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Abstract

Language models are pivotal in modern text-based applications, offering many pro-
ductivity features like next-word prediction, smart composition, and summarization.
In many applications, these models must be lightweight to meet inference time
and computational cost requirements. Furthermore, due to the inherent sensitivity
of their training data, it is essential to train those models in a privacy-preserving
manner. While it is well established that training large models with differential
privacy (DP) leads to favorable utility-vs-privacy trade offs, training lightweight
models with DP remains an open challenge.
This paper explores the use of synthetic data generated from a DP fine-tuned large
language model (LLM) to train lightweight models. The key insight behind our
framework is that LLMs are better suited for private fine-tuning, and hence using
the synthetic data is one way to transfer such capability to smaller models. Our
framework can also be interpreted as doing sampling based Knowledge Distillation
in DP setting. It’s noteworthy that smaller models can be trained on synthetic data
using non-private optimizers, thanks to the post-processing property of DP. We
empirically demonstrate that our new approach significantly improves downstream
performance compared to directly train lightweight models on real data with DP.
For instance, using a model with just 4.4 million parameters, we achieve 97%
relative performance compared to the non-private counterparts in both medical and
conversational corpus.

1 Introduction

Figure 1: Illustration of the framework. We first fine-tune a large foundation model on private data
with private optimizers. Then we use the trained LLM to generate DP synthetic data and train small
models on the synthetic data using standard optimizers.

In modern text editors and email applications, lightweight language models play a crucial role
in enhancing user experience through features such as next-word prediction and smart compose
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[Microsoft, 2020, Xu et al., 2023]. The data used to train these models is inherently sensitive, given
the nature of the applications. Alarmingly, recent research has shown that deploying trained models
may inadvertently leak information about their training data [Zhang et al., 2021, Carlini et al., 2021,
Zhang et al., 2021, Matsumoto et al., 2023]. One promising way to mitigate these privacy risks is
training the models with provable differential privacy [Abadi et al., 2016, Tramèr and Boneh, 2021,
Bu et al., 2022b, De et al., 2022, Golatkar et al., 2022, Sander et al., 2022, He et al., 2023].

In recent years, there has been significant advancement in the training of large (and pre-trained)
models with differential privacy [Anil et al., 2022, He et al., 2023, De et al., 2022, Golatkar et al.,
2022, Bu et al., 2022a]. For instance, in the domain of natural language processing, Yu et al. [2022],
Li et al. [2022b] demonstrate that a privately fine-tuned RoBERTa-Large model (355M) maintains
over 96% relative accuracy compared to the non-private baseline on the GLUE benchmark [Wang
et al., 2018]. Likewise, in computer vision, Berrada et al. [2023] exhibit that a privately fine-tuned
NFNet-F7+ model (947M) retains more than 97% relative accuracy when compared to the state-of-
the-art non-private results on ImageNet-1k [Deng et al., 2009]. Recently, He et al. [2023] showed
that these findings hold true even for complex tasks such as summurization.

Although large foundation models can minimize the utility cost of DP, many real-world scenarios
necessitate the use of efficient models, primarily to meet requirements related to inference speed
and computational resources. For example, a language model supporting next-word prediction in
a text editor must respond within a time limit, as otherwise users will type through by themselves.
Furthermore, the adoption of smaller models also reduces the financial cost of deploying language
models. However, despite these real-world demands, training efficient and private language models
remains an open problem. Recent works indicate that achieving over 90% relative performance
compared to the non-private counterpart is a major challenge for smaller models (typically with fewer
than 50M parameters) [Kairouz et al., 2021, Wang et al., 2023].

This paper explores the limits of training small models with DP. Our contributions are outlined below.

• We investigate a framework that uses synthetic text generated by privately fine-tuned large
language models to train efficient and private downstream models. Figure 1 illustrates
our framework. We expect that privately fine-tuned LLMs are powerful enough, allowing
lightweight downstream models to perform well when trained on their synthetic data. In
Appendix B, we discuss the insights behind our framework, which encompass recent findings
in training large models with DP as well as the connection between our framework and
knowledge distillation.

