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ABSTRACT

In this work, Fourier Neural Operators are employed to improve control and op-
timization of an experimental module of the IFMIF-DONES linear accelerator,
otherwise hindered by its simulations high complexity. The models are trained
to predict beam envelopes along the lattice’s longitudinal axis, considering varia-
tions in quadrupole strengths and particle injections. They serve three purposes:
enabling fast inference of beam envelopes, creating an environment for training a
Deep Reinforcement Learning agent responsible for shaping the beam, and devel-
oping an optimizer for identifying optimal accelerator parameters. The resulting
models offer significantly faster predictions (up to 3 orders of magnitude) com-
pared to traditional simulators, with maximum percentage errors below 2 %. This
accelerated simulation capability makes it feasible to train control agents, since
the time per step taken is reduced from 3s to 4 x 10~3s. Additionally, Stochastic
Gradient Descent was applied to optimize one of the models itself, determining the
best parameters for a given target and thus solving the inverse problem within sec-
onds. These results demonstrate the synergy and potential of these Deep Learning
models, offering promising pathways to advance control and optimization strate-
gies in the [IFMIF-DONES accelerator and in other complex scientific facilities.

1 INTRODUCTION

One of the foremost challenges in future nuclear fusion power plants is studying the effects of
neutron irradiation on reactor materials. In addressing this issue, the IFMIF-DONES facility aims to
build a linear accelerator in order to generate a neutron spectrum similar to that of a fusion reaction
by the collision of deuterons with a lithium circuit (Bernardi et al., 2022)). This study, conducted
within the DONES-FLUX project, explores the joint application of Deep Learning Surrogate Models
(DLSMs) and Deep Reinforcement Learning (DRL) in order to improve the optimization and control
of the facility.

DLSMs are models of physical, chemical, or biological processes based on Artificial Intelligence
(AI), that enable rapid and accurate high-fidelity simulations. This technique provides a method
to accelerate complex simulations, governed by partial differential equations, with data (Hao et al.,
2023). On the other hand, DRL is an Al paradigm that is applied to solve sequential decision-
making problems (Graesser & Keng},|2019). In this approach, an agent interacts with an environment
(usually simulated) that provides feedback in the form of rewards or penalties based on its actions.
DRL-based controllers can improve the development and efficiency of traditional systems, allowing
agents to achieve goals set by experts instead of constantly making manual adjustments (Degrave
et al.l [2022)). Training DRL agents using traditional simulators becomes impractical due to the
substantial time required to process each step. In this context, the use of DLSMs helps expedite
execution times, enabling the online learning of such agents.

In this work, we train two Fourier Neural Operator (FNO) (Li et al.,|2020) models with data from the
OPAL simulator (Adelmann et al., 2019). The selection of this architecture is motivated by the fact
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that it is purely data driven, since there is a lack of comprehensive knowledge regarding the differ-
ential equations that govern the transfer of beam bunches across the accelerator. Moreover, the FNO
is discretization invariant which enables multi-resolution approaches, an advantage compared with a
neural network |Azizzadenesheli et al.| (2024)). The simulator makes use of the Monte Carlo method
for the interactions of particles along the lattice, which is stochastic. This is a computationally ex-
pensive process which incentives the development of model capable of predicting the macroscopic
distributions and envelopes of the particles. The distribution of particles along the accelerator is
a two-dimensional Gaussian \Wiedemann| (2015), for this reason for our purposes of training DRL
agents, predicting only the beam envelope (standard deviation along the two transversal axes) can
be seen as a form of feature engineering, in which we are reducing an observation space of 20000
particles to a two-dimensional space, otherwise untraceable.

The trained models are able to predict the deuteron envelopes along the longitude of an experimental
module of the linear accelerator, displayed in the lower part of Fig. [I} These models find three
different applications: fast prediction of beam envelopes, training of a DRL agent that controls the
geometry of the beam at the end of the lattice, and building an optimizer to find the best parameters
for a given configuration. The problem can be set as design problem if the geometry of the beam is
static or as a real time control problem if the geometry is dynamic (for instance, the currents of the
quadrupoles can be controlled). For the second option, the DRL agent can be used to optimize the
design of the lattice and to correct the beam geometry in real time, as the footprint at the target needs
to have a specific shape for the reaction. For details on FNOs and DRL, refer to Section [2| Section
[3] presents the methodology and obtained results, while the discussion is encapsulated in Section [4]

2 MODELS

Neural operators (NOs) represent an emerging branch of DLSMs, extending the architecture of neu-
ral networks for the approximation of operators capable of mapping between infinite-dimensional
function spaces (Kovachki et al.| 2023). This generalization becomes particularly relevant for solv-
ing systems of partial differential equations, which can ultimately represent physical phenomena.
The main architecture of these models takes data from input functions a(z) to predict output func-
tions u(x), as can be seen in the upper part of Fig. The layer P maps the input function to its
first hidden representation, which is then passed through layers of kernels with non-linear activation
functions, and finally taken to the output representation with the layer (). The FNO model employs
the Fourier transform for computing the kernels (Li et al., 2020).

