
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIRECTTRIGS: TRIPLANE-BASED GAUSSIAN SPLAT-
TING FIELD REPRESENTATION FOR 3D GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present DirectTriGS, a novel framework designed for 3D object generation
with Gaussian Splatting (GS). GS-based rendering for 3D content has gained con-
siderable attention recently. However, there has been limited exploration in directly
generating 3D Gaussians compared to traditional generative modeling approaches.
The main challenge lies in the complex data structure of GS represented by discrete
point clouds with multiple channels. To overcome this challenge, we propose
employing the triplane representation, which allows us to represent Gaussian Splat-
ting as an image-like continuous field. This representation effectively encodes
both the geometry and texture information, enabling smooth transformation back
to Gaussian point clouds and rendering into images by a TriRenderer, with only
2D supervisions. The proposed TriRenderer is fully differentiable, so that the
rendering loss can supervise both texture and geometry encoding. Furthermore, the
triplane representation can be compressed using a Variational Autoencoder (VAE),
which can subsequently be utilized in latent diffusion to generate 3D objects. The
experiments demonstrate that the proposed generation framework can produce
high-quality 3D object geometry and rendering results.

1 INTRODUCTION

Neural rendering has grown to a focal point in rendering techniques in recent years, as it achieves
more realistic rendering effects by leveraging the great expressiveness of neural network. The
representatives are neural radience field (NeRF) (Mildenhall et al., 2021) and the newly emerged
Gaussian Splatting (GS) (Kerbl et al., 2023). However, when applied to the field of 3D generation,
the slow rendering and training speed become a strong limitation for NeRF. While GS is more flexible
with greater rendering efficiency and editability, few works have addressed the challenge of direct
GS generation in 3D due to its complex data structure. In this paper, we propose a novel approach
called DirectTriGS, which encodes GS as triplane representation, and introduce its corresponding
renderer, TriRenderer. Subsequently, we apply latent diffusion on the Triplane representation to
generate high-quality GS objects.

Gaussian splatting uses multi-channel point cloud of “splats” to describe the 3D contents. With a
differentiable splats rasterizer, GS has fast rendering speed. However, the sparsity, multiple channels,
and uneven distributed density of 3D GS bring great difficulty for 3D generation. We propose to
encode GS contents as multi-channel triplane representations, which have been shown to possess
favorable properties for representing 3D geometry or NeRF, as demonstrated in previous works Wu
et al. (2024); Shue et al. (2023). In our work, we leverage the triplane representation to encode both
the geometry information and other GS attributes in two separate groups of channels. By training on
a dataset of 3D objects, we obtain a shared TriRenderer that is capable of decoding different triplane
representations to GS and then render it to image. TriRenderer is fully differentiable, enabling the
use of only 2D rendering loss to supervise both the texture and geometry of 3D GS. The advantage
of using Triplane to represent GS are two folds. First, it leads to high memory efficiency compared
with dense voxels and is expressive enough for generating various 3D GS. Second, Triplane is more
compatible with the convolution-based encoders compared with the original sparse GS point cloud,
which require specifically designed networks on processing sparse point clouds.

We follow stable diffusion (Rombach et al., 2022) to train DirectTriGS on the proposed triplane
representation. Specifically, a VAE is designed to further convert the Triplanes into latent code. We

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

use two separate decoders to decouple the decoding of geometry and GS attributes. Second, we roll
out the triplane latent to an expanded multi-channel image, then exploit staged latent diffusion to do
generation. Two-stage diffusion is employed to generate the geometry and the corresponding GS
appearance. Finally, score distillation sampling (SDS) (Poole et al., 2022) is adopted as a optional
post-processing to refine or restyle the generated 3D objects.

Our contribution can summarized as follows. 1) We propose a Triplane representation for direct 3D
GS generation, which is memory efficient to derive GS point clouds with vivid rendering. 2) We
design a fully differentiable TriRenderer to enable the end-to-end training of triplane representations,
with only 2D supervisions. 3) We develop a Triplane-based GS generation framework DirectTriGS
that incorporates a specially designed VAE, latent diffusion module, and a SDS based refiner. 4)
Experiments demonstrate our method produces competitive performance in both 3D geometry and
multi-view rendering quality.

2 RELATED WORKS

Gaussian Splatting. Gaussian Splatting (Kerbl et al., 2023) exploits pointcloud of splats to describe
the 3D content, and every splat is a 3D ball with a shape of Gaussian distribution, and it has other
properties like opacity, color or SH parameters. The GS can be rendered like mesh using a special
designed rasteraization, which allows real-time rendering of photorealistic scenes. As a newly
developed rendering technique, there emerges so many research focusing on its reconstruction quality
enhancement and algorithm optimization (Yu et al., 2023; Cheng et al., 2024; Fan et al., 2023; Lu
et al., 2023). Another related active area includes 4D dynamic GS modeling (Wu et al., 2023a;
Yang et al., 2023; Chen et al., 2023c) , scene editing (Fang et al., 2023; Chen et al., 2023b) and its
applications like SLAM (Matsuki et al., 2023; Yan et al., 2023).

