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ABSTRACT

The pretrain-finetuning paradigm in large-scale sequence models has made sig-
nificant progress in natural language processing and computer vision tasks. How-
ever, such a paradigm is still hindered by several challenges in Reinforcement
Learning (RL), including the lack of self-supervised pretraining algorithms based
on offline data and efficient fine-tuning/prompt-tuning over unseen downstream
tasks. In this work, we explore how prompts can improve sequence modeling-
based offline reinforcement learning (offline-RL) algorithms. Firstly, we propose
prompt tuning for offline RL, where a context vector sequence is concatenated
with the input to guide the conditional policy generation. As such, we can pre-
train a model on the offline dataset with self-supervised loss and learn a prompt to
guide the policy towards desired actions. Secondly, we extend our framework to
Meta-RL settings and propose Contextual Meta Transformer (CMT); CMT lever-
ages the context among different tasks as the prompt to improve generalization on
unseen tasks. We conduct extensive experiments across three different offline-RL
settings: offline single-agent RL on the D4RL dataset, offline Meta-RL on the Mu-
JoCo benchmark, and offline MARL on the SMAC benchmark. Superior results
validate the strong performance, and generality of our methods.

1 INTRODUCTION

Reinforcement learning algorithms based on sequence modeling (Chen et al., 2021; Janner et al.,
2021; Reed et al., 2022) shine in sequential decision-making tasks and form a new promising
paradigm. Compared with classic RL methods, such as policy-based methods and value-based
methods (Sutton & Barto, 2018), optimization of the policies from the sequence prospective has
advantages in long-term credit assignment, partial observation, etc. Meanwhile, significant gener-
alization of large pretrained sequence model in natural language processing (Kenton & Toutanova,
2019; Brown et al., 2020) and computer vision (Liu et al., 2021b; Zhai et al., 2021) not only con-
serves vast computation in downstream tasks but also alleviates the large data quantity requirements.
Inspired by them, we want to ask the question: whether pretrain technique has a similar power in
RL? Since limited and expensive interactions impede the deployment of RL in various valuable ap-
plications (Levine et al., 2020), pretraining a large model to improve the robustness of real-world
gap by a zero-shot generalization and improve data efficiency by few-shot learning offers great sig-
nificance. (Team et al., 2021; Meng et al., 2021) pretrains a single model with diverse and abundant
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training tasks in the decision-making domain to generalize in downstream tasks, which proves the
feasibility that pretraining enables RL agents to harness knowledge for generalization.

Earlier works on sequence modeling RL provide a new perspective on offline RL. However, ex-
tending these methods to the pretrain domain is still confronted with several challenges. One major
challenge for generalization (Li et al., 2020b) is how to encode task-relevant information, thereby en-
hancing transferring knowledge among tasks. Since discovering the relationship among diverse tasks
from data and making decisions conditioned on distinct tasks plays a significant role in generaliza-
tion, it is not a trivial modification of existing methods. Another problem is efficient self-supervised
learning in offline RL. Specifically, the decision transformer (Chen et al., 2021) leverages the data to
learn a return conditioned policy, which ignores the knowledge about world dynamics. In addition,
trajectory transformer (Janner et al., 2021) conducts planning based on a world model, but the high
computational intensity and decision latency might be a bottleneck for a large-scale model and hard
to fine-tune to other tasks. Therefore, introducing key components to transfer the knowledge in a
pretrained model and incorporating the advantages in a conditioned policy and a world model is
necessary.

In this work, we propose a novel offline RL algorithm, named Contextual Meta Transformer (CMT),
aiming to conquer multiple tasks and generalization at one shot in an offline setting from the perspec-
tive of sequence modeling. CMT provides a pretrain and prompt-tuning paradigm to solve offline
RL problems in the offline setting. Firstly, a model is pretrained on the offline dataset through a self-
supervised learning method, which converts the offline trajectories into some policy prompts and
utilizes these policy prompts to reconstruct the offline trajectories in the autoregressive style. Then
a better policy prompt is learned based on planning in the learned world model to attain the ad-
vanced policy to generate trajectories with high rewards. In contrast to previous work, CMT learns a
prompt to construct policy to guide desired actions, rather than being designed by humans or explic-
itly planned by the world model. In the offline meta-learning setting, CMT extends the framework
by simply concatenating a task prompt with the input sequence. With a simple modification, CMT
is capable of executing a proper policy for a specific task and sharing knowledge among tasks.

