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ABSTRACT

We present DirectTriGS, a novel framework designed for 3D object generation
with Gaussian Splatting (GS). GS-based rendering for 3D content has gained con-
siderable attention recently. However, there has been limited exploration in directly
generating 3D Gaussians compared to traditional generative modeling approaches.
The main challenge lies in the complex data structure of GS represented by discrete
point clouds with multiple channels. To overcome this challenge, we propose
employing the triplane representation, which allows us to represent Gaussian Splat-
ting as an image-like continuous field. This representation effectively encodes
both the geometry and texture information, enabling smooth transformation back
to Gaussian point clouds and rendering into images by a TriRenderer, with only
2D supervisions. The proposed TriRenderer is fully differentiable, so that the
rendering loss can supervise both texture and geometry encoding. Furthermore, the
triplane representation can be compressed using a Variational Autoencoder (VAE),
which can subsequently be utilized in latent diffusion to generate 3D objects. The
experiments demonstrate that the proposed generation framework can produce
high-quality 3D object geometry and rendering results.

1 INTRODUCTION

Neural rendering has grown to a focal point in rendering techniques in recent years, as it achieves
more realistic rendering effects by leveraging the great expressiveness of neural network. The
representatives are neural radience field (NeRF) (Mildenhall et al., 2021) and the newly emerged
Gaussian Splatting (GS) (Kerbl et al., 2023). However, when applied to the field of 3D generation,
the slow rendering and training speed become a strong limitation for NeRF. While GS is more flexible
with greater rendering efficiency and editability, few works have addressed the challenge of direct
GS generation in 3D due to its complex data structure. In this paper, we propose a novel approach
called DirectTriGS, which encodes GS as triplane representation, and introduce its corresponding
renderer, TriRenderer. Subsequently, we apply latent diffusion on the Triplane representation to
generate high-quality GS objects.

Gaussian splatting uses multi-channel point cloud of “splats” to describe the 3D contents. With a
differentiable splats rasterizer, GS has fast rendering speed. However, the sparsity, multiple channels,
and uneven distributed density of 3D GS bring great difficulty for 3D generation. We propose to
encode GS contents as multi-channel triplane representations, which have been shown to possess
favorable properties for representing 3D geometry or NeRF, as demonstrated in previous works Wu
et al. (2024); Shue et al. (2023). In our work, we leverage the triplane representation to encode both
the geometry information and other GS attributes in two separate groups of channels. By training on
a dataset of 3D objects, we obtain a shared TriRenderer that is capable of decoding different triplane
representations to GS and then render it to image. TriRenderer is fully differentiable, enabling the
use of only 2D rendering loss to supervise both the texture and geometry of 3D GS. The advantage
of using Triplane to represent GS are two folds. First, it leads to high memory efficiency compared
with dense voxels and is expressive enough for generating various 3D GS. Second, Triplane is more
compatible with the convolution-based encoders compared with the original sparse GS point cloud,
which require specifically designed networks on processing sparse point clouds.

We follow stable diffusion (Rombach et al., 2022) to train DirectTriGS on the proposed triplane
representation. Specifically, a VAE is designed to further convert the Triplanes into latent code. We
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use two separate decoders to decouple the decoding of geometry and GS attributes. Second, we roll
out the triplane latent to an expanded multi-channel image, then exploit staged latent diffusion to do
generation. Two-stage diffusion is employed to generate the geometry and the corresponding GS
appearance. Finally, score distillation sampling (SDS) (Poole et al., 2022) is adopted as a optional
post-processing to refine or restyle the generated 3D objects.

Our contribution can summarized as follows. 1) We propose a Triplane representation for direct 3D
GS generation, which is memory efficient to derive GS point clouds with vivid rendering. 2) We
design a fully differentiable TriRenderer to enable the end-to-end training of triplane representations,
with only 2D supervisions. 3) We develop a Triplane-based GS generation framework DirectTriGS
that incorporates a specially designed VAE, latent diffusion module, and a SDS based refiner. 4)
Experiments demonstrate our method produces competitive performance in both 3D geometry and
multi-view rendering quality.

