022; Li
et al., 2023b; Gao et al., 2023; Sun et al., 2023a) typically
consist of multi-layer perceptions and residual connections
(He et al., 2016) that combine pre-trained features with
updated ones. Additionally, prompt (Lester et al., 2021;
Zhou et al., 2022b;a; Zang et al., 2022; Shu et al., 2022;
Wang et al., 2022) directly appends adjustable vectors to the

Table 1: Limitation for different Anti-Forgetting MLLM methods:
Additive Parameter Learning (Add.), Reparameterization Tuning
(Repara.), Regularization based Optimization (Reg.), and Partial-
based Updating (Part.). Refer to Sec. 2.2 for details.

Limitation Add. Repara. Reg. Part. Ours

Specify Architecture ! ! %

Modify Optimization ! %

Require Hyper-Parameter ! ! %

input sequence. ii) Reparameterization Tuning (Hu et al.,
2022; Zhang et al., 2023; Wang et al., 2023a; Hao et al.,
2024; Liu et al., 2024; Bi et al., 2025; Liang et al., 2025)
also introduce new learnable parameters during the training
stage, which are then integrated into the original MLLM
through reparameterization during inference. For instance,
LoRA (Hu et al., 2022) assumes that the changes in lin-
ear model weights follow a low-rank behavior. Despite
the certain advantages, these two research streams intro-
duce additional parameters into the pre-trained model and
disrupt the original architecture, leading to increased com-
putational costs and presents restricted architecture compat-
ibility. iii) Regularization-based Optimization (Kirkpatrick
et al., 2017; Zenke et al., 2017; Xuhong et al., 2018; Ritter
et al., 2018; Buzzega et al., 2020; Li et al., 2020; Panigrahi
et al., 2023) introduce the loss constraints to preserve the
previously learned knowledge. Several studies add regu-
larization terms to the loss functions to penalize parame-
ter changes and mitigate catastrophic forgetting. However,
aforementioned solutions require to modify the loss func-
tion and thus conflict with personalized fine-tuning loss
design. iv) Partial-based Updating (Li et al., 2022b; Ansell
et al., 2022; Li et al., 2023c; Yu et al., 2024; Zhang et al.,
2024c;b; Zhu et al., 2024; Lu et al., 2024) focuses on modi-
fying a subset of downstream-relevant parameters, making
it architecture-agnostic and orthogonal to the downstream
loss objective. For instance, GPS (Zhang et al., 2024c) and
SPU (Zhang et al., 2024b) perform sparse updates based on
gradient signals, while DARE (Yu et al., 2024) and Tailor
(Zhu et al., 2024) operate on delta parameters. However,
previous methods struggle to retain generic knowledge and
their performance is highly sensitive to predefined selec-
tion thresholds. In our research, recognizing the distinct
characteristics of deep neural networks, we argue that pa-
rameters exhibit differing importance distributions between
pre-training and fine-tuning phases. Therefore, we measure
parameter importance in a self-driven manner, selectively
updating those with relatively higher importance for down-
stream tasks while preserving the generalization capability.

3. Methodology
3.1. Preliminary

Given the Multimodal Large Language Model (MLLM) ar-
chitecture, the MLLM model (θ) typically includes three
parts: visual encoder f , e.g., ViT (Dosovitskiy et al., 2021),
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LLM (g), e.g., Vicuna (Chiang et al., 2023) and LLaMA
(Touvron et al., 2023), and the connector module φ (Liu
et al., 2023b; Dai et al., 2023; Liu et al., 2023a; Lin et al.,
2023a). For a query instance, the input consists of both
a visual image xv and a textual instruction xt. The corre-
sponding label is a language response y. First, we extract
the visual features zv = f(xv), and then apply the trainable
projection φ to convert zv into language embedding tokens,
hv = φ ·zv . And textual token as ht = Tokenize(xt). Next,
we combine both visual and textual tokens and pass them
into the LLM module g to generate the language output
ŷ = g([hv, ht]). Following previous MLLM fine-tuning
works and benchmarks (Zhou et al., 2024; Zhu et al., 2024),
we select and fine-tune partial trainable parameter module
w from the MLLM model to adapt to the downstream task
T with distribution (DT ). Normally, learnable modules
are connector module (φ) and candidate LLM (g) blocks as
w = {φ, g}. This MLLM optimization follows:

argmin
w

E(xv,xt,y)∈DT L
(
g([φ(hv), ht]), y

)
. (1)

3.2. Specialization via Importance Discrepancy
Evaluation for Refinement

To enhance downstream efficiency while preserving generic
knowledge in MLLM, we assess parameter importance
across pre-training and fine-tuning distributions, selec-
tively updating downstream critical elements, including two
components: Importance Discrepancy Measurement (IDM
Sec. 3.2.1) for ranking parameter importance, and Impor-
tance Selection Mask (ISM Sec. 3.2.2) for selective updates.

