

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GROUP FAIRNESS UNDER DISTRIBUTION SHIFTS: ANALYSIS AND ROBUST POST-PROCESSING

Anonymous authors

Paper under double-blind review

ABSTRACT

Group fairness, as a statistical notion, is sensitive to distribution shifts, which may invalidate the fairness guarantees of classifiers trained with non-robust algorithms. In this work, we analyze randomized fair classifiers and derive upper bounds on fairness violation and excess risk under distribution shift, decomposed into *covariate shift*, and *concept shift*—changes in the distribution of group labels (and other variables considered by the fairness criterion) conditioned on the input. Our bounds are general and apply to both multi-class and attribute-blind settings; notably, we show that attribute-blind classifiers incur an additional dependency on the fairness tolerance in their excess risk, suggesting the robustness benefits of attribute awareness. Next, we propose a robust post-processing algorithm that learns fair classifiers with respect to an uncertainty set constructed by modeling the potential covariate and concept shifts, aligning with the decomposition in our analysis. We evaluate our algorithm under geographic shifts in the ACSIncome dataset, demonstrating improved fairness on unseen regions, with additional evaluations performed under noisy group labels and worst-case covariate shifts.¹

1 INTRODUCTION

Prediction models trained on past data using machine learning techniques are known to exhibit and propagate historical social biases, resulting in disparate impact on or treatment of different demographic groups, e.g., with respect to sex or race (Bolukbasi et al., 2016; Angwin et al., 2016; Buolamwini & Gebru, 2018). To quantify these impacts and assess the unfairness of models, the literature has introduced notions of *group fairness* that examine disparities in the statistics of model outputs across groups (Barocas et al., 2023): *statistical parity* requires equalized group-conditional output distributions (Calders et al., 2009), while *equal opportunity* asks for equalized true positive rates (Hardt et al., 2016). A variety of fair algorithms have since been proposed to satisfy group fairness, which can be categorized by the stage of the training pipeline at which mitigation occurs: pre-processing cleans the data to remove biased associations (Kamiran & Calders, 2012; Calmon et al., 2017), in-processing incorporates fairness constraints into the training objective (Zemel et al., 2013; Agarwal et al., 2018), and post-processing applies post-hoc adjustments to enforce fairness (Menon & Williamson, 2018; Chen et al., 2024; Xian et al., 2023; Xian & Zhao, 2024).

However, group fairness, as a statistical notion, is sensitive to shifts or perturbations in the underlying data distribution, which can arise from changing environments or (adversarial) noise in the training data (Barrainkua et al., 2025). This means that the fairness guarantees of a fair classifier may no longer hold when it is deployed on a distribution that differs from the one it was trained on. Empirically, Ding et al. (2021) consider *geographic shift* and show that an income predictor trained to be fair on one region violates fairness on other regions. We revisit and reproduce this experiment in Fig. 1, where we train a fair classifier on California (CA) data and evaluate it on 26 other states. It is observed that its unfairness (violation of *equalized odds*) increases with the distribution shift from CA, and similarly the excess risk—i.e., *at the same achieved level of fairness on the test distribution, how much worse is the test accuracy of a fair classifier trained on CA compared to one trained directly on the test?* As distribution shifts are prevalent in real-world applications, this brittleness of fair classifiers necessitates further study of the effects of distribution shift and the development of robust algorithms for fair classification.

¹Code will be immediately released after the anonymity period.

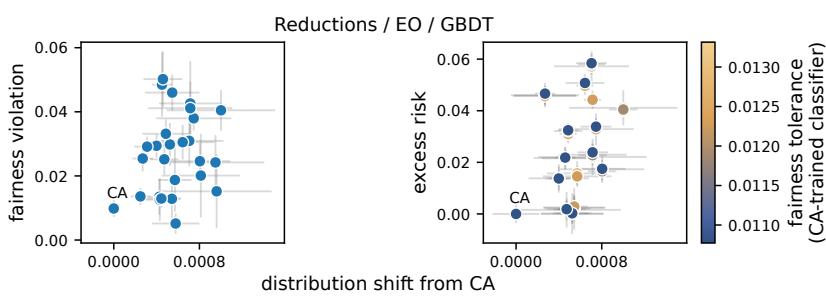


Figure 1: Fair classifiers trained on CA data using the Reductions algorithm of Agarwal et al. (2018) under varying tolerance levels, and evaluated on 26 other states. The x -axis measures distribution shift from CA according to Eq. (1) using *maximum mean discrepancy* (Gretton et al., 2012). **Left:** Minimum fairness violation achieved on each state by any CA-trained classifier. **Right:** Excess risk of CA-trained classifiers, measured as the accuracy gap relative to classifiers trained directly on each state with comparable fairness levels (within $0.1 \times$); the fairness tolerance of the CA-trained is indicated by color. See Figs. 9 and 10 for results under other criteria and for classifiers trained via LinearPost (Xian & Zhao, 2024).

Our Contributions. This work considers randomized fair classifiers under general distribution shifts and studies fairness criteria covering statistical parity, equal opportunity, and equalized odds:

- In Section 3, we analyze and bound the fairness violation in terms of the *covariate* and *concept shift* in the joint distribution of input X and fairness-relevant variables (e.g., A for statistical parity, (A, Y) for equal opportunity and equalized odds). The excess risk bound also includes a term for the shift in (X, Y) distribution, and has a dependency on the fairness tolerance: excess risk can be greater at higher levels of fairness. However, *attribute-aware* classifiers do not exhibit this dependency for certain criteria, suggesting that attribute awareness can benefit robustness.
- In Section 4, we present a post-processing-based algorithm for learning randomized fair classifiers that are robust to distribution shifts. It iterates between finding a (worst-case) perturbation in an *uncertainty set* that maximizes the fairness violation, and learning a classifier that satisfies fairness with respect to all previously found perturbations. We extend the post-processing algorithm of Xian & Zhao (2024) to achieve fairness on multiple distributions, and define the uncertainty set in terms of the potential covariate and concept shifts.
- In Section 5, we evaluate our robust algorithm under geographic shifts in the ACSIncome dataset (Ding et al., 2021), demonstrating improved fairness on unseen regions—albeit, as expected, at a performance cost on the source (training) distribution. We also conduct evaluations in Appendices F and G under noisy group labels and worst-case covariate shift, in the construction of the uncertainty set, respectively.

2 PRELIMINARIES

A classification problem is defined by a joint distribution p over features $X \in \mathcal{X}$ (a metric space equipped with distance d), class labels $Y \in \mathcal{Y} = \{0, \dots, K-1\}$, sensitive attributes $A \in \mathcal{A} = \{0, \dots, G-1\}$ representing demographic groups, and additional variables $Z \in \mathcal{Z}$ relevant to the fairness criterion ($\mathcal{Z} = \emptyset$ for statistical parity, and $Z = Y$ for equal opportunity and equalized odds).

The goal is to learn *randomized classifiers* that satisfy notions of group fairness across the G groups: given an input x , the predicted label $\hat{Y}|X = x$ is sampled from the distribution $\text{multinomial}(h(x))$, where $h : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ is a probabilistic predictor that maps each input to a distribution over class labels. Since h determines the distribution over class assignments, we will refer to the randomized classifier by the function h itself. Given a loss function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, \infty)$, the risk of a randomized classifier is defined as $R_p(h) = \mathbb{E}[\ell(Y, \hat{Y})]$, where the expectation is taken over both the data distribution p and the randomness of the classifier.

108 When the sensitive attribute A is explicitly included as part of the input features X , the setting is
 109 called *attribute-aware*, as the classifier \hat{Y} can directly leverage this information. Otherwise, the
 110 setting is referred to as *attribute-blind*.
 111

112 **2.1 GROUP FAIRNESS DEFINITIONS**
 113

114 We consider group fairness criteria that can be expressed in terms of pairwise differences of first-
 115 order conditional moments of the class outputs:
 116

117 **Definition 2.1.** A (approximate) fairness criterion is defined by a sensitive attribute A , a (categorical)
 118 event $Z \in \mathcal{Z}$ that does not depend on the classifier $\hat{Y} \sim \text{multinomial}(h(X))$, and a collection
 119 of output class-event pairs specifying the fairness constraints: $\mathcal{C} = \{(y_1, z_1), \dots, (y_C, z_C)\}$, with
 120 $z_c \in \mathcal{Z}$. For a tolerance level $\alpha \in [0, 1]$, we require the fairness violation $V_p(h) \leq \alpha$, defined as
 121

$$V_p(h) = \max_{a, a' \in \mathcal{A}, c \in \{1, \dots, C\}} |\mathbb{P}(\hat{Y} = y_c | A = a, Z = z_c) - \mathbb{P}(\hat{Y} = y_c | A = a', Z = z_c)|.$$

122 Here, \mathbb{P} is taken with respect to both the underlying distribution p and the randomness of \hat{Y} . We
 123 omit the subscript p when the distribution is clear from context.
 124

125 Definition 2.1 encompasses common group fairness criteria such as statistical parity, equal opportunity, and equalized odds, but not accuracy parity (Zafar et al., 2017; Zhao & Gordon, 2022) or
 126 predictive rate parity (Chouldechova, 2017). A shared property of all criteria of this form is that the
 127 constant classifier is always exactly fair ($\alpha = 0$) under any distribution:
 128

129 **Fact 2.2.** For the classifier $h(x) = (1, 0, \dots, 0)$ that always outputs class 0, for every distribution
 130 p , we have $V_p(h) = 0$.
 131

132 Below we recall the fairness criteria that are the focus of our discussions:
 133

- **Statistical Parity** (SP; Calders et al., 2009). Requires the output distributions to be (approximately) equalized across all groups $a \in \mathcal{A}$:

$$V^{\text{SP}} = \max_{a, a' \in \mathcal{A}, k \in \mathcal{Y}} |\mathbb{P}(\hat{Y} = k | A = a) - \mathbb{P}(\hat{Y} = k | A = a')|.$$

- **Equal Opportunity** (EOpp; Hardt et al., 2016). Defined for binary classification ($K = 2$),
 138 assuming class 1 is the more desirable outcome; requires the true positive rate to be equalized:
 139

$$V^{\text{EOpp}} = \max_{a, a' \in \mathcal{A}} |\mathbb{P}(\hat{Y} = 1 | A = a, Y = 1) - \mathbb{P}(\hat{Y} = 1 | A = a', Y = 1)|.$$

- **Equalized Odds** (EO; Hardt et al., 2016). Can be considered a stricter version of EOpp. It
 142 requires all types of classification error to be balanced across groups:
 143

$$V^{\text{EO}} = \max_{a, a' \in \mathcal{A}, j, k \in \mathcal{Y}} |\mathbb{P}(\hat{Y} = k | A = a, Y = j) - \mathbb{P}(\hat{Y} = k | A = a', Y = j)|.$$

146 **2.2 DISTRIBUTION SHIFTS**
 147

148 We are concerned with the robustness of randomized fair classifiers under distribution shifts. The
 149 shift from a training distribution p to a test distribution q can be arbitrary, but specific types of shifts
 150 have received special attention in the literature (see surveys by Kouw & Loog (2019) and Farahani
 151 et al. (2021)). Our main focus is on fairness guarantees, so we consider the shift in (X, A, Z) —the
 152 input features and variables relevant to the fairness criterion:
 153

- **Covariate Shift.** Decomposing the joint distribution $p_{X, A, Z}$ into $p_X \cdot p_{A, Z|X}$, this model as-
 154 sumes that only the marginal distribution of features X differs between p and q . That is,
 155 $p_{A, Z|X=x} = q_{A, Z|X=x}$ for all $x \in \mathcal{X}$, while $p_X \neq q_X$. For transfer learning to be fea-
 156 sible, it is often assumed that the density ratio (also called the importance weight) is bounded
 157 $q_X(x)/p_X(x) \leq \gamma$ for all x .
 158
- **Concept Shift.** This is the opposite of covariate shift: it assumes $p_X = q_X$, while $p_{A, Z|X=x} \neq$
 159 $q_{A, Z|X=x}$. One example is learning under noisy group labels (Wang et al., 2020).
 160
- **Prior Shift.** By decomposing the joint as $p_{A, Z} \cdot p_{X|A, Z}$, this model assumes $p_{X|A=a, Z=z} =$
 161 $q_{X|A=a, Z=z}$ for all a, z , while the marginal distribution of (A, Z) differs between p and q .
 162

162 Distribution shifts can be quantified using probability metrics (Zhao et al., 2022), such as f -
 163 divergences and integral probability metrics. We use metrics from the latter family:
 164

165 **Definition 2.3** (Dudley Metric). Let \mathcal{X} be a metric space with distance d , and let $\text{Lip}(f)$ denote the
 166 Lipschitz constant of a function $f : \mathcal{X} \rightarrow \mathbb{R}$, that is, $|f(x) - f(x')| \leq \text{Lip}(f) d(x, x')$. We define
 167 the Dudley probability metric with parameters B, L as

$$168 D_{B,L}(p, q) = \sup_{f: \mathcal{X} \rightarrow [0, B], \text{Lip}(f) \leq L} \left| \int_{\mathcal{X}} f(x) \cdot (p(x) - q(x)) dx \right|. \\ 169$$

170 For any $L \leq L'$, the witness function class satisfies $\{f : \text{Lip}(f) \leq L\} \subseteq \{f : \text{Lip}(f) \leq L'\}$, so
 171 $D_{B,L} \leq D_{B,L'}$. Also note that the total variation distance is $D_{\text{TV}} = D_{1,\infty} \geq D_{B,L}$ for all L . The
 172 Dudley metric is also related to the Wasserstein-1 distance via its dual formulation, with the added
 173 constraint that f is bounded, so $2 D_{B,L} \leq L W_1$.
 174

175 3 ROBUSTNESS OF RANDOMIZED FAIR CLASSIFIERS

177 To begin, we analyze the fairness violation and excess risk of randomized fair classifiers under
 178 distribution shifts. The bounds are general across problem settings, such as multi-class and attribute-
 179 blind, and apply to all fairness criteria defined in Definition 2.1, including SP, EOpp, and EO.
 180

181 We are primarily interested in the Bayes-optimal randomized fair classifier, defined as $\bar{h} \in$
 182 $\arg \min_{h: V(h) \leq \alpha} R(h)$ for a given fairness tolerance α . Our analyses, however, apply to a more
 183 refined class of Lipschitz-constrained optimal classifiers that are smooth in their probabilistic pre-
 184 dictions with respect to the input x , $\bar{h}_L \in \arg \min_{h: V(h) \leq \alpha, \text{Lip}(h) \leq L} R(h)$, where $\text{Lip}(h) \leq L$
 185 means that $|h(x)_k - h(x')_k| \leq L d(x, x')$ for all $k \in \mathcal{Y}$. Note that \bar{h}_∞ corresponds to the Bayes-
 186 optimal fair classifier.
 187

188 3.1 FAIRNESS VIOLATION

189 We first bound the fairness violation of a classifier h on the test distribution q by its violation on the
 190 source distribution p , plus a term on the distributional shift between p, q , which we decompose into
 191 covariate and concept shift components.
 192

193 **Theorem 3.1.** *Let p, q be two distributions. Let $h : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ be a Lipschitz randomized classifier
 194 with $\text{Lip}(h) \leq L$, then its fairness violation on q satisfies*

$$195 V_q(h) \leq V_p(h) + 2 \max_{a \in \mathcal{A}, z \in \mathcal{Z}} D_{1,L}(p_{X|A=a, Z=z}, q_{X|A=a, Z=z}). \quad (1) \\ 196$$

197 Moreover, if $L' \geq \text{Lip}(x \mapsto q_{A,Z|X=x}(a, z))$ for all a, z (small L' means changes to the conditional
 198 probabilities of (A, Z) are smooth), then

$$199 V_q(h) \leq V_p(h) + 4 \max_{\substack{a \in \mathcal{A} \\ z \in \mathcal{Z}}} \frac{1}{p_{A,Z}(a, z)} \left(\underbrace{D_{1,(L+1)L'}(p_X, q_X)}_{\text{covariate shift}} + \underbrace{\mathbb{E}_{X \sim p_X} [|p_{A,Z|X}(a, z) - q_{A,Z|X}(a, z)|]}_{\text{concept shift}} \right). \\ 200 \\ 201$$

202 Bounds similar to the first result are shown in (Wang et al., 2020; Agarwal et al., 2025); here, we
 203 further decompose it into covariate and concept shifts components: changes in either the marginal
 204 distribution of the input X or the conditional distribution of (A, Z) can affect the fairness guar-
 205 antees established under the source distribution p . The bounds yield two insights into robustness.
 206 (1) *Smooth randomized classifiers are more robust.* Since $D_{1,L} \leq D_{1,L'}$ for all $L \leq L'$, the bound
 207 implies that classifiers with smaller Lipschitz constants (i.e., smoother probabilistic predictors) are
 208 more robust to distribution shifts. This motivates the use of Lipschitz-constrained training to im-
 209 prove robustness: a related work is Jiang et al. (2023), who apply *sharpness-aware minimization* in
 210 the training of fair classifiers. (2) *Prior shift does not affect fairness.* Because the fairness violation
 211 depends only on the conditional distributions $p_{X|A,Z}, q_{X|A,Z}$, changes in the marginal distribution
 212 of (A, Z) alone do not impact fairness (consistent with related findings from An et al. (2022)).
 213

214 In Fig. 1 (left), we plot the best EO fairness achieved on other states by fair classifiers trained on CA
 215 (under varying tolerances), against the distribution shift from CA. As expected, fairness violation
 216 generally increases with the shift.

216 3.2 EXCESS RISK
217

218 Let $\bar{h}_{p,L}$ be a (Lipschitz) randomized fair classifier that is optimal on the source distribution p . We
219 bound the excess risk of $\bar{h}_{p,L}$ on the test distribution q relative to its optimal fair classifier, $\bar{h}_{q,L}$.