• Our experiments confirm this expectation. We evaluate our approach on two distinct
types of datasets, abstracts of medical papers (targets at academic writing assistance) and
conversation transcripts (targets at dialogue typing assistance). We found that models with
just 4.4 million parameters, which can even be on-device models, retain more 97% relative
performance compared to non-private baselines in both datasets. The main findings of our
experiments are depicted in Figure 2. In Figure 5 and 6 in Appendix D, we present random
samples of the synthetic datasets.

• Differentially private fine-tuning of Language Model Models (LLMs) can be a challenging
task in terms of code implementation [He et al., 2023]. To the best of our knowledge, there is
currently no opensource implementation for DP fine-tuning that supports model parallelism,
which is crucial for training models with billions of parameters. In our code, we implement
Fully Sharded Data Parallel [Zhao et al., 2023], enabling private fine-tuning of a 7B model
with only four V100 GPUs. We plan to open source our implementation.

The rest of this paper is organized as follows. We discuss related work in Section 1.1 and preliminaries
in Section 2. Implementation details as well as main results are depicted in Section 3. We conduct
ablation study on some design choices in Section 4 and conclude in Section 5.

1.1 Related Work

Recent studies have explored the use of (large) language models for generating differentially private
synthetic text [Bommasani et al., 2019, Putta et al., 2022, Mattern et al., 2022]. In recent studies
by Yue et al. [2022], Kurakin et al. [2023], which focus on the sentiment classification task, it is
shown that fine-tuning BERT/GPT-2 models on DP synthetic text produces similar performance

2



4.4 11.2 28.8 41.4
Number of parameters (M)

30

35

40

45

50

55

Ne
xt

-to
ke

n 
ac

cu
ra

cy
 (%

)

PubMed Abstracts ( =2.6)

Real data (Non-private)
Real data (DP)
DP Synthetic data
Reddit public model (41.4M)

(a) PubMed Abstracts

4.4 11.2 28.8 41.4
Number of parameters (M)

20

25

30

35

40

45

Ne
xt

-to
ke

n 
ac

cu
ra

cy
 (%

)

MediaSum Dialogs ( =2.0)

Real data (Non-private)
Real data (DP)
DP Synthetic data
Reddit public model (41.4M)

(b) MediaSum

Figure 2: Comparison of the two methodologies illustrated in Figure 1 in terms of next-token
prediction accuracy of downstream models. Across a range of model sizes investigated, using DP
synthetic text generated from a fine-tuned LLM consistently demonstrates superior performance.

to fine-tuning them on real data, underscoring the high-quality of the synthetic data. The main
conceptual difference between these works and ours is that we use synthetic data as a framework to
train smaller models and a technique for DP model compression, whereas previous works focused on
generating synthetic data as their end goal. Further, compared to previous studies, our experiments
introduce two novel contributions. We focus on text generation tasks, i.e., training the downstream
model with next-token prediction loss, which is arguably more challenging than text classification.
More importantly, we focus on lightweight downstream models, with the smallest model having only
4.4 million parameters. In this context, the use of DP synthetic text not only matches the performance
of using real data but also yields significantly better results.

Recent research has also explored how to make DP models more efficient [Mireshghallah et al.,
2022, Yu et al., 2023]. Mireshghallah et al. [2022] investigate private adaptations of knowledge
distillation and model pruning techniques to compress a privately fine-tuned language model. Yu et al.
[2023] demonstrate that the careful selection of pre-training data can enhance the private training of
lightweight language models. Our study is different from this line of research in two key aspects.
Conceptually, our main departure lies in demonstrating the feasibility of utilizing large foundation
models to aid in the private training of lightweight models. Experimentally, for models with only 4.4
million parameters that are suitable for on-device applications, we are the first to establish that it is
possible to maintain over 97% relative accuracy compared to the non-private counterpart.

2 Preliminaries

This section introduces the formal definition of differential privacy and some basics in differentially
private deep learning.

Definition 1 ((ϵ, δ)-DP [Dwork et al., 2006, 2014]). A randomized algorithm M is (ϵ,δ)-differentially
private if for any two neighboring datasets D, D′ and for every subset S of possible outputs:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

Two datasets D, D′ are neighboring datasets if they differ in one sample. Specifically, following
previous work, we assume that D can be transformed into D′ by adding/removing exactly one sample.

