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ABSTRACT

Group fairness, as a statistical notion, is sensitive to distribution shifts, which may
invalidate the fairness guarantees of classifiers trained with non-robust algorithms.
In this work, we analyze randomized fair classifiers and derive upper bounds on
fairness violation and excess risk under distribution shift, decomposed into co-
variate shift, and concept shift—changes in the distribution of group labels (and
other variables considered by the fairness criterion) conditioned on the input. Our
bounds are general and apply to both multi-class and attribute-blind settings; no-
tably, we show that attribute-blind classifiers incur an additional dependency on
the fairness tolerance in their excess risk, suggesting the robustness benefits of
attribute awareness. Next, we propose a robust post-processing algorithm that
learns fair classifiers with respect to an uncertainty set constructed by modeling
the potential covariate and concept shifts, aligning with the decomposition in our
analysis. We evaluate our algorithm under geographic shifts in the ACSIncome
dataset, demonstrating improved fairness on unseen regions, with additional eval-
uations performed under noisy group labels and worst-case covariate shifts

1 INTRODUCTION

Prediction models trained on past data using machine learning techniques are known to exhibit
and propagate historical social biases, resulting in disparate impact on or treatment of different de-
mographic groups, e.g., with respect to sex or race (Bolukbasi et al., [2016; /Angwin et al 2016
Buolamwini & Gebrul 2018). To quantify these impacts and assess the unfairness of models, the
literature has introduced notions of group fairness that examine disparities in the statistics of model
outputs across groups (Barocas et al., [2023): statistical parity requires equalized group-conditional
output distributions (Calders et al., 2009), while equal opportunity asks for equalized true positive
rates (Hardt et al.,2016). A variety of fair algorithms have since been proposed to satisfy group fair-
ness, which can be categorized by the stage of the training pipeline at which mitigation occurs: pre-
processing cleans the data to remove biased associations (Kamiran & Calders} 2012; |Calmon et al.,
2017), in-processing incorporates fairness constraints into the training objective (Zemel et al., 2013
Agarwal et al.|[2018)), and post-processing applies post-hoc adjustments to enforce fairness (Menon
& Williamson, 2018 (Chen et al., 2024 Xian et al., 2023 Xian & Zhao, [2024)).

However, group fairness, as a statistical notion, is sensitive to shifts or perturbations in the under-
lying data distribution, which can arise from changing environments or (adversarial) noise in the
training data (Barrainkua et al., [2025). This means that the fairness guarantees of a fair classifier
may no longer hold when it is deployed on a distribution that differs from the one it was trained on.
Empirically, Ding et al.|(2021)) consider geographic shift and show that an income predictor trained
to be fair on one region violates fairness on other regions. We revisit and reproduce this experiment
in Fig. El, where we train a fair classifier on California (CA) data and evaluate it on 26 other states. It
is observed that its unfairness (violation of equalized odds) increases with the distribution shift from
CA, and similarly the excess risk—i.e., at the same achieved level of fairness on the test distribu-
tion, how much worse is the test accuracy of a fair classifier trained on CA compared to one trained
directly on the test? As distribution shifts are prevalent in real-world applications, this brittleness of
fair classifiers necessitates further study of the effects of distribution shift and the development of
robust algorithms for fair classification.

!Code will be immediately released after the anonymity period.
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Figure 1: Fair classifiers trained on CA data using the Reductions algorithm of |/Agarwal et al.|(2018))
under varying tolerance levels, and evaluated on 26 other states. The x-axis measures distribution
shift from CA according to Eq. using maximum mean discrepancy (Gretton et al., 2012). Left:
Minimum fairness violation achieved on each state by any CA-trained classifier. Right: Excess
risk of CA-trained classifiers, measured as the accuracy gap relative to classifiers trained directly on
each state with comparable fairness levels (within 0.1 X); the fairness tolerance of the CA-trained is
indicated by color. See Figs.[9] and[I0] for results under other criteria and for classifiers trained via
LinearPost (X1an & Zhaol |2024).

Our Contributions. This work considers randomized fair classifiers under general distribution
shifts and studies fairness criteria covering statistical parity, equal opportunity, and equalized odds:

* In Section |3} we analyze and bound the fairness violation in terms of the covariate and concept
shift in the joint distribution of input X and fairness-relevant variables (e.g., A for statistical
parity, (A,Y") for equal opportunity and equalized odds). The excess risk bound also includes a
term for the shift in (X, Y") distribution, and has a dependency on the fairness tolerance: excess
risk can be greater at higher levels of fairness. However, attribute-aware classifiers do not exhibit
this dependency for certain criteria, suggesting that attribute awareness can benefit robustness.

* In Section ] we present a post-processing-based algorithm for learning randomized fair classi-
fiers that are robust to distribution shifts. It iterates between finding a (worst-case) perturbation
in an uncertainty set that maximizes the fairness violation, and learning a classifier that satis-
fies fairness with respect to all previously found perturbations. We extend the post-processing
algorithm of [Xian & Zhao| (2024) to achieve fairness on multiple distributions, and define the
uncertainty set in terms of the potential covariate and concept shifts.

* In Section [5] we evaluate our robust algorithm under geographic shifts in the ACSIncome
dataset (Ding et al.| [2021)), demonstrating improved fairness on unseen regions—albeit, as ex-
pected, at a performance cost on the source (training) distribution. We also conduct evaluations
in Appendices [F]and [Gunder noisy group labels and worst-case covariate shift, in the construc-
tion of the uncertainty set, respectively.

2 PRELIMINARIES

A classification problem is defined by a joint distribution p over features X € X (a metric space
equipped with distance d), class labels Y € Y = {0,..., K — 1}, sensitive attributes A € A =
{0,...,G — 1} representing demographic groups, and additional variables Z € Z relevant to the
fairness criterion (£ = () for statistical parity, and Z = Y for equal opportunity and equalized odds).

The goal is to learn randomized classifiers that satisfy notions of group fairness across the G groups:
given an input x, the predicted label Y| X = z is sampled from the distribution multinomial(h(z)),
where h : X — A()) is a probabilistic predictor that maps each input to a distribution over class
labels. Since h determines the distribution over class assignments, we will refer to the randomized
classifier by the function h itself. Given a loss function £ : J) x Y — [0, 00), the risk of a randomized
classifier is defined as R,(h) = E[((Y,Y)], where the expectation is taken over both the data
distribution p and the randomness of the classifier.
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When the sensitive attribute A is explicitly included as part of the input features X, the setting is

called attribute-aware, as the classifier Y can directly leverage this information. Otherwise, the
setting is referred to as attribute-blind.