220 **Theorem 3.2.** *Let p, q be two distributions with $L' \geq \text{Lip}(x \mapsto q_{Y|X=x}(y))$. Let $L \in [0, \infty]$,
221 $\alpha \in [0, 1]$, and denote by $\bar{h}_{p,L} \in \arg \min_{h: V_p(h) \leq \alpha, \text{Lip}(h) \leq L} R_p(h)$ the optimal fair classifier on p ,
222 and by $\bar{h}_{q,L}$ that on q . Suppose $V_p(\bar{h}_{q,L}) \leq \alpha + \varepsilon$ for some upper bound ε on the excess violation
223 (see Theorem 3.1), then the excess risk of $\bar{h}_{p,L}$ on q is*

$$225 R_q(\bar{h}_{p,L}) - R_q(\bar{h}_{q,L}) \leq \|\ell\|_\infty \left(2 D_{1,(L+L')K}(p_X, q_X) + 2 \mathbb{E}_{X \sim p_X} [D_{\text{TV}}(p_{Y|X}, q_{Y|X})] + \frac{\varepsilon}{\alpha + \varepsilon} \right),$$

227 with the convention that $0/0 = 0$.

229 By instantiating ε via Theorem 3.1, this result bounds the excess risk in terms of the shifts in the
230 joint distribution of (X, A, Z) and (X, Y) , which we similarly decompose into the covariate shift
231 and the concept shift in $Y|X$. Notably, the final term in the bound depends on the fairness tolerance
232 α : achieving higher fairness on the source distribution p (i.e., using a smaller α) can guarantee
233 better worst-case fairness on the test distribution q , but potentially at the cost of higher excess risk.
234 As illustrated in Fig. 1 (right), excess risk grows with increasing shift, but its dependence on the
235 fairness tolerance is weak, suggesting that this worst-case effect may not be dominant in practice.

236 We illustrate the tightness of this α -dependency through a worst-case example for attribute-blind
237 statistical parity that matches the upper bound up to a multiplicative factor (Hou & Zhang (2024)
238 showed the same worst-case dependency on α , and established matching minimax lower bounds):

239 *Example 1.* Let $\alpha \in [0, 1]$ and $\varepsilon \in [0, 1 - \alpha]$. Construct distributions p, q over (X, A, Y) as
240 follows: $p_A = q_A$ uniformly over $\mathcal{A} = \{0, 1\}$; $p_X = q_X$ uniformly over $\mathcal{X} = \{0, 1\}$; $Y = X$;
241 $p(X = 0 | A = 0) = (1 - \alpha - \varepsilon)/2$ and $p(X = 0 | A = 1) = (1 + \alpha + \varepsilon)/2$; $q(X = 0 | A = 0) = (1 - \alpha)/2$ and $q(X = 0 | A = 1) = (1 + \alpha)/2$. There is no shift in (X, Y) , but the shift
242 in (X, A) is $2 D_{\text{TV}}(p_{X|A=a}, q_{X|A=a}) = \varepsilon$ for both a . Let \bar{h}_p and \bar{h}_q be Bayes-optimal classifiers
243 satisfying α -approximate SP on p and q , respectively. Then with the 0-1 loss (classification error),
244 the excess risk is $R_q(\bar{h}_p) - R_q(\bar{h}_q) = \varepsilon/2(\alpha + \varepsilon)$.

245 The dependency on α can be eliminated if the classifier is attribute-aware, and the fairness criterion
246 is SP, or EO under binary classification (results for the binary and exact fairness case ($\alpha = 0$) are
247 established by Agarwal et al. (2025)). This highlights the robustness benefits of attribute awareness.

248 **Corollary 3.3.** *Assume the attribute-aware setting (i.e., A is included in the classifier input). Under
249 the same conditions as in Theorem 3.2, with the bound ε instantiated via Theorem 3.1, if the fairness
250 criterion is statistical parity, or equalized odds under binary classification ($K = 2$),² then*

$$252 R_q(\bar{h}_{p,L}) - R_q(\bar{h}_{q,L}) \leq \|\ell\|_\infty (2 D_{1,(L+L')K}(p_X, q_X) + 2 \mathbb{E}_{X \sim p_X} [D_{\text{TV}}(p_{Y|X}, q_{Y|X})] + 2\varepsilon K).$$

254 4 LEARNING ROBUST FAIR CLASSIFIERS
255

256 Given a source distribution p (or labeled examples) available for training, our goal is to learn a
257 fair classifier that may be deployed on test distribution(s) q differing from p . We characterize the
258 potential shifts from the source distribution by a collection \mathcal{Q} of distributions, referred to as the
259 *uncertainty set*. The robust fair classification problem is then formulated as:³

$$261 \arg \min_h R_p(h) \quad \text{s.t.} \quad V_p(h) \leq \alpha, \quad V_q(h) \leq \alpha, \quad \forall q \in \mathcal{Q}.$$

262 Algorithm 1 describes a *cutting-set* method⁴ for solving the robust problem given a fair classification
263 oracle, and a *pessimization* oracle that finds the worst-case $q \in \mathcal{Q}$ where fairness is most violated.

265 ²The result also applies to equal opportunity via a similar analysis for equalized odds.

266 ³Our formulation minimizes only the source risk $R_p(h)$, rather than the worst-case risk over \mathcal{Q} , i.e.,
267 $\arg \min_{h: V_q(h) \leq \alpha, \forall q \in \{p\} \cup \mathcal{Q}} \max_{q \in \{p\} \cup \mathcal{Q}} R_q(h)$. The latter can be solved via an additional level of opti-
268 mization; see e.g., the meta-algorithm of (Mandal et al., 2020, Algorithm 1).

269 ⁴Alternative approaches include online learning techniques (Mandal et al., 2020; Ben-Tal et al., 2009),
270 where \bar{h} is optimized using no-regret algorithms.

270 **Algorithm 1** Robust Fair Classification (Cutting-Set Method)
271 **Require:** Fairness criterion V , tolerance α , distribution p , uncertainty set \mathcal{Q} , parameters $T, \tau > 0$.
272 1: $\bar{h} \leftarrow \arg \min_h R_p(h)$ s.t. $V_p(h) \leq \alpha$
273 2: **for** $t \in \{1, \dots, T\}$ **do**
274 3: $q_t \leftarrow \arg \max_{q \in \mathcal{Q}} V_q(\bar{h})$ \triangleright pessimization
275 4: **break if** $V_{q_t}(\bar{h}) \leq \alpha + \tau$
276 5: $\bar{h} \leftarrow \arg \min_h R_p(h)$ s.t. $V_p(h) \leq \alpha, V_{q_1}(h) \leq \alpha, \dots, V_{q_t}(h) \leq \alpha$ \triangleright optimization
277 6: **return** \bar{h}

279
280 The algorithm is initialized with the fair classifier on p , then iterates between finding a violating
281 perturbation q_t and updating \bar{h} to satisfy fairness on q_t and across all previously found perturbations
282 p, q_1, \dots, q_{t-1} . It terminates if no violating perturbation is found up to tolerance τ , in which case the
283 returned classifier \bar{h} satisfies $V_q(\bar{h}) \leq \alpha + \tau$ for all $q \in \mathcal{Q}$ (plus possible slack if the pessimization
284 is approximate or estimating from finite samples), or when the iteration limit T is reached.

285 The key components in Algorithm 1 are the fair classification oracle (Lines 1 and 5), the pessimiza-
286 tion oracle (Line 3), and the specification of the uncertainty set \mathcal{Q} . In Section 4.1, we instantiate
287 the fair classification oracle by extending the post-processing algorithm of Xian & Zhao (2024) to
288 multiple distributions. In Section 4.2, we construct the uncertainty set \mathcal{Q} by modeling the covariate
289 and concept shifts from p , reflecting the decomposition given in Theorem 3.1. If the shifts q are un-
290 known or adversarial, we model them using parameterized models (e.g., neural nets), and perform
291 pessimization approximately by optimizing the parameters of q (via gradient ascent) to maximize
292 the fairness violation V_q , with a regularization term to enforce bounded divergence from p .

293
294 **Convergence of Algorithm 1.** Assume that the input space \mathcal{X} has finite support, i.e., $\text{supp}(q_X) =$
295 $\text{supp}(p_X) = \mathcal{X}$ for all $q \in \mathcal{Q}$ and $N := |\mathcal{X}| < \infty$ (as is the case when learning from finite samples).
296 Then a randomized classifier \bar{h} can be represented as an $N \times K$ row-stochastic matrix, where the i -th
297 row gives the output distribution for the i -th input. Moreover, the fairness violation V is 1-Lipschitz
298 in h under the L^∞ -distance: $|V(h) - V(h')| \leq \|h - h'\|_\infty$ (see derivation in Eq. (5)).

299 Then, the analysis of (Mutapcic & Boyd, 2009, Section 5.2) shows that Algorithm 1 terminates in at
300 most $O(\tau^{-NK})$ iterations. The intuition is as follows: each time a violation exceeding τ is found,
301 the updated \bar{h} must be at least τ away (in L^∞ -distance) from the current \bar{h} to restore fairness due to
302 the Lipschitzness of V , effectively removing a ℓ_∞ -ball of radius τ from the feasible region (hence
303 the name *cutting-set*). Since only $O(\tau^{-NK})$ such balls can be packed into the space of randomized
304 classifiers where each cell is bounded between $[0, 1]$, the algorithm must terminate within this bound.
305 In practice, however, far fewer iterations are needed: in our experiments, it typically terminates
306 within 5 to 20 iterations.

307 4.1 FAIR CLASSIFICATION VIA POST-PROCESSING
308

309 Algorithm 1 requires a fair classification oracle, either for a single distribution (Line 1) or sim-
310 ultaneously across multiple distributions (Line 5). To implement this, we use the post-processing
311 algorithm LinearPost proposed by Xian & Zhao (2024) for the single-distribution setting (reviewed
312 below), and extend it to the multiple-distribution setting.

313 **Single-Distribution LinearPost.** LinearPost learns fair classifiers for a single distribution p by
314 fitting a linear classifier on top of the outputs from a predictor $p_{A,Z|X} : \mathcal{X} \rightarrow \Delta(\mathcal{A} \times \mathcal{Z})$ for
315 the conditional distribution of (A, Z) given X , and a predictor for the *point-wise risk*, $r_p : \mathcal{X} \rightarrow$
316 $[0, \infty)^K$ (hence called a *post-processing* algorithm),

317
$$r_p(x)_k = \mathbb{E}_p[\ell(Y, k) | X = x], \quad \forall x \in \mathcal{X}, k \in \mathcal{Y}, \quad (2)$$

318 which represents the expected loss of assigning class k to input x , e.g., for the 0-1 loss, $r_p(x)_k =$
319 $p(Y \neq k | X = x) = 1 - p_{Y|X=x}(k)$; the overall risk is then $R_p(h) = \mathbb{E}_{X \sim p_X}[r_p(X)^\top h(X)]$.

320 It is based on the following theorem, which shows that if the predictors $p_{A,Z|X}$ and r_p are Bayes-
321 optimal, then the Bayes-optimal (randomized) fair classifier on p is a linear classifier over $(K +$
322 $G|\mathcal{Z}|)$ -dimensional features computed from $(r_p(x), p_{A,Z|X=x})$, under a mild continuity condition.

324 This condition can be satisfied by randomly perturbing the point-wise risk r_p , which is the only
 325 source of randomness in the resulting classifier.
 326

327 **Theorem 4.1** (Xian & Zhao, 2024). *Let p be a distribution and $\alpha \in [0, 1]$. Assume that the push-
 328 forward distribution $r_p \# p_X$ is continuous. Then an optimal classifier to the single-distribution fair
 329 classification problem, $\arg \min_h R_p(h)$ s.t. $V_p(h) \leq \alpha$, is, for some weights $\beta \in \mathbb{R}^{K \times G \times |\mathcal{Z}|}$,*

$$330 \quad x \mapsto \arg \min_{k \in \mathcal{Y}} (r_p(x)_k + \sum_{a \in \mathcal{A}, z \in \mathcal{Z}} \beta_{k,a,z} p_{A,Z|X=x}(a, z)).$$

331 The weights β are obtained from the dual solution of a linear program (LP) that expresses the single-
 332 distribution fair classification problem (details are given in Appendix D.1, Eq. (9)).
 333

334 **Learning Fair Classifier from Samples.** Given labeled examples $(x_i, a_i, z_i, y_i) \sim p$, we apply
 335 a “pre-train then post-process” procedure to learn a fair classifier via LinearPost from scratch. We
 336 first learn the predictors $\hat{p}_{A,Z|X}$ and \hat{r}_p in the pre-training step, then invoke LinearPost on them to
 337 obtain the classifier. The post-processing weights β are estimated by solving the fair classification
 338 LP mentioned above, except that, in this case, it is formulated using the empirical distribution of the
 339 samples, and the learned $\hat{p}_{A,Z|X}$, \hat{r}_p as proxies in place of the Bayes-optimal $p_{A,Z|X}$, r_p .
 340

341 To learn the group predictor $\hat{p}_{A,Z|X}$, we fit a probabilistic classifier (e.g., logistic regression) to
 342 predict (A, Z) from X (possibly followed by a calibration step), as this can be viewed as an (A, Z)
 343 classification task. Similarly, to learn the point-wise risk predictor \hat{r}_p , we fit a model for Y given X
 344 and transform its output according to the chosen loss ℓ (e.g., 0-1 loss as shown above). To ensure
 345 good generalization, the training samples should be split into disjoint sets for pre-training and post-
 346 processing; note that post-processing does not require labels as it relies on the predictors as proxies.
 347

348 **Multiple-Distribution LinearPost.** We extend LinearPost to achieve fairness on multiple distri-
 349 butions p, q_1, \dots, q_T simultaneously by showing that the Bayes-optimal fair classifier in this set-
 350 ting remains a linear post-processing rule, now over $(K + (T + 1)G|\mathcal{Z}|)$ -dimensional features.
 351 These include $r_p(x)$, $p(A, Z \mid X = x)$, and $w_t(x) \cdot q_t(A, Z \mid X = x)$ for each t , where
 352 $w_t(x) = q_{tX}(x)/p_X(x)$ is the importance weight between p_X and q_{tX} . This additional term is
 353 natural, as $w_t \cdot p_X = q_X$ and $q_{tA,Z|X}$ together fully specify the joint distribution $q_{tX,A,Z}$.
 354

355 **Theorem 4.2** (Multiple-Distribution LinearPost). *Let p, q_1, \dots, q_T be distributions and $\alpha \in [0, 1]$.
 356 Assume that the push-forward distributions $r_p \# p_X, r_{q_1} \# q_{1X}, \dots, r_{q_T} \# q_{TX}$ are continuous. Then an optimal
 357 classifier to the multiple-distribution fair classification problem, $\arg \min_h R_p(h)$ s.t. $V_p(h) \leq \alpha$, $V_{q_1}(h) \leq \alpha, \dots, V_{q_T}(h) \leq \alpha$, is, for some weights $\beta \in \mathbb{R}^{(T+1) \times K \times G \times |\mathcal{Z}|}$,*

$$358 \quad x \mapsto \arg \min_{k \in \mathcal{Y}} \left(r_p(x)_k + \sum_{a \in \mathcal{A}, z \in \mathcal{Z}} \left(\beta_{0,k,a,z} p_{A,Z|X=x}(a, z) + \sum_{t=1}^T \beta_{t,k,a,z} q_{tA,Z|X=x}(a, z) w_t(x) \right) \right).$$

361 The weights β are again obtained from the dual solution of an LP that expresses the multiple-
 362 distribution fair classification problem (Eq. (10)). Thus, to learn a classifier that is fair on q_1, \dots, q_M
 363 in addition to p , we apply the multiple-distribution variant of LinearPost by providing descriptions
 364 of the q_m ’s in terms of predictors $q_{mA,Z|X}$ and models for computing the importance weights w_m .
 365

366 4.2 PARAMETERIZED DISTRIBUTION SHIFT MODELS

367 As described in Section 4.1, our implementation of the fair classification oracle in Line 5 uses Lin-
 368 earPost, which requires each perturbation q_1, \dots, q_T to be specified via its conditional distribution
 369 $q_{tA,Z|X}$ and its marginal distribution through the importance weight $w_t = q_{tX}/p_X$. Therefore, we
 370 model each $q \in \mathcal{Q}$ in the uncertainty set accordingly by a pair of functions: $f_{CS} : \mathcal{X} \rightarrow \Delta(\mathcal{A} \times \mathcal{Z})$ for
 371 the concept shift, and $f_{IW} : \mathcal{X} \rightarrow [0, \infty)$ for the covariate shift from the source distribution p . This
 372 also mirrors the decomposition of fairness violation into concept and covariate shifts as analyzed in
 373 Theorem 3.1. Moreover, these functions must generalize beyond the training set at test time, because
 374 classifiers produced by LinearPost rely on their outputs to make predictions (i.e., post-processing).
 375

376 When knowledge about the potential shifts is available, it can be used to directly specify \mathcal{Q} . For
 377 example, to model covariate shift in the domain adaptation setting where unlabeled data from the
 378 test distribution q are available, we let $\mathcal{Q} = \{q\}$ be a singleton set, with the pair $f_{CS} = q_{A,Z|X} =$

378 $p_{A,Z|X}$ unchanged and $f_{IW} = q_X/p_X$ for the covariate shift, which can be estimated from the
 379 samples (Shimodaira, 2000; Coston et al., 2019).
 380

381 When the shifts are unknown or adversarial, we define \mathcal{Q} as a set of bounded perturbations around
 382 the source distribution p (Mandal et al., 2020). For example, to model noisy group labels (Wang
 383 et al., 2020), we can let $\mathcal{Q} = \{q : \mathbb{E}_{X \sim p_X} [d_{TV}(q_{A|X}, p_{A|X})] \leq \gamma\}$. In such cases, to model
 384 and approximately find the worst-case perturbation, we parameterize the functions f_{CS} and f_{IW} that
 385 represent q (e.g., neural nets), and optimize their parameters (via gradient ascent) to maximize the
 386 fairness violation V_q , with regularization terms to control their deviation from p (and also to prevent
 387 overfitting).
 388