Our contributions are three-fold: First, we propose a novel offline RL algorithm based on prompt
tuning, in which the offline trajectory is encoded as a prompt, and the appropriate prompt is found
to lead a policy for execution to achieve high reward in the online environment. Second, CMT is
the first algorithm to solve offline meta-RL from a sequence modeling perspective. The context
trajectory, which represents the structure of the task, is used by CMT as a prompt to guide the policy
in a specific unknown task. Furthermore, empirical results on D4RL datasets and meta Mujuco tasks
show that CMT has outstanding performance and strong generalization.

2 RELATED WORK

Offline Reinforcement Learning. Offline RL is gaining popularity as a data-driven RL method
that can effectively utilize large offline datasets. However, the data distribution shift and hyper-
parameter tuning in offline settings seriously affect the performance of the agent (Levine, 2021). So
far, several schemes have been proposed to address them. Through action-space constraint, BCQ
(Fujimoto et al., 2019), AWR (Peng et al., 2019), BRAC (Wu et al., 2019), and ICQ (Yang et al.,
2021) reduce extrapolation error caused by policy iteration. Noticing the problem of overestimation
of values, CQL (Kumar et al., 2020) keeps reasonable estimates by looking for pessimistic expec-
tations. UWAC (Wu et al., 2021) handles out-of-distribution (OOD) data by weighting the Q value
during training by estimating the uncertainty of (s, a). MOPO (Yu et al., 2020) and MOReL (Ki-
dambi et al., 2020) solve the offline RL problem from the model-based perspective while ensuring
rational control by adding penalty items to uncertain areas. Decision Transformer (DT) (Chen et al.,
2021) and Trajectory Transformer (TT) (Janner et al., 2021) reconstruct the RL problem into a se-
quential decision problem, extending the Large-Language-Model-like (LLM-like) structure to the
RL area, which inspires many follow-up works on them. However, the relevant works on offline
RL are still insufficient due to the lack of self-supervised large-scale pretraining methods and ef-
ficient prompt-tuning over unseen tasks, and CMT proposes a pretrain-and-tune paradigm to deal
with them.

Pretrain and Sequence Modeling. Recently, much attention has been attracted to pretraining big
models on large-scale unsupervised datasets and applying them to downstream tasks through fine-
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tuning. In language process tasks, transformer-based models such as BERT (Kenton & Toutanova,
2019), GPT-3 (Brown et al., 2020) overcome the limitation that RNN cannot be trained in parallel
and improve the ability to use long sequence information, achieving SOTA results on NLP tasks such
as translation, question answering systems. Even the CV field has been inspired to reconstruct their
issues as sequence modeling problems, and high-performance models like the swin transformer (Liu
et al., 2021b) and scaling ViT (Zhai et al., 2021) have been proposed. Since the trajectories in of-
fline RL datasets have Markov properties, they can be modeled through transformer-like structures.
Decision transformer (Chen et al., 2021) and trajectory transformer (Janner et al., 2021) propose
condition policy on return to go (RTG) and behavior cloning policy improved by beam search to
solve RL problems in offline settings respectively. Inspired by these works, we bring prompt tuning
from NLP into the RL domain, then propose a potential path to pretrain a large-scale RL model and
efficiently transfer the knowledge to downstream tasks.

Offline meta-RL and Task Generalization. Offline meta-RL shines recently since it allows al-
gorithms to adapt to new tasks quickly without interacting with the environment. Targeting it, an
optimization-based method with advantage weighting loss called MACAW (Mitchell et al., 2021) is
proposed, which learns the initialization of both the value function and the policy. FOCAL (Li et al.,
2020b) combines the deterministic context encoder with behavior regularization and achieves in-
spiring results based on an off-policy Meta-RL method called PEARL (Rakelly et al., 2019). Then it
is improved by combining the intra-task attention mechanism and the inter-task contrastive learning
objective, which is named FOCAL++ (Li et al., 2021), to deal with sparse reward and distribution
shift. BOReL (Dorfman et al., 2020) aims to learn Bayesian optimal policies from discrete data
for the mentioned problems, whereas SMAC (Pong et al., 2021) learns meta-policies from reward-
labeled data and then fine-tunes on new tasks. From the model-based perspective, MerPO (Lin et al.,
2022) proposes a meta-model for efficient task structure inference and a meta-policy for safe explo-
ration of OOD data. Prompt-DT (Xu et al., 2022) introduces prompt into decision transformer to
achieve quick adaptation, however it lacks of effective design to support prompt tuning paradigm.
It is worth mentioning that recent work on general model construction, such as SayCan (Ahn et al.,
2022), and Gato (Reed et al., 2022), has achieved exciting results, demonstrating the huge potential
of LLM-like architectures. Just like them, CMT is also a general LLM-like model that can solve
offline meta-RL problems effectively.