3D Object Generation. Recently, there emerges many works aiming to solve the geometry generation
and rendering in combination, which can be roughly divide into 2 groups. First is the route of multi-
view image to 3D, which generate multi-view colored 3D image and then reconstruct the 3D shape
and project image to texture, such as Poole et al. (2022); Shi et al. (2023); Höllein et al. (2023);
Liu et al. (2023); Chung et al. (2023); Tang et al. (2023). Since these approaches are actually 2D
generator, it is difficult to maintain 3D consistency, which may lead to Janus problem. And the second
group mainly operate in 3D, which can be clustered by different 3D representation. For example,
Gupta et al. (2023); Gao et al. (2022) are able to generate high-quality 3D textured meshes using
differentiable rendering; Nichol et al. (2022); Wu et al. (2023c) generate colored pointcloud; Chen
et al. (2023a); Metzer et al. (2023) generate NeRF volumes; Ju et al. (2023); Wu et al. (2024)generate
SDF volumes.

As for GS generation, some works exploit multi-view image based route such as Chung et al. (2023);
Tang et al. (2023), where the image generator output image from required views to enhance the GS
rendering in a recursive manner. Rare works explore the GS generation directly in 3D space, such as
Zou et al. (2023) generates a point cloud using a Transformer structure with 2D image as input, and
build a mapping of image to tri-plane encoding of GS attribute; GaussianCube (Zhang et al., 2024)
proposes to use optimal transport to model the 3D GS for text-to-3D generation.

3 REVISITING GAUSSIAN SPLATTING

Gaussian Splatting Kerbl et al. (2023) uses a set of Gaussian points to describe a 3D object. The
Gaussian points are defined by a full 3D covariance matrix Σ in a world space as G(x) = e−

1
2x

TΣ−1x,
centered at point (mean) p ∈ R3. Each point is with a opacity scalar α ∈ [0, 1] for blending and a
series of Spherical Harmonics (SH) coefficients to correctly capture the view-dependent appearance
of the scene. The number of SH coefficients are 3× (n+ 1)2, where n denotes the SH order, and
higher n corresponds to more accurate view-dependent appearance.

During rendering, the Gaussians are project to 2D given a viewing transformation W. The covariance
is transformed as Σ′ = JWΣWTJT , where J is the Jacobian of the affine approximation of the
projective transformation. To ensure Σ to be semi-positive in the whole training process, Σ can be
represented by a Cholesky decomposition as Σ = RSSTRT , represented by a tuple s = (s1, s2, s3)
for scaling and a unnormalized quaternion q ∈ R4 for rotation. In summary, each Gaussian point are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

TriRenderer Latent Diffusion
Model

1) Represent objects as Triplanes. 2) Train a Triplane VAE. 3) Generation by LDM on Triplane latent.

Triplane Feature
Extractor

Grid Points

Geometry
Decoder

Deformable SDF Volume

Differentiable
Marching Cube

Mesh

Surface Point
Sampler

Point Cloud

Triplane Feature
Extractor

GS Attribute
Decoder

GS Point Cloud

GS Renderer

Multi-view Images

Triplane

TriRenderer Pipeline

Point Cloud

Geometry Branch

GS Attribute Branch

GS Attribute
Branch

(from Geometry Branch)

(a) The overall procedure of our 3D content generation framework.

(b) The forward pass of the TriRenderer pipeline: rendering a Triplane to multi-view images.

SDS with Pretrained
2D Stable Diffusion

4) Optional Refinement by SDS.

Figure 1: The overview of the proposed 3D GS generation framework and the core component
TriRenderer. We use triplane to represent 3D objects, and design a TriRenderer to decode triplane to
GS pointcloud and render multi-view images.

a union set of position p and its GS attributes:

Gp := {s,q,SH, α}. (1)

GS pointcloud can be efficiently rendered by a rasterization-based splatting renderer (Kerbl et al.,
2023), which is fully differentiable.

4 METHODOLOGY

Our motivation is to directly generate 3D GS with fast speed by utilizing the proposed triplane-based
GS representation. While 2D-lifting methods like SDS-based approaches yield intricate results,
they are time-intensive and susceptible to Janus problem. Direct generation, notably with fast
sampling, can complete 3D generation in under a minute, contrasting with SDS methods that take
over 10 minutes or longer, such as Chen et al. (2024)Wang et al. (2024), posing challenges for users.
Therefore, direct 3D generation is more practical, with 2D-lifting reserved for enhancing texture
details when needed.