3.2.1. IMPORTANCE DISCREPANCY MEASUREMENT

Importance for Generalization Knowledge. Generic
knowledge embedded in MLLM provides bases for strong
performance in various domains and quick transfer to dif-
ferent tasks; when directly fine-tuning on newly received
tasks with no regard to preserving its pre-existing, MLLM
faces the catastrophic forgetting on the generalization ability.
Thus, with respect to the generalization knowledge, we take
inspiration from the magnitude pruning (Han et al., 2015)
and weight magnitude represents how much the parame-
ter contributes to the model prediction (Frankle & Carbin,
2019). Thus, in our work, we directly utilize the weight mag-
nitude (Han et al., 2015; Frankle & Carbin, 2019; Sun et al.,
2023b) for pre-trained parameters w∗ to rank the generaliza-
tion parameter importance I as the following formulation.

I[v] = |w∗[v]| Absolute, (2a)

I[v] = I[v]−Mean(I)
Std(I) Normalization, (2b)

I[v] =
1

1 + e−I[v]
Rescale. (2c)

In this context, the notation [v] reresents the nth component
value of a given tensor vector. The role of the above form
is threefold. Eq. (2a) computes the weight magnitude, and
Eq. (2b) is applied to eliminate the effect of dimensional

analysis. We further rescale into the bounded range for
comparison via Eq. (2c). Thus, I[v] is within (0, 1)

Importance for Specialization Knowledge. With respect
to fine-tuning the downstream task, we aim to identify which
parameters are more relevant to the specific task at hand.
We argue that the gradient signal acts an effective evaluation
metric as the following formulation:

δ[v] =
∂L

(
g([φ(hv), ht]), y

)
∂w[v]

, (3)

where δ[v] denotes the gradient of the loss function with
respect to the parameter w[v], evaluated at the query sample.
The intuition is that parameters with larger gradient values
correspond to directions where the loss function changes
most rapidly, facilitating efficient gradient descent during
fine-tuning. Thus, we derive the specialization parameter
importance G. The formulation is quantified as follows:

G[v] = Norm(|δ[v]|) ∈ (−∞,∞),

G[v] = Sigmoid(G[v])) ∈ (0, 1).
(4)

Notably, due to the stochastic nature of sampling, δ[v] ex-
hibits instability in reflecting parameter importance, thereby
introducing considerable uncertainty in estimating special-
ized knowledge. To address this issue, we draw inspiration
from the momentum mechanism (He et al., 2020; Chen et al.,
2020; Chen* et al., 2021) and iteratively accumulate sample
gradients using a momentum update with a coefficient of
0.85 to reduce the impact of this uncertainty.

Therefore, we evaluate parameter importance for both gener-
alization and specialization by utilizing pre-training weights
and fine-tuning gradient information. To ensure a bal-
anced assessment, we apply the consistent normalization
and rescaling methods to these two metrics.

3.2.2. IMPORTANCE SELECTION MASK

After localizing the parameter importance for both general-
ization (I) and specialized knowledge (G) during the fine-
tuning stage, we only update the selected parameters while
keeping the remaining pre-trained model parameters frozen.
Thus, the straightforward approach is to treat the relatively
important elements for the downstream task as candidate
parameters for updates. Thus, we define the updating mask
M as the following formulation:

M [v] =

{
1, G[v] > I[v],
0, else. (5)

When M [v] = 1, the query parameter is selected as updat-
ing candidate. We denote the current MLLM model as w.
We utilize the frozen pre-trained parameter w∗ to reweight
the current model, thereby restoring the original pre-trained
knowledge conditions as follows:

w = w ⊙M + w∗ ⊙ (1−M). (6)
However, this operation introduces no variance in the candi-
date parameter updates. Moreover, due to its normalization
property, the aforementioned solution can be seen as mask-
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ing fifty percent of the parameter updates, which still results
in the degradation of generalization performance. We argue
that for the selected parameters, assigning higher weights
to those exhibiting a greater discrepancy in importance,
and conversely lower weights to less significant parameters.
Thus, we propose the Importance Selection Mask (ISM) to
reconstruct the aggregation weight in Eq. (5) as:

M [v] =

{ G[v]
G[v]+I[v]

, G[v] > I[v],
0, else.