3 PRELIMINARY

Meta Reinforcement Learning. The major purpose of meta-RL is to leverage multi-task experi-
ence to enable fast adaptation to new unseen tasks. A task Ti is defined as a Markov Decsion Process
(MDP) Ti = (S,A,R,P, λ), where S is the state space, A is the action space, R is reward function,
and P is transition function. In deep RL, the policy πθ(at|st), which specifies the probability that
the agent takes action at in state st at time t, is described by a neural network with parameters θ. The
goal in a MDP is to learn a optimal policy π∗ = argmaxπ Es0,a0,s1,a1,...[

∑∞
t=0 λ

tr(st, at)] which
can maximize the expected discounted return, where λ is a discounted factor. In meta-RL, tasks are
drawn from a task distribution Ti ∼ p(T ), the state space S and the action space A are common
across tasks, and reward function Ri and transition function Pi are task specific. During meta-
training, the meta policies are trained based on some training tasks sampled from task distribution
to achieve fast adaptation to new unseen tasks in meta tests.

Offline Reinforcement learning. In offline RL setting, the trajectory dataset D is collected from
unknown behavior policy µ, which might be an expert policy, sub-optimal policy, random policy,
or a mixture policy (e.g. corresponding the replay buffer of an RL agent). A offline trajectory τ
consists of states, actions, and scalar rewards: τ = {st,at, rt}T−1

t=0 . A trajectory fragment τ[t1:t2]
denotes transitions from time-step t1 to time-step t2. This paper aims to learn an optimal policy π∗

from the fixed dataset D without interaction with the environment.

Prompt and Prompt-Tuning. Conditional generation tasks are common in NLP, where the input
is a context x and the output y is a sequence of tokens. Autoregressive model LM (Brown et al.,
2020) is a powerful tool to solve this kind of tasks, which concatenates the context and the output as
a whole sequence u = [x, y] and models the probability for the next token ui based on the previous
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Figure 1: The framework for CMT in the offline learning Setting. (a) In the representation stage,
CMT pretrains an auto-encoder model in the offline dataset, which predicts the future action, reward,
and state with the policy prompt from the history trajectory. The adaptor layer is a identity function
during this stage, which mean z ≡ z′. (b) In the improvement stage, we freeze the pretrianed model,
and tune the prompt to reach a better performance.

tokens u<i:
hi = LM(ui, h<i),

p(ui|u<i) = softmax(Whi),
(1)

where ui denotes i-th token in the sequence u, hi ∈ Rd denotes the activation in transformer at
time step i, and W is the learning parameter matrix. To leverage the knowledge in the pretrained
large-scale model, prompts are designed to improve the few-shot performance in the downstream
task. A prefix-style prompt z, also a sequence of tokens, are concatenated with input u = [z, x, y] to
guide the model to generate the desired output. Besides hand-designed prompts z, prompt-tuning(Li
& Liang, 2021) is proposed to learn a continuous prompt that can be learnt from data.

4 METHOD

In this section, we introduce CMT, an RL framework for offline RL and offline meta-RL. We de-
scribe CMT with policy prompts for offline RL in Section 4.1, and CMT extended with task prompts
and policy prompts for meta-RL in Section 4.2.

4.1 OFFLINE SEQUENCE LEARNING

The main assumption of our method is that offline trajectories can be viewed as samples from un-
known policies, and the optimal policy can be represented as a mixture of these basic policies. Our
method contains two stages of training, the representation stage and the improvement stage. CMT
learns a model to convert an offline trajectory into a policy prompt with some characteristics to rep-
resent these deterministic policies. In the second stage, a policy prompt is learnt to mix up basic
policies by planning in the world model to attain an advanced policy.

Representation Stage. Fig.1 shows the whole architecture, which constitutes an auto-encoder A in
trajectory-level. CMT consists of two components: a trajectory encoder Ae with parameter θ and an
autoregressive generator Ag with parameter ϕ. Trajectory encoder Ae is a bi-direction transformer
(Kenton & Toutanova, 2019), which gets a history trajectory and gives the policy prompt zτ for
the trajectory zτ = Ae(τ ; θ). Autoregressive generator Ag is a GPT-style (Brown et al., 2020)
conditional generator, which predicts the policy prompt zτ and the next token in the future based on
the previous history trajectory: τt+1 = Ag(.|zτ , τ<t;ϕ).

4



Published at FMDM Workshop at NeurIPS 2022.