®—> Fourier layer 1 Fourier layer 2—> @ @ @ —»|Fourier layer T —»
] ] ] e

Figure 1: Top: architecture of Fourier Neural Operators, from the work of |Li et al.|(2020). Bottom:
experimental module lattice with an injector, drift zones, quadrupoles and sensors in the target.

On the other hand, DRL techniques consist of two fundamental elements: the environment and the
agent. The environment represents the model of the problem to be solved, with states (S;) containing
information about the system at time ¢; whereas the agent is an algorithm that uses information
obtained from the environment to make decisions (Graesser & Keng|2019). Following the execution
of an action (Ay), the environment transitions to the subsequent state (Syy1), and a reward function
assesses whether the agent is progressing toward or deviating from the objective. These challenges
are framed as Markov Decision Processes, where learning occurs through the Bellman equations
and the agent’s experiences through multiple iterations. The primary objective for the agent is to
learn a policy function (7(S;)) determining optimal actions based on observed states. This function,
essentially the agent’s brain, is approximated through neural networks.
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3 METHODOLOGY AND RESULTS

3.1 FNO PREDICTIONS

The data required to train the FNO models was generated with simulations of deuteron bunche
travelling through the experimental lattice with varying conditions. The input functions are taken to
be the constant parameters controlling the shape of the beam. First, the injected Gaussian distribution
of particles (s;(z = 0), s,(z = 0)) lies within the interval [0.25, 0.75] mm. Second, the magnetic
strengths of the quadrupoles (k1, k2, k3) range between [-2.5, 2.5] T'm . The output functions that
the model predicts are the beam envelopes (in this case, the standard deviations), s, (z) and s,(z),
along the lattice longitudinal axis z. The end of the line is located at a distance z = L.
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Figure 2: Predicted and true standard deviations, on the = and y axes, of the beam along the longitu-
dinal axis for a test instance. These results were computed with the variable injection FNO model.
The residual errors are so small that the predicted values visually overlap the real values (see Fig.
[3). The negative component is plotted to display the symmetry of the beam in each axis.

Two models were trained using the nvidia—modulu framework. The first model (with constant
particles injection) took 1331 simulations, whereas the second model (with variable injection) made
use of 11979 simulations. The envelopes solution space con be found in Appendix [G] Prediction
results of the variable injection model (for one example on the test set) are displayed in Fig. | A
summary showcasing the results obtained in the test sets, including speed-up factors in comparison
to OPAL simulations and percentage errors, is presented in Tables [I] and [2] of Appendix [Al The
hyperparameters of the FNO architecture can be seen in Table[3] Other test examples and the residual
errors are displayed in Appendix [B] The box diagram of the model can be find in Appendix D}

3.2 DRL AGENT

The FNO model with variable injection is used to train a DRL agent in order to sequentially
reach different beam shapes at the end of the line. This is achieved through the manipulation of
quadrupoles acting as actuators. In each step, which corresponds to a deuteron bunch crossing, the
agent is able to incrementally modify the 3 quadrupoles (Ak1, Aks, Aks) with a set limi The
default state of the quadrupoles is (k; = 0, ko = 0, k3 = 0). The observation space for this

"Each bunch consists of 20000 particles.
Zhttps://github.com/NVIDIA/modulus—-sym
*It is a hyperparameter set to 0.25 Tm~".
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Figure 3: Deuteron distributions observed by the agent (20000 particles). Left: initial configuration.
Right: final state after taking 9 actions. Solid line: configuration to reach. Dashed line: current state
of the agent. This evaluation corresponds to the first point of Table [6]in Appendix [C} where other
solutions are shown.

agent is defined with the standard deviations (s, (L), s, (L)) at the target , the absolute state of the
quadrupoles and the target configuration to reach. The reason to limit the observation space of stan-
dard deviations to z = L is that in real applications only the distribution at the target would be
available using a camera or other sensor. Finally, the reward function was defined as the normalized
negative euclidean distance between the target and the current configuration, with a 10 % distance
threshold for the winning condition.