388 We derive the regularized objectives for optimizing the worst-case perturbation q below. Recall that
 389 f_{CS} represents $f_{CS}(x)_{a,z} = q(A = a, Z = z | X = x)$ and $f_{IW}(x) = q(X = x)/p(X = x)$, so by
 390 Bayes' rule, we can express the fairness violation (Definition 2.1) in terms of these functions as

$$391 \quad V_q(h) = \max_{\substack{a, a' \in \mathcal{A} \\ c \in \{1, \dots, C\}}} \left| \mathbb{E}_{X \sim p_X} \left[h_{y_c}(X) \left(\frac{f_{CS}(X)_{a,z_c}}{q_{A,Z}(a, z_c)} - \frac{f_{CS}(X)_{a',z_c}}{q_{A,Z}(a', z_c)} \right) f_{IW}(X) \right] \right| \quad (3)$$

394 where $q_{A,Z}(a, z) = \mathbb{E}_{X \sim p_X} [f_{CS}(X)_{a,z} f_{IW}(X)]$. We use KL divergence for regularization:
 395

396 • **Concept Shift Model.** We regularize f_{CS} by its average KL divergence from $p_{A,Z|X}$ over X ,
 397 with strength λ_{CS} . The objective becomes:

$$399 \quad \max_{f_{CS}} (V_q(h) - \lambda_{CS} \mathbb{E}_{X \sim p_X} [D_{KL}(p_{A,Z|X}, f_{CS}(X))]) \\ 400 \quad = \max_{f_{CS}} (V_q(h) + \lambda_{CS} \mathbb{E}_{X \sim p_X} \left[\sum_{a,z} p_{A,Z|X}(a, z) \ln f_{CS}(x)_{a,z} \right]).$$

402 • **Covariate Shift Model.** We regularize f_{IW} by its KL divergence from 1 (i.e., between $q_X =$
 403 $p_X \cdot f_{IW}$ and p_X), with strength λ_{IW} . The objective becomes:

$$405 \quad \max_{f_{IW}} (V_q(h) - \lambda_{IW} D_{KL}(p_X, p_X f_{IW}(X))) = \max_{f_{IW}} (V_q(h) + \lambda_{IW} \mathbb{E}_{X \sim p_X} [\ln f_{IW}(X)]).$$

407 In our experiments, we replace the max in Eq. (3) with a weighted sum using softmax to improve
 408 optimization performance. We parameterize both functions using one-hidden-layer LeakyReLU nets
 409 that take the logits of $p_{A,Z|X}$ as input. For example, we define $f_{IW}(x) = C \exp(g(\ln p_{A,Z|X=x}))$,
 410 where g is the neural net and C is a normalization term such that $\sum_{i=1}^N f_{IW}(x_i) p_X(x_i) = 1$ over the
 411 training data (recall $p_X = 1/N$ for empirical distributions).
 412

413 5 EXPERIMENTS FOR GEOGRAPHIC SHIFT

416 We evaluate the robust fair post-processing algorithm of Section 4 under geographic shifts using
 417 the ACSIncome dataset (2018 data; Ding et al., 2021). The task is binary classification of whether
 418 an individual's annual income exceeds \$50k, with sex as the binary sensitive attribute. The data is
 419 partitioned by the individual's home US state or territory (51 regions in total), but we retain only the
 420 top 27 with the largest sample sizes. California (CA) is used as the training/source distribution. To
 421 quantify the distribution shift from CA, following the first bound in Theorem 3.1, we compute the
 422 maximum mean discrepancy (MMD; Gretton et al., 2012) of the input features X conditioned on A
 423 for SP and on (A, Y) for EOopp and EO, using a Gaussian kernel with bandwidth 1; for improved
 424 statistical power, we average the conditional MMDs rather than taking their max.

425 We consider SP, EOopp, and EO fairness in the attribute-blind setting, and follow the “pre-train then
 426 post-process” procedure from Section 4.1 to obtain fair classifiers via (robust) LinearPost with a
 427 gradient-boosted decision tree (GBDT; Ke et al., 2017) as the base prediction model. The dataset is
 428 split 60/10/30 for pre-training, post-processing, and testing. We first fit a GBDT to predict (A, Y)
 429 from X , then apply (robust) LinearPost; the uncertainty set is implemented using the covariate and
 430 concept shift models described in Section 4.2, parameterized by one-hidden-layer neural nets with
 431 LeakyReLU activation. We also evaluate the Reductions algorithm (Agarwal et al., 2018). The fair
 432 algorithms are applied separately for each fairness criterion. Further details and hyperparameters
 433 are provided in Appendix E.

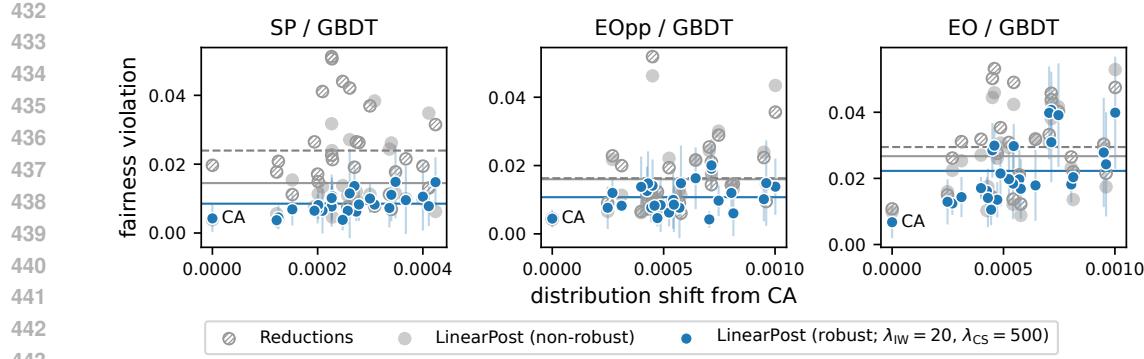


Figure 2: Fairness on each region by Reductions and LinearPost (non-robust and robust with $\lambda_{IW} = 20$, $\lambda_{CS} = 500$) trained on CA data, under the tolerance setting that minimizes macro average violation. See Table 1 for the tolerances, average accuracies, and violations (horizontal lines).

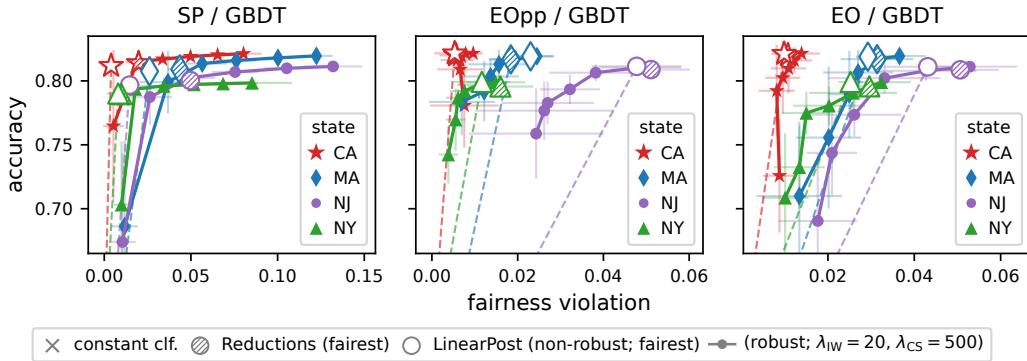


Figure 3: Accuracy-fairness tradeoffs on each region by robust LinearPost ($\lambda_{IW} = 20$, $\lambda_{CS} = 500$) trained on CA data. For comparison, we include the fairest Pareto-optimal classifiers from non-robust LinearPost and Reductions, as well as the randomized interpolation between the fairer baseline and the constant 0 classifier (dashed lines).

Results. Figure 2 shows the fairness achieved by the classifier from robust LinearPost on all 27 regions (including CA), under the best tolerance setting α^* that minimizes average fairness violation,⁵ compared to results from non-robust algorithms. Robust post-processing (under α^*) improves fairness both on average and in the worst-performing region, though the improvements are not uniform across all regions. This variation is expected, as the actual distribution shifts may not be fully captured by the perturbation models used to define the uncertainty set—especially since the setting assumes no prior knowledge of the shift; additionally, the optimal α^* and hyperparameters for the perturbation model (e.g., λ_{IW} , λ_{CS}) may differ across regions. Nonetheless, robust LinearPost’s ability to reduce worst-case fairness violation underscores its practical utility.

The fairness improvements come at the cost of reduced accuracy, including on the training distribution. In Fig. 3, we plot the accuracy-fairness tradeoffs achieved by robust LinearPost on the three most violating regions for each fairness criterion, under varying tolerances α . For reference, we include the linear randomized interpolation between the fairer baseline and the constant 0 classifier (which is trivially fair). In most cases, (portions of) the Pareto-optimal tradeoff curve of robust LinearPost lies above the interpolation line, indicating that its improvements are non-trivial, except on MO and LA for EOOpp fairness, likely because the perturbation models fail to capture the true underlying shifts. We do also observe that fairness does not always improve monotonically as α decreases, and many configurations do not lie on the Pareto front; this may be due to the pessimization step not being performed exactly, as well as variability in the optimization of the perturbation models. It is therefore recommended to validate on the test distribution(s) when selecting hyperparameters and models that effectively improve fairness while maintaining a balance with accuracy.

⁵We sweep tolerance settings down to $\alpha = 0.001$, but it may not yield the fairest classifier.

486 NOTE ON LLM USAGE IN PAPER WRITING
487488 The writing of this paper was assisted by OpenAI’s GPT model, limited to grammar correction and
489 sentence refinement.

490

491 REFERENCES
492493 Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A Re-
494 ductions Approach to Fair Classification. In *Proceedings of the 35th International Conference on*
495 *Machine Learning*, 2018.496 Sushant Agarwal, Amit Deshpande, Rajmohan Rajaraman, and Ravi Sundaram. Optimal Fair Learn-
497 ing Robust to Adversarial Distribution Shift. In *Proceedings of the 42nd International Conference*
498 *on Machine Learning*, 2025.

499

500 Bang An, Zora Che, Mucong Ding, and Furong Huang. Transferring Fairness under Distribution
501 Shifts via Fair Consistency Regularization. In *Advances in Neural Information Processing Sys-*
502 *tems*, 2022.503 Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine Bias. *ProPublica*, 2016.
504 URL <https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing>.

505

506 Sina Baharlouei, Shivam Patel, and Meisam Razaviyayn. F-FERM: A Scalable Framework for
507 Robust Fair Empirical Risk Minimization. In *The Twelfth International Conference on Learning*
508 *Representations*, 2024.

509

510 Solon Barocas, Moritz Hardt, and Arvind Narayanan. *Fairness and Machine Learning: Limitations*
511 *and Opportunities*. The MIT Press, 2023.

512

513 Ainhize Barrainkua, Paula Gordaliza, Jose A. Lozano, and Novi Quadrianto. Preserving the Fairness
514 Guarantees of Classifiers in Changing Environments: A Survey. *ACM Computing Surveys*, 57(6),
515 2025.

516

517 Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya
518 Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar,
519 Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan Saha, Prasanna Sattigeri, Monin-
520 der Singh, Kush R. Varshney, and Yunfeng Zhang. AI Fairness 360: An Extensible Toolkit for
521 Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias, 2018. *arXiv:1810.01943*
522 [*cs.AI*].

523

524 Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. *Robust Optimization*. Princeton
525 University Press, 2009.

526

527 Avrim Blum, Princewill Okoroafor, Aadirupa Saha, and Kevin M. Stangl. On the Vulnerability
528 of Fairness Constrained Learning to Malicious Noise. In *Proceedings of The 27th International*
529 *Conference on Artificial Intelligence and Statistics*, 2024.

530

531 Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Man is to
532 Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In *Advances*
533 *in Neural Information Processing Systems*, volume 29, 2016.

534

535 Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in Commer-
536 *cial Gender Classification*. In *Proceedings of the 2018 Conference on Fairness, Accountability,*
537 *and Transparency*, 2018.

538

539 Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building Classifiers with Independency
540 Constraints. In *2009 IEEE International Conference on Data Mining Workshops*, 2009.541 Flavio P. Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
542 Kush R. Varshney. Optimized Pre-Processing for Discrimination Prevention. In *Advances in*
543 *Neural Information Processing Systems*, volume 30, 2017.

540 Wenlong Chen, Yegor Klochkov, and Yang Liu. Post-Hoc Bias Scoring is Optimal for Fair Classifi-
 541 cation. In *The Twelfth International Conference on Learning Representations*, 2024.

542

543 Yatong Chen, Reilly Raab, Jialu Wang, and Yang Liu. Fairness Transferability Subject to Bounded
 544 Distribution Shift. In *Advances in Neural Information Processing Systems*, 2022.

545 Alexandra Chouldechova. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism
 546 Prediction Instruments. *Big Data*, 5(2), 2017.

547

548 Amanda Coston, Karthikeyan Natesan Ramamurthy, Dennis Wei, Kush R. Varshney, Skyler Speak-
 549 man, Zairah Mustahsan, and Supriyo Chakraborty. Fair Transfer Learning with Missing Protected
 550 Attributes. In *Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society*, 2019.

551 Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring Adult: New Datasets for
 552 Fair Machine Learning. In *Advances in Neural Information Processing Systems*, volume 34, 2021.

553

554 Abolfazl Farahani, Sahar Voghieri, Khaled Rasheed, and Hamid R. Arabnia. A Brief Review of
 555 Domain Adaptation. In *Advances in Data Science and Information Engineering*, Transactions on
 556 Computational Science and Computational Intelligence. 2021.

557

558 Stephen Giguere, Blossom Metevier, Bruno Castro da Silva, Yuriy Brun, Philip S. Thomas, and Scott
 559 Niekum. Fairness Guarantees under Demographic Shift. In *The Tenth International Conference
 560 on Learning Representations*, 2022.

561

562 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
 563 A Kernel Two-Sample Test. *Journal of Machine Learning Research*, 13(25), 2012.

564

565 Moritz Hardt, Eric Price, and Nathan Srebro. Equality of Opportunity in Supervised Learning. In
 566 *Advances in Neural Information Processing Systems*, volume 29, 2016.

567

568 Xiaotian Hou and Linjun Zhang. Finite-Sample and Distribution-Free Fair Classification: Opti-
 569 mal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness, 2024.
 570 *arXiv:2410.16477 [stat.ME]*. URL <https://arxiv.org/pdf/2410.16477.pdf>.

571

572 Zhimeng Jiang, Xiaotian Han, Hongye Jin, Guanchu Wang, Rui Chen, Na Zou, and Xia Hu. Chas-
 573 ing Fairness Under Distribution Shift: A Model Weight Perturbation Approach. In *Advances in
 574 Neural Information Processing Systems*, volume 36, 2023.

575

576 Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrim-
 577 ination. *Knowledge and Information Systems*, 33(1), 2012.

578

579 Mintong Kang, Linyi Li, Maurice Weber, Yang Liu, Ce Zhang, and Bo Li. Certifying Some Dis-
 580 tributional Fairness with Subpopulation Decomposition. In *Advances in Neural Information Pro-
 581 cessing Systems*, 2022.

582

583 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
 584 Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In *Advances in Neural
 585 Information Processing Systems*, volume 30, 2017.

586

587 Ron Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In
 588 *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining*,
 589 1996.

590

591 Nikola Konstantinov and Christoph H. Lampert. Fairness-Aware PAC Learning from Corrupted
 592 Data. *Journal of Machine Learning Research*, 23(160), 2022.

593

594 Wouter M. Kouw and Marco Loog. An introduction to domain adaptation and transfer learning,
 595 2019. *arXiv:1812.11806 [cs:LG]*.

596

597 Debmalya Mandal, Samuel Deng, Suman Jana, Jeannette M. Wing, and Daniel Hsu. Ensuring
 598 Fairness Beyond the Training Data. In *Advances in Neural Information Processing Systems*,
 599 volume 33, 2020.

600

601 Aditya Krishna Menon and Robert C. Williamson. The Cost of Fairness in Binary Classification. In
 602 *Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency*, 2018.

594 Almir Mutapcic and Stephen Boyd. Cutting-set methods for robust convex optimization with pes-
 595 simizing oracles. *Optimization Methods and Software*, 24(3), 2009.
 596

597 Christos H. Papadimitriou and Kenneth Steiglitz. *Combinatorial Optimization: Algorithms and*
 598 *Complexity*. Dover Publications, 1998.

599 Ashkan Rezaei, Anqi Liu, Omid Memarrast, and Brian D. Ziebart. Robust Fairness Under Covariate
 600 Shift. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(11), 2021.
 601

602 Yuji Roh, Kangwook Lee, Steven Euijong Whang, and Changho Suh. FR-Train: A Mutual
 603 Information-Based Approach to Fair and Robust Training. In *Proceedings of the 37th Inter-*
 604 *national Conference on Machine Learning*, 2020.

605 Candice Schumann, Xuezhi Wang, Alex Beutel, Jilin Chen, Hai Qian, and Ed H. Chi. Transfer of
 606 Machine Learning Fairness across Domains, 2019. *arXiv:1906.09688 [cs.LG]*.
 607

608 Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
 609 likelihood function. *Journal of Statistical Planning and Inference*, 90(2), 2000.

610 Harvineet Singh, Rina Singh, Vishwali Mhasawade, and Rumi Chunara. Fairness Violations and
 611 Mitigation under Covariate Shift. In *Proceedings of the 2021 ACM Conference on Fairness,*
 612 *Accountability, and Transparency*, 2021.

613 Serena Wang, Wenshuo Guo, Harikrishna Narasimhan, Andrew Cotter, Maya Gupta, and Michael I.
 614 Jordan. Robust Optimization for Fairness with Noisy Protected Groups. In *Advances in Neural*
 615 *Information Processing Systems*, volume 33, 2020.