DPSGD Algorithm. To implement differentially private deep learning, we use the DPSGD algorithm
in Abadi et al. [2016]. It makes the gradients of SGD/Adam optimizers differentially private. At each
step, the algorithm in Abadi et al. [2016] first clips per-example gradients to control the maximum
contribution from each datapoint and then adds Gaussian noise to ensure that the contribution of a
single example is concealed. For privacy accounting, we use the Privacy Random Variable (PRV)
Accountant which gives a tighter privacy bound through numerical composition [Gopi et al., 2021,
Ghazi et al., 2022, Koskela et al., 2020].
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3 Private Training of Efficient Language Models Made Easy

We first introduce some basic experimental setup in Section 3.1 Other implementation details are
documented in Appendix A. Then we present the main results in Section 3.2.

3.1 Setup

Models. We use the 7B version of Llama 2 [Touvron et al., 2023] as the LLM for generating synthetic
text. The downstream models are four small Transformer models released by Turc et al. [2019]. The
model sizes are 4.4M, 11.2M, 28.8M, and 41.4M (including the embedding matrix). The downstream
models use WordPiece tokenizers and are pre-trained on Wikipedia and BookCorpus with masked
language modeling. During fine-tuning, we apply a causal language modeling mask so that each
token can only attend to its preceding tokens.

Datasets. We train next-token prediction models on PubMed abstracts and MediaSum, targeting at
next-word completion in academic writing and daily conversation. Details are as follows.

PubMed abstracts. This dataset consists of the abstracts of medical papers from the National Library
of Medicine1. We crawl the abstracts that were published between 2023/08/01 and 2023/08/07. The
dates are after the cutoff date of the training data of Llama 2. The training set consists of abstracts
that were published from 08/01 to 08/05. The validation set and the test set consist of abstracts that
were published on 08/06 and 08/07, respectively. The training, validation, and test datasets have
75329, 4453, and 14423 abstracts, respectively. We generate 750K synethtic abstracts for training the
downstream models.

MediaSum. MediaSum [Zhu et al., 2021] contains 463.6K transcripts collected from interview
transcripts and overview/topic descriptions from National Public Radio and Cable News Network.
Each sample of MediaSum consists of a dialog and an abstractive summary. We take the dialogs
as our training data. To reduce computational cost, we only take dialogs that are shorter than 1K
words. The training and test datasets have 182034 and 8245 dialogs, respectively. We generate 500K
synthetic dialogs for training the downstream models.

Table 1: Next-token prediction accuracy (%) of downstream models. Privacy parameters are
(2.6, 10−5)-DP for PubMed abstracts and (2, 10−7)-DP for MediaSum. The ‘∆’ rows depict the
improvements over training the models on real data with private optimizers. The abbreviation ‘N.P.’
stands for non-private. Subscripts numbers are the standard deviation calculated over three runs.

Parameters 4.4M 11.2M 28.8M 41.4M
PubMed Abstracts

Real Data (N.P.) 38.78 0.038 47.45 0.027 51.62 0.014 54.29 0.033

Synthetic Data (N.P.) 38.20 0.068 45.18 0.072 47.06 0.083 48.31 0.073

Real Data 27.76 0.067 37.73 0.088 42.22 0.156 44.08 0.091

Synthetic Data 38.09 0.062 44.98 0.059 46.78 0.050 48.11 0.049

∆ +10.33 +7.25 +4.56 +4.03
MediaSum Dialogs

Real Data (N.P.) 32.29 0.016 39.44 0.014 43.53 0.013 44.96 0.020

Real Data 20.94 0.035 31.63 0.048 36.18 0.039 38.44 0.031

Synthetic Data 31.41 0.025 37.79 0.032 40.68 0.028 42.10 0.035

∆ +10.47 +6.16 +4.50 +3.66

3.2 Main Results

We report the next-token prediction accuracy of downstream models in Figure 2 and Table 1. We
evaluate two different methods for the private training of downstream models. The first one directly
trains the downstream models on private data with private optimizers. The second one first trains
Llama 2 7B on private data with private optimizers. Then it uses the fine-tuned Llama 2 7B to
generate differentially private synthetic data. Finally, it trains the downstream models on the synthetic

1https://www.ncbi.nlm.nih.gov/
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data with standard optimizers. In addition to fine-tuning the downstream models on PubMed abstracts
or MediaSum, we also evaluate fine-tuning the models on an out-of-domain dataset that consists of
150K Reddit posts. The 150K Reddit posts are a subset of the Webis-TLDR-17 [Völske et al., 2017].