The wrapper for the DRL environment was built with the Gymnasium tool(Towers et al., [2023)
and then a Proximal Policy Optimization (PPO) (Schulman et al.l 2017) agent was trained with the
Stable-Baselines 3 framework (Raffin et al., 2021). Results for one example can be seen in Fig. EL
where the agent reaches the desired configuration (s, (L) = 3.7, s,(L) = 2.0) within 9 actions.
The 2-dimensional deuteron distributions are shown for the initial and final states at the target.
Diagrams with the training loop, the environment and the policy network can be seen in Appendix

Tables with the hyperparameters and the observations and actions spaces are shown in Appendix
E Additionally, Table[6]displays the agent evaluation and performance on other targets.

3.3 ACCELERATOR OPTIMIZATION

Another application of the FNO model comes from the fact that it is a differentiable PyTorch model,
thus the gradients can be utilized in inverse problems to find the optimal input parameters for a given
output (Zhou et al., [2024). In this case, we built a loss function with the target parameters of the
beam at the end of the lattice and used Stochastic Gradient Descent (SGD) to obtain the optimal
values of the quadrupoles and particles injections.

We applied the SDG optimization to both constant and variable injection models, with euclidean
distance to the target parameters as loss function, and a early stopping tolerance of 0.005, constrain-
ing the inputs to the domain in which the FNO has been trained. This method lead with both FNO
models to the optimal design in less than 32 seconds, a fast process compared with other techniques,
such as evolutionary algorithms or DRL methods. Optimization loop diagram can be found in Ap-
pendix [Df and tables with results for different runs and the parameters used by the optimizer are
shown in Appendix [
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4 CONCLUSIONS AND OUTLOOK

The trained FNO models exhibit a remarkable capability to predict beam envelopes at a speed 3
orders of magnitude faster than traditional simulations with OPAL, achieving a maximum percentage
error below 2 %. This accelerated prediction not only facilitates rapid inference of beam properties
but also enables the training of DRL agents within feasible time frames. The DRL agent achieves
the optimal policy in less than 20 minutes, a substantial improvement compared to the estimated
225 hours required with OPAL for 270k steps. Additionally, the differentiable nature of the FNO
model is leveraged to develop an optimizer for identifying optimal accelerator parameters, leading
to significantly reduced optimization times—merely seconds compared to alternative methods such
as DRL optimization or evolutionary algorithms.

These results underscore the synergistic potential of combining DLSMs with other Deep Learning
techniques, presenting promising avenues for advancing control and optimization strategies not only
in the IFMIF-DONES accelerator but also in other complex scientific facilities. In the context of
nuclear fusion power plant development, this study highlights the promising role of Al techniques
in advancing fusion research, as can also be seen in the work of Degrave et al.|(2022). Finally, the
next step of this research will be to apply these techniques to each of the modules of the IFMIF-
DONES facility.
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A APPENDIX: FNO MODEL SUMMARY

Table 1: Percentage errors for both FNO models and the two predicted functions. Top: constant
injection. Bottom: variable injection.

Error sz(2)  sy(2)
Max absolute % error 0.80 0.69
Mean absolute max % error  0.31 0.25
Mean absolute % error 0.08 0.08
Mean % error 0.03 0.01
Max absolute % error 1.90 1.57
Mean absolute max % error 0.74 0.65
Mean absolute % error 0.33 0.28
Mean % error 0.07 -0.05

Table 2: Inference times and speed up factors for both FNO models. Single stands for only one
simulation or inference, whereas multiple means the inference was performed on a set of instances.

Model Single [ms] Multiple [ms] Factor (single) Factor (multiple)
Constant injection 15.3 55.4 (267 instances) 2 x 107 1.5 x 103
Variable injection  15.5 370 (2396 instances) 2 x 102 2 x 103

Table 3: Nvidia-modulus hyperparameters for the FNO architecture.

Hyperparameter Value
scheduler tf_exponential _Ir
optimizer adam
loss sum
decoder.nr_layers 1
decoder.layer_size 32
fno.dimension 1
fno.nr_fno_layers 4
fno.fno_modes 12
scheduler.decay rate 0.95

scheduler.decay _steps 1000
training.rec_results_freq 500

training.max_steps 10000
batch_size.grid 32
batch_size.validation 32
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B APPENDIX: OTHER FNO TEST EXAMPLES

Test:1, k1: -0.5, k2: 1.0, k3: 1.0

Test:2, k1: -2.0, k2: -2.5, k3: -2.5
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Figure 4: Beam envelopes predicted by the FNO model with variable injection for 4 examples in the
test set. Each instance represents different injection and quadrupole values. The errors, as can be
seen in Fig. [5] are so small that the predicted and real curves completely overlap.
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Figure 5: Beam envelope residual errors for the same test examples from Fig. ] All the errors are
smaller than 6 x 10~ mm.
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C APPENDIX: DRL AGENT SUMMARY

Table 4: PPO hyperparameters used with Stable-Baselines 3. The agent training was stopped at

270k steps.