2.1 GROUP FAIRNESS DEFINITIONS

We consider group fairness criteria that can be expressed in terms of pairwise differences of first-
order conditional moments of the class outputs:
Definition 2.1. A (approximate) fairness criterion is defined by a sensitive attribute A, a (categori-

cal) event Z € Z that does not depend on the classifier Y ~ multinomial(k(X)), and a collection
of output class-event pairs specifying the fairness constraints: C = {(y1, 21), .- -, (Yo, 2¢) }, with
z. € Z. For a tolerance level a € [0, 1], we require the fairness violation V,,(h) < «, defined as

.....

Here, P is taken with respect to both the underlying distribution p and the randomness of Y. We
omit the subscript p when the distribution is clear from context.

Definition encompasses common group fairness criteria such as statistical parity, equal oppor-
tunity, and equalized odds, but not accuracy parity (Zafar et al., 2017; [Zhao & Gordon, 2022)) or
predictive rate parity (Chouldechova, 2017). A shared property of all criteria of this form is that the
constant classifier is always exactly fair (o« = 0) under any distribution:

Fact 2.2. For the classifier h(x) = (1,0,...,0) that always outputs class 0, for every distribution
p, we have V,(h) = 0.

Below we recall the fairness criteria that are the focus of our discussions:

« Statistical Parity (SP; Calders et al., 2009). Requires the output distributions to be (approxi-
mately) equalized across all groups a € A:

VS = max, yeapey |PY =k |[A=a) —PY =k | A=d)|.

¢ Equal Opportunity (EOpp; Hardt et al., |2016). Defined for binary classification (K = 2),
assuming class 1 is the more desirable outcome; requires the true positive rate to be equalized:

VEO® = max, ve4 [PV =1|A=0a,Y =1)-P(Y =1|A=d,Y =1)|.

¢ Equalized Odds (EO; Hardt et al., 2016). Can be considered a stricter version of EOpp. It
requires all types of classification error to be balanced across groups:

VE = max, yeainey [PY =k |A=aY =j) —BPY =k |A=d,Y =j)|.

2.2 DISTRIBUTION SHIFTS

We are concerned with the robustness of randomized fair classifiers under distribution shifts. The
shift from a training distribution p to a test distribution ¢ can be arbitrary, but specific types of shifts
have received special attention in the literature (see surveys by Kouw & Loog|(2019) and [Farahani
et al.| (2021)). Our main focus is on fairness guarantees, so we consider the shift in (X, A, Z)—the
input features and variables relevant to the fairness criterion:

* Covariate Shift. Decomposing the joint distribution px 4,z into px - pa,z|x, this model as-
sumes that only the marginal distribution of features X differs between p and ¢. That is,
PA,Z|X=c = GA,z|x=z for all z € X, while px # qx. For transfer learning to be feasi-
ble, it is often assumed that the density ratio (also called the importance weight) is bounded
gx(x)/px(x) <~ forall x.

* Concept Shift. This is the opposite of covariate shift: it assumes px = gx, while ps z|x—. #
qA,z|x—=z- One example is learning under noisy group labels (Wang et al., [2020).

* Prior Shift. By decomposing the joint as p4 z - px|a,z, this model assumes px|a—q,z—. =
qX|A=a,z—- for all a, z, while the marginal distribution of (A, Z) differs between p and q.
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Distribution shifts can be quantified using probability metrics (Zhao et all 2022), such as f-
divergences and integral probability metrics. We use metrics from the latter family:

Definition 2.3 (Dudley Metric). Let X be a metric space with distance d, and let Lip(f) denote the

Lipschitz constant of a function f : X — R, thatis, |f(x) — f(2')| < Lip(f) d(z,z"). We define
the Dudley probability metric with parameters B, L as

Dp r(p,q) = Supf:Xﬁ[O,B],Lip(f)gL‘fX f(x) - (p(z) — q())dz|.

For any I < L/, the witness function class satisfies {f : Lip(f) < L} C {f : Lip(f) < L'}, so
Dp,1, < Dp 1. Also note that the total variation distance is Dty = D1 o, > Dp 1, for all L. The
Dudley metric is also related to the Wasserstein-1 distance via its dual formulation, with the added
constraint that f is bounded, so 2 Dp , < L Wj.

3 ROBUSTNESS OF RANDOMIZED FAIR CLASSIFIERS

To begin, we analyze the fairness violation and excess risk of randomized fair classifiers under
distribution shifts. The bounds are general across problem settings, such as multi-class and attribute-
blind, and apply to all fairness criteria defined in Definition 2.1} including SP, EOpp, and EO.

We are primarily interested in the Bayes-optimal randomized fair classifier, defined as h €
arg miny, v (,)<q L2(h) for a given fairness tolerance . Our analyses, however, apply to a more
refined class of Lipschitz-constrained optimal classifiers that are smooth in their probabilistic pre-
dictions with respect to the input @, hy, € argming, v (5)<q,Lip(n)<r R2(h), where Lip(h) < L
means that |h(z), — h(z')g| < Ld(x,2’) for all k € Y. Note that h, corresponds to the Bayes-
optimal fair classifier.

3.1 FAIRNESS VIOLATION

We first bound the fairness violation of a classifier h on the test distribution ¢ by its violation on the
source distribution p, plus a term on the distributional shift between p, ¢, which we decompose into
covariate and concept shift components.

Theorem 3.1. Let p, q be two distributions. Let h : X — A()) be a Lipschitz randomized classifier
with Lip(h) < L, then its fairness violation on q satisfies

Vy(h) < Vp(h) +2maxeca,zez D1,(PX|A=a,2=2> 40X |A=a,2=2)- (D

Moreover, if L' > Lip(x — qa,z|x=z(a, 2)) for all a, z (small L' means changes to the conditional
probabilities of (A, Z) are smooth), then

1

Vy(h) < V,(h)+4max ——— ( D141y (Px,ax) +Expy [P, z1x (@, 2) — qa,z)x (a, 2)]] )
acA pxq’z(a7 Z)

z€Z covariate shift concept shift

Bounds similar to the first result are shown in (Wang et al., 2020; |Agarwal et al.| [2025)); here, we
further decompose it into covariate and concept shifts components: changes in either the marginal
distribution of the input X or the conditional distribution of (A, Z) can affect the fairness guar-
antees established under the source distribution p. The bounds yield two insights into robustness.
(1) Smooth randomized classifiers are more robust. Since D1 1 < D ps forall L < L', the bound
implies that classifiers with smaller Lipschitz constants (i.e., smoother probabilistic predictors) are
more robust to distribution shifts. This motivates the use of Lipschitz-constrained training to im-
prove robustness: a related work is|Jiang et al.|(2023)), who apply sharpness-aware minimization in
the training of fair classifiers. (2) Prior shift does not affect fairness. Because the fairness violation
depends only on the conditional distributions px|4,z, ¢x|a,z, changes in the marginal distribution
of (A, Z) alone do not impact fairness (consistent with related findings from |An et al.|(2022)).