(7)

Furthermore, we rescale the aggregation weights based on
the mean behavior of the selected elements, while restrict-
ing the upper bound to 1. This can be considered as the
following rescale operation strategy:

M [v] =

{
min(1, M [v]

Mean(M [M ̸=0])
), G[v] > I[v] ,

0, else.
(8)

Based on the above Importance Selection Mask (ISM), we
rewrite the Eq. (6) to update the current model and plot the
algorithm description in Algorithm 1 and Fig. 2.

3.3. Discussion and Limitation

Related Parameter Signal Investigations. Generally
speaking, parameter signals could be revealed in two as-
pects: magnitude (Han et al., 2015; Frankle & Carbin, 2019;
Sun et al., 2023b) and gradient (Fisher, 1922; Pascanu &
Bengio, 2013; Kirkpatrick et al., 2017; Lee et al., 2019;
Mirzadeh et al., 2020; Sanh et al., 2020). The weight magni-
tude represents how much the parameter contributes to the
prediction. The gradient reveals the information intensity
during optimization. Thus, magnitude and gradient acts
as parameter importance metrics to select target elements,
which has incurred huge research interest in broad fields,
such as network pruning (Han et al., 2015; Frankle & Carbin,
2019; Zhang et al., 2021; Li et al., 2022b), domain general-
ization (Rame et al., 2022; Wang et al., 2023b; Zhu et al.,
2023a), federated learning (Sung et al., 2021; Matena &
Raffel, 2022), and malicious defense (Han et al., 2023; Zhu
et al., 2023c; Huang et al., 2023; Zhu et al., 2023b; Huang
et al., 2024b). Existing explorations focus on training a net-
work from scratch and face no requirement to preserve the
previously learned knowledge, thus entangling the magni-
tude and gradient information to select the crucial elements
for the target task. However, pre-trained Multimodal Large
Language Model (MLLM) models have inherent general-
ization knowledge, as evidenced by the capacity to execute
diverse tasks without fine-tuning (Liu et al., 2023b;a; Zhang
et al., 2024a). Thus, maintaining the generalization ability
and enhancing the downstream specialization ability during
the fine-tuning stage acts as a crucial task for MLLM. In our
work, we utilize the pre-trained parameter magnitude (I in
Eq. (2a)) and optimizing parameter gradient (δ in Eq. (3)) to
respectively reveal the parameter importance metrics for the
generalization and specialization abilities. We select relative
downstream-kernel elements to balance the generalization

(a) SPIDER (b) DARE

I[v] Eq. (2c)

G[v] Eq. (4)

M [v]
Eq. (8)

Eq. (6)

(Yu et al., 2024)
Figure 2: Conceptual Comparison. (a) SPIDER iteratively mea-
sures the parameter importance discrepancy to construct the update
mask which protects generation and squeezes specialization infor-
mation on the selected elements. (b) DARE combines the learned
elements with the pre-trained and further rescale the candidate
ones. means frozen pre-trained elements. denotes current
learning parameters. represents completed learned ones.

and specialization ability during the fine-tuning process.

Relative Model Merging Works. Large Model Merging is
a promising paradigm that integrates task-specific models
into a unified model capable of simultaneously handling di-
verse downstream tasks (Zheng et al., 2025). Existing meth-
ods typically represent each task expert using downstream-
optimized models and rely on various importance metrics
to select specific elements for merging (Tang et al., 2024;
Zhu et al., 2024; Yu et al., 2024; Lu et al., 2024; Du et al.,
2024; Huang et al., 2024a; Zhu et al., 2025). However, post-
merging operations often disrupt the originally optimized
parameter space, limiting the specialized capabilities for in-
dividual tasks. In our work, we select relative specialization
importance elements during the training process, which is
compatible with integrates into the training trajectory and
squeeze specialized capabilities into target parameter space.

Concept Difference. Existing methods to mitigate MLLM
forgetting, such as DARE (Yu et al., 2024) and Tailor (Zhu
et al., 2024), primarily focus on selectively updating and
rescaling optimized parameters using random selection and
the Hessian matrix (Fisher, 1922; Sung et al., 2021; Tang
et al., 2024; Frantar & Alistarh, 2023). However, these
post-combination operations can conflict with optimization
strategies that aim to adjust all trainable elements for down-
stream performance and is sensitive with the changing scale
(Ilharco et al., 2023; Yu et al., 2024). Our approach evaluates
parameter importance for both generalization and special-
ization objectives during the tuning stage. This enables us to
selectively update parameters relevant to downstream tasks
while preserving others, effectively performing an informa-
tion extrusion (Frankle & Carbin, 2019; Chen et al., 2021;
Zhang et al., 2021; Bai et al., 2022) to reduce conflicts be-
tween pre-training and fine-tuning knowledge. We illustrate
the concept difference in Fig. 2.