Hyperparameter Value
policy MultilnputPolicy
learning_rate 0.0008
n_steps 2048
batch_size 64
n_epochs 10
gamma 0.902
gae_lambda 0.95
clip_range 0.2
clip_range_vf null
normalize_advantage true
ent_coef 0
vf_coef 0.5
max_grad_norm 0.5
total_timesteps 1000000
act_function tanh
layers [64, 64]

Table 5: Spaces for the DRL problem and the gymnasium wrapper, with the minimum and maximum
values per variable. Top: observations space. Bottom: actions space.

Variable Min Max
kj, (Tm=1) 25 25
Sz (mm) 0 4
8y (mm) 0 4
Target s, (mm) 0 4
Target s, (mm) 0 4
Akj x 4(Tm=1) -1 1

Table 6: Agent evaluation for different configurations. It includes the target configuration, the so-
lution reached by the agent, the number of actions taken, the normalized distance between both
configurations (has to be smaller than the 0.1 threshold value for the victory condition) and the
quadrupole values. The first element is the one displayed in Fig.

Target (s;,s,) Solution (s.,s,) Actions Distance k1 ko ks
(3.70, 2.00) (3.68, 2.03) 9 0.03 225 225 -2.25
(3.24,2.34) (3.26, 2.35) 5 0.04 -1.22  -1.25 -1.25
(3.08, 2.50) (3.06, 2.51) 3 0.06 -0.72 -0.75 -0.74
(2.65,2.91) (2.71, 2.84) 2 0.09 0.50 0.16 045
(2.90, 2.65) (2.89, 2.67) 2 0.09 0.03 -0.50 -0.35
(2.55, 3.08) (2.52, 3.05) 3 0.09 075 073 0.75
(2.25, 3.38) (2.27, 3.35) 6 0.04 1.50 150 1.50
(1.95,3.79) (1.97,3.77) 10 0.02 250 250 250

10
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D APPENDIX: FNO AND OPTIMIZATION DIAGRAMS
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Figure 6: FNO diagram, it takes the magnetic forces and initial standard deviation of particles
distribution as input and outputs the standard deviation particle distribution along the lattice.
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Figure 7: Optimization loop diagram, it searches the optimal magnetic forces and initial standard
deviation of particles distribution that give a objective distribution at the target. The loss function is
defined as the euclidean distance of the actual and objective particle distribution at the target
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E APPENDIX: DRL DIAGRAMS

Target parameters

—-— e e =

/
v

i

1 DRL Algorithms : Particle accelerator

| PPO environment:

1

| Framework: SB3 OPAL FNO wrapper

1 P

i "'f.ﬁ‘

[ 5

1

1

- __ __ __ __ __ __ __ __ __ __ __ __ _ __ __

Figure 8: Training loop of the DRL agent. In each iteration, it performs an action a, obtains a reward
r and the environment advances to the next state s’.
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Figure 10: Trained policy. Input nodes (7): the quadrupole absolute states, the beam current state at
the target and the configuration to reach. Output nodes (3): an action per quadrupole. The hidden
layers are 2x64.
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F APPENDIX: DESIGN OPTIMIZATION WITH THE FNO MODEL

Table 7: Design optimization with FNO for different configurations. It includes the target configura-
tion, the solution reached by the SGD optimizer, the distance between both configurations (has to be
smaller than the 0.005 threshold value for the early stopping condition) and the quadrupole values.

Target (s;,s,) Solution (s;,s,) Loss (Distance) time [s]
(3.70, 2.00) (3.700, 1.995) 0.0019 3.9
(3.24, 2.34) (3.237, 2.342) 0.0029 0.2
(3.08, 2.50) (3.083, 2.497) 0.0044 26.0
(2.65,2.91) (2.652, 2.906) 0.0041 6.1
(2.90, 2.65) (2.901, 2.650) 0.0042 2.4
(2.55, 3.08) (2.546, 3.086) 0.0035 11.2
(2.25, 3.38) (2.254,3.377) 0.0047 2.9
(1.95, 3.79) (1.969, 3.793) 0.0049 32.0

Table 8: Optimization hyperparameters using the FNO model

Hyperparameter Value
scheduler exponential_Ir
optimizer SDG

loss Euclidean distance
scheduler.gamma  0.999

max_steps 100000
early_stop_loss 0.005
learning_rate 1

G APPENDIX: ENVELOPES SOLUTION SPACE
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Figure 11: Envelopes solution space generated using random input parameters.
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