The procedures of our generation framework can be divide into 4 stages as shown in Fig.1 (a). Firstly,
we encode the 3D objects into triplanes using the TriRenderer. The triplane encoding and TriRenderer
training can be concurrently executed with only the multi-view RGBA image and camera poses as
supervision. Secondly, a VAE is trained to compress the triplanes to latent space, enabling effective
capture of high-level information for subsequent modules. Thirdly, a diffusion model is trained on
the triplane latent code. During inference, the diffusion model produces the latent code, which can
be decoded back to its corresponding triplane by the VAE decoder. Subsequently, the TriRenderer
decodes the triplane into the standard GS point cloud. Finally, an SDS-based refiner can be utilized
as an optional post-processing step to enhance or restyle the generated 3D object. Leveraging the
pretrained 2D diffusion model within the SDS, the generated GS can be further improved to achieve
a more detailed appearance.

4.1 TRIPLANE-BASED GS FIELD

We employ triplanes to convert the discrete multi-channel GS point cloud into a continuous field,
tailored for more efficient encoding in the subsequent generative model. Triplanes are 3 planes formed
by every 2 axes of x, y, z axes in 3D space, where every 3D point p can query these planes to get
corresponding features Fp = (Fxy, Fxz, Fyz) using orthogonal projection. In real implementation,
triplane is a tensor with the size of 3×H ×H × C, where H denote the resolution along every axis

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and C is the feature channel. The query of point with arbitrary continuous coordinate should be a
bi-linear intepolation in the triplane grids. Considering GS is a set of points with multiple channels
of attributes, it is natural to use triplane for GS encoding. If the triplane feature and GS attributes of a
point can be transformed to each other, the sparse GS pointcloud of every object can be represented as
continuous triplane GS field for further encoding. We use separate channels to encode 3D geometry
and other GS attributes as described in Eq. 1, which is an experimental setting for better convergence
in the training.

4.2 TRIRENDERER

The TriRenderer serves as the crucial component for converting a 3D object into a triplane-based
GS field. It acts as a fully differentiable bridge connecting the GS field with rendering, enabling the
optimization from 2D images to geometry and appearance encoding.

As depicted in Fig. 1 (b), the TriRenderer comprises a geometry branch and a GS attribute branch,
each equipped with independent decoders to decode the triplane. The geometry branch is responsible
for retrieve the geometry as triangular mesh from triplane, with a surface sampler for GS pointcloud
sampling. Then GS attribute branch uses the obtained pointcloud to query the triplane to obtain the
GS attribute corresponding to each point. In this way, the GS pointcloud in the original format is
retrieved, and can be rendered using the original GS renderer. It is worth mentioning that all triplanes
of different object share a common TriRenderer, which ensures the features on different triplanes
subject to a similar distribution.

Geometry Branch. We use signed distance function (SDF) to represent the geometry, and allow
every vertex deform as Shen et al. (2021), so that the geometry branch decodes Fp to a SDF volume
and its vertice deformation. By query all grid coordinates of the designated resolution L×L×L, the
deformable SDF volume is reconstructed. Then we exploit a differentiable Marching Cube algorithm
FlexiCubes (Shen et al., 2023) to extract triangular mesh from the SDF volume.

Surface Sampling. Considering that GS pointcloud is generally gathered on the surface of objects,
we randomly sample GS points on the faces of triangular mesh with barycentric coordinates. We
expect that every splat is flat and with a normal consistent with its source triangular face. Assume
a face is formed by vertices < va, vb, vc >, and vector v1 = (va − vb), v2 = (vb − vc), the face
normal can be calculated as n = v1 × v2. Then the rotation matrix of every splat drawn from this
face can be formulated as

R = [v1,n× v1,n] , (2)

which can be transform to q in Eq.1 by standard matrix-to-quaternion algorithm. To make the splats
flat, s3 in Eq.1 is fixed to an infinite small value.

To further reduce the computational load in the subsequent GS rendering process, only faces oriented
toward the camera are sampled. These face indices can be obtained through fast rasterization of
the mesh faces. Note this rasterization is not required to be differentiable, and we use the library
Nvdiffrast (Laine et al., 2020) for implementation.

GS Attribute Branch. By querying the triplane GS channels with the sampled pointcloud, we can
obtain the GS feature and use the GS attribute branch to transform them to the rest GS attributes.
Then the GS renderer can render GS pointcloud to multi-view images. Since different GS attributes
have different numerical scales and distributions, we customize individual headers to decode them
respectively, which is similar to Zou et al. (2023).

Training. The training consists of 2 stages. In the first stage, a small batch of data is used to train
the triplanes and the TriRenderer together. The second stage involves the whole dataset to train all
triplanes with the parameters of TriRenderer frozen. In this way, we can handle large dataset by
distributed training in the second stage, and the same TriRenderer can be shared by all triplanes.
There is no need to pre-train the GS pointcloud using original GS training as Kerbl et al. (2023).