Limitation. SPIDER leverages both previously pre-trained
and current fine-tuning knowledge to select relevant down-
stream important elements and re-weight the candidate pa-
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Table 2: Computation Complexity, Learnable Ratio and Perfor-
mance Comparison. Accuracies are derived from Flickr30k based
on VILA. O denotes the complexity degree. Refer to Sec. 3.3.

Metrics Full FT L2-Reg Grafting Half FT DARE Tailor SPIDER

Complexity O(|M |)O(2×|M |)O(2×|M |)O(|M |)O(|M |)O(|M |) O(3×|M |)
Ratio 100% 100% 100 % 50 % 10% 10 % 50%

Performance 55.16 48.33 49.58 59.52 53.66 54.56 66.61

rameters, thereby ensuring generalization while pressing the
fine-tuning optimization pathway. However, ours fails in
certain circumstances. (i) We rank parameter importance
based on the pre-trained weights and the current gradient
matrix, which incurs additional memory usage. However,
this increase is linear relative to the scale of learnable pa-
rameters, with a resource complexity of O(3× |M |). We
further plot the comparison in Tab. 2. (ii) Our method
evaluates parameter importance by jointly considering pre-
training and fine-tuning distributions, enabling the selection
of task-relevant parameters that balance generalization and
specialization. When the downstream task closely aligns
with the upstream distribution, only minimal updates are
required. In such cases, small distribution shifts result in an
acceptable level of generalization loss, thereby effectively
managing the trade-off between preserving broad capabili-
ties and adapting to specific tasks.

4. Experiments
4.1. Experimental Setup

Architecture and Datasets. Adhering to the Multimodal
Large Language Model paradigm, we evaluate the effec-
tiveness of our methods using two popular models as the
foundations for our experiments: LLaVA (Liu et al., 2023b)
and VILA (Lin et al., 2023a). We categorize the datasets
into two groups: pre-training (seen) and fine-tuning (un-
seen) datasets to respectively measure the generalization
and specialization ability. The pre-training datasets consist
of those used in the training process; accordingly, we as-
sess the learned generalization ability on OKVQA (Marino
et al., 2019), TextVQA (Singh et al., 2019), GQA (Hudson
& Manning, 2019), and OCRVQA (Mishra et al., 2019). For
fine-tuning tasks, we consider four downstream datasets:
Flickr30k (Young et al., 2014), COCO-Capation (Lin et al.,
2014), IconQA (Lu et al., 2021), ScienceQA (Lu et al.,
2022)1, which respectively associate with image caption and
visual reasoning views. To be precise, OKVQA, TextVQA ,
GQA, and OCRVQA are obviously mentioned as the train-
ing datasets in the pre-training stage, making them appropri-
ate benchmarks to evaluate multimodal large language mod-
els (MLLMs) generalization across diverse tasks. OKVQA
examines external knowledge and common-sense reasoning,
TextVQA and OCRVQA test understanding of embedded
textual information, and GQA assesses compositional and
logical reasoning. Together, these datasets comprehensively

1https://huggingface.co/datasets/BAAI/DataOptim

evaluate MLLMs generalization across different reasoning
types and practical scenarios. We follow (Zhou et al., 2024)
resource setting and randomly sample 10k samples from the
training set of each dataset.

Counterparts. We focus on exploring model-agnostic
MLLM fine-tuning methods and mainly compare with
the Regularization-based Optimization and Partial-based
Updating solutions as follows: Full Fine-Tuning (Full
FT) [arXiv’05] (De Boer et al., 2005), L2-Regularization
(L2-Reg) [PNAS’17] (Kirkpatrick et al., 2017), Grafting
[ICML’23] (Panigrahi et al., 2023), Half Fine-Tuning (Half
FT) [arXiv’24] (Hui et al., 2024), DARE [ICML’24] (Yu et al.,
2024), and Tailor [ICML’24] (Zhu et al., 2024).