As shown in Figure 2, training the downstream models on differentially private synthetic data clearly
outperforms other alternatives. When the model size is 4.4M, which is a typical size for on-device
models, the proposed method achieves more than 98% relative accuracy of the non-private baseline
on PubMed abstracts with ε = 2.6 and more than 97% relative accuracy accuracy of the non-private
baseline on MediaSum Dialogs with ε = 2.0. Another observation is that the models fine-tuned
on Reddit posts are worse than models fine-tuned on in-domain data. For example, 11.2M models
fine-tuned on in-domain data outperform 41.4M Reddit models by a large margin.

Although the proposed method achieves better performance for all the downstream model sizes we
evaluated, the results in Table 1 suggest that the improvement becomes smaller as the model size
increases. For instance, on MediaSum dialogs, the absolute improvement of using DP synethtic text
is 10.47% for the 4.4M downstream model while is only 3.66% for the 41.4M model. We anticipate
that as the downstream model size keeps increasing, training the downstream model on real data
directly will match the performance of training them on synthetic data.

4 Ablation Study

Here we run experiments on the PubMed abstracts dataset to investigate the impact of the number
of synthetic samples, i.e., how many abstracts are generated using the fine-tuned LLM. We also run
experiments with using different choices of top-k during inference to study how the diversity of
the generated text affects downstream performance. A large top-k would increase the generation
diversity. Due to space limit, the results are put in Appendix C.

Varying the number of synthetic samples. Our synthetic dataset for PubMed abstracts consists
of three 250K subsets that are generated with different top-k values. To get synthetic datasets of
different sizes, we take random subsets from the merged 750K dataset. We take three subsets with
sizes 50K, 150K, and 400K. We present the results of training the downstream models on two types
of synthetic data: non-private synthetic data, generated from a LLM fine-tuned without DP, and
private synthetic data. Figure 3 shows the results of two downstream model sizes (4.4M and 41.4M).
The performance of both models increases with the number of synthetic abstracts. Moreover, the
larger model benefits more from a larger training set. Increasing the size of the synthetic dataset from
50K to 750K improves the next-token accuracy of the 41.4M model from 42.27% to 48.15%.
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Figure 3: Accuracy of downstream models trained on four different sizes of synthetic datasets.

5 Conclusion

We explore utilizing DP synthetic text generated by large foundation models to enhance the private
training of lightweight LMs. Notably, we demonstrate that small models with just 4.4 million
parameters can maintain over 97% relative accuracy compared to their non-private counterparts. Our
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computational resources restrict us to using foundation models up to 7 billion parameters. We expect
that using more powerful foundation models could further strengthen the findings.
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Table 2: Hyperparameters for fine-tuning Llama 2 7B and downstream models. For fine-tuning
Llama 2, we only tune the hyperparameters on PubMed abstracts and reuse the best configuration on
MediaSum dialogs. For a target ε, noise multiplier is set as the smallest value such that DP-SGD can
run target number of steps.

Llama 2 Downstream (pri.) Downstream (non-pri.)

Epoch 5 [10, 30, 50, 100] [10, 30]
Batchsize [512, 1024, 2048] [512, 1024, 2048] 64
Clipping norm [0.1, 1] [0.1, 1, 5] N/A
Learning rate [3e-5, 1e-4, 3e-4, 1e-3, 3e-3]

A Hyperparameters

Here we document all the hyperparameters in our experiments. Our source code will be publicly
available after the review process.

Llama 2 7B. For fine-tuning Llama 2, we use LoRA, a parameter-efficient fine-tuning algorithm [Hu
et al., 2022, Yu et al., 2022], to reduce the computational cost. We apply LoRA with a rank of 16.
This gives 17.5M trainable parameters. The hyperparameters for fine-tuning Llama 2 on PubMed
abstracts are in Table 2. For fine-tuning Llama 2 on MediaSum dialogs, we directly transfer the best
hyperparameters we found on PubMed abstracts. The learning rate is 1e-3, the clipping norm is 1,
the noise multiplier is 1.1, the batch size is 2048, and the number of epochs is 10. This ends up with
the ε equal to 2.0.