In Fig.[T| (left), we plot the best EO fairness achieved on other states by fair classifiers trained on CA
(under varying tolerances), against the distribution shift from CA. As expected, fairness violation
generally increases with the shift.
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3.2 EXCESS RISK

Let ﬁ,h 1, be a (Lipschitz) randomized fair classifier that is optimal on the source distribution p. We
bound the excess risk of h,, . on the test distribution q relative to its optimal fair classifier, hq 1.
Theorem 3.2. Let p,q be two distributions with L' > Lip(z +— qy|x=(y)). Let L € [0,00],
a € (0,1}, and denote by hy, 1, € argming,.y, (4)<a. Lipn)<r Bp(h) the optimal fair classifier on p,
and by ﬁq,L that on q. Suppose Vp(izq7L) < « + ¢ for some upper bound < on the excess violation
(see Theorem m) then the excess risk of pr L onqis

g
Rq(hp,L) — Rq(hq,L) < |£|oo<2 DL(L_;,_L/)K(pX,QX) +2EX~pX [DTV(pY\Xan\X)] + a +€>7

with the convention that 0/0 = 0.

By instantiating € via Theorem [3.1] this result bounds the excess risk in terms of the shifts in the
joint distribution of (X, A, Z) and (X,Y’), which we similarly decompose into the covariate shift
and the concept shift in Y| X. Notably, the final term in the bound depends on the fairness tolerance
«: achieving higher fairness on the source distribution p (i.e., using a smaller o)) can guarantee
better worst-case fairness on the test distribution g, but potentially at the cost of higher excess risk.
As illustrated in Fig. |1f (right), excess risk grows with increasing shift, but its dependence on the
fairness tolerance is weak, suggesting that this worst-case effect may not be dominant in practice.

We illustrate the tightness of this a-dependency through a worst-case example for attribute-blind
statistical parity that matches the upper bound up to a multiplicative factor (Hou & Zhang| (2024)
showed the same worst-case dependency on «, and established matching minimax lower bounds):
Example 1. Let o € [0,1] and ¢ € [0,1 — «]. Construct distributions p, ¢ over (X, A,Y) as
follows: pa = qa uniformly over A = {0,1}; px = gx uniformly over X = {0,1}; ¥ = X
pX=0|A=0=(1-a-¢)2andp(X =0]|A=1)=(1+a+¢)/2;qg(X =0 A=
0)=(1-«a)/2and ¢(X =0| A =1) = (14 «a)/2. There is no shift in (X,Y’), but the shift
in (X, A)is 2 Drv(px|a—as 4x|a=a) = € for both a. Let h, and h, be Bayes-optimal classifiers
satisfying c-approximate SP on p and g, respectively. Then with the 0-1 loss (classification error),
the excess risk is Ry(hy,) — Ry(hg) = £/2(ac + €).

The dependency on « can be eliminated if the classifier is attribute-aware, and the fairness criterion
is SP, or EO under binary classification (results for the binary and exact fairness case (o« = 0) are
established by|Agarwal et al.|(2025))). This highlights the robustness benefits of attribute awareness.

Corollary 3.3. Assume the attribute-aware setting (i.e., A is included in the classifier input). Under
the same conditions as in Theorem[3.2) with the bound ¢ instantiated via Theorem if the fairness
criterion is statistical parity, or equalized odds under binary classification (K = 2)|then

Ry(hp,r) — Ry(hg,) < [lloo(2 D1 (41 (Px5x) + 2Expy [Drv(Py|x, @y x)] + 26 K).

4 LEARNING ROBUST FAIR CLASSIFIERS

Given a source distribution p (or labeled examples of) available for training, our goal is to learn a
fair classifier that may be deployed on test distribution(s) ¢ differing from p. We characterize the
potential shifts from the source distribution by a collection Q of distributions, referred to as the
uncertainty set. The robust fair classification problem is then formulated asﬂ

argming, Ry(h) st V,(h) <a, Vo(h) <o, Vge Q.

Algorithmdescribes a cutting-set methocﬂ for solving the robust problem given a fair classification
oracle, and a pessimization oracle that finds the worst-case ¢ € Q where fairness is most violated.

2The result also applies to equal opportunity via a similar analysis for equalized odds.

30ur formulation minimizes only the source risk R,(h), rather than the worst-case risk over Q, i.e.,
argming.y. ;<o vqe (pjue MdBXqe {pug R, (h). The latter can be solved via an additional level of opti-
mization; see e.g., the meta-algorithm of (Mandal et al.} 2020, Algorithm 1).

4Algernative approaches include online learning techniques (Mandal et al.l 2020} [Ben-Tal et al., 2009),
where h is optimized using no-regret algorithms.
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Algorithm 1 Robust Fair Classification (Cutting-Set Method)

Require: Fairness criterion V, tolerance «, distribution p, uncertainty set Q, parameters 7', 7 > 0.
. h <+ argmin, R,(h) s.t. V,(h) < «
cforte{1,...,T} do

1

2

3 @ < argmax,c o Vq(h) > pessimization
4:  breakif V,(h) <a+r7

5 h < argmin, R,(h) s.t. V(h) < a, Vg, (h) < ..., Vg, (h) <« > optimization
6

. return h

The algorithm is initialized with the fair classifier on p, then iterates between finding a violating
perturbation ¢; and updating h to satisfy fairness on ¢; and across all previously found perturbations
D, q1,---,qi—1. It terminates if no violating perturbation is found up to tolerance 7, in which case the
returned classifier h satisfies V(h) < a + 7 for all ¢ € Q (plus possible slack if the pessimization
is approximate or estimating from finite samples), or when the iteration limit 7" is reached.