The only required supervision data is N multi-view images {Ii}Ni=1 with camera poses, and the
training losses consists of the rendering loss Lrender and the geometric regularization Lgeo. The
rendering loss is a weighted sum as

Lrender = w1Lalpha + w2Lrgb + w3Lpips, (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Geometry
Channel Encoder

GS Attributes
Channel Encoder

Geometry
Channel Decoder

GS Attributes
Channel Decoder

TriRenderer

Geometry Loss

Rendering Loss

KL Loss

Geometry LDM

Condition

Appearance LDM

Decoding

(a) The structure of Triplane VAE.

Geometry Channel

GS Attributes Channel

(b) 2-stage latent diffusion.

Figure 2: Triplane VAE and 2-stage diffusion.

where Lalpha is a L1 loss on the alpha map, namely the silhouette image loss; Lrgb is a combination
of L1 pixel loss and SSIM loss (Wang et al., 2004) between rendered image Îi and ground truth Ii:

Lrgb =

N∑
i=1

(1− β)∥Ii − Îi∥1 + βSSIM(Ii, Îi), (4)

and Lpips is the perceptual loss (Johnson et al., 2016). w1, w2, w3 and β are all weighting factors
determined by experiments.

The geometric regularization loss on the SDF volume V is defined as

Lgeo = γ1Ldev + γ2Lweighting + γ3LCE + γ4Lsign, (5)

where the Ldev and Lweighting are defined by Flexicubes (Shen et al., 2023) to regularize the extracted
connectivity and the weighting scale of SDF vertices. To penalize the sign changes on all grid edges,
we follow Munkberg et al. (2022) to define LCE as

LCE =
∑

(sa,sb)∈ϵ

CE(σ(sa), sign(sb)), (6)

where CE denotes cross entropy; ϵ is the set of all edges connecting vertices with different signs; and
σ is the sigmoid function. Finally, Lsign is designed to prevent the SDF volume from being trapped
in an empty shape, i.e. a fully positive or fully negative SDF volume,

Lsign = δ(V)M(|V |), (7)

where δ(V) = 1 if V is empty, otherwise δ(V) = 0. M(|V |) denotes the mean of the absolute value
of V .

4.3 TRIPLANE VAE

We employ an UNet-like structure of VAE to compress the triplane to latent space. The training
pipeline is demonstrated in Fig. 2 (a). Considering that the 3 planes of triplanes encodes features
from 3 orthogonal view direction, these 3 planes should be homogeneous data, so that We reshape the
triplanes of batchsize B to a new batch as B × 3×H ×H × C to 3B ×H ×H × C for the VAE
training. We use decoupled encoders and decoders for geometry and GS channels of triplanes, for
experiments prove that a mixed encoding may lead to blur of the rendering results. After the triplane
is reconstructed, the TriRenderer trained in Section.4.1 can be used to retrieve the GS pointclouds
and render it to images.

In the training process, same loss functions as Eq. 3 and Eq. 5 are used, along with an L1 loss between
the input and reconstructed triplanes, denoted as LTri. Additionally, a Kullback–Leibler divergence
loss LKL is included to ensure that the latent variables do not deviate significantly from a normal
distribution. The total losses is summarized as

LVAE = LTri + LGeo + LRender + γLKL, (8)

where γ is a small weight.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

GS Renderer
Pretrained

2D Stable Diffusion
Mesh Binding

3D GS Generated by LDM

Back PropagationForward Inference

Figure 3: Score distillation process(SDS) for optional texture refinement.

4.4 TWO-STAGE LATENT DIFFUSION FOR TEXT-TO-3D GENERATION

Taking into account the significant relevance of texture appearance to the underlying geometry, we
proposed to utilize staged diffusion to generate geometry and GS attribute successively as shown in
Fig. 2 (b). It is easy to implement it because the latent codes for geometry and other GS attributes
are totally decoupled by VAE, as mentioned earlier . In this way, the geometry code can be a new
condition for the second stage.

We follow DDPM Ho et al. (2020); Karras et al. (2022) to implement the latent diffusion conditioned
on the text description. To better capture the relation between different planes, we roll out the triplane
latent of B × 3× h× h× c to a image-like B × 3h× h× c as the input of diffusion model, and the
generated result will be transformed back to the original shape for TriRenderer decoding.

4.5 SDS-BASED TEXTURE BOOSTER

To refine or restyle the generated GS pointcloud, we utilize a pretrained 2D diffusion model for the
SDS training process (Poole et al., 2022) as shown in Fig. 3. As the generated 3D GS is constrained
by the mesh reconstructed from SDF, detailed in Section 4.2, we maintain the GS splats’ adherence
as previously established. However, we enable the mesh vertices to shift within a limited radius to
enhance the stability of the SDS process. Additionally, throughout the entire SDS procedure, there
is no need for densification or pruning operations. This ensures that the number of points can be
controlled to align with the number of mesh faces.