2 RELATED WORKS

Gaussian Splatting. Gaussian Splatting (Kerbl et al., 2023) exploits pointcloud of splats to describe
the 3D content, and every splat is a 3D ball with a shape of Gaussian distribution, and it has other
properties like opacity, color or SH parameters. The GS can be rendered like mesh using a special
designed rasteraization, which allows real-time rendering of photorealistic scenes. As a newly
developed rendering technique, there emerges so many research focusing on its reconstruction quality
enhancement and algorithm optimization (Yu et al., 2023; Cheng et al., 2024; Fan et al., 2023; Lu
et al., 2023). Another related active area includes 4D dynamic GS modeling (Wu et al., 2023a;
Yang et al., 2023; Chen et al., 2023c) , scene editing (Fang et al., 2023; Chen et al., 2023b) and its
applications like SLAM (Matsuki et al., 2023; Yan et al., 2023).

3D Object Generation. Recently, there emerges many works aiming to solve the geometry generation
and rendering in combination, which can be roughly divide into 2 groups. First is the route of multi-
view image to 3D, which generate multi-view colored 3D image and then reconstruct the 3D shape
and project image to texture, such as Poole et al. (2022); Shi et al. (2023); Höllein et al. (2023);
Liu et al. (2023); Chung et al. (2023); Tang et al. (2023). Since these approaches are actually 2D
generator, it is difficult to maintain 3D consistency, which may lead to Janus problem. And the second
group mainly operate in 3D, which can be clustered by different 3D representation. For example,
Gupta et al. (2023); Gao et al. (2022) are able to generate high-quality 3D textured meshes using
differentiable rendering; Nichol et al. (2022); Wu et al. (2023c) generate colored pointcloud; Chen
et al. (2023a); Metzer et al. (2023) generate NeRF volumes; Ju et al. (2023); Wu et al. (2024)generate
SDF volumes.

As for GS generation, some works exploit multi-view image based route such as Chung et al. (2023);
Tang et al. (2023), where the image generator output image from required views to enhance the GS
rendering in a recursive manner. Rare works explore the GS generation directly in 3D space, such as
Zou et al. (2023) generates a point cloud using a Transformer structure with 2D image as input, and
build a mapping of image to tri-plane encoding of GS attribute; GaussianCube (Zhang et al., 2024)
proposes to use optimal transport to model the 3D GS for text-to-3D generation.

3 REVISITING GAUSSIAN SPLATTING

Gaussian Splatting Kerbl et al. (2023) uses a set of Gaussian points to describe a 3D object. The
Gaussian points are defined by a full 3D covariance matrix Σ in a world space as G(x) = e−

1
2x

TΣ−1x,
centered at point (mean) p ∈ R3. Each point is with a opacity scalar α ∈ [0, 1] for blending and a
series of Spherical Harmonics (SH) coefficients to correctly capture the view-dependent appearance
of the scene. The number of SH coefficients are 3× (n+ 1)2, where n denotes the SH order, and
higher n corresponds to more accurate view-dependent appearance.

During rendering, the Gaussians are project to 2D given a viewing transformation W. The covariance
is transformed as Σ′ = JWΣWTJT , where J is the Jacobian of the affine approximation of the
projective transformation. To ensure Σ to be semi-positive in the whole training process, Σ can be
represented by a Cholesky decomposition as Σ = RSSTRT , represented by a tuple s = (s1, s2, s3)
for scaling and a unnormalized quaternion q ∈ R4 for rotation. In summary, each Gaussian point are
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1) Represent objects as Triplanes. 2) Train a Triplane VAE. 3) Generation by LDM on Triplane latent.
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(a) The overall procedure of our 3D content generation framework.

(b) The forward pass of the TriRenderer pipeline: rendering a Triplane to multi-view images.

SDS with Pretrained
2D Stable Diffusion

4) Optional Refinement by SDS.