616 Songhua Wu, Mingming Gong, Bo Han, Yang Liu, and Tongliang Liu. Fair Classification with
 617 Instance-dependent Label Noise. In *Proceedings of the First Conference on Causal Learning and*
 618 *Reasoning*, 2022.

619 Ruicheng Xian and Han Zhao. A Unified Post-Processing Framework for Group Fairness in Classi-
 620 *fication*, 2024. *arXiv:2405.04025 [cs.LG]*.
 621

622 Ruicheng Xian, Lang Yin, and Han Zhao. Fair and optimal classification via post-processing. In
 623 *International conference on machine learning*, pp. 37977–38012. PMLR, 2023.

624 Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. Fair-
 625 ness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate
 626 Mistreatment. In *Proceedings of the 26th International Conference on World Wide Web*, 2017.

627 Richard Zemel, Yu Ledell Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning Fair
 628 Representations. In *Proceedings of the 30th International Conference on Machine Learning*,
 629 2013.

630 Han Zhao and Geoffrey J Gordon. Inherent tradeoffs in learning fair representations. *Journal of*
 631 *Machine Learning Research*, 23(57):1–26, 2022.
 632

633 Shengjia Zhao, Abhishek Sinha, Yutong He, Aidan Perreault, Jiaming Song, and Stefano Ermon.
 634 Comparing Distributions by Measuring Differences that Affect Decision Making. In *The Tenth*
 635 *International Conference on Learning Representations*, 2022.
 636

637

638

639

640

641

642

643

644

645

646

647

648 **A RELATED WORK**
 649

650 **Fairness Under Distribution Shifts.** Our analysis is similar to those in (Wang et al., 2020; Hou &
 651 Zhang, 2024; Agarwal et al., 2025). Wang et al. (2020) study fair classifiers under covariate shift and
 652 derive bounds on fairness violation in terms of the magnitude of the shift. Agarwal et al. (2025) ad-
 653 ditionally bound the excess risk of the optimal fair classifier under shifts, but their results are limited
 654 to the attribute-aware setting. Hou & Zhang (2024) study the excess risk of the optimal attribute-
 655 blind fair classifier, revealing a similar worst-case dependency on the fairness tolerance; while we
 656 provide an example that matches this dependency, they establish matching minimax bounds.

657 In addition, Konstantinov & Lampert (2022) and Blum et al. (2024) analyze fair classifiers under
 658 adversarial noise (i.e., worst-case distribution shift), with emphasis on the brittleness of deterministic
 659 fair classifiers relative to randomized ones, and Chen et al. (2022) provide fine-grained bounds
 660 under covariate and label shifts. Giguere et al. (2022) and Kang et al. (2022) study the problem of
 661 certifying fairness guarantees under distribution shifts.

662 **Robust Fair Algorithms.** Existing algorithms can be broadly categorized into *domain adaptation*
 663 and *generalization* methods (Barraikua et al., 2025). The former assumes a source and a specific
 664 target distribution, with the goal of achieving fairness on the target. The common strategy is to relate
 665 the target distribution to the source, via importance weighting, invariant representation learning, or
 666 assuming a generative model (e.g., causal graphs), followed by applying standard (non-robust) fair
 667 algorithms (Schumann et al., 2019; Coston et al., 2019; Roh et al., 2020; Rezaei et al., 2021; Singh
 668 et al., 2021; An et al., 2022; Wu et al., 2022). Generalization methods assume less knowledge
 669 about the test distribution(s) and instead define an uncertainty set, often as bounded perturbations
 670 around the source distribution. The goal is to ensure fairness under all perturbations in the set,
 671 typically using techniques from (distributionally) robust optimization (Wang et al., 2020; Mandal
 672 et al., 2020; Jiang et al., 2023; Baharlouei et al., 2024). Our robust fair post-processing algorithm
 673 belongs primarily to the latter category but can be adapted to the domain adaptation setting by
 674 customizing the uncertainty set based on knowledge of the target distribution.

675 **B PROOFS FOR SECTION 3.1**
 676

677 To begin, we derive alternative expressions for the fairness violation in Definition 2.1:

$$678 V_p(h) = \max_{\substack{a, a' \in \mathcal{A} \\ c \in \{1, \dots, C\}}} \left| \mathbb{P}_p(\hat{Y} = y_c \mid A = a, Z = z_c) - \mathbb{P}_p(\hat{Y} = y_c \mid A = a', Z = z_c) \right|.$$

679 Because the distribution of \hat{Y} is fully determined by h given X , the statistics considered in the group
 680 fairness constraint above can be written by Bayes' rule as

$$681 \mathbb{P}_p(\hat{Y} = k \mid A = a, Z = z) = \int_{\mathcal{X}} h(x)_k p_{X|a,z}(x) dx = \int_{\mathcal{X}} h(x)_k \frac{p_{A,Z|x}(a, z) p_X(x)}{p_{A,Z}(a, z)} dx. \quad (4)$$

682 Written in this form, it is easy to show that V is 1-Lipschitz in h in the uniform distance. By Hölder's
 683 inequality,

$$684 |V(h) - V(h')| = \left| \max_{a, a', z, c} \int_{\mathcal{X}} (h(x)_{y_c} - h'(x)_{y_c}) p_{X|a,z}(x) dx \right| \\ 685 \leq \max_{a, a', z, c} \left(\max_x |h(x)_{y_c} - h'(x)_{y_c}| \right) \int_{\mathcal{X}} p_{X|a,z}(x) dx \\ 686 = \|h - h'\|_{\infty}, \quad (5)$$

687 where we defined the L^{∞} -distance between two (vector-valued) functions $h, h' : \mathcal{X} \rightarrow \mathbb{R}^K$ as

$$688 \|h - h'\|_{\infty} = \max_{x, k} |h(x)_k - h'(x)_k|.$$

689 **Lemma B.1.** *Let p, q be two distributions. Let $h : \mathcal{X} \rightarrow \Delta(\mathcal{Y})$ be a Lipschitz randomized classifier
 690 with $\text{Lip}(h) \leq L$, and $\hat{Y} \sim \text{Multinomial}(h(X))$. Then for any $a \in \mathcal{A}$, $z \in \mathcal{Z}$, and $k \in \mathcal{Y}$, the
 691 change in the statistics examined by the group fairness criteria of Definition 2.1 is bounded by*

$$692 \left| \mathbb{P}_p(\hat{Y} = k \mid A = a, Z = z) - \mathbb{P}_q(\hat{Y} = k \mid A = a, Z = z) \right| \leq D_{1,L}(p_{X|a,z}, q_{X|a,z}).$$

702 Moreover, if $L' \geq \text{Lip}(x \mapsto q_{A,Z|X=x}(a, z))$ for all a, z , then
 703

$$704 \left| \mathbb{P}_p(\hat{Y} = k \mid A = a, Z = z) - \mathbb{P}_q(\hat{Y} = k \mid A = a, Z = z) \right| \\ 705 \leq 2(D_{1,(L+1)L'}(p_X, q_X) + \mathbb{E}_{X \sim p_X} |p_{A,Z|X}(a, z) - q_{A,Z|X}(a, z)|). \\ 706 \\ 707$$

708 *Proof.* For the first bound, we use the first alternative form of Eq. (4). By the definition of the
 709 Dudley metric (Definition 2.3) and the assumption that $\text{Lip}(h) \leq L$,

$$710 \left| \int_{\mathcal{X}} h(x)_k (p_{X|a,z}(x) - q_{X|a,z}(x)) dx \right| \leq D_{1,L}(p_{X|a,z}, q_{X|a,z}). \\ 711 \\ 712$$

713 For the second bound, we use the second form in Eq. (4).

$$714 \left| \int_{\mathcal{X}} h(x)_k \left(\frac{p_{A,Z|x}(a, z)p_X(x)}{p_{A,Z}(a, z)} - \frac{q_{A,Z|x}(a, z)q_X(x)}{q_{A,Z}(a, z)} \right) dx \right| \\ 715 \leq \left| \int_{\mathcal{X}} h(x)_k \left(\frac{p_{A,Z|x}(a, z)p_X(x)}{p_{A,Z}(a, z)} - \frac{q_{A,Z|x}(a, z)p_X(x)}{p_{A,Z}(a, z)} \right) dx \right| \\ 716 \\ 717 + \left| \int_{\mathcal{X}} h(x)_k \left(\frac{q_{A,Z|x}(a, z)p_X(x)}{p_{A,Z}(a, z)} - \frac{q_{A,Z|x}(a, z)q_X(x)}{p_{A,Z}(a, z)} \right) dx \right| \\ 718 \\ 719 + \left| \int_{\mathcal{X}} h(x)_k \left(\frac{q_{A,Z|x}(a, z)q_X(x)}{p_{A,Z}(a, z)} - \frac{q_{A,Z|x}(a, z)q_X(x)}{q_{A,Z}(a, z)} \right) dx \right|, \\ 720 \\ 721 \\ 722 \\ 723 \\ 724 \leq \frac{1}{p_{A,Z}(a, z)} (\mathbb{E}_{X \sim p_X} |p_{A,Z|X}(a, z) - q_{A,Z|X}(a, z)| + D_{1,LL'}(p_X, q_X)) \\ 725 \\ 726 + \left| \frac{1}{p_{A,Z}(a, z)} - \frac{1}{q_{A,Z}(a, z)} \right| \int_{\mathcal{X}} h(x)_k q_{X,A,Z}(x, a, z) dx \\ 727 \\ 728$$

729 by triangle inequality, and the assumption that $\text{Lip}(q_{A,Z| \cdot}) \leq L'$; continuing with the last term,

$$730 \left| \frac{1}{p_{A,Z}(a, z)} - \frac{1}{q_{A,Z}(a, z)} \right| \int_{\mathcal{X}} h(x)_k q_{X,A,Z}(x, a, z) dx \\ 731 \\ 732 \leq \left| \frac{q_{A,Z}(a, z)}{p_{A,Z}(a, z)} - 1 \right| = \frac{1}{p_{A,Z}(a, z)} |q_{A,Z}(a, z) - p_{A,Z}(a, z)|, \\ 733 \\ 734$$

735 where

$$736 |q_{A,Z}(a, z) - p_{A,Z}(a, z)| \\ 737 = \left| \int_{\mathcal{X}} (q_{A,Z|x}(a, z)q_X(x) - p_{A,Z|x}(a, z)p_X(x)) dx \right| \\ 738 \\ 739 \leq \left| \int_{\mathcal{X}} (q_{A,Z|x}(a, z) - p_{A,Z|x}(a, z))p_X(x) dx \right| + \left| \int_{\mathcal{X}} q_{A,Z|x}(a, z)(q_X(x) - p_X(x)) dx \right| \\ 740 \\ 741 \leq \mathbb{E}_{X \sim p_X} |p_{A,Z|X}(a, z) - q_{A,Z|X}(a, z)| + D_{1,L'}(p_X, q_X). \\ 742 \\ 743$$

744 Combing this with Eqs. (6) and (7) gives the result in the lemma statement. \square
 745

746 *Proof of Theorem 3.1.* For the first bound, we use the first alternative form of Eq. (4). By triangle
 747 inequality, for any $a, a' \in \mathcal{A}, z \in \mathcal{Z}$, and $k \in \mathcal{Y}$,

$$748 \left| \int_{\mathcal{X}} h(x)_k (q_{X|a,z}(x) - q_{X|a',z}(x)) dx \right| \\ 749 \\ 750 \leq \left| \int_{\mathcal{X}} h(x)_k (p_{X|a,z}(x) - p_{X|a',z}(x)) dx \right| \\ 751 \\ 752 + \left| \int_{\mathcal{X}} h(x)_k (p_{X|a,z}(x) - q_{X|a,z}(x)) dx \right| + \left| \int_{\mathcal{X}} h(x)_k (p_{X|a',z}(x) - q_{X|a',z}(x)) dx \right| \\ 753 \\ 754 \leq \alpha + D_{1,L}(p_{X|a,z}, q_{X|a,z}) + D_{1,L}(p_{X|a',z}, q_{X|a',z}); \\ 755$$

756 the last line is from the assumption that $V_p(h) \leq \alpha$ and by Lemma B.1. Then $V_q(h) \leq \alpha + 2 \max_{a,z \in \mathcal{Z}} D_{1,L}(p_{X|a,z}, q_{X|a,z})$ by taking the max of the above over $a \in \mathcal{A}$ and $z \in \mathcal{Z}$.

757 For the second bound, we use the second form of Eq. (4). Again, by triangle inequality,

$$\begin{aligned} & \left| \int_{\mathcal{X}} h(x)_k \left(\frac{q_{A,Z|x}(a, z) q_X(x)}{q_{A,Z}(a, z)} - \frac{q_{A,Z|x}(a', z) q_X(x)}{q_{A,Z}(a', z)} \right) dx \right| \\ & \leq \left| \int_{\mathcal{X}} h(x)_k \left(\frac{p_{A,Z|x}(a, z) p_X(x)}{p_{A,Z}(a, z)} - \frac{p_{A,Z|x}(a', z) p_X(x)}{p_{A,Z}(a', z)} \right) dx \right| \\ & \quad + \left| \int_{\mathcal{X}} h(x)_k \left(\frac{p_{A,Z|x}(a, z) p_X(x)}{p_{A,Z}(a, z)} - \frac{q_{A,Z|x}(a, z) q_X(x)}{q_{A,Z}(a, z)} \right) dx \right| \\ & \quad + \left| \int_{\mathcal{X}} h(x)_k \left(\frac{p_{A,Z|x}(a', z) p_X(x)}{p_{A,Z}(a', z)} - \frac{q_{A,Z|x}(a', z) q_X(x)}{q_{A,Z}(a', z)} \right) dx \right|, \end{aligned}$$

758 where the term on the second line is no more than α , and the other two terms are bounded using the
759 second result of Lemma B.1. \square

760 C PROOFS FOR SECTION 3.2

761 We first provide the proofs to Theorem 3.2 and Corollary 3.3, then derive the results in Example 1.
762 To simplify notation, we drop the Lipschitz constant L in $\bar{h}_{p,L}, \bar{h}_{q,L}$ in the proofs.

763 *Proof of Theorem 3.2.* We begin with the following decomposition of the risk:
764

$$\begin{aligned} & R_q(\bar{h}_p) - R_q(\bar{h}_q) \\ & = (R_q(\bar{h}_p) - R_p(\bar{h}_p)) + (R_p(\bar{h}_p) - R_p(\bar{h}_q)) + (R_p(\bar{h}_q) - R_q(\bar{h}_q)). \end{aligned}$$

765 For the first term (and similarly the last),
766

$$\begin{aligned} & R_q(\bar{h}_p) - R_p(\bar{h}_p) \\ & = \int_{\mathcal{X} \times \mathcal{Y}} \sum_{k \in \mathcal{Y}} \ell(y, k) \bar{h}_p(x)_k q_{X,Y}(x, y) dx dy - \int_{\mathcal{X} \times \mathcal{Y}} \sum_{k \in \mathcal{Y}} \ell(y, k) \bar{h}_p(x)_k p_{X,Y}(x, y) dx dy \\ & = \int_{\mathcal{X} \times \mathcal{Y}} \left(\sum_{k \in \mathcal{Y}} \ell(y, k) \bar{h}_p(x)_k \right) (q_{X,Y}(x, y) - p_{X,Y}(x, y)) dx dy \\ & =: \int_{\mathcal{X} \times \mathcal{Y}} g(x, y) (q_{X,Y}(x, y) - p_{X,Y}(x, y)) dx dy \\ & = \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} g(x, y) p_X(x) (q_{Y|X=x}(y) - p_{Y|X=x}(y)) dx \\ & \quad + \|\ell\|_{\infty} \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{g(x, y)}{\|\ell\|_{\infty}} q_{Y|X=x}(y) (q_X(x) - p_X(x)) dx \\ & \leq \|\ell\|_{\infty} \mathbb{E}_{X \sim p_X} [D_{\text{TV}}(p_{Y|X}, q_{Y|X})] + \|\ell\|_{\infty} D_{1,(L+L')K}(p_X, q_X) \end{aligned}$$

809 where we defined g to be the expected risk incurred by \bar{h}_p on each (x, y) pair from the underlying
810 distribution; the last line is because $x \mapsto \sum_{y \in \mathcal{Y}} g(x, y) q_{Y|X=x}(y) / \|\ell\|_{\infty} \in [0, 1]$ and is $(L+L')K$ -

810 Lipschitz:
 811

$$\begin{aligned}
 & \left| \sum_{y \in \mathcal{Y}} g(x, y) q_{Y|X=x}(y) - \sum_{y \in \mathcal{Y}} g(x', y) q_{Y|X=x'}(y) \right| \\
 & \leq \sum_{y \in \mathcal{Y}} q_{Y|X=x}(y) |g(x, y) - g(x', y)| + \sum_{y \in \mathcal{Y}} g(x', y) |q_{Y|X=x}(y) - q_{Y|X=x'}(y)| \\
 & \leq \sum_{y \in \mathcal{Y}} |g(x, y) - g(x', y)| + \|\ell\|_\infty \sum_{y \in \mathcal{Y}} |q_{Y|X=x}(y) - q_{Y|X=x'}(y)| \\
 & \leq \sum_{y \in \mathcal{Y}} \left| \sum_{k \in \mathcal{Y}} \ell(y, k) (\bar{h}_p(x)_k - \bar{h}_p(x')_k) \right| + \|\ell\|_\infty L' K d(x, x') \\
 & \leq \|\ell\|_\infty L K d(x, x') + \|\ell\|_\infty L' K d(x, x').
 \end{aligned}$$

825 For the middle term, we construct a classifier h' from \bar{h}_q such that $\text{Lip}(h') \leq L$ and $V_p(h') \leq \alpha$
 826 using Fact 2.2, whereby, because of the optimality of \bar{h}_p on p ,

$$\begin{aligned}
 R_p(\bar{h}_p) - R_p(\bar{h}_q) &= (R_p(\bar{h}_p) - R_p(h')) + (R_p(h') - R_p(\bar{h}_q)) \\
 &\leq R_p(h') - R_p(\bar{h}_q).
 \end{aligned} \tag{8}$$