With the RGB image rendered from the initial GS pointcloud, the 2D diffusion model can produce
images with better 2D/3D consistence in different views, so that the optimization process can converge
rapidly without Janus problem.

5 EXPERIMENT

The experiments are conducted step-by-step according to the generation pipeline proposed as Fig.1 (a).
We use OmniObject3D (Wu et al., 2023b) dataset for toy experiments, and Objaverse (Deitke et al.,
2023) dataset for main evaluation. First, we sample 200K object to train their cooresponding triplanes
and TriRenderer. Then we train the VAE and diffusion model for 3D GS generation. Finally, we
exploit SDS to boost the texture quality for unsatisfactory generated objects. The procedure of data
pre-processing and the implementation details are included in the appendix section A.

The experimental results primarily consist of the following components: 1) A simple check of
the trained triplane and VAE reconstruction. 2) For examining the proposed triplane modeling for
GS generation, we focus on the text-to-3D task and showcase the direct GS generation outcomes
qualitatively and quantitatively. These results are compared with Shap-E (Jun & Nichol, 2023),
Direct3D Liu et al. (2024), and the most recent GaussianCube (Zhang et al., 2024). 3) In comparison
to 2D-lifting GS generation methods, we present the performance of SDS refinement on unsatisfying
samples, with GSGEN (Chen et al., 2024) and GaussianDreamer (Yi et al., 2024) as baselines.

5.1 TRIPLANE FITTING AND VAE RECONSTRUCTION

Triplane Fitting. We adopt a resolution of 3×128×128×16 for all triplane fitting, with a resolution
of 64 × 64 × 64 for the deformable SDF grids. We randomly sample 1000 objects for the shared
TriRenderer training, and train all residual objects distributively. Every triplane is initialized with
Gaussian noise before training. Under such settings, every triplane takes less than 30 seconds for
geometry and GS appearance reconstruction.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Br
oc

co
li

C
ha

ir

Geometry Channel GS Attribute Channel

Figure 4: Channel visualization of sample triplanes.

To better investigate whether it is reasonable to encode triplane using convolution-based methods,
we simply scale the channel value of trained triplanes to pixel range and visualize them as shown in
Fig. 4, where clear shapes from 3 different views can be observed.

Figure 5: Triplane reconstructed by VAE. Left: ground truth. Right: reconstruction.

VAE Reconstruction.We use a down-sample factor of 4 to compress the triplanes to latent space. A
slight blur in the reconstructed pictures are observed as Fig.5, which is inevitable but acceptable.

5.2 DIRECT 3D GS GENERATION BY LDM

In this section, we present the results of our 3D GS object generation without the SDS refinement, both
quantitatively and qualitatively. Due to the current scarcity of work targeting direct 3DGS generation,
we selected two state-of-the-art text-to-3D works based on other 3D representations(NeRF) Shap-
E (Jun & Nichol, 2023) and Direct3D (Liu et al., 2024) for comparison. For fairness, these selected
methods also perform direct generation in the 3D domain without any refinement based on 2D
diffusion. Additionally, we provide a qualitative comparison with GaussianCube (Zhang et al., 2024)
in Appendix A.3.

Qualitative Results. The generation results from different methods are listed in Fig. 6. Every
generated sample is rendered from different views accompanied by the provided text prompt captioned
beneath the images. Our method showcase enhanced proficiency in both geometry and rendering
quality, resulting in sharper and clearer outputs, which can be further verified in the subsequent
quantitative evaluation. For more generated samples, please check the appendix section A.

Quantitative Results. We use CLIP score to evaluate the text-to-3d consistency, and an user study is
conducted to evaluate the generation results from various aspect such as geometry, texture, realistic
rendering and the consistency with given prompt. 49 users participated in the user study to score the
over 50 3D samples from 1 to 5 points, and the average results are shown in Tab. 1. As for the CLIP
score, the open-source repository t2vmetrics (Lin et al., 2024) is used to calculate the CLIP score
on two versions of ViT models, and the results are demonstrated in Tab. 2. Both the CLIP score and
the user study indicate that the proposed method produces better performance.

5.3 TEXTURE BOOSTING BY SDS

To compare with other SDS-based 3D GS generation methods, we implement a version of SDS for
our mesh-binding GS representation as described in Section 4.5. GSGEN (Chen et al., 2024) and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

A small, futuristic, car with wheels,
resembling the DeLorean time machine.

A small wooden roof.

A chair with holes in it.

A golden pagoda.

A toy pickup truck with a wooden bed.

A wooden beer mug.

A triceratops toy dinosaur with blue and
orange stripes and horns.