Figure 1: The overview of the proposed 3D GS generation framework and the core component
TriRenderer. We use triplane to represent 3D objects, and design a TriRenderer to decode triplane to
GS pointcloud and render multi-view images.

a union set of position p and its GS attributes:

Gp := {s,q,SH, α}. (1)

GS pointcloud can be efficiently rendered by a rasterization-based splatting renderer (Kerbl et al.,
2023), which is fully differentiable.

4 METHODOLOGY

Our motivation is to directly generate 3D GS with fast speed by utilizing the proposed triplane-based
GS representation. While 2D-lifting methods like SDS-based approaches yield intricate results,
they are time-intensive and susceptible to Janus problem. Direct generation, notably with fast
sampling, can complete 3D generation in under a minute, contrasting with SDS methods that take
over 10 minutes or longer, such as Chen et al. (2024)Wang et al. (2024), posing challenges for users.
Therefore, direct 3D generation is more practical, with 2D-lifting reserved for enhancing texture
details when needed.

The procedures of our generation framework can be divide into 4 stages as shown in Fig.1 (a). Firstly,
we encode the 3D objects into triplanes using the TriRenderer. The triplane encoding and TriRenderer
training can be concurrently executed with only the multi-view RGBA image and camera poses as
supervision. Secondly, a VAE is trained to compress the triplanes to latent space, enabling effective
capture of high-level information for subsequent modules. Thirdly, a diffusion model is trained on
the triplane latent code. During inference, the diffusion model produces the latent code, which can
be decoded back to its corresponding triplane by the VAE decoder. Subsequently, the TriRenderer
decodes the triplane into the standard GS point cloud. Finally, an SDS-based refiner can be utilized
as an optional post-processing step to enhance or restyle the generated 3D object. Leveraging the
pretrained 2D diffusion model within the SDS, the generated GS can be further improved to achieve
a more detailed appearance.

4.1 TRIPLANE-BASED GS FIELD

We employ triplanes to convert the discrete multi-channel GS point cloud into a continuous field,
tailored for more efficient encoding in the subsequent generative model. Triplanes are 3 planes formed
by every 2 axes of x, y, z axes in 3D space, where every 3D point p can query these planes to get
corresponding features Fp = (Fxy, Fxz, Fyz) using orthogonal projection. In real implementation,
triplane is a tensor with the size of 3×H ×H × C, where H denote the resolution along every axis
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and C is the feature channel. The query of point with arbitrary continuous coordinate should be a
bi-linear intepolation in the triplane grids. Considering GS is a set of points with multiple channels
of attributes, it is natural to use triplane for GS encoding. If the triplane feature and GS attributes of a
point can be transformed to each other, the sparse GS pointcloud of every object can be represented as
continuous triplane GS field for further encoding. We use separate channels to encode 3D geometry
and other GS attributes as described in Eq. 1, which is an experimental setting for better convergence
in the training.

4.2 TRIRENDERER

The TriRenderer serves as the crucial component for converting a 3D object into a triplane-based
GS field. It acts as a fully differentiable bridge connecting the GS field with rendering, enabling the
optimization from 2D images to geometry and appearance encoding.

As depicted in Fig. 1 (b), the TriRenderer comprises a geometry branch and a GS attribute branch,
each equipped with independent decoders to decode the triplane. The geometry branch is responsible
for retrieve the geometry as triangular mesh from triplane, with a surface sampler for GS pointcloud
sampling. Then GS attribute branch uses the obtained pointcloud to query the triplane to obtain the
GS attribute corresponding to each point. In this way, the GS pointcloud in the original format is
retrieved, and can be rendered using the original GS renderer. It is worth mentioning that all triplanes
of different object share a common TriRenderer, which ensures the features on different triplanes
subject to a similar distribution.