831 The construction is as follows: let $\beta \in [0, 1]$ to be determined, and
 832

$$h'(x) = \beta(1, 0, \dots, 0) + (1 - \beta)\bar{h}_q(x),$$

834 in other words, h' interpolates between the constant classifier that always outputs 0, and the original
 835 \bar{h}_q . We verify that it is L -Lipschitz: $|h'(x) - h'(x')| = (1 - \beta)|\bar{h}_q(x) - \bar{h}_q(x')| \leq (1 - \beta)L d(x, x')$.
 836 For its fairness violation on p , by Eq. (4),

$$\begin{aligned}
 V_p(h') &= \max_{\substack{a, a' \in \mathcal{A} \\ c \in \{1, \dots, C\}}} \left| \int_{\mathcal{X}} h'(x)_k (p_{X|a, z_c}(x) - p_{X|a', z_c}(x)) dx \right| \\
 &\leq (1 - \beta) \max_{\substack{a, a' \in \mathcal{A} \\ c \in \{1, \dots, C\}}} \left| \int_{\mathcal{X}} \bar{h}_q(x) (p_{X|a, z_c}(x) - p_{X|a', z_c}(x)) dx \right| \\
 &= (1 - \beta)V_p(\bar{h}_q) \\
 &\leq (1 - \beta)(\alpha + \varepsilon)
 \end{aligned}$$

846 by the assumption that $V_p(\bar{h}_q) \leq \alpha + \varepsilon$, and we have $(1 - \beta)(\alpha + \varepsilon) \leq \alpha$ via setting
 847

$$\beta = \frac{\varepsilon}{\alpha + \varepsilon}.$$

850 Then to bound Eq. (8),
 851

$$\begin{aligned}
 R_p(h') - R_p(\bar{h}_q) &= \int_{\mathcal{X} \times \mathcal{Y}} \sum_{k \in \mathcal{Y}} \ell(y, k) (h'(x)_k - \bar{h}_q(x)_k) p_{X,Y}(x, y) dxy \\
 &= \beta \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, 0) p_{X,Y}(x, y) dxy - \beta \int_{\mathcal{X} \times \mathcal{Y}} \sum_{k \in \mathcal{Y}} \ell(y, k) \bar{h}_q(x)_k p_{X,Y}(x, y) dxy \\
 &\leq \beta \|\ell\|_\infty.
 \end{aligned}$$

860 The final bound in the statement is obtained by putting the above together. \square
 861

862 *Proof of Corollary 3.3 Part 1* (Statistical Parity). We pick up from Eq. (8) in the above proof of The-
 863 orem 3.2; the next step is to construct a classifier h' such that $\text{Lip}(h') \leq L$ and $V_p(h') \leq \alpha$.

Let $\mu_a \in \Delta(\mathcal{Y})$ denote the class output distribution of \bar{h}_q on the source distribution p conditioned on group $A = a$, that is, $\mu_{a,k} = \mathbb{E}_{X \sim p_X} [\bar{h}_q(X)_k \mid A = a]$, and similarly let $\nu_{a,k} = \mathbb{E}_{X \sim q_X} [\bar{h}_q(X)_k \mid A = a]$ denote that on the target distribution q . We will construct an h' off \bar{h}_q such that its conditional output distributions on p is the same as ν (i.e., that of \bar{h}_q on q), which satisfies fairness.

Define

$$d_{a,k} = \max(0, \nu_{a,k} - \mu_{a,k}), \quad s_{a,k} = \frac{\max(0, \mu_{a,k} - \nu_{a,k})}{\mu_{a,k}},$$

then we construct

$$h'(x, a) = \bar{h}_q(x) \odot (1 - s_a) + d_a,$$

where \odot denotes element-wise multiplication. The intuition is to consider the difference between the output distribution of \bar{h}_q on p (which is μ) and the desired target output distribution ν , and construct h' from \bar{h}_q simply by redirecting class assignments going to classes k where $\mu_k > \nu_k$ (i.e., over-target) to classes j where $\mu_j < \nu_j$ (i.e., under-target) uniformly.

We verify that the conditional output distributions of h' on p is indeed ν (which satisfies fairness): for any a, k ,

$$\begin{aligned} & \mathbb{E}_{X \sim p_X} [h'(X, a)_k \mid A = a] \\ &= (1 - s_{a,k}) \mathbb{E}_{X \sim p_X} [\bar{h}_q(X)_k \mid A = a] + d_a \\ &= (1 - s_{a,k}) \mu_{a,k} + d_a \\ &= \mu_{a,k} - \max(0, \mu_{a,k} - \nu_{a,k}) + \max(0, \nu_{a,k} - \mu_{a,k}) \\ &= \nu_{a,k}. \end{aligned}$$

Moreover, $\text{Lip}(h') \leq L$ because it is derived from \bar{h}_q , which is Lipschitz, by multiplying with a number less than 1 and adding a constant.

Then to bound Eq. (8),

$$\begin{aligned} & R_p(h') - R_p(\bar{h}_q) \\ &= \int_{\mathcal{X} \times \mathcal{Y} \times \mathcal{A}} \sum_{k \in \mathcal{Y}} \ell(y, k) (h'(x, a)_k - \bar{h}_q(x)_k) p_{X, Y, A}(x, y, a) \, dx \, dy \, da \\ &= \int_{\mathcal{X} \times \mathcal{Y} \times \mathcal{A}} \sum_{k \in \mathcal{Y}} \ell(y, k) (d_{a,k} - s_{a,k} \bar{h}_q(x)_k) p_{X, Y, A}(x, y, a) \, dx \, dy \, da \\ &= \int_{\mathcal{Y} \times \mathcal{A}} \sum_{k \in \mathcal{Y}} \ell(y, k) (d_{a,k} - s_{a,k} \mu_{a,k}) p_{Y, A}(y, a) \, dy \, da \\ &= \int_{\mathcal{Y} \times \mathcal{A}} \sum_{k \in \mathcal{Y}} \ell(y, k) (\nu_{a,k} - \mu_{a,k}) p_{Y, A}(y, a) \, dy \, da \\ &\leq \varepsilon K \|\ell\|_\infty, \end{aligned}$$

where the last line follows from Hölder's inequality and $|\nu_{a,k} - \mu_{a,k}| \leq \varepsilon$, because by Lemma B.1, ε upper bounds the change in group fairness statistics under distribution shift. The remainder of the proof follows from the rest of the proof of Theorem 3.2. \square

To prove the second result of Corollary 3.3 for binary-class EO, we first recall two facts regarding the true positive rate (TPR) and false positive rate (FPR) of randomized binary classifiers. The first fact simply says that both TPR and FPR of the classifier that always output class 1 with probability β equal to β . This means all points on the main diagonal of the ROC plot are achievable by some randomized classifier.

Fact C.1. *Let $\beta \in [0, 1]$, then the classifier h such that $h_0(x) = 1 - \beta$, $h_1(x) = \beta$ for all $x \in \mathcal{X}$ has the same TPR and FPR of β :*

$$\begin{aligned} \text{TPR}(h) &= \mathbb{E}[h_1(X) \mid Y = 1] = \int_{\mathcal{X}} \beta \mathbb{P}(X = x \mid Y = 1) \, dx = \beta, \\ \text{FPR}(h) &= \mathbb{E}[h_1(X) \mid Y = 0] = \int_{\mathcal{X}} \beta \mathbb{P}(X = x \mid Y = 0) \, dx = \beta. \end{aligned}$$

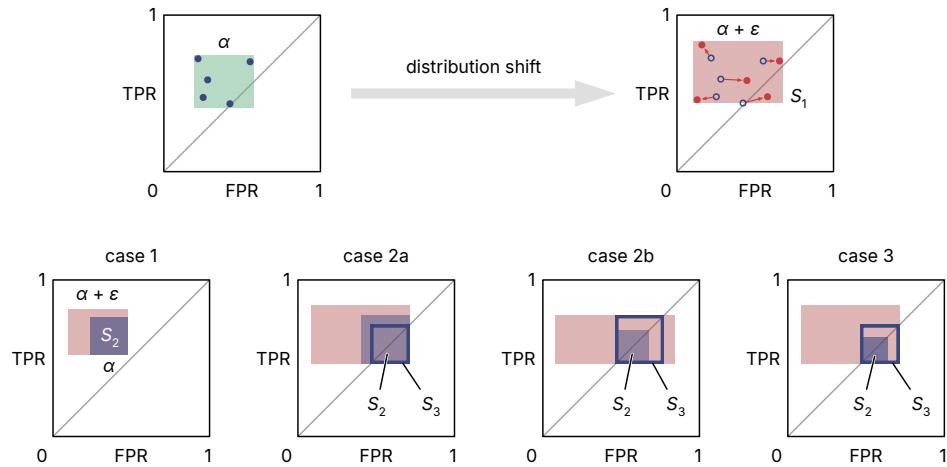


Figure 4: Picture for the cases considered in the proof of Corollary 3.3 Part 2.

The second fact states the linearity of TPR and FPR in h :

Fact C.2. Let h_1, h_2 be two classifiers, and $\lambda \in [0, 1]$. Let $\mu_a^{\text{TPR}}, \mu_a^{\text{FPR}}$ denote the TPR and FPR of h_1 , respectively, and $\nu_a^{\text{TPR}}, \nu_a^{\text{FPR}}$ for those of h_2 . Then the TPR and FPR of $h = \lambda h_1 + (1 - \lambda)h_2$ are $\lambda\mu_a^{\text{TPR}} + (1 - \lambda)\nu_a^{\text{TPR}}$ and $\lambda\mu_a^{\text{FPR}} + (1 - \lambda)\nu_a^{\text{FPR}}$.

Proof of Corollary 3.3 Part 2 (Equalized Odds, Binary Classification). Let μ_a^{TPR} denote the TPR of \bar{h}_q on the source distribution p conditioned on group $A = a$, that is, $\mu_a^{\text{TPR}} = \mathbb{E}_{X \sim p_X} [\bar{h}_q(X)_1 \mid A = a, Y = 1]$, and $\mu_a^{\text{FPR}} = \mathbb{E}_{X \sim p_X} [\bar{h}_q(X)_1 \mid A = a, Y = 0]$ for the conditional FPRs. Let $\bar{\mu}^{\text{TPR}} = \max_a \mu_a^{\text{TPR}}$ denote the maximum conditional TPR, $\underline{\mu}^{\text{TPR}} = \min_a \mu_a^{\text{TPR}}$ the minimum TPR, and analogously define $\bar{\mu}^{\text{FPR}}, \underline{\mu}^{\text{FPR}}$.

We will consider the ROC plot (which plots the FPR on the horizontal axis and TPR on the vertical axis), since the goal of EO fairness is to constrain the group-conditional TPRs and FPRs within a square of side length at most α (Hardt et al. (2016) also based their analysis on the ROC plot).

Define the rectangle S_1 on the ROC plot with vertices at:

$$\begin{aligned} S_1^{\text{UL}} &= (\underline{\mu}^{\text{FPR}}, \bar{\mu}^{\text{TPR}}), & S_1^{\text{UR}} &= (\bar{\mu}^{\text{FPR}}, \bar{\mu}^{\text{TPR}}), \\ S_1^{\text{BL}} &= (\underline{\mu}^{\text{FPR}}, \underline{\mu}^{\text{TPR}}), & S_1^{\text{BR}} &= (\bar{\mu}^{\text{FPR}}, \underline{\mu}^{\text{TPR}}). \end{aligned}$$

This rectangle contains the group-conditional TPRs and FPRs of \bar{h}_q on p ; by the assumption that $V_p(\bar{h}_q) \leq \alpha + \epsilon$, the side lengths of this rectangle are no more than $\alpha + \epsilon$.

Next, we define a square S_2 with side length α contained in S_1 ; later, we will construct h' such that its group-conditional TPRs and FPRs are contained in S_2 . We consider three cases (three other symmetric cases are omitted); see Fig. 4 for a picture:

1. If S_1 is located above and does not intersect with the diagonal line $\{(t, t) : t \in \mathbb{R}\}$, then let the vertices of S_2 be

$$\begin{aligned} S_2^{\text{UL}} &= S_1^{\text{BR}} + (-\alpha, \alpha), & S_2^{\text{UR}} &= S_1^{\text{BR}} + (0, \alpha), \\ S_2^{\text{BL}} &= S_1^{\text{BR}} + (-\alpha, 0), & S_2^{\text{BR}} &= S_1^{\text{BR}}. \end{aligned}$$

2. If S_2 intersects the diagonal line on the BL-BR side at (s, s) , and either the UR-BR or UL-UR side at (t, t) , then we construct another square S_3 (which is contained in S_1) with the following vertices, then consider two cases;

$$\begin{aligned} S_3^{\text{UL}} &= (s, t), & S_3^{\text{UR}} &= (t, t), \\ S_3^{\text{BL}} &= (s, s), & S_3^{\text{BR}} &= (t, s). \end{aligned}$$

972 If the side length of S_3 is less than or equal α , then let S_2 be the only eligible square in S_1
 973 that contains S_3 :

$$974 \quad S_2^{\text{UL}} = S_3^{\text{BR}} + (-\alpha, \alpha), \quad S_2^{\text{UR}} = S_3^{\text{BR}} + (0, \alpha), \\ 975 \quad S_2^{\text{BL}} = S_3^{\text{BR}} + (-\alpha, 0), \quad S_2^{\text{BR}} = S_3^{\text{BR}}.$$

977 3. If S_2 intersects the diagonal line as above, but the side length of S_3 is greater than α , then
 978 let the vertices of S_2 be

$$980 \quad S_2^{\text{UL}} = S_3^{\text{BL}} + (0, \alpha), \quad S_2^{\text{UR}} = S_3^{\text{BL}} + (\alpha, \alpha), \\ 981 \quad S_2^{\text{BL}} = S_3^{\text{BL}}, \quad S_2^{\text{BR}} = S_3^{\text{BL}} + (\alpha, 0).$$

983 It is clear that for any point $u \in S_1 \setminus S_2$, the line that passes through it and its projection $\Pi_{S_2}(u)$
 984 on S_2 will intersect the diagonal segment $\{(t, t) : t \in [0, 1]\}$, and the ℓ_∞ distance between u and
 985 $\Pi_{S_2}(u)$ is no more than ε .

986 Then we construct h' as follows. The strategy is to modify each group-wise component of \bar{h}_q such
 987 that the conditional (FPR, TPR) pair after the modification are in S_2 . If $\mu_a \in S_2$ already, we let
 988 $h'(x, a) = \bar{h}_q(x)$. Otherwise, let (t, t) be the point on the diagonal that intersects with the line
 989 that passes through points μ_a and $\Pi_{S_2}(\mu_a)$, and we know from Facts C.1 and C.2 that there exist
 990 λ_a and h_a (whose TPR and FPR are on the diagonal) such that the conditional FPR and TPR of
 991 $h_a \lambda_a + (1 - \lambda_a) \bar{h}_q$ on p is $\Pi_{S_2}(\mu_a)$, which is what we will set $h'(\cdot, a)$ to. Clearly, h' maintains the
 992 Lipschitz property.

993 Then to bound Eq. (8), we use the fact that the risk of a classifier can be expressed in terms of its
 994 (conditional) TPR and FPR:

$$995 \quad R_p(h) = \sum_{a \in \mathcal{A}} p(A = a) (\ell(0, 0)(1 - \text{FPR}_a(h)) + \ell(0, 1)\text{FPR}_a(h) \\ 996 \quad + \ell(1, 0)(1 - \text{TPR}_a(h)) + \ell(1, 1)\text{TPR}_a(h)),$$

997 then because the conditional TPRs and FPRs of h' on p is within ε distance of those of \bar{h}_q ,
 998

$$1000 \quad R_p(h') - R_p(\bar{h}_q) \leq \varepsilon \sum_{a \in \mathcal{A}} p(A = a) (\ell(0, 0) + \ell(0, 1) + \ell(1, 0) + \ell(1, 1)) \leq 4\varepsilon \|\ell\|_\infty. \quad \square$$

1002 *Proof of Example 1.* We first verify the distribution shift:

$$1004 \quad D_{\text{TV}}(p_{X|A=0}, q_{X|A=0}) = \frac{1}{2} \sum_{x=0}^1 |p(X = x | A = 0) - q(X = x | A = 0)| \\ 1005 \quad = \left| \frac{1 - \alpha - \varepsilon}{2} - \frac{1 - \alpha}{2} \right| = \frac{\varepsilon}{2},$$

1009 and similarly for $D_{\text{TV}}(p_{X|A=1}, q_{X|A=1})$.