A green and black robot model with
outstretched arms.

A blue and white barrel with a white stripe.

Thor's hammer with a wooden
handle and green accents.

A knitted teddy bear monkey.

An AK47.

A small house-tower hybrid with castle
elements on a square base.

A small blue and yellow Pokemon character
with big eyes.

A pixelated robot character with a green hat and
shirt, featuring blue, grey, and purple accents. A sword with a green handle.

A red fire hydrant with a metal cap.

A White Horse Bourbon bottle.

（a）Comparison with Direct3D.

（b）Comparison with Shap-E.

Ours Direct3D Direct3D Direct3DOurs Ours

Ours Ours OursShap-E Shap-E Shap-E

Figure 6: Comparison of generated 3D objects (without SDS refinement).

Geometry↑ Texture↑ Realistic Rendering↑ Prompt Consistency↑ Overall↑
Shap-E 3.080 3.019 2.947 3.121 3.042
Direct3D 3.222 3.150 3.118 3.242 3.183
Ours 3.456 3.383 3.332 3.520 3.423

Table 1: User study on generated 3D objects (without SDS refinement).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Shap-E Direct3D Ours

openai:ViT-L-14 0.2398 0.2152 0.2456
openai:ViT-L-14-336 0.2426 0.2220 0.2462

Table 2: CLIP score(↑) for evaluation of similarity between rendered images and given text prompt.

More Realistic (%) More Detailed (%) Overall (%)

GaussianDreamer 35.0 50.0 42.5
GSGEN 17.5 5.0 11.3
Ours 47.5 45.0 46.3

Table 3: User study on generated 3D objects (with SDS refinement).

GaussianDreamer (Yi et al., 2024) are selected as our baselines. The generated samples, as illustrated
in Fig. 7, highlight that with the SDS refiner, our DirectTriGS can deliver competitive outcomes
comparable to the state-of-the-art 2D-lifting methods.

Furthermore, we conducted a user study for quantitative evaluation. 40 users were tasked with ranking
15 samples from different methods based on two criteria: realism and level of detail. The results
indicate that our approach marginally outperforms the other baseline methods.

5.4 ABLATION STUDY

3D Diffusion for voxel-based Gaussian Splatting. We attempt to do GS attribute generation
conditioned on given voxel occupancy via 3D diffusion model. However, even a toy experiment of
over-fitting one single object failed, which may attributes to the complex multiple channels with
different distributions especially the non-Euclidean ones such as quaternion. As shown in Fig.8, the
diffusion model learns to generate color but fails to generate splat scaling, opacity and orientation.

Triplane Diffusion without VAE. Since VAE inherently involves a reconstruction loss, we attempt
to use direct diffusion on the triplane space for generation. The experiment results shows that such
direct diffusion may cause serious noise on decoded geometry. Randomly generated samples are
visualized in Fig.9. A possible reason is that the multi-channels of triplane contains considerable
redundancy or noise, which is difficult to be captured or filtered by the diffusion model.

Inference Efficiency. The inference efficiency is listed in Table 4. This experiment is conducted on
the platform equipped with RTX3090 GPU with 24GB memory.

6 CONCLUSION

We have presented a novel framework DirectTriGS for Gaussian Splatting Field generation. Direct-
TriGS mainly consists of 3 parts: 1) a light-weight triplane representation for 3D object with the
format of Gaussian Splatting; 2) a fully differentiable TriRenderer which can decode triplane to
orginal GS and render it to multi-view images; 3) the triplane VAE and staged diffusion model for
the whole generation process. By utilizing our DirectTriGS, the intricate GS data can be generated
directly and efficiently. 4) Additionally, we incorporate a SDS refiner to further improve the texture
and details of generated objects.

Table 4: Inference efficiency of the generation (single stage of LDM), with the batch size is 1.
TFLOPs Parameters(M) GPU Memory(GB) Running Time (Second)

Generation 0.00823 56.65 2.94 < 8.0

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A Spiderman character in a red, yellow, and blue outfit.

A green and white vase with a Greek design and logo, resembling a tea cup.

Red and black clown mask with horns and deer head features.

A human skull.

A plane.

An astronaut in space suit.

Ours(with SDS) GSGEN GaussianDreamerOurs(Before SDS)

Figure 7: Refinement of unsatisfactory results by SDS, compared with pure SDS-based methods
GSGEN and GaussianDreamer.

Figure 8: Failure of GS at-
tribute generation.

Figure 9: Noisy results of direct diffusion on triplane. The condition
prompt are "train", "watermelon" and "box".

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, and Hao Su. Single-stage diffusion
nerf: A unified approach to 3d generation and reconstruction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2416–2425, 2023a.

Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei Yang,
Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with gaussian splatting.
arXiv preprint arXiv:2311.14521, 2023b.

Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, and Li Zhang. Periodic vibration gaussian: Dynamic urban
scene reconstruction and real-time rendering. arXiv preprint arXiv:2311.18561, 2023c.

Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu. Text-to-3d using gaussian splatting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21401–21412, 2024.

Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and Xuejin Chen.
Gaussianpro: 3d gaussian splatting with progressive propagation. arXiv preprint arXiv:2402.14650, 2024.

Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer: Domain-free
generation of 3d gaussian splatting scenes. arXiv preprint arXiv:2311.13384, 2023.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13142–13153,
2023.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint arXiv:2311.17245, 2023.

Jiemin Fang, Junjie Wang, Xiaopeng Zhang, Lingxi Xie, and Qi Tian. Gaussianeditor: Editing 3d gaussians
delicately with text instructions. arXiv preprint arXiv:2311.16037, 2023.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and
Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned from images. Advances
In Neural Information Processing Systems, 35:31841–31854, 2022.

Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent diffusion for
textured mesh generation. arXiv preprint arXiv:2303.05371, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2room: Extracting textured
3d meshes from 2d text-to-image models. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7909–7920, 2023.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II 14, pp. 694–711. Springer, 2016.

Xiaoliang Ju, Zhaoyang Huang, Yijin Li, Guofeng Zhang, Yu Qiao, and Hongsheng Li. Diffindscene: Diffusion-
based high-quality 3d indoor scene generation, 2023.

Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular primitives
for high-performance differentiable rendering. ACM Transactions on Graphics, 39(6), 2020.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ra-
manan. Evaluating text-to-visual generation with image-to-text generation. arXiv preprint arXiv:2404.01291,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qihao Liu, Yi Zhang, Song Bai, Adam Kortylewski, and Alan Yuille. Direct-3d: Learning direct text-to-3d
generation on massive noisy 3d data. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6881–6891, 2024.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9298–9309, 2023.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs: Structured
3d gaussians for view-adaptive rendering. arXiv preprint arXiv:2312.00109, 2023.

Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting slam. arXiv preprint
arXiv:2312.06741, 2023.

Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-guided
generation of 3d shapes and textures. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12663–12673, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):
99–106, 2021.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas Müller, and
Sanja Fidler. Extracting triangular 3d models, materials, and lighting from images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8280–8290, 2022.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system for generating
3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988, 2022.

Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi zuo, Mutian Xu, Yushuang Wu, Weihao Yuan, Zilong Dong,
Liefeng Bo, and Xiaoguang Han. Richdreamer: A generalizable normal-depth diffusion model for detail
richness in text-to-3d. arXiv preprint arXiv:2311.16918, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10684–10695, 2022.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra: a hybrid
representation for high-resolution 3d shape synthesis. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan Gojcic, Sanja
Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-based mesh optimization.
ACM Trans. Graph., 42(4), jul 2023. ISSN 0730-0301. doi: 10.1145/3592430. URL https://doi.org/
10.1145/3592430.

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view diffusion for
3d generation. arXiv preprint arXiv:2308.16512, 2023.

J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon Wetzstein. 3d neural field
generation using triplane diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20875–20886, 2023.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-
fidelity and diverse text-to-3d generation with variational score distillation. Advances in Neural Information
Processing Systems, 36, 2024.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang
Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528, 2023a.

12

https://doi.org/10.1145/3592430
https://doi.org/10.1145/3592430

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Liang Pan Jiawei Ren, Wayne Wu, Lei Yang, Jiaqi Wang, Chen
Qian, Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary 3d object dataset for realistic perception,
reconstruction and generation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023b.

Zhennan Wu, Yang Li, Han Yan, Taizhang Shang, Weixuan Sun, Senbo Wang, Ruikai Cui, Weizhe Liu, Hiroyuki
Sato, Hongdong Li, et al. Blockfusion: Expandable 3d scene generation using latent tri-plane extrapolation.
arXiv preprint arXiv:2401.17053, 2024.

Zijie Wu, Yaonan Wang, Mingtao Feng, He Xie, and Ajmal Mian. Sketch and text guided diffusion model for
colored point cloud generation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8929–8939, 2023c.

Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang, Bin Zhao, and Xuelong Li. Gs-slam: Dense visual
slam with 3d gaussian splatting. arXiv preprint arXiv:2311.11700, 2023.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642, 2023.

Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and
Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by bridging 2d and 3d diffusion
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6796–6807, 2024.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free 3d
gaussian splatting. arXiv preprint arXiv:2311.16493, 2023.

Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang, Feng Zhao, Yansong Tang, Dong Chen, and Baining
Guo. Gaussiancube: Structuring gaussian splatting using optimal transport for 3d generative modeling. arXiv
preprint arXiv:2403.19655, 2024.

Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-Pei Cao, and Song-Hai Zhang.
Triplane meets gaussian splatting: Fast and generalizable single-view 3d reconstruction with transformers.
arXiv preprint arXiv:2312.09147, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET INFORMATION.