Geometry Branch. We use signed distance function (SDF) to represent the geometry, and allow
every vertex deform as Shen et al. (2021), so that the geometry branch decodes Fp to a SDF volume
and its vertice deformation. By query all grid coordinates of the designated resolution L×L×L, the
deformable SDF volume is reconstructed. Then we exploit a differentiable Marching Cube algorithm
FlexiCubes (Shen et al., 2023) to extract triangular mesh from the SDF volume.

Surface Sampling. Considering that GS pointcloud is generally gathered on the surface of objects,
we randomly sample GS points on the faces of triangular mesh with barycentric coordinates. We
expect that every splat is flat and with a normal consistent with its source triangular face. Assume
a face is formed by vertices < va, vb, vc >, and vector v1 = (va − vb), v2 = (vb − vc), the face
normal can be calculated as n = v1 × v2. Then the rotation matrix of every splat drawn from this
face can be formulated as

R = [v1,n× v1,n] , (2)

which can be transform to q in Eq.1 by standard matrix-to-quaternion algorithm. To make the splats
flat, s3 in Eq.1 is fixed to an infinite small value.

To further reduce the computational load in the subsequent GS rendering process, only faces oriented
toward the camera are sampled. These face indices can be obtained through fast rasterization of
the mesh faces. Note this rasterization is not required to be differentiable, and we use the library
Nvdiffrast (Laine et al., 2020) for implementation.

GS Attribute Branch. By querying the triplane GS channels with the sampled pointcloud, we can
obtain the GS feature and use the GS attribute branch to transform them to the rest GS attributes.
Then the GS renderer can render GS pointcloud to multi-view images. Since different GS attributes
have different numerical scales and distributions, we customize individual headers to decode them
respectively, which is similar to Zou et al. (2023).

Training. The training consists of 2 stages. In the first stage, a small batch of data is used to train
the triplanes and the TriRenderer together. The second stage involves the whole dataset to train all
triplanes with the parameters of TriRenderer frozen. In this way, we can handle large dataset by
distributed training in the second stage, and the same TriRenderer can be shared by all triplanes.
There is no need to pre-train the GS pointcloud using original GS training as Kerbl et al. (2023).

The only required supervision data is N multi-view images {Ii}Ni=1 with camera poses, and the
training losses consists of the rendering loss Lrender and the geometric regularization Lgeo. The
rendering loss is a weighted sum as

Lrender = w1Lalpha + w2Lrgb + w3Lpips, (3)
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(a) The structure of Triplane VAE.
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GS Attributes Channel

(b) 2-stage latent diffusion.

Figure 2: Triplane VAE and 2-stage diffusion.

where Lalpha is a L1 loss on the alpha map, namely the silhouette image loss; Lrgb is a combination
of L1 pixel loss and SSIM loss (Wang et al., 2004) between rendered image Îi and ground truth Ii:

Lrgb =

N∑
i=1

(1− β)∥Ii − Îi∥1 + βSSIM(Ii, Îi), (4)

and Lpips is the perceptual loss (Johnson et al., 2016). w1, w2, w3 and β are all weighting factors
determined by experiments.

The geometric regularization loss on the SDF volume V is defined as

Lgeo = γ1Ldev + γ2Lweighting + γ3LCE + γ4Lsign, (5)

where the Ldev and Lweighting are defined by Flexicubes (Shen et al., 2023) to regularize the extracted
connectivity and the weighting scale of SDF vertices. To penalize the sign changes on all grid edges,
we follow Munkberg et al. (2022) to define LCE as

LCE =
∑

(sa,sb)∈ϵ

CE(σ(sa), sign(sb)), (6)

where CE denotes cross entropy; ϵ is the set of all edges connecting vertices with different signs; and
σ is the sigmoid function. Finally, Lsign is designed to prevent the SDF volume from being trapped
in an empty shape, i.e. a fully positive or fully negative SDF volume,

Lsign = δ(V )M(|V |), (7)

where δ(V ) = 1 if V is empty, otherwise δ(V ) = 0. M(|V |) denotes the mean of the absolute value
of V .