Implementation Details. We follow the official code-
base2,3 to conduct the fine-tuning procedure. The learning
rate lr in LLaVA (Liu et al., 2023b) is 2e− 4 for LLM and
2e−5 for visual projector. For VILA (Lin et al., 2023a), we
uniformly set the learning rate to 1e−4. The training epoch
is E = 5. The training batch size B set 16. The fine-tuning
block for LLM is the last L = 2 layers. All experiments
are conducted on 8 NVIDIA 4090 GPUs, each with 24GB
memory. Due to limited computation resources, we utilize
LLaVA-1.5-7B for LLaVA and VILA1.5-3B for VILA.

Evaluation Metrics. To evaluate the performance of Multi-
modal Large Language Model (MLLM) in both generaliza-
tion and specialization aspects, we consider two key metrics:
Source Performance (AS) and Target Performance (AT ).
Let U = {Ui}|U|

i=1 represent the set of pre-training datasets
and T denote the fine-tuning target dataset. Thus, we derive
the following evalation metrics forms:

AS =
1

|U|

|U|∑
i

Acc.(Ui), AT = Acc.(T ). (9)

Acc. denotes the accuracy metric. We use the CIDEr met-
ric to evaluate performance on the Flickr30k (Young et al.,
2014) and COCO-Capation (Lin et al., 2014) datasets. For
simplicity, we apply the same notation throughout. To eval-
uate effectiveness in mitigating catastrophic forgetting in
MLLM, we use the H-Average metric (H) and O-Average
metric (O) (Zhu et al., 2024). The H-Average and O-
Average metrics measure the harmonic and arithmetic mean
of generalization (AS ) and specialization (AT ):

H =
2×AS ×AT

AS +AT , O =
AS +AT

2
. (10)

4.2. Diagnostic Analysis

We ablation on Flickr30k and IconQA for in-depth analysis.

Candidate Parameter Selection Metrics. Selecting can-
didate parameters plays a crucial role in mitigating catas-
trophic forgetting of general knowledge while enhancing

2https://github.com/haotian-liu/LLaVA
3https://github.com/NVlabs/VILA
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Table 3: Ablation Analysis for Candidate Parameters Selection.
The Randγ denotes randomly selects elements with γ ratio. Iγ
and Gγ respectively denotes choose γ proportion of elements via
magnitude and gradient. γ is set as 50%. Please see Sec. 4.2.

Flickr30k COCO-Capation
Metric AS AT H AS AT H
Full FT 47.04 66.68 55.16 48.20 102.07 65.48

M [v] = 1, when v satisfy [Metric]
Randγ 51.68 70.15 59.52 50.16 106.18 68.13
Iγ Eq. (2c) 52.47 70.28 60.08 51.07 106.10 68.95
Gγ Eq. (4) 47.02 67.60 55.46 47.99 105.33 65.93

G[v] > I[v] Eq. (5) 52.68 73.43 61.35 51.70 111.29 70.60

Table 4: Ablative Study of Key Modules for SPIDER. Incorporate
sole Importance Discrepancy Measurement (IDM) can be regarded
as Eq. (5). Considering both IDM and ISM, this is viewed as
Eq. (8). For a detailed discussion, please refer to Sec. 4.2.

Flickr30k COCO-Capation
IDM ISM AS AT H AS AT H
Zero-shot 61.39 55.43 58.26 61.39 107.64 78.19
Full FT 47.04 66.68 55.16 48.20 102.07 65.48

✓ 52.68 73.43 61.35 51.70 111.29 70.60
✓ ✓ 55.40 83.49 66.61 55.94 122.74 76.86

specialized behavior. In Tab. 3, we examine the impact of
different mask updating strategies. Specifically, weight mag-
nitude and gradient value serve as two effective metrics for
assessing parameter importance relative to the current distri-
bution. Iγ and Gγ denote the selection of γ proportion of
elements based on small pre-trained weight magnitude and
large downstream gradient value, respectively. Three key
observations emerge: ❶ Selecting partial parameters is an
effective solution for balancing generalization and special-
ization. ❷ Solely considering the pre-training distribution
(Iγ) emphasizes generalization-related elements but signif-
icantly limits the downstream adaptation. ❸ Exclusively
incorporating fine-tuning importance (Gγ) undermines gen-
eralization and hinders specialization. As demonstrated in
Tab. 3, we select relative downstream important elements
(G[v] > I[v] in Eq. (5)), which effectively preserves gen-
eralization while ensuring specialization performance for
Multimodal Large Language Model (MLLM).