1011 Next, the Bayes-optimal fair classifier \bar{h}_q on q coincides with the Bayes-optimal classifier, which is
 1012 the function $\bar{h}_q(x)_k = \mathbb{1}[x = k]$: it always outputs class 0 on $x = 0$, and class 1 on $x = 1$, and has
 1013 an error rate of 0. We verify that it satisfies α -approximate statistical parity: by Eq. (4),

$$1014 \quad V_q^{\text{SP}}(\bar{h}_q) = \left| \sum_{x=0}^1 \bar{h}_q(x)_0 (q(X = x | A = 0) - q(X = x | A = 1)) \right| \\ 1015 \quad = |q(X = 0 | A = 0) - q(X = 0 | A = 1)| \\ 1016 \quad = \left| \frac{1 - \alpha}{2} - \frac{1 + \alpha}{2} \right| = \alpha.$$

1021 For the Bayes-optimal fair classifier \bar{h}_p on p , we derive its error rate as follows. Denote its
 1022 conditional probability of outputting class 1 on input 0 by $\pi_0 = \bar{h}_p(0)_1$, and that on input 1 by
 1023 $\pi_1 = \bar{h}_p(1)_1$. We can express its error rate as

$$1025 \quad R(\bar{h}_p) = \frac{1}{2}\pi_0 + \frac{1}{2}(1 - \pi_1) = \frac{1}{2} + \frac{1}{2}(\pi_0 - \pi_1),$$

1026 and its statistical parity violation as
 1027

$$\begin{aligned}
 1028 \quad V_p^{\text{SP}}(\bar{h}_p) &= \left| \sum_{x=0}^1 \bar{h}_p(x)_1 (p(X=x \mid A=0) - p(X=x \mid A=1)) \right| \\
 1029 &= |\pi_0(p(X=0 \mid A=0) - p(X=0 \mid A=1)) \\
 1030 &\quad + \pi_1(p(X=1 \mid A=0) - p(X=1 \mid A=1))| \\
 1031 &=: |\pi_0(p_{00} - p_{01}) + \pi_1(p_{10} - p_{11})| \\
 1032 &= |\pi_0(p_{00} - p_{01}) + \pi_1(1 - p_{00} - (1 - p_{01}))| \\
 1033 &= |\pi_0(p_{00} - p_{01}) - \pi_1(p_{00} - p_{01})| \\
 1034 &= |(\pi_0 - \pi_1)(p_{00} - p_{01})| \\
 1035 &= |\pi_0 - \pi_1| |p_{00} - p_{01}| \\
 1036 &= (\alpha + \varepsilon) |\pi_0 - \pi_1|.
 \end{aligned}$$

1040 Then the error rate of \bar{h}_p is the solution to the problem
 1041

$$\min_{\pi_0, \pi_1 \in [0, 1]} \frac{1}{2} + \frac{1}{2}(\pi_0 - \pi_1) \quad \text{s.t.} \quad |\pi_0 - \pi_1| \leq \frac{\alpha}{\alpha + \varepsilon};$$

1044 it is immediate that an optimal solution is $\pi_0 = 0$ and $\pi_1 = \alpha/(\alpha + \varepsilon)$, so the error rate is $\varepsilon/2(\alpha + \varepsilon)$,
 1045 which is also the excess risk as 0 is the error rate of \bar{h}_q . \square
 1046

1047 D PROOFS FOR LINEARPOST

1049 First, we review and provide the derivation for the post-processing weights of the single-distribution
 1050 LinearPost (Theorem 4.1) in terms of the optimal dual values of a linear program (LP). We then
 1051 extend this derivation for the multiple distribution setting and prove Theorem 4.2.
 1052

1053 D.1 SINGLE-DISTRIBUTION LINEARPOST

1055 Recall the single-distribution fair classification problem,

$$\arg \min_h R_p(h) \quad \text{s.t.} \quad V_p(h) \leq \alpha.$$

1058 By Eqs. (2) and (4), it can be expressed as the following linear program with variables $h \in \mathbb{R}^{|\mathcal{X}| \times K}$
 1059 and $t \in \mathbb{R}^C$:

$$\begin{aligned}
 1060 \quad & \min_{h \geq 0, t} \int_{\mathcal{X}} \sum_{k \in \mathcal{Y}} r_p(x)_k h(x)_k p_X(x) \, dx \\
 1061 & \text{s.t.} \quad \sum_{k \in \mathcal{Y}} h(x)_k = 1, \quad \forall x \in \mathcal{X}, \\
 1062 & \quad \left| \int_{\mathcal{X}} h(x)_{y_c} \frac{p_{A,Z|x}(a, z_c)}{p_{A,Z}(a, z_c)} p_X(x) \, dx - t_c \right| \leq \frac{\alpha}{2}, \quad \forall a \in \mathcal{A}, c \in [C],
 \end{aligned} \tag{9}$$

1068 where the first constraint ensures that h represents a valid randomized classifier (row-stochasticity),
 1069 and t are auxiliary variables introduced to reduce the number of constraints (each t_c will be opti-
 1070 mized to the midpoint between the two most violating groups).

1071 Introduce dual variables $\phi : \mathcal{X} \rightarrow \mathbb{R}$ and $\psi \in \mathbb{R}^{G \times C}$, then the dual problem of the above is
 1072

$$\begin{aligned}
 1073 \quad & \min_{\phi, \psi} \int_{\mathcal{X}} \phi(x) p_X(x) \, dx - \frac{\alpha}{2} \sum_{c \in [C]} \sum_{a \in \mathcal{A}} |\psi_{a,c}| \\
 1074 & \text{s.t.} \quad \sum_{a \in \mathcal{A}} \psi_{a,c} = 0, \quad \forall c \in [C], \\
 1075 & \quad \phi(x) + \sum_{c: y_c=k} \sum_{a \in \mathcal{A}} \psi_{a,c} \frac{p_{A,Z|x}(a, z_c)}{p_{A,Z}(a, z_c)} \leq r_p(x)_k, \quad \forall x \in \mathcal{X}, k \in \mathcal{Y}.
 \end{aligned}$$

1080 Let ψ^* denote the optimal dual variable, Xian & Zhao (2024) show that the weights for the linear
 1081 post-processing in Theorem 4.1 are given by
 1082

$$1083 \quad 1084 \quad \beta_{k,a,z} = - \sum_{c \in [C]} \mathbf{1}[k = y_c, z = z_c] \frac{\psi_{a,c}^*}{p_{A,Z}(a, z_c)}.$$

1088 D.2 MULTIPLE-DISTRIBUTION LINEARPOST

1090 Let p and q_1, \dots, q_M be distributions. Similar to above, the multiple-distribution fair classification
 1091 problem,
 1092

$$1093 \quad \arg \min_h R_p(h) \quad \text{s.t.} \quad V_p(h) \leq \alpha, \quad V_{q_1}(h) \leq \alpha, \dots, \quad V_{q_M}(h) \leq \alpha,$$

1097 can be expressed as the following linear program:

$$1099 \quad \min_{h \geq 0, t} \int_{\mathcal{X}} \sum_{k \in \mathcal{Y}} r_p(x)_k h(x)_k p_X(x) dx \\ 1100 \quad \text{s.t.} \quad \sum_{k \in \mathcal{Y}} h(x)_k = 1, \quad \forall x \in \mathcal{X}, \\ 1101 \quad \left| \int_{\mathcal{X}} h(x)_{y_c} \frac{p_{A,Z|x}(a, z_c)}{p_{A,Z}(a, z_c)} p_X(x) dx - t_{0,c} \right| \leq \frac{\alpha}{2}, \quad \forall a \in \mathcal{A}, c \in [C], \\ 1102 \quad \left| \int_{\mathcal{X}} h(x)_{y_c} \frac{q_{1A,Z|x}(a, z_c)}{q_{1A,Z}(a, z_c)} q_{1X}(x) dx - t_{1,c} \right| \leq \frac{\alpha}{2}, \quad \forall a \in \mathcal{A}, c \in [C], \\ 1103 \quad \vdots \\ 1104 \quad \left| \int_{\mathcal{X}} h(x)_{y_c} \frac{q_{MA,Z|x}(a, z_c)}{q_{MA,Z}(a, z_c)} q_{MX}(x) dx - t_{M,c} \right| \leq \frac{\alpha}{2}, \quad \forall a \in \mathcal{A}, c \in [C]. \quad (10)$$

1115 To derive the dual, we introduce dual variables $\phi : \mathcal{X} \rightarrow \mathbb{R}$ and $\psi^+, \psi^- \in \mathbb{R}^{(M+1) \times G \times C}$. The
 1116 Lagrangian is
 1117

$$1118 \quad L(h, t, \phi, \psi^+, \psi^-) \\ 1119 \quad = \int_{\mathcal{X}} \sum_{k \in \mathcal{Y}} r_p(x)_k h(x)_k p_X(x) dx + \int_{\mathcal{X}} \left(1 - \sum_{k \in \mathcal{Y}} h(x)_k \right) p_X(x) \phi(x) dx \\ 1120 \quad + \sum_{c \in [C]} \sum_{a \in \mathcal{A}} \left(-\frac{\alpha}{2} + t_{0,c} - \int_{\mathcal{X}} h(x)_{y_c} \frac{p_{A,Z|x}(a, z_c)}{p_{A,Z}(a, z_c)} p_X(x) dx \right) \psi_{0,a,c}^+ \\ 1121 \quad + \sum_{c \in [C]} \sum_{a \in \mathcal{A}} \left(-\frac{\alpha}{2} - t_{0,c} + \int_{\mathcal{X}} h(x)_{y_c} \frac{p_{A,Z|x}(a, z_c)}{p_{A,Z}(a, z_c)} p_X(x) dx \right) \psi_{0,a,c}^- \\ 1122 \quad + \sum_{m=1}^M \sum_{c \in [C]} \sum_{a \in \mathcal{A}} \left(-\frac{\alpha}{2} + t_{m,c} - \int_{\mathcal{X}} h(x)_{y_c} \frac{q_{mA,Z|x}(a, z_c)}{q_{mA,Z}(a, z_c)} q_{mX}(x) dx \right) \psi_{m,a,c}^+ \\ 1123 \quad + \sum_{m=1}^M \sum_{c \in [C]} \sum_{a \in \mathcal{A}} \left(-\frac{\alpha}{2} - t_{m,c} + \int_{\mathcal{X}} h(x)_{y_c} \frac{q_{mA,Z|x}(a, z_c)}{q_{mA,Z}(a, z_c)} q_{mX}(x) dx \right) \psi_{m,a,c}^- \\ 1124 \quad 1125 \quad 1126 \quad 1127 \quad 1128 \quad 1129 \quad 1130 \quad 1131 \quad 1132 \quad 1133$$

1134 collecting terms,
 1135
 1136 $L(h, t, \phi, \psi^+, \psi^-)$
 1137 $= \int_{\mathcal{X}} \phi(x) p_X(x) dx - \sum_{m=0}^M \sum_{c \in [C]} \sum_{a \in \mathcal{A}} \left(t_{m,c} (\psi_{m,a,c}^+ - \psi_{m,a,c}^-) - \frac{\alpha}{2} (\psi_{m,a,c}^+ + \psi_{m,a,c}^-) \right)$
 1138 $+ \int_{\mathcal{X}} \sum_{k \in \mathcal{Y}} \left(r_p(x)_k - \underbrace{\left(\phi(x) + \sum_{m=0}^M \sum_{c:y_c=k} \sum_{a \in \mathcal{A}} \frac{q_{m,A,Z|x}(a, z_c)}{q_{m,A,Z}(a, z_c)} \frac{q_{m,X}(x)}{p_X(x)} (\psi_{m,a,c}^+ - \psi_{m,a,c}^-) \right)}_{(*)} \right)$
 1139 $h(x)_k p_X(x) dx,$
 1140
 1141
 1142
 1143
 1144

1145 where we defined $q_0 = p$.
 1146

1147 By strong duality, $\min_{h \geq 0, t} \max_{\phi, \psi^+ \geq 0, \psi^- \geq 0} L = \max_{\phi, \psi^+ \geq 0, \psi^- \geq 0} \min_{h \geq 0, t} L$. Note that, if
 1148 $r_p(x)_k < (*)$ for some (x, k) , then we can send L to $-\infty$ by setting $h(x)_k = \infty$, so we must have
 1149 that $r_p(x)_k \geq (*)$ for all x, k . But with this constraint, the best we can do for $\min_{h \geq 0, t} L$ is to set
 1150 $h = 0$, so the last line is omitted. Similarly, we must have $\sum_{a \in \mathcal{A}} (\psi_{m,a,c}^+ - \psi_{m,a,c}^-) = 0$ from its
 1151 interaction with $t_{m,c}$ for all m, c .
 1152

So the dual problem is

1153 $\min_{\phi, \psi} \int_{\mathcal{X}} \phi(x) p_X(x) dx - \frac{\alpha}{2} \sum_{m=0}^M \sum_{c \in [C]} \sum_{a \in \mathcal{A}} |\psi_{m,a,c}|$
 1154
 1155
 1156 s.t. $\sum_{a \in \mathcal{A}} \psi_{m,a,c} = 0, \quad \forall c \in [C], m \in [M]$
 1157
 1158 $\phi(x) + \sum_{m=0}^M \sum_{c:y_c=k} \sum_{a \in \mathcal{A}} \psi_{m,a,c} \frac{q_{m,A,Z|x}(a, z_c)}{q_{m,A,Z}(a, z_c)} \frac{q_{m,X}(x)}{p_X(x)} \leq r_p(x)_k, \quad \forall x \in \mathcal{X}, k \in \mathcal{Y}.$
 1159
 1160
 1161

1162 Now, we follow a similar analysis in (Xian & Zhao, 2024) to prove Theorem 4.2.
 1163

1164 *Proof of Theorem 4.2.* Let h^* be a minimizer of the primal LP (Eq. (10)) and ψ^* an optimal dual
 1165 variable. By definition, h^* is the Bayes-optimal randomized fair classifier achieving the minimum
 1166 risk on p and satisfying fairness on p, q_1, \dots, q_M simultaneously.
 1167

Define

1168
 1169 $r_{\text{fair}}(x, k) = r_p(x)_k - \sum_{m=0}^M \sum_{c:y_c=k} \sum_{a \in \mathcal{A}} \psi_{m,a,c}^* \frac{q_{m,A,Z|x}(a, z_c)}{q_{m,A,Z}(a, z_c)} \frac{q_{m,X}(x)}{p_X(x)}$
 1170
 1171
 1172 $= r_p(x)_k + \sum_{a \in \mathcal{A}, z \in \mathcal{Z}} \sum_{m=0}^M \beta_{m,k,a,z} q_{m,A,Z|x}(a, z) \frac{q_{m,X}(x)}{p_X(x)}$
 1173
 1174

1175 with

1176 $\beta_{m,k,a,z} = - \sum_{c \in [C]} \mathbb{1}[k = y_c, z = z_c] \frac{\psi_{m,a,c}^*}{q_{m,A,Z}(a, z_c)};$
 1177
 1178

1179 note that $x \mapsto \arg \min_k r_{\text{fair}}(x, k)$ is the classifier proposed in Theorem 4.2.
 1180

1181 Then, the second constraint of the dual problem reads $\phi(x) - r_{\text{fair}}(x, k) \leq 0$ for all x, k . By
 1182 complementary slackness (Papadimitriou & Steiglitz, 1998), $\phi(x) - r_{\text{fair}}(x, k) \iff h^*(x)_k > 0$, with
 1183 the right hand side meaning that the optimal randomized fair classifier has a non-zero probability of
 1184 outputting class k on input x , and it can be shown that

1185
$$h^*(x)_k > 0 \implies k \in \arg \min_{k \in \mathcal{Y}} r_{\text{fair}}(x, k).$$

 1186

1187 To show that the function on the right hand side is equivalent to the optimal fair classifier on
 1188 the left hand side, we need to establish the “ \iff ” relation (almost surely), which is saying that

1188 the argmin is unique (almost surely); this is where the continuity condition helps. Note that
 1189 $x \mapsto \arg \min_k r_{\text{fair}}(x, k)$ is a K -class linear classifier with features $(r_p(x), p_{A, Z|x}, q_{1A, Z|x}, \dots,$
 1190 $q_{M A, Z|x})$, and the class prototypes always have a non-zero component in the r_p -features, so ties
 1191 occur (i.e., argmin is non-unique) when the features lie on any of the hyperplanes associated with
 1192 the class prototypes. The continuity condition simply implies that this occurs with probability zero
 1193 with respect to $x \sim p_X$ or any of q_{1X}, \dots, q_{MX} , so “ \iff ” holds almost surely on p, q_1, \dots, q_M .
 1194 Finally, by strong duality, the proposed function achieves the same risk as h^* and satisfies the same
 1195 fairness constraints, hence is an optimal fair classifier. \square
 1196

1197 E EXPERIMENT DETAILS

1198 **Dataset.** Our experiments are performed on the ACSIncome dataset (Ding et al., 2021), which is
 1199 based on the UCI Adult dataset (Kohavi, 1996), a standard benchmark in the algorithmic fairness lit-
 1200 erature. We use data from the 2018 survey year (1-year horizon), partitioned into 51 subsets accord-
 1201 ing to the individual’s home U.S. state or territory, and retain the 27 largest subsets by sample size:
 1202 the largest is California (CA) with 78281 examples, and the smallest among them is Louisiana (LA)
 1203 with 8240 examples; Florida (FL) has 39541 examples. We apply standard pre-processing for tabu-
 1204 lar data: categorical features are one-hot encoded, and all features are standardized.
 1205

1206 The uncertainty estimates in Figs. 1, 5, 6, 9 and 10 and Table 1 are obtained by averaging over 5
 1207 runs with different random seeds for splitting the dataset.
 1208

1209 **Reductions.** The Reductions fair classification algorithm, proposed by Agarwal et al. (2018), is
 1210 based on a two-player game formulation of the fair classification problem. The algorithm relies on a
 1211 cost-sensitive classification oracle and uses no-regret learning, and outputs a randomized ensemble
 1212 of classifiers.
 1213

1214 We use the implementation provided in the AIF360 library with default hyperparameters (Bellamy
 1215 et al., 2018), and sweep the tolerance parameter for the “allowed fairness constraint violation” (eps)
 1216 from $\{100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001\}$. The base
 1217 prediction model is a gradient-boosted decision tree (GBDT), trained using LightGBM with default
 1218 hyperparameters (Ke et al., 2017). The data is split 70/30 for training and testing.
 1219

1220 **LinearPost.** A technical description of LinearPost is provided in Section 4.1: we follow the “pre-
 1221 train then post-process” procedure where we first fit a GBDT predictor for (A, Y) given X (which
 1222 suffices for the fairness criteria we consider, SP, EOOpp, and EO, and for using 0-1 loss as the ob-
 1223 jective), then apply LinearPost to enforce fairness. The data is split 60/10/30 for pre-training, post-
 1224 processing, and testing. LinearPost involves solving a linear program (LP) with $(NK + C)$ variables
 1225 and $(N + GC)$ constraints (Definition 2.1), where N is the number of post-processing examples.
 1226 We use the Gurobi optimizer to solve these LPs.
 1227