4.3 TRIPLANE VAE

We employ an UNet-like structure of VAE to compress the triplane to latent space. The training
pipeline is demonstrated in Fig. 2 (a). Considering that the 3 planes of triplanes encodes features
from 3 orthogonal view direction, these 3 planes should be homogeneous data, so that We reshape the
triplanes of batchsize B to a new batch as B × 3×H ×H × C to 3B ×H ×H × C for the VAE
training. We use decoupled encoders and decoders for geometry and GS channels of triplanes, for
experiments prove that a mixed encoding may lead to blur of the rendering results. After the triplane
is reconstructed, the TriRenderer trained in Section.4.1 can be used to retrieve the GS pointclouds
and render it to images.

In the training process, same loss functions as Eq. 3 and Eq. 5 are used, along with an L1 loss between
the input and reconstructed triplanes, denoted as LTri. Additionally, a Kullback–Leibler divergence
loss LKL is included to ensure that the latent variables do not deviate significantly from a normal
distribution. The total losses is summarized as

LVAE = LTri + LGeo + LRender + γLKL, (8)

where γ is a small weight.
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Figure 3: Score distillation process(SDS) for optional texture refinement.

4.4 TWO-STAGE LATENT DIFFUSION FOR TEXT-TO-3D GENERATION

Taking into account the significant relevance of texture appearance to the underlying geometry, we
proposed to utilize staged diffusion to generate geometry and GS attribute successively as shown in
Fig. 2 (b). It is easy to implement it because the latent codes for geometry and other GS attributes
are totally decoupled by VAE, as mentioned earlier . In this way, the geometry code can be a new
condition for the second stage.

We follow DDPM Ho et al. (2020); Karras et al. (2022) to implement the latent diffusion conditioned
on the text description. To better capture the relation between different planes, we roll out the triplane
latent of B × 3× h× h× c to a image-like B × 3h× h× c as the input of diffusion model, and the
generated result will be transformed back to the original shape for TriRenderer decoding.

4.5 SDS-BASED TEXTURE BOOSTER

To refine or restyle the generated GS pointcloud, we utilize a pretrained 2D diffusion model for the
SDS training process (Poole et al., 2022) as shown in Fig. 3. As the generated 3D GS is constrained
by the mesh reconstructed from SDF, detailed in Section 4.2, we maintain the GS splats’ adherence
as previously established. However, we enable the mesh vertices to shift within a limited radius to
enhance the stability of the SDS process. Additionally, throughout the entire SDS procedure, there
is no need for densification or pruning operations. This ensures that the number of points can be
controlled to align with the number of mesh faces.

With the RGB image rendered from the initial GS pointcloud, the 2D diffusion model can produce
images with better 2D/3D consistence in different views, so that the optimization process can converge
rapidly without Janus problem.

5 EXPERIMENT

The experiments are conducted step-by-step according to the generation pipeline proposed as Fig.1 (a).
We use OmniObject3D (Wu et al., 2023b) dataset for toy experiments, and Objaverse (Deitke et al.,
2023) dataset for main evaluation. First, we sample 200K object to train their cooresponding triplanes
and TriRenderer. Then we train the VAE and diffusion model for 3D GS generation. Finally, we
exploit SDS to boost the texture quality for unsatisfactory generated objects. The procedure of data
pre-processing and the implementation details are included in the appendix section A.

The experimental results primarily consist of the following components: 1) A simple check of
the trained triplane and VAE reconstruction. 2) For examining the proposed triplane modeling for
GS generation, we focus on the text-to-3D task and showcase the direct GS generation outcomes
qualitatively and quantitatively. These results are compared with Shap-E (Jun & Nichol, 2023),
Direct3D Liu et al. (2024), and the most recent GaussianCube (Zhang et al., 2024). 3) In comparison
to 2D-lifting GS generation methods, we present the performance of SDS refinement on unsatisfying
samples, with GSGEN (Chen et al., 2024) and GaussianDreamer (Yi et al., 2024) as baselines.