The key components in Algorithm [I]are the fair classification oracle (Lines [[|and [5)), the pessimiza-
tion oracle (Line E]), and the specification of the uncertainty set Q. In Section @ we instantiate
the fair classification oracle by extending the post-processing algorithm of | Xian & Zhao| (2024) to
multiple distributions. In Section[d.2] we construct the uncertainty set Q by modeling the covariate
and concept shifts from p, reflecting the decomposition given in Theorem [3.1] If the shifts ¢ are un-
known or adversarial, we model them using parameterized models (e.g., neural nets), and perform
pessimization approximately by optimizing the parameters of ¢ (via gradient ascent) to maximize
the fairness violation V;, with a regularization term to enforce bounded divergence from p.

Convergence of Algorithm Assume that the input space X has finite support, i.e., supp(gx ) =
supp(px) = X forall g € Q and N := |X| < oo (as is the case when learning from finite samples).
Then a randomized classifier h can be represented as an N x K row-stochastic matrix, where the i-th
row gives the output distribution for the ¢-th input. Moreover, the fairness violation V' is 1-Lipschitz
in h under the L>-distance: |V (h) — V(I')| < ||h — I||« (see derivation in Eq. (3)).

Then, the analysis of (Mutapcic & Boyd, 2009, Section 5.2) shows that Algorithmterminates in at
most O(7~VE) jterations. The intuition is as follows: each time a violation exceeding 7 is found,
the updated h must be at least 7 away (in L°°-distance) from the current & to restore fairness due to
the Lipschitzness of V, effectively removing a ¢..-ball of radius 7 from the feasible region (hence
the name cutting-set). Since only O (7~ such balls can be packed into the space of randomized
classifiers where each cell is bounded between [0, 1], the algorithm must terminate within this bound.
In practice, however, far fewer iterations are needed: in our experiments, it typically terminates
within 5 to 20 iterations.

4.1 FAIR CLASSIFICATION VIA POST-PROCESSING

Algorithm |l| requires a fair classification oracle, either for a single distribution (Line [1) or simul-
taneously across multiple distributions (Line [5). To implement this, we use the post-processing
algorithm LinearPost proposed by |Xian & Zhao| (2024) for the single-distribution setting (reviewed
below), and extend it to the multiple-distribution setting.

Single-Distribution LinearPost. LinearPost learns fair classifiers for a single distribution p by
fitting a linear classifier on top of the outputs from a predictor p4 z1x : & — A(A x Z) for
the conditional distribution of (A, Z) given X, and a predictor for the point-wise risk, r, : X —
[0, 00)% (hence called a post-processing algorithm),

rp(2)y =E,[U(YV k) | X =2], VeeX, ke), (2)
which represents the expected loss of assigning class k to input x, e.g., for the 0-1 loss, r,(z), =
p(Y # k| X =2) =1— py|x—,(k); the overall risk is then R, (h) = Exp, [rp(X) T h(X)].

It is based on the following theorem, which shows that if the predictors p4 7 x and r;, are Bayes-
optimal, then the Bayes-optimal (randomized) fair classifier on p is a linear classifier over (K +
G| Z|)-dimensional features computed from (7,(),pa, z|x—-), under a mild continuity condition.
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This condition can be satisfied by randomly perturbing the point-wise risk r,, which is the only
source of randomness in the resulting classifier.

Theorem 4.1 (Xian & Zhao, 2024). Let p be a distribution and « € [0,1]. Assume that the push-
Sforward distribution r,ipx is continuous. Then an optimal classifier to the single-distribution fair

classification problem, arg min,, R, (h) s.t. V,(h) < q, is, for some weights 3 € REXG*IZ,

x> argming, ey, (rp(z)r + ZaeA,zeg Br,a,2PA, 7| X =2 (0, 2)).

The weights /3 are obtained from the dual solution of a linear program (LP) that expresses the single-
distribution fair classification problem (details are given in Appendix Eq. ).

Learning Fair Classifier from Samples. Given labeled examples (z;, a;, 2;, y;) ~ p, we apply
a “pre-train then post-process” procedure to learn a fair classifier via LinearPost from scratch. We
first learn the predictors p4, 7 x and 7, in the pre-training step, then invoke LinearPost on them to
obtain the classifier. The post-processing weights 3 are estimated by solving the fair classification
LP mentioned above, except that, in this case, it is formulated using the empirical distribution of the
samples, and the learned p 4, 7| x, 7, as proxies in place of the Bayes-optimal p4 7| x,7p-

To learn the group predictor p4, z|x, we fit a probabilistic classifier (e.g., logistic regression) to
predict (A, Z) from X (possibly followed by a calibration step), as this can be viewed as an (A, Z)
classification task. Similarly, to learn the point-wise risk predictor 7, we fit a model for Y given X
and transform its output according to the chosen loss ¢ (e.g., 0-1 loss as shown above). To ensure
good generalization, the training samples should be split into disjoint sets for pre-training and post-
processing; note that post-processing does not require labels as it relies on the predictors as proxies.

Multiple-Distribution LinearPost. We extend LinearPost to achieve fairness on multiple distri-
butions p, q1, . . ., qr simultaneously by showing that the Bayes-optimal fair classifier in this set-
ting remains a linear post-processing rule, now over (K + (7' + 1)G|Z|)-dimensional features.
These include r,(z), p(4,Z | X = z), and wi(z) - ¢.(A,Z | X = =z) for each ¢, where
wi(x) = qix(x)/px(x) is the importance weight between px and ¢; . This additional term is
natural, as wy - px = gx and g 4z x together fully specify the joint distribution g x 4 -

Theorem 4.2 (Multiple-Distribution LinearPost). Let p, g1, ..., qr be distributions and o € [0, 1].
Assume that the push-forward distributions ripx,r8q1 x, - - . , riqr x are continuous. Then an opti-
mal classifier to the multiple-distribution fair classification problem, arg min, R, (h) s.t. V,(h) <

a, Vg (R) < a, ..., Vg (k) < q, is, for some weights f € RITHUXKXGX|Z]

> 'qr

T
T — arg min (Tp(l‘)k—i— Z (ﬁo,k,a)zp,q’zx_z (a, Z) -‘rz 5t~,k7a7zth,Z\X:g; (Ch z)wt(m)> ) .

key a€A,z€EZ t=1

The weights S are again obtained from the dual solution of an LP that expresses the multiple-
distribution fair classification problem (Eq. (I0)). Thus, to learn a classifier that is fairon g1, ..., qus
in addition to p, we apply the multiple-distribution variant of LinearPost by providing descriptions
of the g,’s in terms of predictors gm 4 7| x and models for computing the importance weights wi,.