In this stage, CMT introduces two loss terms to update θ and ϕ. The major loss L1 is supervised
loss, which is used to reconstruct the whole trajectory, and an auxiliary loss L2 help improve policy
in the next stage. The loss is linear weighted as L = L1 + γL2, in which γ is the contrastive loss
coefficient. For the supervised loss L1, since Ag predicts the future action, reward and state one by
one, it employs as an union of a policy π(a|s) = Ag(zτ , st, τ<t), a dynamic model P (s′|s, a) =
Ag(zτ , τ<t) and a reward function R(s, a) = Ag(zτ , at, st, τ<t). The prediction and the ground
truth form a supervised loss in Eq.(2):

L1(τ ;ϕ, θ) =

T−1∑
t=0

(D(st, P(τ<t;ϕ, θ)) +D(at, π(st, τ<t;ϕ, θ)) +D(rt, R(at, st, τ<t;ϕ, θ)), (2)

in which distance matrices D adopts MSE loss for deterministic output and cross-entropy loss for
stochastic prediction. Since the entire architecture is differentiable, the supervised loss can be used
to update Ae and Ag .

An auxiliary loss L2 constrains the distance between prompts coming from similar trajectories by
self-supervised learning. Inspired by (Liu et al., 2021a), an effective and stable policy improvement
based on imitation learning often satisfies two properties: (a) Keeping new behavior close to pre-
vious ones. (b) Getting higher rewards than the previous ones. As we desire to improve the policy
by prompt tuning, it is natural to facilitate the similarity of prompts from similar trajectories. For
this purpose, we introduce an InfoNCE contrastive loss (Van den Oord et al., 2018) to constrain
the prompt in a self-supervised method to meet the aforementioned requirements. The auxiliary
contrastive loss is given as Eq.(3):

L2(τq, {τi}Ki=1; θ) = − log
exp(Ae(τq; θ) ·Ae(τ+; θ)/α)∑k
i=1 exp(Ae(τq; θ) ·Ae(τi; θ)/α)

= − log
exp(zq · z+/α)∑k
i=1 exp(zq · zi/α)

,

(3)
in which α is temperature coefficient. For the anchor policy prompt zq encoded from trajectory
τq , a batch of K policy prompts {zi}Ki=1 encoded from a set of trajectories {τi}Ki=1 sampled from
the offline dataset. {zi} consists of K − 1 negative samples z− and one positive sample z+. The
definition of the positive and negative samples influence the property of the policy prompt. To
ensure similar behavior trajectories be encoded into close prompts, the auxiliary loss defines the
pair of policy prompts samples from the same trajectory and different trajectories as the positive and
negative sample pair.

Improvement Stage. Since the behaviour policy can be sub-optimal in the offline dataset, we
consider prompt tuning to boost the agent performance, with the purpose to transfer the knowledge
in the pretrained model. As shown in Fig.(1), the key idea is simple: we can freeze the pretrained
model, and learn prompts that can guide the pretrained model to generate a trajectory with high
reward. Specifically, improvement stage consists of relabeling the offline dataset and prompt tuning
by adaptor layer.

Relabeling the offline dataset is to replace the raw ordinary action with better action to provide new
supervised target for prompt tuning. Concretely, we sample a mini-batch of data, and then adopts the
beam search method proposed by trajectory transformer Janner et al. (2021) as a planning algorithm
to find the better action, in which the autoregressive generator Ag works as a world model.

To improve the performance by prompt tuning, we should tune the policy prompt zπ for a better
policy prompt z′π to guide generator Ag to generate a trajectory with a higher reward. For this
purpose, we freeze the pretrained model parameters, denoted as θ̄ and ϕ̄ and only tune the parameter
ξ for the adaptor layer L on the relabeled dataset. The adaptor layer L is trained by the following
Eq.(4),

L3(τ ; ξ) =

T−1∑
0

D(ât, π(st, τ<t; ϕ̄, θ̄, ξ)) + β(z − L(z; ξ))2 (4)

in which ât is the relabeled action, and the second term constrains behavior changes to alleviate
distribution shift in the offline setting, like (Fujimoto & Gu, 2021) and β is a weight coefficient for
behavior constraint. This method can be regarded as using prompt tuning to remember planning
results in the world model, which significantly reduce the computation cost and decision delay in
evaluation. However, it should be noticed that we use planning method as the improvement method,
but any other improvement algorithm of which loss function based on the output of generator Ag

can be easily plugged in.
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Figure 2: The framework of CMT in Offline meta reinforcement Learning Setting. Based on the ba-
sic framework in Figure.1, CMT introduces a context trajectory as task prompt in trajectory encoder
Ae to guide Ag .