We use unconditional generation to generate synthetic abstracts and dialogs. The number of synthetic
MediaSum dialogs is 500K, generated with top-k = 200. The top-k parameter controls the diversity
of the generated text. It determines the size of the candidate pool from which the model selects
the next token and a large value of top-k would increase the generation diversity. The number of
synthetic synthetic PubMed abstracts is 750K. It consists of three subsets are generated with different
top-k (50, 200, and ∞). We use different choices of top-k to study the impact of top-k sampling on
downstream accuracy.

Downstream models. The hyperparameters for fine-tuning all downstream models (4.4M, 11.2M,
28.8M, and 41.4M) are also in Table 2. When fine-tuning with differential privacy, the privacy
parameters are ε = 2.6 and δ = 1× 10−5 for PubMed abstracts and ε = 2.0 and δ = 1× 10−6 for
MediaSum dialogs. All downstream experiments are repeated 3 times with different random seeds.

B Insights Behind Our Framework

Here we give a brief theoretical interpretation on why our framework should be broadly applicable
for training smaller models across a range of parameters and applications. We emphasize that this
interpretation is not rigorous, but what guided us in understanding our framework. There are two
ways to look at our framework.

1. Larger pre-trained models are better suited for private fine-tuning. Recent research
indicates that employing differentially private training methods on large models results in a
smaller cost in utility. This phenomenon has been substantiated both empirically [Li et al.,
2022b, Yu et al., 2022, He et al., 2023, Bu et al., 2022b] and theoretically [Li et al., 2022a,
Ganesh et al., 2023]. Consequently, leveraging synthetic data generated through a privately
fine-tuned large model is a viable approach to transfer such capabilities to smaller models.

2. Knowledge Distillation via Sampling: The main idea behind KD algorithm Hinton et al.
[2015] is to train a student model to produce a distribution Ps to mimic the output distribution
of the teacher Pt for a given input. The intuition is that output distribution of the teacher
captures the knowledge learnt by the teacher, in particular probabilities assigned by the
teacher to tokens that are different from the true next token. In particular, one trains to
minimize the cross entropy loss between the distribution of the student and the student:
-
∑

y∈Y Pt(y) · log(Ps(y)). A sampling based interpretation of this above objective West
et al. [2021] can be thought of as minimizing Ey∼Pt(y)[− log(Ps(y))]. Intuition tells us

9



that as we generate more samples from the teacher, the latter objective, in the limit, should
approximate the more standard KD objective.
KD algorithm is one of the most widely used algorithms for transferring knowledge from a
bigger network to a smaller network. However, Mireshghallah et al. [2022] showed that it
is difficult to adapt KD algorithm to the DP setting. Our framework can be thought of as
doing KD algorithm on the samples from the teacher, and our experiments indicate that our
framework can be an effective way of invoking KD in the DP setting. Our experiments also
validate that as the synthetic dataset size increases, performance of the student improves, as
should be clear from the discussion above.

C Varying the Diversity of the Generated Text.

Here we study the impact of the diversity of synthetic text on the downstream performance. We
change the top-k parameter to change the generation diversity. The top-k parameter decides the
candidate pool used for sampling the next token, with a larger top-k value leading to heightened
diversity. We use three different values of top-k, 50, 200, and ∞. The next-token accuracy of four
different downstream models are in Figure 4. When the Llama 2 model is fine-tuned non-privately,
all three choices of top-k yield similar downstream accuracy. However, when the model is fine-tuned
with DP, using top-k = ∞ leads to worse downstream accuracy. One plausible explanation for
this observation is that training with (DP) has a more pronounced influence on the less frequent
vocabulary items [Bagdasaryan et al., 2019, Feldman, 2020]. Consequently, sampling from the entire
vocabulary may reduce the quality of synthetic text.
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Figure 4: Impact of varying top-k choices on downstream accuracy. The left plot shows the results of using
non-private synthetic data. The right plot shows the results of using private synthetic data.