4.2 PARAMETERIZED DISTRIBUTION SHIFT MODELS

As described in Section [d.1] our implementation of the fair classification oracle in Line [5|uses Lin-
earPost, which requires each perturbation q1, . .., qr to be specified via its conditional distribution
Gt a,z|x and its marginal distribution through the importance weight w; = ¢; y /px. Therefore, we
model each ¢ € Q in the uncertainty set accordingly by a pair of functions: fcs : X — A(Ax Z) for
the concept shift, and frw : X — [0, 00) for the covariate shift from the source distribution p. This
also mirrors the decomposition of fairness violation into concept and covariate shifts as analyzed in
Theorem[3.1} Moreover, these functions must generalize beyond the training set at test time, because
classifiers produced by LinearPost rely on their outputs to make predictions (i.e., post-processing).

When knowledge about the potential shifts is available, it can be used to directly specify Q. For
example, to model covariate shift in the domain adaptation setting where unlabeled data from the
test distribution ¢ are available, we let @ = {¢} be a singleton set, with the pair fcs = ¢a, ZIx =
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pa,z|x unchanged and fiw = ¢x/px for the covariate shift, which can be estimated from the
samples (Shimodaira, 2000; |Coston et al., 2019).

When the shifts are unknown or adversarial, we define Q as a set of bounded perturbations around
the source distribution p (Mandal et al.| 2020). For example, to model noisy group labels (Wang
et al., 2020), we can let @ = {q : Ex~py[drv(qax,pajx)] < 7} In such cases, to model
and approximately find the worst-case perturbation, we parameterize the functions fcs and frw that
represent ¢ (e.g., neural nets), and optimize their parameters (via gradient ascent) to maximize the
fairness violation V,,, with regularization terms to control their deviation from p (and also to prevent
overfitting).

We derive the regularized objectives for optimizing the worst-case perturbation g below. Recall that
fes represents fes(2)q, = q(A=0a,Z =2 | X =z) and fiw(z) = ¢(X = z)/p(X = z), so by
Bayes’ rule, we can express the fairness violation (Definition [2.1]) in terms of these functions as

Jes(X)aze fCS(X)a/’ZC)fIW(X):H

qa,z(a,z.)  qa,z(d, z)

Vi) = (B 10, (00 G)

a,a’ €A
ce{1,...,C}

where g4 z(a,z) = Expy [fes(X)a,2fiw(X)]. We use KL divergence for regularization:

* Concept Shift Model. We regularize fcs by its average KL divergence from py z|x over X,
with strength Acs. The objective becomes:

max s (Vg(h) — Acs Expx [DxL(pa,z|x, fes(X))])
= maxy (Vq(h) +Acs Expy Za,z pA,ZlX(a7 Z) In fes (x)aﬂ} )

* Covariate Shift Model. We regularize fiw by its KL divergence from 1 (i.e., between gx =
px - fiw and px), with strength A\rw. The objective becomes:

max fy, (V4 (h) — Aiw Dk (px, px fiw(X))) = max s, (Vg (h) + Aw Ex wpx [In fiw (X))

In our experiments, we replace the max in Eq. (3) with a weighted sum using softmax to improve
optimization performance. We parameterize both functions using one-hidden-layer LeakyReLU nets
that take the logits of p4, 7| x as input. For example, we define fiw(z) = Cexp(g(Inpa z1x=z))

where g is the neural net and C is a normalization term such that Zf\il Sfiw(xi)px (x;) = 1 over the
training data (recall px = 1/N for empirical distributions).

5 EXPERIMENTS FOR GEOGRAPHIC SHIFT

We evaluate the robust fair post-processing algorithm of Section [d] under geographic shifts using
the ACSIncome dataset (2018 data; |[Ding et al., [2021)). The task is binary classification of whether
an individual’s annual income exceeds $50k, with sex as the binary sensitive attribute. The data is
partitioned by the individual’s home US state or territory (51 regions in total), but we retain only the
top 27 with the largest sample sizes. California (CA) is used as the training/source distribution. To
quantify the distribution shift from CA, following the first bound in Theorem (3.1} we compute the
maximum mean discrepancy (MMD;|Gretton et al.,[2012) of the input features X conditioned on A
for SP and on (A4, Y) for EOpp and EO, using a Gaussian kernel with bandwidth 1; for improved
statistical power, we average the conditional MMDs rather than taking their max.

We consider SP, EOpp, and EO fairness in the attribute-blind setting, and follow the “pre-train then
post-process” procedure from Section [.1] to obtain fair classifiers via (robust) LinearPost with a
gradient-boosted decision tree (GBDT; |Ke et al., |2017) as the base prediction model. The dataset is
split 60/10/30 for pre-training, post-processing, and testing. We first fit a GBDT to predict (A,Y)
from X, then apply (robust) LinearPost; the uncertainty set is implemented using the covariate and
concept shift models described in Section parameterized by one-hidden-layer neural nets with
LeakyReLU activation. We also evaluate the Reductions algorithm (Agarwal et al.| [2018)). The fair
algorithms are applied separately for each fairness criterion. Further details and hyperparameters
are provided in Appendix [E]
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Figure 2: Fairness on each region by Reductions and LinearPost (non-robust and robust with Ajw =
20, Acs = H500) trained on CA data, under the tolerance setting that minimizes macro average
violation. See Table |I| for the tolerances, average accuracies, and violations (horizontal lines).
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Figure 3: Accuracy-fairness tradeoffs on each region by robust LinearPost (A;w = 20, A\cs =
500) trained on CA data. For comparison, we include the fairest Pareto-optimal classifiers from
non-robust LinearPost and Reductions, as well as the randomized interpolation between the fairer
baseline and the constant O classifier (dashed lines).

Results. Figure [2] shows the fairness achieved by the classifier from robust LinearPost on all 27
regions (including CA), under the best tolerance setting o* that minimizes average fairness viola-
tionE| compared to results from non-robust algorithms. Robust post-processing (under a*) improves
fairness both on average and in the worst-performing region, though the improvements are not uni-
form across all regions. This variation is expected, as the actual distribution shifts may not be fully
captured by the perturbation models used to define the uncertainty set—especially since the setting
assumes no prior knowledge of the shift; additionally, the optimal o* and hyperparameters for the
perturbation model (e.g., Arw, Acs) may differ across regions. Nonetheless, robust LinearPost’s
ability to reduce worst-case fairness violation underscores its practical utility.