4.2 CONTEXTUAL SEQUENCE META LEARNING

Extended from the section 4.1 which introduces policy prompts to solve offline RL problem, we sim-
ply incorporates a task prompts in CMT to achieve generalization ability in downstream unseen task
in offline meta RL setting. The task encoder F (t|τ) is used to encode transitions into a task hidden
variable t and learn a contextual policy π(a|s, t) in classical context meta-RL methods. Therefore,
CMT is feasible to extend to the meta-learning domain by simply plugging in task prompts. Fig.(2)
shows the minor modifications supporting CMT have impressive generality.

Meta Training. To contain the task information, CMT simply concatenates a context trajectory,
which is a trajectory fragment coming from the same task, with the input. During offline meta-
training, the context trajectory is randomly sampled from the offline dataset. To avoid information
fusion, we separate the context and history trajectories with a special token ([SEP]), whose param-
eters can be learned. Then we adopt a contrastive learning method similar to Eq.(3) to learn a stable
and consistent task prompt, similar to (Fu et al., 2021) in online meta-RL. The major difference
between contrastive loss in task prompts and policy prompts is that task prompts form positive and
negative sample pairs in task-level, while policy prompts form positive and negative sample pairs at
trajectory-level.

Meta Test. After training on diverse tasks, meta test stage requires agent rapidly adapting in the
unseen task. In context meta RL, agent is permitted to collect few context trajectories to understand
the task. The context trajectory in the meta test could come from an offline dataset in an unknown
task or a trajectory that has interacted with the online world. The second setting is more challenging
(Dorfman et al., 2021) due to the exploration problem. To verify the strong capacity of CMT,
we evaluate CMT in the second setting. Furthermore, CMT discards recursive component, so it
is suitable for zero-shot setting, which means CMT collects the context during online evaluation,
rather than in advance. To the best of our knowledge, there is no existing method to solve this
one-shot setting in offline meta RL. As a result, we construct a context buffer to store the history of
interactions, and the context trajectories are randomly chosen from the context buffer.

5 EXPERIMENT

In this section, we evaluate the performance of CMT in terms of offline RL tasks in D4RL bench-
marks (Fu et al., 2020), offline meta-RL tasks in meta Mujoco benchmarks (Todorov et al., 2012).
Additional offline multi-agent experiments are conducted on StarCraft II Micromanagement (Pong
et al., 2021). Simply replacing a sequence of transition by a sequence of agent, CMT can be eas-
ily extended to solve multi-agent offline-RL tasks and is evaluated in a popular MARL benchmark
(SMAC). The results on SMAC are reported in Appendix A.3. Apart from the performance in vari-
ous settings, we design experiment for ablation study to demonstrate the validity of the components
contained in CMT. Our experiments are conducted on a server with Nvidia Tesla A100 GPU and
AMD EPYC 7742 CPU.
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5.1 OFFLINE LEARNING TASKS

We evaluate CMT on the continuous control tasks from D4RL benchmarks. The experiments on four
standard Mujoco locomotion environments (HalfCheetah, Hopper, Walker, and Ant) are conducted
with three kinds of dataset quality (Medium, Medium-Replay, and Medium-Expert). The differences
between them are as follows: Medium contains 1 million timesteps generated by a ”medium” policy
interacting with the environment, with an intelligence level of around 1/3 that of experts. Medium-
Replay contains the replay buffer generated during the medium policy training process, and about
25k-400k timesteps are included in the tested environments. Medium-Expert consists of 1 million
timesteps generated by the medium policy concatenated with another 1 million timesteps generated
by the expert policy.

Five baselines are considered, including behaviour cloning (BC) (Torabi et al., 2018), behavior
regularized ActorCritic (BRAC) (Wu et al., 2019), conservative Q-learning (CQL) (Kumar et al.,
2020), implicit Q-learning (IQL) (Kostrikov et al., 2021), and decision transformer (DT) (Chen et al.,
2021). BC realizes intelligence by learning from expert datasets, which is actually a supervised
learning process that learns the states to predict actions. Because of severe extrapolation errors
caused by the policy evaluation, traditional offline RL algorithms perform poorly. And the methods
such as BCQ, BRAC, and IQL, avoid extrapolation errors by constraining the behavior space. While
CQL solves it by finding a conservative Q function that keeps the policy function’s expected value
less than the true value. Starting from another perspective, DT transforms the RL problems into
sequence modeling problems and attempts to find the optimal actions. The detail about hyper-
parameter lists is in Appendix. A.2.

The results for D4RL datasets are shown in Table. 1, CMT performs excellently on the Medium and
Medium-expert datasets, but not so well on the Medium-replay dataset, indicating that CMT prefers
to learn from data generated by stable policies. Compared with DT, which is also a transformer-
based structure, CMT outperforms it in most of the tasks. Moreover, although IQL is the SOTA
algorithm currently, the performance of CMT on the Medium and Medium-expert datasets meets or
exceeds it, demonstrating that our method has huge potential.