Key Component Analysis. In Tab. 4, we begin by validat-
ing the significance of our proposed components through
their incremental integration. The first row displays the
BASELINE result, representing a simple Full Fine-Tuning
(Full FT) approach using standard cross-entropy loss. As
demonstrated, the combination of Importance Discrepancy
Measurement (IDM) and Importance Selection Mask (ISM)
yields the best performance in both generalization and spe-
cialization. This finding supports our motivation to evaluate
parameter significance across pre-training and fine-tuning
distributions, while selectively updating candidate param-
eters for the downstream task. Additionally, we plot the
response outputs in Fig. 3, revealing that Zero-shot fails to
adhere to the instruction style and lacks a detailed descrip-
tion. In contrast, naive Full FT introduces hallucinations,

Zero-shot : A black and white dog is jumping over a hurdle in a field.
Full FT : A dog jumps over bars at a dog competition. 
Ours: A black and white dog jumps over a barrier.

Zero-shot : A baby is playing with a toy while a cat sits on the floor.
Full FT : A baby and a cat are sitting on a wooden floor.
Ours: A baby plays with a toy while a cat watches.

Figure 3: Ablation Comparison on Response Output on
Flickr30k. Text prompt is Write a short description for the image.
Full FT better follow the instructions than Zero-shot, but Full FT
introduces hallucination (e.g., “at a dog competition”), while Zero-
shot lacks task details. Please refer to Sec. 4.2.

VILA LLaVA

Figure 4: Visualization Comparison. Radar charts plots fine-
tuning methods results across four pre-trained source datasets and
target datasets, i.e., Flickr30k and COCO-Capation. Our method
achieves a better generalization and specialization trade-off.

likely due to the forgetting of generalized knowledge. Our
method effectively achieves satisfying results.

4.3. Comparison to State-of-the-Arts

Quantitative Results. We compare our SPIDER against
related approaches on image-captioning (CAP) and visual
question-answering (VQA) tasks. Due to the architectural
complexity and task differences, we limit the VQA evalu-
ation to VILA1.5-3B. As shown in Tabs. 5 and 6, several
key observations can be made: The larger the task gap
between the fine-tuning and pre-training distributions, the
more severe the generalization-specialization trade-offs in
the MLLM fine-tuning process. Full-FT directly updates all
parameters to adapt to the downstream distribution. How-
ever, specialized downstream applications typically have
limited data compared to large-scale pre-training datasets.
Thus, Full-FT often leads to increased overfitting, especially
when training for more epochs, resulting in performance
degradation on downstream tasks. Notably, regularization-
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Table 5: Comparison with the state-of-the-art Multimodal Large Language Model (MLLM) Fine-Tuning Solutions on the image
caption task: Flickr30k and COCO-Capation datasets based on VILA and LLaVA architectures. We mark the Best in bold across different
tuning methods. ↑ means improved accuracy compared with Full FT. Please refer to Sec. 4.3 for relative explanations.

Flickr30k COCO-Capation
Methods

OKVQA TextVQA OCRVQA GQA AS AT H O OKVQA TextVQA OCRVQA GQA AS AT H O
Fine-Tune with VILA architecture
Zero-shot 55.60 60.30 68.20 61.47 61.39 55.43 58.26 58.41 55.60 60.30 68.20 61.47 61.39 107.64 78.19 84.52

Full FT 37.99 45.17 53.85 51.14 47.04 66.68 55.16 56.86 37.36 42.96 55.85 56.63 48.20 102.07 65.48 75.14
L2-Reg 34.59 25.89 47.20 49.48 39.29 62.77 48.33 51.03 33.98 41.67 52.55 50.25 44.61 99.84 61.67 72.23

Grafting 35.66 31.60 47.40 47.67 40.58 63.71 49.58 52.15 33.12 39.06 52.60 49.77 43.64 99.84 60.73 71.74
Half FT 44.15 48.71 60.90 52.97 51.68 70.15 59.52 60.92 41.41 47.47 57.80 53.94 50.16 106.18 68.13 78.17

DARE 38.38 39.69 52.05 51.33 45.36 65.67 53.66 55.52 36.73 43.34 56.5 51.33 46.98 100.70 64.06 73.84
Tailor 38.30 44.98 53.35 51.38 47.00 65.00 54.56 56.00 37.84 43.51 55.70 50.96 47.00 102.44 64.44 74.72

SPIDER 47.11 53.38 65.55 55.57 55.40 83.49 66.61↑11.45 69.45↑12.59 46.65 54.94 65.55 56.63 55.94 122.74 76.86↑11.38 89.34↑14.20
Fine-Tune with LLaVA architecture
Zero-shot 58.00 58.25 66.20 61.93 61.10 25.31 35.79 43.20 58.00 58.25 66.20 61.93 61.10 110.52 78.69 85.81