The fairness improvements come at the cost of reduced accuracy, including on the training distribu-
tion. In Fig. 3] we plot the accuracy-fairness tradeoffs achieved by robust LinearPost on the three
most violating regions for each fairness criterion, under varying tolerances c. For reference, we
include the linear randomized interpolation between the fairer baseline and the constant 0 classifier
(which is trivially fair). In most cases, (portions of) the Pareto-optimal tradeoff curve of robust Lin-
earPost lies above the interpolation line, indicating that its improvements are non-trivial, except on
MO and LA for EOpp fairness, likely because the perturbation models fail to capture the true under-
lying shifts. We do also observe that fairness does not always improve monotonically as « decreases,
and many configurations do not lie on the Pareto front; this may be due to the pessimization step
not being performed exactly, as well as variability in the optimization of the perturbation models. It
is therefore recommended to validate on the test distribution(s) when selecting hyperparameters and
models that effectively improve fairness while maintaining a balance with accuracy.

>We sweep tolerance settings down to o = 0.001, but it may not yield the fairest classifier.



Under review as a conference paper at ICLR 2026

NOTE ON LLM USAGE IN PAPER WRITING

The writing of this paper was assisted by OpenAI’s GPT model, limited to grammar correction and
sentence refinement.
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A RELATED WORK

Fairness Under Distribution Shifts. Our analysis is similar to those in (Wang et al.,|2020; | Hou &
Zhang| |2024;|Agarwal et al., 2025). Wang et al.|(2020) study fair classifiers under covariate shift and
derive bounds on fairness violation in terms of the magnitude of the shift. |/Agarwal et al.[(2025)) ad-
ditionally bound the excess risk of the optimal fair classifier under shifts, but their results are limited
to the attribute-aware setting. Hou & Zhang| (2024) study the excess risk of the optimal attribute-
blind fair classifier, revealing a similar worst-case dependency on the fairness tolerance; while we
provide an example that matches this dependency, they establish matching minimax bounds.

In addition, Konstantinov & Lampert| (2022) and |Blum et al.| (2024)) analyze fair classifiers under
adversarial noise (i.e., worst-case distribution shift), with emphasis on the brittleness of deterministic
fair classifiers relative to randomized ones, and |Chen et al. (2022) provide fine-grained bounds
under covariate and label shifts. |Giguere et al.| (2022)) and Kang et al.| (2022) study the problem of
certifying fairness guarantees under distribution shifts.

Robust Fair Algorithms. Existing algorithms can be broadly categorized into domain adaptation
and generalization methods (Barrainkua et al., 2025). The former assumes a source and a specific
target distribution, with the goal of achieving fairness on the target. The common strategy is to relate
the target distribution to the source, via importance weighting, invariant representation learning, or
assuming a generative model (e.g., causal graphs), followed by applying standard (non-robust) fair
algorithms (Schumann et al 2019} |Coston et al.| 2019} |Roh et al.l 2020} Rezaei et al., [2021; Singh
et al.l 20215 |An et al} 2022; Wu et al, |2022). Generalization methods assume less knowledge
about the test distribution(s) and instead define an uncertainty set, often as bounded perturbations
around the source distribution. The goal is to ensure fairness under all perturbations in the set,
typically using techniques from (distributionally) robust optimization (Wang et al., [2020; [Mandal
et al., 2020; Jiang et al., [2023; [Baharlouei et al., 2024)). Our robust fair post-processing algorithm
belongs primarily to the latter category but can be adapted to the domain adaptation setting by
customizing the uncertainty set based on knowledge of the target distribution.

B PROOFS FOR SECTION[3.1]

To begin, we derive alternative expressions for the fairness violation in Definition [2.T}

Vp(h) = max ]P’p(}/}:yc|A:a,Z:zc)—}P’p(}/}:yc|A:a’,Z:zc)

a,a’ €A

Because the distribution of ¥ is fully determined by h given X, the statistics considered in the group
fairness constraint above can be written by Bayes’ rule as
Pa,zix(a, 2)px (7)

P, (Y =k|A=a,Z=2)= /X W) kPx|a,z (2) do = / ()i

dz. @)
x pa,z(a,z)

Written in this form, it is easy to show that V' is 1-Lipschitz in  in the uniform distance. By Holder’s
inequality,

[V (h) — V(W) = arg/azcc/x(h(w)yc — W' (2)y,)PxX|a,- () dx
5
< max (maxh(e)y, ~ W(@)y.|) [ pxja(o)ds ®
a,a’,z,c T X
— lIh =1,

where we defined the L°°-distance between two (vector-valued) functions k, A’ : X — R¥ as
I = Hlloe = max|h(z)s — ' (2)i.

Lemma B.1. Let p, q be two distributions. Let h : X — A(Y) be a Lipschitz randomized classifier

with Lip(h) < L, and Y ~ Multinomial(h(X)). Then foranya € A, z € Z, and k € Y, the
change in the statistics examined by the group fairness criteria of Definition[2.1]is bounded by

]Pp(? =k ‘ A= CL,Z = Z) 7]11)(1(5}: k | A:CL,Z: Z) < Dl,L(pX|a,z7qX\a,z)'
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Moreover, if L' > Lip(z +— qa,z|x=z(a, 2)) for all a, z, then

P (Y =k|A=a,Z=2)—P,(Y =k|A=a,Z = 2)

< 2(D1,(L+1)L/ (px,qx) + Expx ’PA,Z|X(G, z) — QA,ZlX(a7 Z)|)

Proof. For the first bound, we use the first alternative form of Eq. (@). By the definition of the
Dudley metric (Definition 2.3 and the assumption that Lip(h) < L,

‘/ pX\az( z) — qX\a,z(ﬂf)) dz

< DI,L (pX|a,z7 qX\a,z) .