Table 1: Results for D4RL datasets. Here we report the mean for three seeds, and the reward is
normalized so that 100 represents an expert policy and 0 represents a worst policy in D4RL. PT
abbreviation stands for prompt tuning. In addition, our method name and the best performances are
bold font.

Dataset Environment CMT
with PT

CMT
w/o PT DT BRAC-v CQL IQL BC

Medium-Expert halfcheetah 92.9 59.8 88.0 41.9 91.6 86.7 65.6
Medium-Expert hopper 106.5 102.0 103.3 0.8 105.4 91.5 55.4
Medium-Expert walker 97.6 83.5 108.4 81.6 108.8 109.6 11.2
Medium-Expert ant 101.3 67.1 89.3 - 115.8 125.6 71.2

Medium halfcheetah 43.6 40.1 42.1 46.3 44.0 47.4 41.6
Medium hopper 68.9 62.8 62.0 31.1 58.5 66.3 48.6
Medium walker 75.0 69.6 71.6 81.1 72.5 78.3 47.8
Medium ant 71.8 61.3 64.6 - 90.5 102.3 63.7

Medium-replay halfcheetah 38.7 16.5 36.3 47.7 45.5 44.2 2.2
Medium-replay hopper 84.9 58.4 67.8 0.6 95.0 94.7 30.8
Medium-replay walker 49.5 37.3 47.8 0.9 26.7 73.9 5.9
Medium-replay ant 40.6 42.1 61.7 - 93.9 88.8 30.1

5.2 OFFLINE META LEARNING TASKS

We explore four task settings to evaluate CMT on zero-shot generalization: Half-Cheetah-Vel, Ant-
Fwd-Back, and Ant-Fwd-Back. The number of training and evaluation tasks and task coverage for
each setting can be found in Appendix Tab.3. The same data collection method is used as described
in the literature (Li et al., 2020b). The following baselines are taken into account: Batch PEARL
(Rakelly et al., 2019): A modified version of PEARL which can be used for offline RL tasks. CBCQ
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(Fujimoto et al., 2019): An advanced version of the BCQ that has been adapted to offline RL tasks by
incorporating latent variables into state information. MBML (Li et al., 2020a): A multi-task offline
RL method with metric learning. FOCAL (Li et al., 2020b): A model-free offline Meta-RL method
with state-of-the-art performance based on the deterministic context encoder. These baselines are
trained on a set of offline RL tasks and are tested on the set of unseen offline RL tasks.

The results for meta Mujoco environments are shown in Fig. 3. Once again, we should emphasize
the results of CMT is zero-shot setting, while all the other baselines requires context from offline
dataset or online interactions in advance. As we can see, CMT can outperform most baselines,
including CBCQ, batch PEARL, and MBML. Besides, FOCAL is the SOTA algorithm currently,
while CMT can outperform it in different tasks except Walker-2D-Params, showing that our algo-
rithm also has great potential in the area of offline meta-RL.
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Figure 3: Results for Meta Mujoco Environment. In all benchmark tasks, CMT obviously learns that
a policy can face adaptation into a new task, and provides evidence that sequence modeling method
is promising. Noticed that CMT have two training stage, it is difficult to align the x-axis. Therefore,
we report the training curve of CMT in representation stage and the final evaluation results of CMT
after prompt-tuning as a dotted line with standard deviation.

5.3 ABLATION STUDY

In this section, we formulate experiments to investigate the following research questions: Q1: How
important prompt-tuning is for performance? Q2: Does contrastive loss benefit the prompt-tuning?
Q3: Does the behavioral constraint affect the results? Q4: In offline meta RL setting, does quality of
task prompts affect the performance in downstream tasks? Without loss of generality, we completed
the following ablation experiments in the Ant-Fwd-Bwd environment, and the results are shown in
Figure 4.

(Q1) Prompt-tuning. Prompt-tuning is utilized in the second stage to enhance the model’s perfor-
mance based on the pre-trained model. With the help of it, the average return will increase by 65.8%,
which shows that prompt-tuning is effective in improving model effects. Furthermore, the results of
CMT with prompt-tuning and without prompt tuning in Table 1 and Figure 3 strongly demonstrates
the benefit in performance from improvement stage.