5.1 TRIPLANE FITTING AND VAE RECONSTRUCTION

Triplane Fitting. We adopt a resolution of 3×128×128×16 for all triplane fitting, with a resolution
of 64 × 64 × 64 for the deformable SDF grids. We randomly sample 1000 objects for the shared
TriRenderer training, and train all residual objects distributively. Every triplane is initialized with
Gaussian noise before training. Under such settings, every triplane takes less than 30 seconds for
geometry and GS appearance reconstruction.
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Figure 4: Channel visualization of sample triplanes.

To better investigate whether it is reasonable to encode triplane using convolution-based methods,
we simply scale the channel value of trained triplanes to pixel range and visualize them as shown in
Fig. 4, where clear shapes from 3 different views can be observed.

Figure 5: Triplane reconstructed by VAE. Left: ground truth. Right: reconstruction.

VAE Reconstruction.We use a down-sample factor of 4 to compress the triplanes to latent space. A
slight blur in the reconstructed pictures are observed as Fig.5, which is inevitable but acceptable.

5.2 DIRECT 3D GS GENERATION BY LDM

In this section, we present the results of our 3D GS object generation without the SDS refinement, both
quantitatively and qualitatively. Due to the current scarcity of work targeting direct 3DGS generation,
we selected two state-of-the-art text-to-3D works based on other 3D representations(NeRF) Shap-
E (Jun & Nichol, 2023) and Direct3D (Liu et al., 2024) for comparison. For fairness, these selected
methods also perform direct generation in the 3D domain without any refinement based on 2D
diffusion. Additionally, we provide a qualitative comparison with GaussianCube (Zhang et al., 2024)
in Appendix A.3.

Qualitative Results. The generation results from different methods are listed in Fig. 6. Every
generated sample is rendered from different views accompanied by the provided text prompt captioned
beneath the images. Our method showcase enhanced proficiency in both geometry and rendering
quality, resulting in sharper and clearer outputs, which can be further verified in the subsequent
quantitative evaluation. For more generated samples, please check the appendix section A.

Quantitative Results. We use CLIP score to evaluate the text-to-3d consistency, and an user study is
conducted to evaluate the generation results from various aspect such as geometry, texture, realistic
rendering and the consistency with given prompt. 49 users participated in the user study to score the
over 50 3D samples from 1 to 5 points, and the average results are shown in Tab. 1. As for the CLIP
score, the open-source repository t2vmetrics (Lin et al., 2024) is used to calculate the CLIP score
on two versions of ViT models, and the results are demonstrated in Tab. 2. Both the CLIP score and
the user study indicate that the proposed method produces better performance.

5.3 TEXTURE BOOSTING BY SDS

To compare with other SDS-based 3D GS generation methods, we implement a version of SDS for
our mesh-binding GS representation as described in Section 4.5. GSGEN (Chen et al., 2024) and

7
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A small, futuristic, car with wheels, 
resembling the DeLorean time machine.

A small wooden roof.

A chair with holes in it.

A golden pagoda. 

A toy pickup truck with a wooden bed.

A wooden beer mug.

A triceratops toy dinosaur with blue and 
orange stripes and horns.

A green and black robot model with 
outstretched arms.

A blue and white barrel with a white stripe.

Thor's hammer with a wooden
handle and green accents.

A knitted teddy bear monkey. 

An AK47.

A small house-tower hybrid with castle 
elements on a square base.

A small blue and yellow Pokemon character 
with big eyes.

A pixelated robot character with a green hat and 
shirt, featuring blue, grey, and purple accents. A sword with a green handle.

A red fire hydrant with a metal cap.

A White Horse Bourbon bottle.

（a）Comparison with Direct3D.

（b）Comparison with Shap-E.

Ours Direct3D Direct3D Direct3DOurs Ours

Ours Ours OursShap-E Shap-E Shap-E

Figure 6: Comparison of generated 3D objects (without SDS refinement).