Full FT 45.59 47.09 57.65 56.94 51.82 61.58 56.28 56.70 41.01 42.89 57.75 53.67 48.83 92.01 63.80 70.42
Half FT 48.96 49.47 60.80 56.81 54.01 62.91 58.12 58.46 37.62 41.14 60.00 45.96 46.18 79.91 58.53 63.05

DARE 44.82 48.01 58.75 57.04 52.16 62.18 56.73 57.17 39.60 39.45 56.00 51.50 46.64 90.82 61.63 68.73
Tailor 44.50 46.32 59.00 57.14 51.74 61.27 56.10 56.51 41.35 40.85 58.45 54.87 48.88 90.94 63.58 69.91

SPIDER 55.81 53.67 63.95 57.04 57.62 79.84 66.93↑10.65 68.73↑12.03 49.50 45.33 65.00 58.14 54.49 114.74 73.89↑10.09 84.62↑14.20

Table 6: Comparison with the state-of-the-art Multimodal Large Language Model (MLLM) Fine-Tuning Solutions on the the
visual question answering task: IconQA and ScienceQA datasets based on the VILA architecture. Please see details in Sec. 4.3.

IconQA ScienceQA
Methods

OKVQA TextVQA OCRVQA GQA AS AT H O OKVQA TextVQA OCRVQA GQA AS AT H O
Zero-shot 55.60 60.30 68.20 61.47 61.39 19.93 30.09 40.66 55.60 60.30 68.20 61.47 61.39 69.89 65.37 65.64

Full FT 34.51 38.02 46.10 47.05 41.42 87.05 56.13 64.24 47.15 50.88 57.20 53.58 52.20 75.78 61.82 63.99
L2-Reg 21.69 25.89 35.20 37.09 29.97 86.40 44.50 58.18 43.65 48.13 51.80 50.42 48.50 76.40 59.33 62.45

Grafting 22.66 31.60 40.25 37.84 33.09 87.18 47.97 60.13 45.65 50.71 54.35 53.94 51.16 76.00 61.16 63.58
Half FT 43.36 48.71 55.25 53.03 50.09 88.19 63.89 69.14 52.07 54.47 60.55 57.52 56.15 76.77 64.86 66.46

DARE 36.88 39.69 45.15 48.09 42.45 88.11 57.30 65.28 47.61 50.39 57.55 55.08 52.66 77.46 62.69 65.06
Tailor 37.99 41.42 48.10 47.57 43.77 88.16 58.50 65.97 48.22 50.98 57.90 53.04 52.54 75.97 62.12 64.25

SPIDER 48.34 53.38 63.35 56.12 55.30 84.07 66.71↑10.58 69.68↑5.44 54.13 57.33 65.60 60.07 59.28 75.97 66.60↑4.78 67.63↑3.64
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Figure 5: Comparison on Large Fine-Tuning Epochs. E varies
from (5 rounds to 10 rounds) on Flickr30k. See Sec. 4.3.

based optimization approaches typically offer limited per-
formance improvements, as controlling parameter stiffness
to regulate the extent of LLM updates remains a challenging
task. Moreover, in partial-update methodologies, directly
combining updated parameters with pre-trained ones often
leads to performance fluctuation, largely due to the influ-
ence of delta parameters scale. In contrast, both Half FT
and our proposed method guide the LLM to fine-tune on se-
lected parameters, demonstrating competitive performance
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Figure 6: Comparison on More Fine-Tuning Layer L on
Flickr30k dataset with the VILA architecture. See Sec. 4.3.
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Figure 7: Comparison on Large Training Batch Size B on
Flickr30k dataset with VILA and LLaVA. Refer to Sec. 4.3.

across various experiments. Additionally, our approach
selectively targets relatively important parameters for down-
stream tasks, yielding better performance compared to the
random selection strategy employed in Half FT. We further
plot the radar visualization in Fig. 4 to highlight the perfor-
mance advantages of ours compared to other approaches.