(Q2) Contrastive Loss. Contrastive loss plays a key role in clustering similar trajectories, which
ensures that the model can find the correct prompts to guide better trajectories. To investigate its
influence, we utilized two extreme coefficients, the minimal value of 10−6 and the maximal value
of 1. As shown in Figure 4, when the coefficient gets to its minimal value, the average return drops
by 50.9%. A possible explanation is that the model lacks the clustering process, preventing it from
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Figure 4: Results for ablation. We explore the impact of prompt-tuning, contrastive loss, behavioral
constraint, and context on the model by whether use it or set extreme values. And each group has a
different color. The first group is the full CMT model, which can be used as the benchmark.
generating effective prompts to distinguish different types of trajectories. Finally, the model will
be heavily affected by data distribution shifts during the tuning process. When the coefficient gets
maximal, the average return falls slightly by 11.1%, showing that an overly strict constraint will
also affect the model. Moreover, we conduct visualization analysis in Figure 5 to demonstrate the
significant effect on the distribution of prompts.

Figure 5: Visualization for Policy Prompts in halfcheetah task. We visualize prompts from three
pairs of trajectories with contrastive loss and without contrastive loss. Each pair have similar behav-
ior and reward sampled from offline reply dataset, and use similar colors.

(Q3) Behavioral Constraint. Behavioral constraint is utilized in the second stage to enhance the
model, which has a significant impact on the final effect. As shown in Figure 4, we use the minimum
coefficient of 0 and the maximum coefficient of 50 to show its impact. When the coefficient is 0,
the average return will dramatically drop by 128%. Despite the fact that the loss decreases on
offline datasets during the tuning process, the test results are still poor. This is the typical overfitting
situation, indicating that the model suffers from severe data distribution shifts. When the coefficient
is 50, the average return will also be reduced by 36.4%. It shows that an extremely severe behavioral
constraint will also lead to inefficient policy boosting, resulting in slightly better performance than
that of the model without prompt-tuning. Therefore, it is very important to find a suitable coefficient.

(Q4) Quality of task prompts. Task content is constructed to accurately identify Meta-RL tasks.
To demonstrate its effect as shown in Figure 4, the experiments are divided into no context, medium
context, and expert context groups based on content quality. In the first set of experiments, the CMT
full model collects the context during online evaluation to support zero-shot adaption. The absence
of task prompts significantly deteriorates the performance by 18% due to the inability to accurately
identify tasks. The performance is improved when task contents from the offline datasets are em-
ployed. The results utilizing the medium and expert datasets increase by 4% and 7%, respectively.
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Both of them are better than the results in the first set of experiments. In fact, if offline task contents
are used, the tasks will become few-shot tasks since the offline datasets are co-distributed with the
tuning datasets. It is simpler and better than the zero-shot tasks using the online task contents.

6 CONCLUSIONS

In this paper, we present CMT, an offline RL algorithm based on prompt tuning, with the goal of
training a large-scale model that can be utilized on various downstream tasks from the sequence
modeling perspective. The prompt tuning is designed for offline RL to pre-train the model and
guide the autoregressive model to generate trajectories with high rewards. Besides, a variety of
experiments are conducted in three different RL settings, offline single-agent RL (D4RL), offline
Meta-RL (MuJoCo), and offline MARL (SMAC), and the model’s performance is evaluated with
different baselines. The results show that CMT has strong performance, and generality. To our best
knowledge, CMT is also the first sequence-modeling-based algorithm for offline meta-RL problems.
General decision models like CMT enhance the efficiency of model training and lower the threshold
for the applications of RL algorithms.
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A APPENDIX

A.1 NETWORK ARCHITECTURE

In Fig.(6), we illustrate the detail of the network architecture for CMT with the input and output
structure. The input consists of a sequence of trajectory tokens, which are embedded by a linear
layer and add up with the position embedding. The output is decoded from the latent states in the
transformer by another linear layer. Noticed that the output from history trajectory tokens is masked
to avoid participating in the supervised loss.

 Bi-direction 
Transformer

History Trajactory

Policy Prompt z

Autoregressive Transformer

Predict Future Trajactory

Contrastive Loss Supervised Loss

Future Trajactory

(a)  Representation Stage ( Pretrain ) (b)  Improvement Stage ( Prompt  Tune)
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Figure 6: Detailed data flow, loss and network architecture for CMT.

A.2 HYPER-PARAMETER

In this section, we describe detailed hyperparameters to reproduce the experimental results. Due to
the robustness of CMT, our algorithm shares similar hyperparameters among three benchmarks as
shown in Table.(2).

In Table.(3), we discuss the distinct hyperparameters for four meta Mujoco tasks.