Objaverse Deitke et al. (2023) is the main dataset for our experiment, which contains over 800K 3D
objects. As the rendering process on such a massive dataset is very time-consuming, we adopt the
pre-processed version sourced from the repository of Qiu et al. (2023), which pre-filters over 260K
samples. In this processed dataset, every object is normalized to the voxel range of [±0.5,±0.5,±0.5],
and rendered to RGBA images in a resolution of 512 ∗ 512 ∗ 4, with 40 views in total. Our training
data only comprises multi-view images and their corresponding camera poses, without any kind of
original 3D data.

A.2 IMPLEMENTATION DETAILS.

Triplane. The triplane resolution is configured as 3×128×128×16, where 16 represents the channels
within each grid. The first half of the channels is designated for encoding geometry information,
while the remaining half is allocated for encoding GS appearance details. Each triplane is initialized
to random Gaussian noise with a standard deviation of 0.01. This random initialization allows the
triplane to be decoded into random SDF values, subsequently leading to the generation of diverse
fragmented mesh faces. Upon rasterization of these faces onto the screen, the geometry loss facilitates
swift removal of undesired faces. During our experiments, we observed that this initialization method
enables faster convergence compared to zero initialization.

As for loss configuration, we configure w1 = 5.0, w2 = 1.0, w3 = 1.2, β = 0.2, γ1 = 0.2, γ2 = 0.1,
γ3 = 0.01, γ4 = 1.0 by experiments, corresponding to the loss function described in Eq. 3, Eq. 4 and
Eq. 5.

TriRenderer. As for the TriRenderer instroduced in Fig.1, both the geometry decoder and the GS
attribute decoder inside it are composed of linear blocks. In the GS attribute decoder, there are 3
headers for GS splats scaling, opacity and SH prediction, and the rotation is fixed by the mesh face
normal as introduced in Section 4.2. All the GS attribute headers are linear layers. We set SH degree
to 1 in all experiments, which is enough to obtain satisfying results on Objaverse.

A.3 COMPARISON WITH GAUSSIANCUBE.

GaussianCube (Zhang et al., 2024) is the most recent paper aiming to solve a similar task of ours,
which can generate 3D GS directly without SDS or reconstruction from images. As for now, the
authors of GaussianCube have not release their pre-trained models for text-to-3D task on Objaverse
dataset. Therefore, we just use the images provided in their paper for a qualitative comparison. The
generated samples are shown in Fig. 10. Our method produces more diverse and detailing generation
results.

A.4 MORE GENERATION RESULTS (WITHOUT SDS REFINEMENT).

More generated samples are rendered as Fig. 11.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A yellow tea kettle.

A pair of sunglasses with blue lenses.

A blue and yellow fish with a big eye.

A wooden bench.

Ours(without SDS refinement)GaussianCube

A blue and white cartoon character
of Sonic the Hedgehog.

GaussianCube Ours(without SDS refinement)

A blue and white cartoon character
of Sonic the Hedgehog.

（a）Generation with same prompts.

（b）Generation with slightly different prompt, for we do not include “Sonic the Hedgehog” in our training data.

Figure 10: Comparison with GaussianCube.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A red toy truck.
A set of wooden blocks
arranged in a circle.

A gray car.

A cartoon character wearing a
blue hat, overalls, and gloves.

Finn wearing a blue
shirt and shorts, with
arms outstretched.

A house.

A gray metal mug
with a handle.

Japanese Pagoda.

White screw.
An ancient clay vase
with a handle. A yellow toy truck. A small wooden chair with

a back, seat, and legs.

A cartoon man with pink
hair and a purple outfit.

Blue and black pixelated
toy car with wheels.

Pixel art model of a blue
and white truck.A red and black gun.

A purple and blue triceratops
with horns and spikes.

A small tower-like podium
with a wooden base and
hood.

A sword with a yellow
handle.

A low poly a green tree.

A blue and yellow
fighter jet

A wooden toy castle
with towers and turrets
made of stacked blocks.

A snow-covered
tree stump.

A small Japanese stone
lantern monument.

A small house with a roof.

Figure 11: More generated samples (without SDS Refinement).

16

	Introduction
	Related Works
	Revisiting Gaussian Splatting
	Methodology
	Triplane-based GS Field
	TriRenderer
	Triplane VAE
	Two-stage Latent Diffusion for Text-to-3D Generation
	SDS-based Texture Booster

	Experiment
	Triplane Fitting and VAE Reconstruction
	Direct 3D GS Generation by LDM
	Texture Boosting by SDS
	Ablation Study

	Conclusion
	Appendix
	Dataset Information.
	Implementation Details.
	Comparison with GaussianCube.
	More Generation Results (without SDS Refinement).