D Random Samples in the Synethtic Datasets
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Two Random Samples in the Synthetic Pubmed Dataset

Pulmonary edema in pulmonary arterial hypertension (PAH) is associated with increased
mortality and morbidity. The development of edema in PAH may occur via direct vascular
damage, by the release of pro-inflammatory cytokines, and by the changes associated with
vasoconstriction. The role of systemic immunopharmacological drugs in disease course control
has to be fully clarified. In the recent years, the development of biologics that can be used
as monotherapy or in combinations has markedly influenced the management of PH. At the same
time, the use of inhaled prostacyclins, calcium channel blockers, and inhaled nitrates has
had a major impact on the development of PAH. In addition, non invasive imaging techniques
have been developed to assist the assessment of the impact of therapy on cardiac and vascular
hemodynamics. In this article, we discuss the current state of the treatment of PAH by
inhaled prostacyclin analogues, ions channel blockers, and inhaled nitrates, the potential
of biological therapies, the use of imaging techniques for assessment of disease course, and
the persistence of residual questions and concerns about the therapies available. This is
a comprehensive review of the treatment and mechanisms of disease progression in pulmonary
arterial hypertension.

In contrast to prior work, which has generally focused on high-cost pharmaceuticals sold
via private medical-surgical wholesalers, this study examines the impact of the wholesaler
consolidation on the distribution of low-cost pharmaceuticals that are mainly sold via
retail pharmacies and large-chain mail-order pharmacies. Specifically, utilizing the
2012 Pharmaceutical Distributors Sales Data (PDSD), we use econometric techniques to
examine the wholesaler consolidation pattern among non-Specialty Distributors among the
top 50 non-Specialty Distributors and across each region in 2011, 2016, 2017, and in 2018,
respectively. Our results show that the wholesaler consolidation pattern increased the
market power of the top distributors and resulted in an increase in prices, including an
11.3% increase in the price of commonly used and low-cost generic drugs. Furthermore, we find
significant differences in market concentration and competition across different regions. The
findings of this study have implications for the healthcare system and highlight the need for
policies to ensure fair competition between distributors.

Figure 5: Two random samples from the synthetic PubMed abstracts. The generator is trained with
ε =2.6 and δ = 1× 10−5. The synthetic samples are generated with top-k=50.
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One Random Sample in the Synthetic Dialogs

JASON CARRO: We have a report. It’s not an overly warm one, but they’re still making snow in
the Swiss Alps.
JASON CARRO, CNN CORRESPONDENT: You have your skis, your snow shoes, and not a lot of snow in
the Swiss Alps near Jungfraujoch.
CARRO (voice-over): The Jungfrau region is famous for its snow-covered mountains and the
local ice hotels. However, the cold winter weather this season has forced some of the hotels
to close temporarily. In the months of December and January, heavy snowfall dropped only 14
inches. Despite the concerns over the lack of snow, the local ski resort reports business is
still good.
DANIEL TISO: Skiers and the tourists didn’t care about snow, but it helped us to spread the
word. We are famous for no-snow and yes, it’s very good.
CARRO: Jungfraujoch is usually reputed as the top of Europe, at the end of the mountain range,
but after heavy snow, it’s shrinking.
CARRO (voice-over): The Ice Palace was one of the many attractions.
(voice-over): And at nearly 12,000 feet above sea level, you can get a view of Europe’s ski
spots.
CARRO (on camera): It’s true you don’t always think Switzerland when you think of skiing, but
it’s all about the snow there for them.
TISO: We have many things more than snow, but that is the main thing.
CARRO (voice-over): That’s Daniel Tiso (ph). He’s been skiing when he was a boy, now he’s
taking his grandchildren, and he says he would not have it any other way, especially not now
that it’s so warm without any snow.
TISO (ph): You can still ski over 100,000 people around the highest mountain in Europe, but
normally it’s – it’s completely empty.
CARRO (on camera): It’s a trade-off, it’s all about the snow – Jason Carroll, CNN.

Figure 6: One random sample from the synthetic dialogs. The generator is trained with ε =2.0 and
δ = 1× 10−6. The synthetic samples are generated with top-k=50.
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