For the second bound, we use the second form in Eq. (E[)

/ W) <PA,z|m(aaZ)PX(iU) B QA,Z|w(avZ)QX(x)) dx‘
X

paz(a.z) 41.2(0,2)
| (I a2
| [ (2B - a2 I o
ol (s )
< W(Exw Pa.z1x (@, 2) = qa.z1x (@, 2)| + D1pir(px, ax)) ©)
1 1

+

a h(z x,a,z)dr
paz(a,z) qaz(a,z) /X (2)kqx,a,2( )

by triangle inequality, and the assumption that Lip(g4,z|.) < L'; continuing with the last term,

1
B h(z r,a,z)dr
paz(a,z) qazla,z) /X (@)rax,a,z( )
qa,z(a,z) ‘ 1
< | == —-1l=— a,z) —pa,z(a,z)], 7)
pa,z(a,z) pA7Z(a7Z)|QA,Z( ) —pa.z(a,z)] (

where

lga,z(a,z) —pa,z(a, z)|

‘/ 4a,212(a, 2)qx (2) = pa,z)2(a, 2)px (2)) dx

<

[ (@a10(0.2) = pazila,)px () +\ [ a1z )ax (@) - px () e
X X

< Exepy ‘pA,Z\X(a»Z) - QA,Z\X(G»Z)’ + D11 (px,qx)-

Combing this with Egs. (6) and (7) gives the result in the lemma statement. O

Proof of Theorem[3.1} For the first bound, we use the first alternative form of Eq. (#). By triangle
inequality, for any a,a’ € A,z € Z,and k € },

‘ | i (axias () = ax10 (@) do

’/ )k (Px a2 () = Px|ar z(2)) da

+

/ h(x)k(pX\a,z(x) - qX|a,z(z)) dz| + ‘/ h(z)k(pXm’,z(z) - QX|a’,z(x)) dz
X X

<a+ Dl,L (pX|a,za qX\a,z) + DLL (pX|a’,z7 QX\a’,z);
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the last line is from the assumption that V,(h) < « and by Lemma Then Vy(h) < o+
2maxy .cz D1,0(Px|a,z> 4x]|a,-) by taking the max of the above over a € Aand z € Z.

For the second bound, we use the second form of Eq. (). Again, by triangle inequality,

/ h(z)k(q’é"zli(a’z)qu) B QA,Zm(alvz)QX(x)> d:z:‘
X

qa,z(a,z) qa,z(a', z)

/ B2 <pA,Z|:r(a'a 2)px (x) B pA,Z|m(alvz)pX(I)) d
x

pa,z(a,z) paz(d,2)

/ h(x)k<pA,z|z(aaZ)px(l‘) B QA,Zw(avz)QX(x)> dx’
X

pA,Z(ayz) CIA,Z(C%Z)

/h(x)k<pA,Z|z(a/aZ)px($) QA,Zz(a/7Z)QX(x)>dx‘,
x

pa,z(d,z) - qa,z(a',z)

<

+

+

where the term on the second line is no more than «, and the other two terms are bounded using the
second result of Lemmal[B.1] O

C PROOFS FOR SECTION [3.2]

We first provide the proofs to Theorem [3.2]and Corollary [3.3] then derive the results in Example[T}
To simplify notation, we drop the Lipschitz constant L in h,, 1, hq, 1, in the proofs.

Proof of Theorem[3.2] We begin with the following decomposition of the risk:

Ry(hy) — Ry(hg)

Ry(h
( (FL ) (Bp)) + (Rp(hp) - Rp(ﬁq)) + (Rp(ﬁq) - Rq@q))

For the first term (and similarly the last),

Rq(ﬁp) - Rp(ﬁp)
:/X > Uy, k)b (@) rgx v (2, y) day — /X > Uy, k)hy(2)kpx.y (2, y) day

<Y key *Y ey
= / <Z £y, k)hp(w)k) (ax,v (z,y) — px,v(2,y)) dzy
XXV \key

= /X yg(xay)(QX,Y(mvy) _pX’Y(x’y))dxy

/Z 9(x, 9)px () (4| x=2(¥) — Py|x=2(y)) dz

yey

. / Z T ) v 1 e ) ax (&) — px (@) A

< H]loo Exmpy [DTV(pY|X7 qy|x)] + [llco D1 L+ x (Px,ax)

where we defined g to be the expected risk incurred by h,, on each (,y) pair from the underlying
distribution; the last line is because © +— >, v, 9(2, ¥)qy | x=2(y)/[|¢||c € [0,1] andis (L+ L") K-
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Lipschitz:

> 9@ y)avix=a(v) = Y 92", y)av|x=ar ()

yey yey
< Z ay | x==W)|g(z,y) — g(z’,y)| + Zg(xlay)|QY|X:w(y) — gy |x=a’ (y)|
yey yey
<> g, y) — 9@ )+ oo Y lay ix=2 ) — avix=a ()]
yey yeYy
<D Uy B (hp(@)k — hp(a)k) | + 10| L' K d(z, 2")
yeylkey

< Ul LK d(e,a') + 0] L LK d(z,o").

For the middle term, we construct a classifier i’ from hg such that Lip(h') < L and V,(h) < «
using Fact whereby, because of the optimality of , on p,

Rp(ﬁp) - R;D(Bq) = (RP(B ) ( )) (Rp(h/) - Rp(ﬁq)) ®)
Ry (h') — Ry(hq).

The construction is as follows: let 8 € [0, 1] to be determined, and

R'(z) = B(1,0,...,0) + (1 — B)hy(z),

in other words, i’ interpolates between the constant classifier that always outputs 0, and the original
h. We verify that it is L-Lipschitz: |h/(x) —h/(2")| = (1—B)|he(x) —hy(z')| < (1-B)Ld(x,2").
For its fairness violation on p, by Eq. @),

Vp(h') = max ‘/ W (@)k (Px 0,2 (2) = PX|ar . (7)) da
a,a’ €A X
ce{1,...,.C}

IN

(1-p5) max
a,a’ €A
ce{l1,....C}

= (1 - ﬁ)vp(ﬁq)
<(1-B)ate)

/ Bq(x) (pXIa,zc (z) — PX|a’,z (x)) dz
X

by the assumption that V,,(h,) < a + ¢, and we have (1 — B)(a + ¢) < « via setting

p= a+e’
Then to bound Eq. (8),

Ry(R') — Ry(hy)
= /X Z Ly, k) (h'(:r);€ — Eq(x)k)PX,Y(fE7 y) dzy

XY key
=p €y, 0)px.y (z,y) doy — B > Uy, k)hg(z)rpx.y (z,y) dy
XY XXV oy
< Blleloo-
The final bound in the statement is obtained by putting the above together. O

Proof of Corollary[3.3| Part 1 (Statistical Parity). We pick up from Eq. (8) in the above proof of The-
orem the next step is to construct a classifier 4’ such that Lip(h') < L and V,,(h’) < a.
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Let 11, € A(Y) denote the class output distribution of &, on the source distribution p conditioned on

group A = a, that is, piq x = Ex~py [he(X)r | A = al, and similarly let v, . = Ex~gy [hg(X)k |
A = a] denote that on the target distribution g. We will construct an i’ off h, such that its conditional
output distributions on p is the same as v (i.e., that of i, on ¢), which satisfies fairness.