1228 We sweep the fairness tolerance parameter α over 15 evenly spaced values between $\alpha_{\min} = 0.001$
 1229 and α_{\max} , where α_{\max} is set to the fairness violation of the unmitigated GBDT base classifier on the
 1230 test set (of the training/source distribution).
 1231

1232 **Robust LinearPost.** A technical description of robust LinearPost is provided in Section 4, which
 1233 iteratively alternates between finding a perturbation within the uncertainty set and enforcing fair-
 1234 ness with respect to all previously found perturbations using multiple-distribution LinearPost (Sec-
 1235 tion 4.1). Here, we sweep the fairness tolerance parameter α logarithmically between $\alpha_{\min} = 0.001$
 1236 and α_{\max} .
 1237

1238 The tolerance parameter for the pessimization step is set to $\tau = 0.001$, and we limit the number
 1239 of iterations to $T = 20$ (Algorithm 1). The uncertainty set is implemented using the covariate
 1240 and concept shift perturbation models described in Section 4.1, parameterized by one-hidden-layer
 1241 neural nets of width 128 with LeakyReLU activation. The input to these neural nets is the output of
 1242 the GBDT base model (i.e., the probabilistic predictions of (A, Y) given X).
 1243

1244 For the pessimization, we optimize the perturbation models to maximize the fairness violation (of the
 1245 current classifier) via full-batch gradient ascent using Adam (default hyperparameters, learning rate
 1246 0.01) for 1000 epochs. To reduce variance, we warm-start training by minimizing the KL divergence
 1247

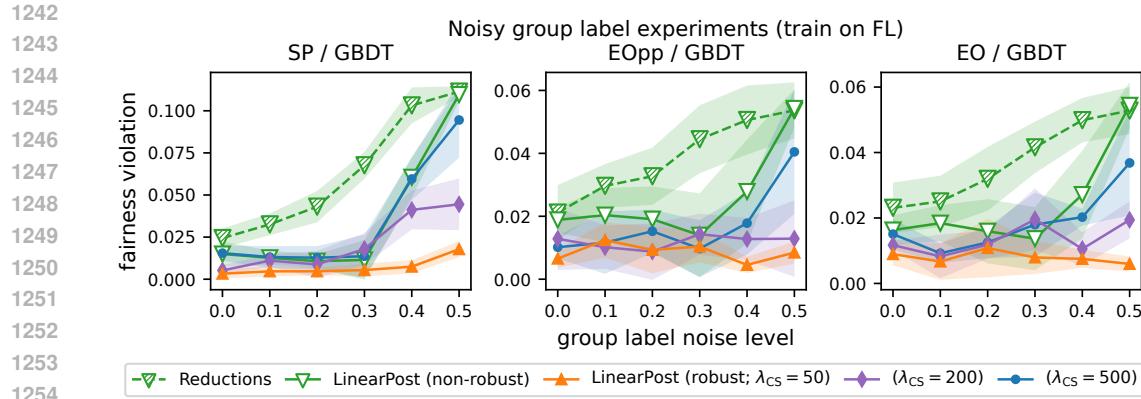


Figure 5: Fairness violations under increasing group label noise level by Reductions, non-robust LinearPost, and robust LinearPost ($\lambda_{CS} \in \{50, 200, 500\}$, $\lambda_{IW} = \infty$), each under the tolerance setting that minimizes the average violation. See Table 2 for the selected tolerances.

between p and q for 1000 epochs, and perform 5 trials with different random initializations, selecting the one that induces the highest fairness violation.

For geographic shift experiments (Section 5), we sweep the hyperparameters of the perturbation models over $\lambda_{IW} \in \{20, 50\}$ and $\lambda_{CS} \in \{200, 500\}$. Results for the $\lambda_{IW} = 20$, $\lambda_{IW} = 500$ configuration are shown in the main text; results for the remaining configurations are in Fig. 11.

F EXPERIMENTS FOR NOISY GROUP LABELS

In this set of experiments, we evaluate robust LinearPost under noisy group labels, where the sensitive attribute A is randomly replaced with a uniformly drawn value from $\mathcal{A} = \{0, \dots, G - 1\}$ on a fraction γ of the training data, following Wang et al. (2020). This corresponds to a concept shift between the training (perturbed) and the test (true) distribution, as $p^{\text{perturbed}}(A = a \mid X) = \gamma/G + (1 - \gamma)p^{\text{true}}(A = a \mid X)$. To account for this, we apply the concept shift model from Section 4.2 within our robust LinearPost framework (which in fact generally handles adversarial label noise, not just uniform noise), while disabling the covariate shift model (i.e., $\lambda_{IW} = \infty$).

We run these experiments on data from Florida (FL) in the ACSIncome dataset, on which the unmitigated GBDT classifier exhibits substantial violations of all three fairness criteria (SP, EOpp, and EO). And, rather than sampling group labels uniformly as described above, we flip the binary sensitive attribute on a random γ fraction of the data (referred to as the group label noise level). All other experimental settings are the same as those in Section 5, e.g., the base model is GBDT.

Results. Figure 5 shows the fairness violations under increasing group label noise levels, using each algorithm’s best tolerance setting chosen to minimize the macro-average violation on the validation set across noise levels (not necessarily the strictest setting tested). As expected, fairness violations increase with noise level. Robust LinearPost consistently achieves the lowest violations, with weaker regularization settings (λ_{CS}) providing better robustness by inducing a larger uncertainty set. These results confirm that the concept shift component of our uncertainty set construction indeed captures such shifts, and that robust LinearPost can, in turn, effectively mitigate their impact.

We plot the accuracy-fairness tradeoffs achieved by robust LinearPost under varying fairness tolerances in Fig. 7, compared to the interpolation between non-robust LinearPost and the constant 0 classifier. Robust LinearPost can achieve tradeoffs that lie above this interpolation line, indicating that its fairness improvements are non-trivial. However, for EO under large noise levels, the tradeoffs are no better than interpolation; we will discuss possible improvements in Appendix G.

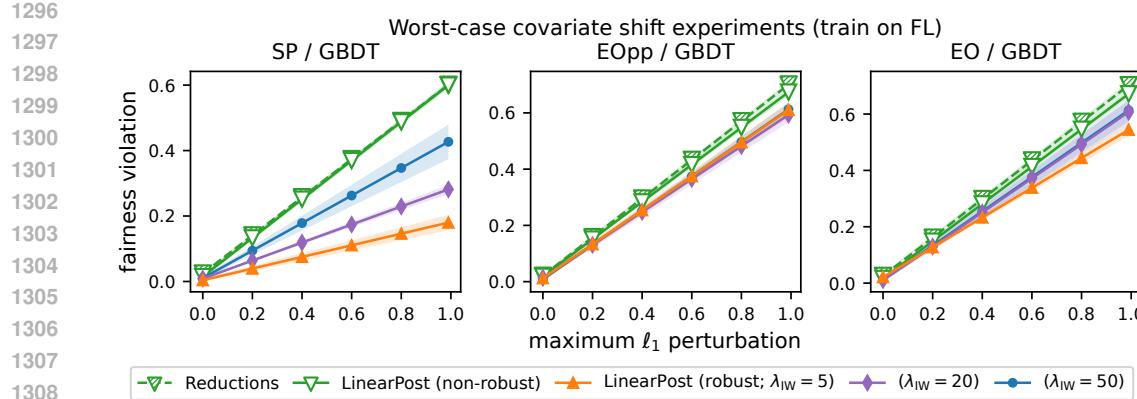


Figure 6: Fairness violations under increasing worst-case bounded covariate shift by Reductions, non-robust LinearPost, and robust LinearPost ($\lambda_{IW} \in \{5, 20, 50\}$, $\lambda_{CS} = \infty$), each under the tolerance setting that minimizes the maximum violation. See Table 2 for the selected tolerances.

G EXPERIMENTS FOR COVARIATE SHIFT

We evaluate robust LinearPost under covariate shift, where the test distribution’s marginal distribution $p_X^{\text{perturbed}}$ differs from the original (true) distribution p_X^{true} (Mandal et al., 2020).

Classifiers are trained on Florida (FL) data from the ACSIncome dataset using robust LinearPost with the covariate shift model from Section 4.2; the concept shift model is disabled ($\lambda_{CS} = \infty$). At test time, we evaluate the classifiers under worst-case perturbations to the sample weights of the test examples that maximize the fairness violation, within a bounded ℓ_1 distance from the uniform empirical distribution ($1/N$). These worst-case perturbations are computed using the code by Mandal et al. (2020).⁶ All other experimental settings are the same as those in Section 5.

Results. Figure 6 shows the fairness violations of the evaluated classifiers under increasing magnitudes of adversarial covariate shift, using each algorithm’s best tolerance setting chosen to minimize the maximum violation on the validation set (not necessarily the strictest setting tested). Again, as expected, fairness violations grow with perturbation magnitude, and robust LinearPost consistently yields the lowest violations. These results validate the role of the covariate shift component in our uncertainty set construction.

We note that the gains from robust LinearPost are smaller under EOOpp and EO fairness than under SP. This may be partly due to the difficulty of the task: on the related Adult dataset, the robust fair algorithm of Mandal et al. (2020) also achieved only modest improvements against worst-case covariate shift for EO fairness. One potential direction for improvement is to strengthen the covariate shift model; for example, by allowing the neural network to take the original features in \mathcal{X} as input, rather than the GBDT outputs used in our current setup (Section 4.2).

In Fig. 8, we plot the accuracy-fairness tradeoffs of robust LinearPost along with the baseline formed by interpolating between the fairest non-robust LinearPost classifier and the constant-0 classifier. Robust LinearPost achieves tradeoffs lying above this baseline, indicating that its fairness improvements are non-trivial. For EOOpp fairness, all tested regularization strengths $\lambda_{IW} \in \{5, 20, 50\}$ yield similar fairness, with weaker regularization lowering accuracy without improving fairness—in particular, under EO, setting $\lambda_{IW} = 5$ resulted in tradeoffs below the interpolation baseline.

⁶https://github.com/samuel-deng/Ensuring-Fairness-Beyond-the-Training-Data/tree/f8f59390e78696aaad66a8a5ca4087613fe0255c/main/Part3_Comparisons

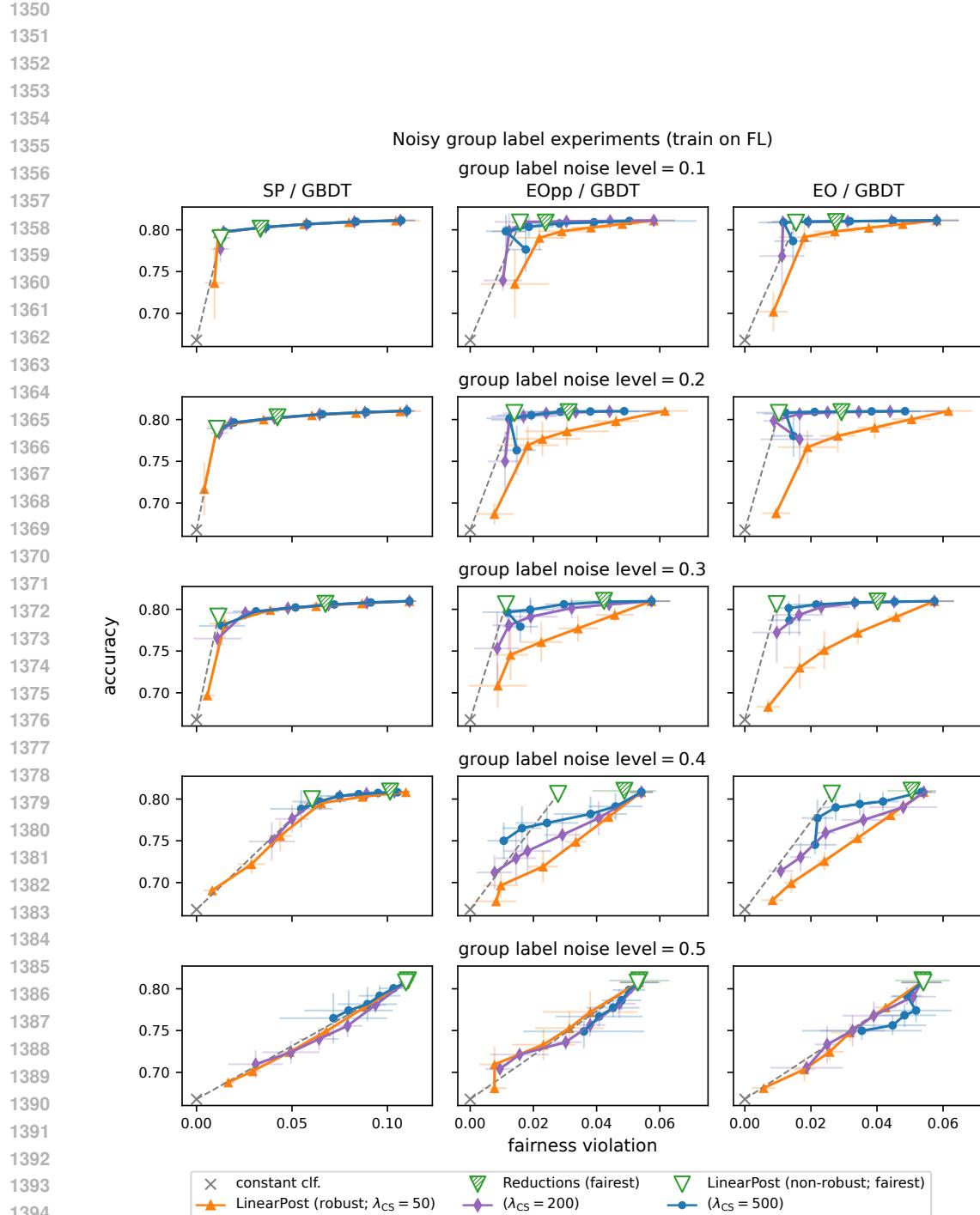


Figure 7: Accuracy-fairness tradeoffs on FL by robust LinearPost trained on FL data with noisy group labels ($\lambda_{CS} \in \{50, 200, 500\}$, $\lambda_{IW} = \infty$). For comparison, we include the fairest Pareto-optimal classifiers from non-robust LinearPost and Reductions, as well as the randomized interpolation between the fairer baseline and the constant 0 classifier (dashed lines).

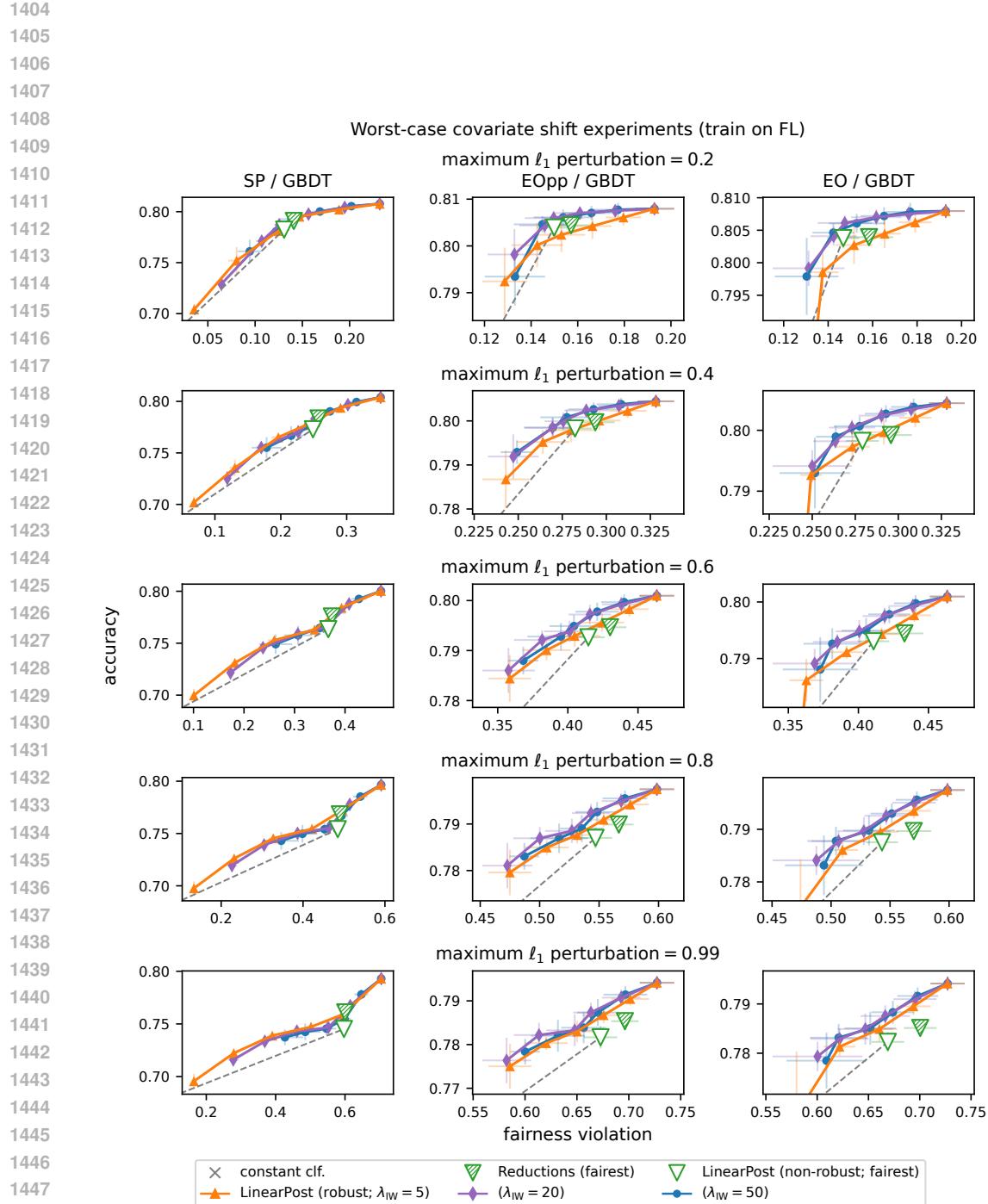


Figure 8: Fairness violations under worst-case bounded covariate shifts by robust LinearPost trained on FL ($\lambda_{IW} \in \{5, 20, 50\}$, $\lambda_{CS} = \infty$), showing alongside the accuracies without perturbation. For comparison, we include the fairest Pareto-optimal classifiers from non-robust LinearPost and Reductions, as well as the randomized interpolation between the fairer baseline and the constant 0 classifier (dashed lines).