A.3 MULTI-AGENT OFFLINE LEARNING TASKS

By simply representing states and actions from several agents as a sequence of tokens, CMT can
be deployed in the multi-agent tasks. In this subection, we evaluate the performance of CMT on
multi-agent offline learning settings in SMAC benchmarks in 20 maps. For the data collection, we
follow the same method in literature in (Meng et al., 2021). The datasets are built from trajectories
generated by MAPPO on the SMAC tasks, and a large number of trajectories are contained in each of
them. Different from D4RL, the properties of the DecPOMDP, the local observations and available
actions, are also considered in our datasets.
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The BC (Torabi et al., 2018), CQL-MA (Kumar et al., 2020), and ICQ-MA (Yang et al., 2021) are
utilized as baselines to show the performance of our solution, and their original models own good
performances in single-agent offline RL tasks. The properties of the multi-agent versions are the
same as the single-agent versions. BC learns by building the state-to-action mapping. Based on
the traditional multi-agent offline RL methods, ICQ-MA and CQL-MA solve the extrapolation error
problem through action-space constraint and value pessimism, respectively.

The results on eight maps are displayed in Fig. 7 to demonstrate the performance of algorithms
on tasks of varying difficulty (Super hard: MMM2, corridor, 3s5z vs 3s6z; Hard: 3s vs 5z,
8m vs 9m, 3s5z; Easy: 8m, 3s vs 4z). More results on StarCraft II can be found in Appendix. The
CMT outperforms the baselines and achieves state-of-the-art performance in all maps, indicating
that our algorithm has strong robustness and high efficiency. While ICQ-MA and CQL-MA perform
poorly due to extrapolation errors and larger errors generated by multiple agents. Furthermore, it
should be noted that the BC works well since the approximate expert datasets are used in training
stage.
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Figure 7: Results for eight representative maps in SMAC. CMT has significant advantages, com-
pared with ICQ, CQL, BC baselines. All results on 20 maps can be found in the appendix.

A.4 FULL RESLUTS ON SMAC

We evaluate CMT on twenty maps in the SMAC benchmark. As shown in Fig.(8), the results
demonstrate that CMT remarkably outperforms baselines, including BC, ICQ, and CQL.
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Parameter D4RL(Default Config) meta Mujoco SMAC
Optimizer AdamW AdamW AdamW
Batch size 256 512 256
learning rate 1e-4 1e-4 1e-4
Transformer block layer 2 2 2
Attention head 2 2 2
Embedding dimension 32 32 32
context length - policy 40 30 10
context length - task None 30 None
gradient norm clip 0.5 0.5 0.5
contrastive loss - K 256 512 256
contrastive loss - α 0.2 0.2 0.2
contrastive loss - γ 0.1 0.1 0.1
behavioral constraint - β 1 1 1

Table 2: Common hyper-parameters for CMT in D4RL, meta Mujoco and SMAC.

Parameter Ant-Fwd-Bwd Half-CHeetah-Fwd-Bwd Point-Robot-Wind Walker-2D-Params
train tasks number 2 2 40 40
test task number 2 2 10 10
task coverage 100% 100% 80% 80%
context length -task 32 64 32 32

Table 3: Specfic hyper-parameters for four mete Mujoco tasks.

0 100 200 300 400
0

5

10

15

20
1c3s5z

0 100 200 300 400
0

5

10

15

20
so_many_baneling

0 100 200 300 400
0

5

10

15

20
corridor

0 100 200 300 400
0

5

10

15

20
bane_vs_bane

0 100 200 300 400
0

5

10

15

20
MMM2

0 100 200 300 400
0

5

10

15

20
MMM

0 100 200 300 400
0

5

10

15

20
8m_vs_9m

0 100 200 300 400
0

5

10

15

20
8m

0 100 200 300 400
0

5

10

15

20
6h_vs_8z

0 100 200 300 400
0

5

10

15

20
5m_vs_6m

0 100 200 300 400
0

5

10

15

20
3s_vs_5z

0 100 200 300 400
0

5

10

15

20
3s_vs_4z

0 100 200 300 400
0

5

10

15

20
3s_vs_3z

0 100 200 300 400
0

5

10

15

20
3s5z_vs_3s6z

0 100 200 300 400
0

5

10

15

20
3s5z

0 100 200 300 400
0

5

10

15

20
3m

0 100 200 300 400
0

5

10

15

20
2s_vs_1sc

0 100 200 300 400
0

5

10

15

20
2s3z

0 100 200 300 400
0

5

10

15

20
2m_vs_1z

0 100 200 300 400
 

0
5

10
15
20

27m_vs_30m

Train Epoch

Av
er

ag
ed

 R
et

ur
n

CMT(ours) ICQ BC CQL

Figure 8: Results for SMAC on twenty maps.CMT has significant advantages, compared with ICQ,
CQL, BC baselines.
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