Performance on More Tuning Epochs E. We investigate
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the impact of extending fine-tuning epochs E from 5 to
10 rounds, shown in Fig. 5. The results highlight several
key findings: (i) Extending fine-tuning epochs intensifies
the pre-training knowledge forgetting phenomenon across
different architecture scales. (ii) Smaller architectures, such
as VILA-1.5-3B, encounter more severe parameter conflicts,
where a decline in generalization ability results in degraded
specialization performance. (iii) Larger architectures, such
as LLaVA-1.5-7B, which possess higher parameter redun-
dancy, maintain more stable specialization ability despite
extended tuning epochs. (iv) Ours achieves robust perfor-
mance across various architectures and training duration.

Performance on More LLM Tuning Layer L. We evalu-
ate the effect of tuning block layers L from 2 to 5, as shown
in Fig. 6. Existing methods show a slight improvement in
general performance but significantly reduce target domain
performance. SPIDER effectively maintains both general-
ization and specialization across various tuning layers.

Performance on Large Training Batch B. We further
conduct the experiments on the large training batch B: 32
in Fig. 7. The results show that setting a higher training
batch benefits both generalization and specialization ability
across different counterparts. Notably, our method SPIDER
constantly achieves the best performance results.

5. Conclusion
In conclusion, we address the catastrophic forgetting in fine-
tuning Multimodal Large Language Model (MLLM). We
introduce Specialization via Importance Discrepancy Eval-
uation for Refinement (SPIDER ), a novel approach to
assess parameter importance for both generalization and spe-
cialization, focusing on identifying downstream-important
elements and performing critical-aware updates on selected
parameters. Our method enjoys third advantages: First, No
Architecture Dependency: SPIDER functions without spe-
cific model architecture, which presents high transferability
across different architectures. Second, No Fine-tuning Pat-
tern Conflict: we conduct partial parameter updates, main-
taining compatibility with various optimization functions.
Third, No Hyper-Parameter Configuration: leveraging pa-
rameter importance discrepancies requires no additional
hyper-parameters, enhancing fine-tuning effectiveness. SPI-
DER has been validated on fruitful scenarios, highlighting
the potential for broader applications.
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APPENDIX

A. Algorithm
We provide the algorithm description in Algorithm 1. The
detailed method description is in Sec. 3.2.

Algorithm 1 SPIDER
Input: Fine-Tuning Epoch E, Overall MLLM Network θ, Train-

able parameter module w, Frozen Pre-trained parameter
weight w∗,

Output: The optimized selected MLLM model w

/* Generalization Knowledge Rank */
I ← (w∗) in Eq. (2c)
for e = 1, 2, ..., E do

for (xv, xt, y) ∈ Dk do
hv = φ(f(xv)), ht = Tokenize(xt)
δ = ∇L

(
g([hv, ht]), y

)
via Eq. (3)

/* Specialization Knowledge Rank */
G ← (δ) in Eq. (4)
/* Importance Selection Mask */

M [v] =

{ G[v]
G[v]+I[v]

, G[v] > I[v],
0, else.

↓ Rescale Importance Mask Matrix M

M [v] =

{
min

(
1, M [v]

Mean(M [M ̸=0])

)
, G[v] > I[v] ,

0, else.

w = w − η∇L ; // Update Param.
w = w ⊙M + w∗ ⊙ (1−M) Eq. (6)

end
end

B. Compared Methods
We focus on exploring model-agnostic MLLM fine-
tuning methods, with a primary comparison between
Regularization-based Optimization and Partial-based Updat-
ing solutions, as outlined below:
• Full Fine-Tuning (Full FT) [arXiv’05] (De Boer et al.,

2005): Default optimize full parameters towards the down-
stream task.

• L2-Regularization (L2-Reg) [PNAS’17] (Kirkpatrick et al.,
2017): Add an L2 regularization term with the regular-
ization hyper-parameter, i.e., 1e-3, to the original loss
function. Thus, it focuses on keeping the fine-tuning
model closer to the pre-trained model, thereby mitigating
forgetting.

• Grafting [ICML’23] (Panigrahi et al., 2023): Localize
newly acquired skills inside fine-tuned language mod-
els, which could be regarded as L1 regularization with the
penalty weigh, i.e., 1e-6.

• Half Fine-Tuning (Half FT) [arXiv’24] (Hui et al., 2024):
Randomly update half of the parameter blocks within each
transformer layer at each iteration while freezing the other
elements.

• DARE [ICML’24] (Yu et al., 2024): Parameters from the
fine-tuned model are randomly selected and re-scaled
to maintain ability on generalization and specialization
aspects.

• Tailor [ICML’24] (Zhu et al., 2024): Preserve pre-trained
parameters while replacing a small ratio of fine-tuned pa-
rameters, i.e., 10 %, based on the salience and sensitivity
analysis.

14