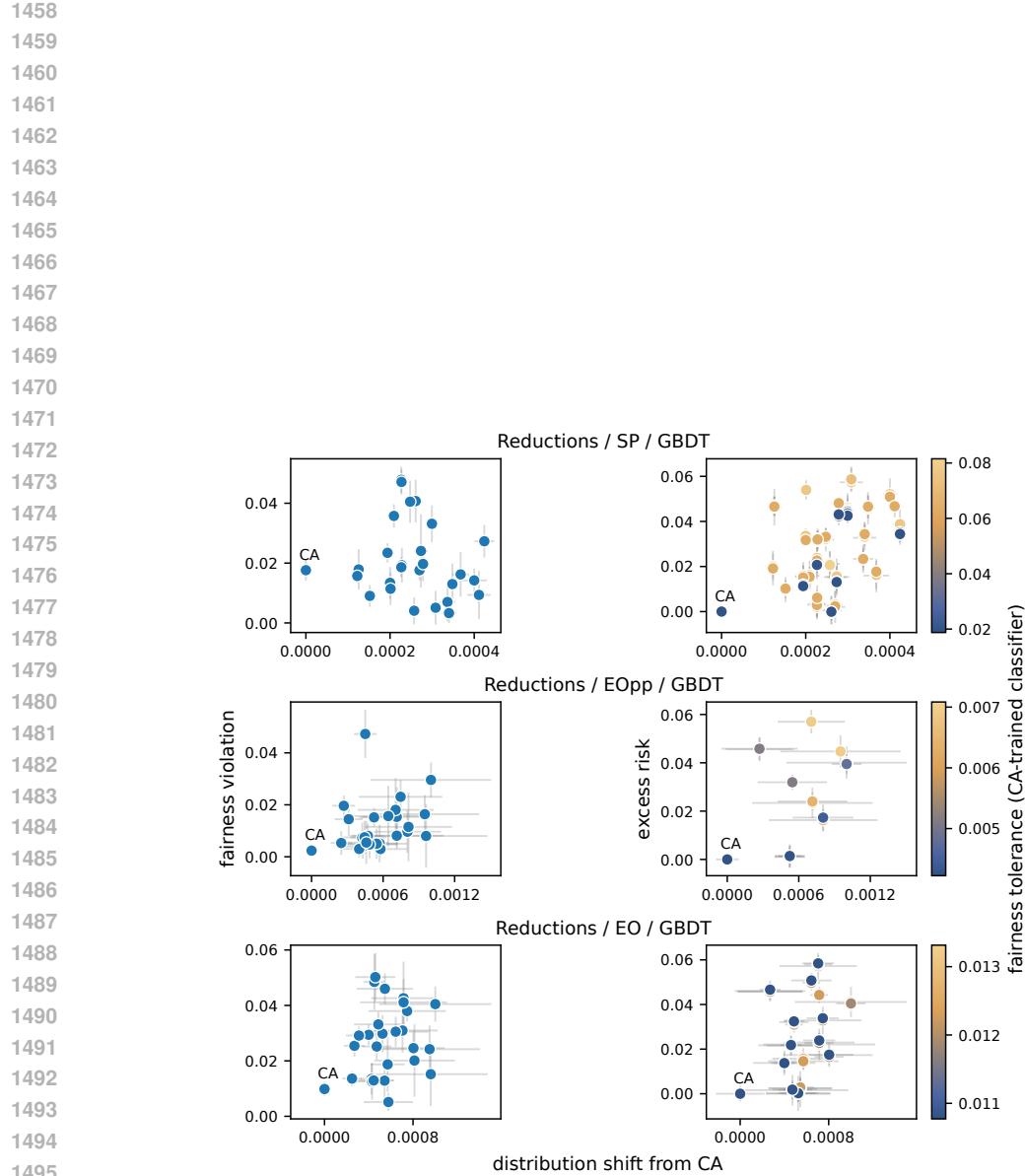


Figure 9: Fairness violation and excess risk on each region by Reductions trained on CA data with GBDT as the base model, under varying tolerances. See the caption of Fig. 1.

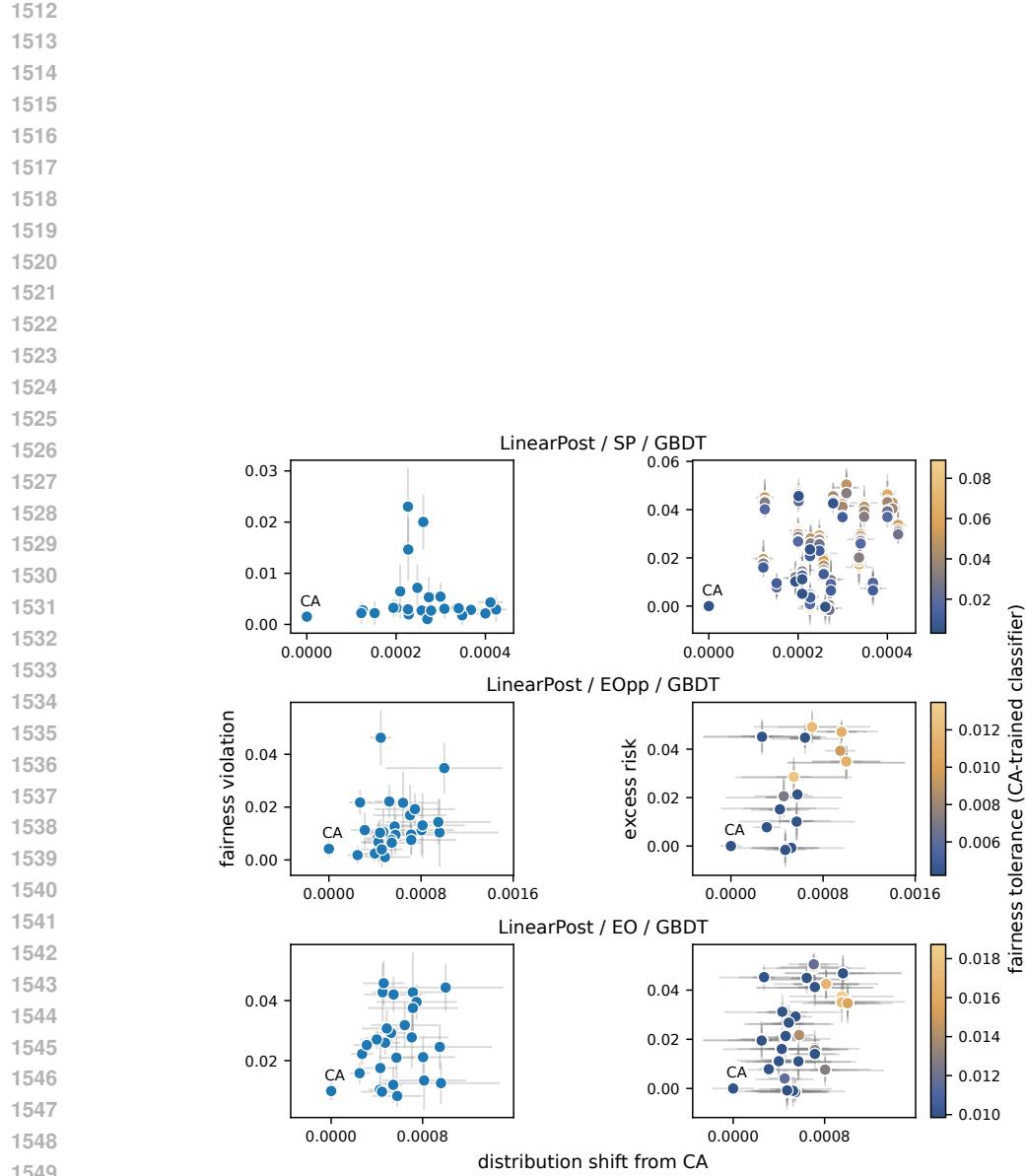


Figure 10: Fairness violation and excess risk on each region by LinearPost trained on CA data with GBDT as the base model, under varying tolerances. See the caption of Fig. 1.

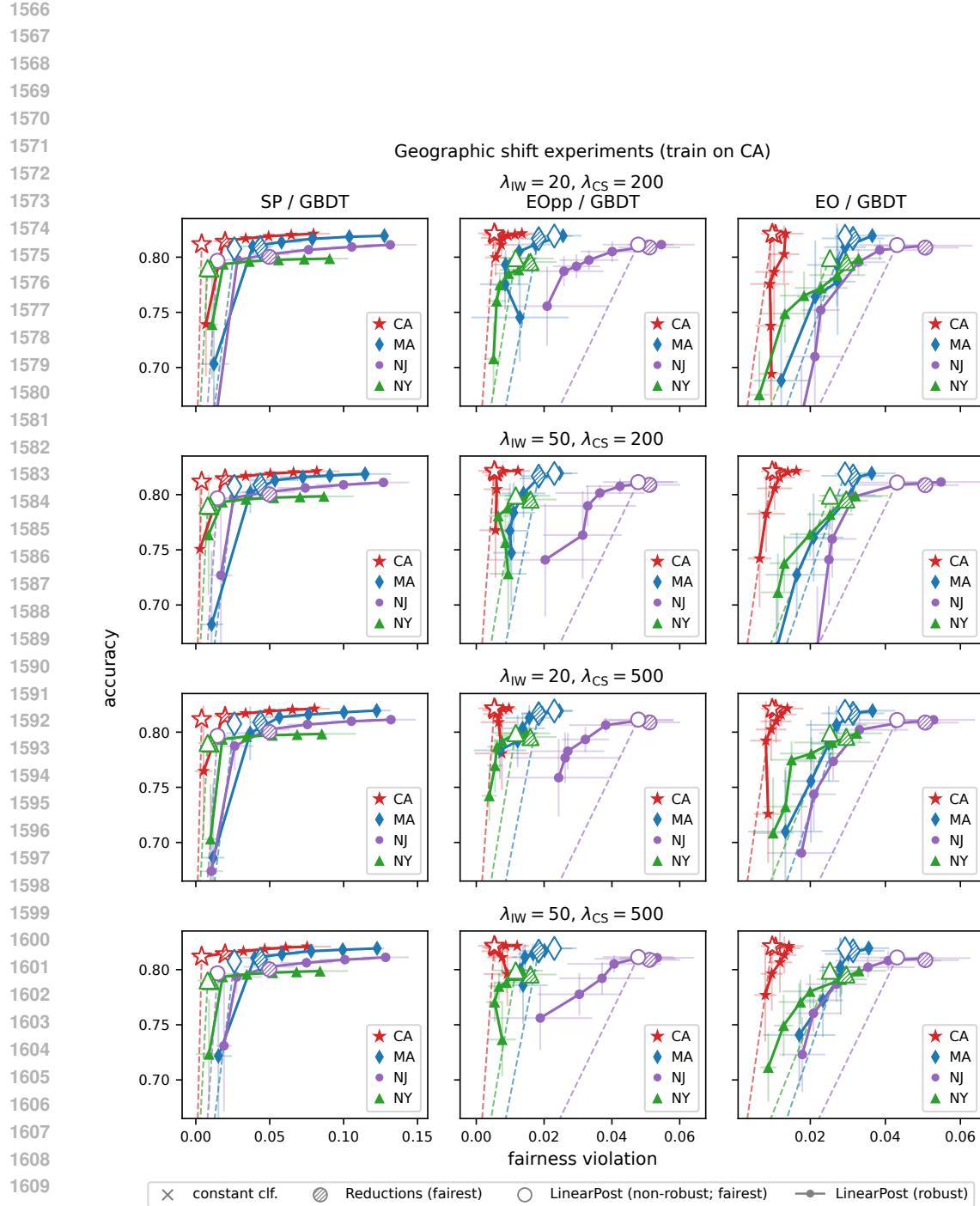


Figure 11: Accuracy-fairness tradeoffs on each region by robust LinearPost trained on CA data (under various λ_{IW} and λ_{CS} settings). For comparison, we include the fairest Pareto-optimal classifiers from non-robust LinearPost and Reductions, as well as the randomized interpolation between the fairer baseline and the constant 0 classifier (dashed lines).

1620

1621

1622 Table 1: Macro average accuracies and fairnesses by Reductions and LinearPost (non-robust and
1623 robust) trained on CA data, under the tolerance setting that minimizes macro average violation. See
1624 Fig. 2 for results on all regions. For LinearPost, the tolerance is reported as a percentage of α within
1625 $[0.001, \alpha_{\max}]$, where α_{\max} is the violation on CA without post-processing.

Algorithm	Geographic Shift Experiments		
	Accuracy (avg.)	Fairness Vio. (avg.)	Selected Tol.
<i>Statistical parity</i>			
Reductions	0.7740 ± 0.0006	0.0240 ± 0.0012	2
LinearPost (non-robust)	0.7721 ± 0.0006	0.0145 ± 0.0013	0.0667
(robust; $\lambda_{IW} = 20, \lambda_{CS} = 200$)	0.6715 ± 0.0015	0.0089 ± 0.0014	0.0667
(robust; $\lambda_{IW} = 50, \lambda_{CS} = 200$)	0.6748 ± 0.0031	0.0104 ± 0.0013	0
(robust; $\lambda_{IW} = 20, \lambda_{CS} = 500$)	0.6777 ± 0.0017	0.0085 ± 0.0012	0
(robust; $\lambda_{IW} = 50, \lambda_{CS} = 500$)	0.7068 ± 0.0038	0.0130 ± 0.0020	0
Constant 0 classifier	0.6315 ± 0.0006	0	-
<i>Equal opportunity</i>			
Reductions	0.7819 ± 0.0006	0.0163 ± 0.0016	5
LinearPost (non-robust)	0.7856 ± 0.0006	0.0160 ± 0.0015	0
(robust; $\lambda_{IW} = 20, \lambda_{CS} = 200$)	0.6994 ± 0.0035	0.0104 ± 0.0014	0.5333
(robust; $\lambda_{IW} = 50, \lambda_{CS} = 200$)	0.7047 ± 0.0040	0.0114 ± 0.0013	0.4667
(robust; $\lambda_{IW} = 20, \lambda_{CS} = 500$)	0.6895 ± 0.0018	0.0107 ± 0.0014	0.2
(robust; $\lambda_{IW} = 50, \lambda_{CS} = 500$)	0.7422 ± 0.0056	0.0134 ± 0.0016	0.3333
Constant 0 classifier	0.6315 ± 0.0006	0	-
<i>Equalized odds</i>			
Reductions	0.7819 ± 0.0006	0.0295 ± 0.0015	0.2
LinearPost (non-robust)	0.7853 ± 0.0006	0.0267 ± 0.0013	0
(robust; $\lambda_{IW} = 20, \lambda_{CS} = 200$)	0.6531 ± 0.0015	0.0168 ± 0.0016	0
(robust; $\lambda_{IW} = 50, \lambda_{CS} = 200$)	0.6655 ± 0.0021	0.0187 ± 0.0018	0
(robust; $\lambda_{IW} = 20, \lambda_{CS} = 500$)	0.7465 ± 0.0036	0.0223 ± 0.0019	0.4
(robust; $\lambda_{IW} = 50, \lambda_{CS} = 500$)	0.7347 ± 0.0045	0.0212 ± 0.0017	0.2
Constant 0 classifier	0.6315 ± 0.0006	0	-

1649

1650

1651

1652 Table 2: Tolerance settings of each algorithm for the results in Figs. 5 and 6. For LinearPost, the
1653 tolerance is reported as a percentage of α within $[0.001, \alpha_{\max}]$, where α_{\max} is the violation on CA
1654 without post-processing.

Algorithm	Noisy Group Label Experiments		Worst-Case Covariate Shift Experiments	
	Selected Tol.	Algorithm	Selected Tol.	
<i>Statistical parity</i>				
Reductions	0.2	Reductions	0.5	
LinearPost (non-robust)	0	LinearPost (non-robust)	0	
LinearPost (robust; $\lambda_{CS} = 50$)	0	LinearPost (robust; $\lambda_{IW} = 5$)	0	
LinearPost (robust; $\lambda_{CS} = 200$)	0	LinearPost (robust; $\lambda_{IW} = 20$)	0	
LinearPost (robust; $\lambda_{CS} = 500$)	0	LinearPost (robust; $\lambda_{IW} = 50$)	0	
<i>Equal opportunity</i>				
Reductions	0.2	Reductions	0.2	
LinearPost (non-robust)	0	LinearPost (non-robust)	0	
LinearPost (robust; $\lambda_{CS} = 50$)	0.1333	LinearPost (robust; $\lambda_{IW} = 5$)	0.8	
LinearPost (robust; $\lambda_{CS} = 200$)	0.0667	LinearPost (robust; $\lambda_{IW} = 20$)	0.4	
LinearPost (robust; $\lambda_{CS} = 500$)	0	LinearPost (robust; $\lambda_{IW} = 50$)	0.1333	
<i>Equalized odds</i>				
Reductions	0.002	Reductions	10	
LinearPost (non-robust)	0.002	LinearPost (non-robust)	0	
LinearPost (robust; $\lambda_{CS} = 50$)	0.0667	LinearPost (robust; $\lambda_{IW} = 5$)	0	
LinearPost (robust; $\lambda_{CS} = 200$)	0	LinearPost (robust; $\lambda_{IW} = 20$)	0.3333	
LinearPost (robust; $\lambda_{CS} = 500$)	0	LinearPost (robust; $\lambda_{IW} = 50$)	0.1333	

1673