Geometry↑ Texture↑ Realistic Rendering↑ Prompt Consistency↑ Overall↑
Shap-E 3.080 3.019 2.947 3.121 3.042
Direct3D 3.222 3.150 3.118 3.242 3.183
Ours 3.456 3.383 3.332 3.520 3.423

Table 1: User study on generated 3D objects (without SDS refinement).
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Shap-E Direct3D Ours

openai:ViT-L-14 0.2398 0.2152 0.2456
openai:ViT-L-14-336 0.2426 0.2220 0.2462

Table 2: CLIP score(↑) for evaluation of similarity between rendered images and given text prompt.

More Realistic (%) More Detailed (%) Overall (%)

GaussianDreamer 35.0 50.0 42.5
GSGEN 17.5 5.0 11.3
Ours 47.5 45.0 46.3

Table 3: User study on generated 3D objects (with SDS refinement).

GaussianDreamer (Yi et al., 2024) are selected as our baselines. The generated samples, as illustrated
in Fig. 7, highlight that with the SDS refiner, our DirectTriGS can deliver competitive outcomes
comparable to the state-of-the-art 2D-lifting methods.

Furthermore, we conducted a user study for quantitative evaluation. 40 users were tasked with ranking
15 samples from different methods based on two criteria: realism and level of detail. The results
indicate that our approach marginally outperforms the other baseline methods.

5.4 ABLATION STUDY

3D Diffusion for voxel-based Gaussian Splatting. We attempt to do GS attribute generation
conditioned on given voxel occupancy via 3D diffusion model. However, even a toy experiment of
over-fitting one single object failed, which may attributes to the complex multiple channels with
different distributions especially the non-Euclidean ones such as quaternion. As shown in Fig.8, the
diffusion model learns to generate color but fails to generate splat scaling, opacity and orientation.

Triplane Diffusion without VAE. Since VAE inherently involves a reconstruction loss, we attempt
to use direct diffusion on the triplane space for generation. The experiment results shows that such
direct diffusion may cause serious noise on decoded geometry. Randomly generated samples are
visualized in Fig.9. A possible reason is that the multi-channels of triplane contains considerable
redundancy or noise, which is difficult to be captured or filtered by the diffusion model.

Inference Efficiency. The inference efficiency is listed in Table 4. This experiment is conducted on
the platform equipped with RTX3090 GPU with 24GB memory.

6 CONCLUSION

We have presented a novel framework DirectTriGS for Gaussian Splatting Field generation. Direct-
TriGS mainly consists of 3 parts: 1) a light-weight triplane representation for 3D object with the
format of Gaussian Splatting; 2) a fully differentiable TriRenderer which can decode triplane to
orginal GS and render it to multi-view images; 3) the triplane VAE and staged diffusion model for
the whole generation process. By utilizing our DirectTriGS, the intricate GS data can be generated
directly and efficiently. 4) Additionally, we incorporate a SDS refiner to further improve the texture
and details of generated objects.

Table 4: Inference efficiency of the generation (single stage of LDM), with the batch size is 1.
TFLOPs Parameters(M) GPU Memory(GB) Running Time (Second)

Generation 0.00823 56.65 2.94 < 8.0
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A Spiderman character in a red, yellow, and blue outfit.

A green and white vase with a Greek design and logo, resembling a tea cup.

Red and black clown mask with horns and deer head features.

A human skull.

A plane.

An astronaut in space suit.

Ours(with SDS) GSGEN GaussianDreamerOurs(Before SDS)

Figure 7: Refinement of unsatisfactory results by SDS, compared with pure SDS-based methods
GSGEN and GaussianDreamer.

Figure 8: Failure of GS at-
tribute generation.

Figure 9: Noisy results of direct diffusion on triplane. The condition
prompt are "train", "watermelon" and "box".
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A APPENDIX

A.1 DATASET INFORMATION.

Objaverse Deitke et al. (2023) is the main dataset for our experiment, which contains over 800K 3D
objects. As the rendering process on such a massive dataset is very time-consuming, we adopt the
pre-processed version sourced from the repository of Qiu et al. (2023), which pre-filters over 260K
samples. In this processed dataset, every object is normalized to the voxel range of [±0.5,±0.5,±0.5],
and rendered to RGBA images in a resolution of 512 ∗ 512 ∗ 4, with 40 views in total. Our training
data only comprises multi-view images and their corresponding camera poses, without any kind of
original 3D data.

A.2 IMPLEMENTATION DETAILS.

Triplane. The triplane resolution is configured as 3×128×128×16, where 16 represents the channels
within each grid. The first half of the channels is designated for encoding geometry information,
while the remaining half is allocated for encoding GS appearance details. Each triplane is initialized
to random Gaussian noise with a standard deviation of 0.01. This random initialization allows the
triplane to be decoded into random SDF values, subsequently leading to the generation of diverse
fragmented mesh faces. Upon rasterization of these faces onto the screen, the geometry loss facilitates
swift removal of undesired faces. During our experiments, we observed that this initialization method
enables faster convergence compared to zero initialization.

As for loss configuration, we configure w1 = 5.0, w2 = 1.0, w3 = 1.2, β = 0.2, γ1 = 0.2, γ2 = 0.1,
γ3 = 0.01, γ4 = 1.0 by experiments, corresponding to the loss function described in Eq. 3, Eq. 4 and
Eq. 5.

TriRenderer. As for the TriRenderer instroduced in Fig.1, both the geometry decoder and the GS
attribute decoder inside it are composed of linear blocks. In the GS attribute decoder, there are 3
headers for GS splats scaling, opacity and SH prediction, and the rotation is fixed by the mesh face
normal as introduced in Section 4.2. All the GS attribute headers are linear layers. We set SH degree
to 1 in all experiments, which is enough to obtain satisfying results on Objaverse.

A.3 COMPARISON WITH GAUSSIANCUBE.

GaussianCube (Zhang et al., 2024) is the most recent paper aiming to solve a similar task of ours,
which can generate 3D GS directly without SDS or reconstruction from images. As for now, the
authors of GaussianCube have not release their pre-trained models for text-to-3D task on Objaverse
dataset. Therefore, we just use the images provided in their paper for a qualitative comparison. The
generated samples are shown in Fig. 10. Our method produces more diverse and detailing generation
results.

A.4 MORE GENERATION RESULTS (WITHOUT SDS REFINEMENT).

More generated samples are rendered as Fig. 11.
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A yellow tea kettle.

A pair of sunglasses with blue lenses.

A blue and yellow fish with a big eye.

A wooden bench.

Ours(without SDS refinement)GaussianCube

A blue and white cartoon character
of Sonic the Hedgehog.

GaussianCube Ours(without SDS refinement)

A blue and white cartoon character
of Sonic the Hedgehog.

（a）Generation with same prompts.

（b）Generation with slightly different prompt, for we do not include “Sonic the Hedgehog” in our training data.

Figure 10: Comparison with GaussianCube.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A red toy truck.
A set of wooden blocks 
arranged in a circle.

A gray car.

A cartoon character wearing a 
blue hat, overalls, and gloves.

Finn  wearing a blue
shirt and shorts, with
arms outstretched.

A house.

A gray metal mug 
with a handle.

Japanese Pagoda.

White screw.
An ancient clay vase 
with a handle. A yellow toy truck. A small wooden chair with

a back, seat, and legs.

A cartoon man with pink
hair and a purple outfit.

Blue and black pixelated
toy car with wheels.

Pixel art model of a blue 
and white truck.A red and black gun.

A purple and blue triceratops 
with horns and spikes.

A small tower-like podium 
with a wooden base and 
hood.

A sword with a yellow 
handle.

A low poly a green tree.

A blue and yellow
fighter jet

A wooden toy castle
with towers and turrets
made of stacked blocks.

A snow-covered
tree stump.

A small Japanese stone 
lantern monument.

A small house with a roof.

Figure 11: More generated samples (without SDS Refinement).
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