Define ( )
max/(0, Ma,k — Va,k
da = max(0,Va r — Mak)s Sak = . ,
a,k

then we construct ~

B (x,a) = he(x) ® (1 = s4) + dq,
where © denotes element-wise multiplication. The intuition is to consider the difference between
the output distribution of h, on p (which is 1) and the desired target output distribution v, and
construct i’ from Bq simply by redirecting class assignments going to classes k where ui; > vy (i.e.,
over-target) to classes j where p; < v; (i.e., under-target) uniformly.

We verify that the conditional output distributions of A’ on p is indeed v (which satisfies fairness):
for any a, k,
]EXNpX [h/(X7 a)k | A= a]
= (1= 8ak) Ex~py [Bq(X)k | A=a]+d,
=(1—sqr)tar+da
= o,k — mMax(0, g,k — Va,ix) + max(0, Vg & — fa,k)
v,

Moreover, Lip(h’) < L because it is derived from h,, which is Lipschitz, by multiplying with a
number less than 1 and adding a constant.

Then to bound Eq. (8),
Ry(R') = Ry(hy)

=[S B )k~ ). v.) daya
XXYxA key

= / Z e(yv k) (da,k - Sa,kﬁq (x)k)pX,Y,A (l’, Y, a) dxya
XXYxA key

= > Uy, k) (dak — Sakliar)py.a(y, a)dya
VXA ey

:/ > Uy, k) (Vak — par)py.a(y, a) dya
YxA key

< eK |||,

where the last line follows from Holder’s inequality and |v, 1 — pia k| < €, because by Lemma ,
€ upper bounds the change in group fairness statistics under distribution shift. The remainder of the
proof follows from the rest of the proof of Theorem O

To prove the second result of Corollary for binary-class EO, we first recall two facts regarding
the true positive rate (TPR) and false positive rate (FPR) of randomized binary classifiers. The first
fact simply says that both TPR and FPR of the classifier that always output class 1 with probability
[ equal to 5. This means all points on the main diagonal of the ROC plot are achievable by some
randomized classifier.

Fact C.1. Let 5 € [0,1], then the classifier h such that ho(x) = 1 — B, hi(z) = Bforallz € X
has the same TPR and FPR of [3:

TPR(h) = E[hy (X) | Y = 1] :/ BP(X =2 |Y =1)da = 8,
X

FPR(h) = E[hy(X) | Y = 0] :/ BP(X =z |Y =0)dz = 8.
X
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a+e
o .'b
§ ] distribution shift o=
. o—e
TPR| o , TPR| oo Lo S,
0 FPR 0 FPR
case 1 case 2a case 2b case 3
1 1 1 1
a+e
TPR a TPR / TPR / TPR /
S, S. S, S S, S
0 FPR 1 0 FPR 1 0 FPR 1 0 FPR

Figure 4: Picture for the cases considered in the proof of Corollary [3.3|Part 2.

The second fact states the linearity of TPR and FPR in h:

Fact C.2. Let hy, ha be two classifiers, and \ € [0,1]. Let u™R, ;FR denote the TPR and FPR of
hy, respectively, and V™R, LR for those of ho. Then the TPR and FPR of h = Ahy + (1 — \)ha
are \u™R 4+ (1 — N ™R and A\pFPR + (1 — \)oFPR,

Proof of Corollary[3.3| Part 2 (Equalized Odds, Binary Classification). Let "} denote the TPR of

h, on the source distribution p conditioned on group A = a, that is, IR = Ex ., [he(X)1 |

A=aY = 1], and pgf™® = Ex - [hg(X)1 | A = a,Y = 0] for the conditional FPRs. Let
AR = max, pi™ denote the maximum conditional TPR, p™® = min, xI™® the minimum TPR,

and analogously define 72"}, PR,

We will consider the ROC plot (which plots the FPR on the horizontal axis and TPR on the vertical
axis), since the goal of EO fairness is to constrain the group-conditional TPRs and FPRs within a
square of side length at most o (Hardt et al.| (2016) also based their analysis on the ROC plot).
Define the rectangle S7 on the ROC plot with vertices at:

S}JL _ (HFPRv ﬁTPR)7

S{;L — (EFPR7HTPR)7

SII_IR _ (ﬁFPR7ﬁTPR)7

S?R — (7FPR ,

GRANTRES )

This rectangle contains the group-conditional TPRs and FPRs of h, on p; by the assumption that

Vp(hq) < «a + ¢, the side lengths of this rectangle are no more than o + €.

Next, we define a square Sy with side length « contained in Sy; later, we will construct 2’ such
that its group-conditional TPRs and FPRs are contained in .S;. We consider three cases (three other
symmetric cases are omitted); see Fig. [4 for a picture:

1. If Sy is located above and does not intersect with the diagonal line {(¢,¢) : ¢ € R}, then let
the vertices of .Sy be

SgL = SllgR + (_av O‘)ﬁ

Syt =S+ (—a,0),

SY% = S 4 (0,0),
SHR = SPR.
2. If Sy intersects the diagonal line on the BL-BR side at (s, s), and either the UR-BR or

UL-UR side at (¢, t), then we construct another square S3 (which is contained in .S7) with
the following vertices, then consider two cases;

SLISJL = (37t)7

S?}?L = (373)’

UR
53

BR
S5

(t7 t)u
(t,s).
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If the side length of S35 is less than or equal «, then let S5 be the only eligible square in S}
that contains S3:

SgL:S§R+(_O‘7a)7 SER:SZ?RJ'_(QO‘)ﬂ
SBL = SBR 1 (—a,0), SBR = gBR.
3. If S, intersects the diagonal line as above, but the side length of S5 is greater than «, then
let the vertices of Sy be
SEL:S§L+(O7O‘>7 SSR:S?]?L""(OQO‘)’
SBL =SB, SBR — SBL 4 (a,0).
It is clear that for any point u € S7 \ Sa, the line that passes through it and its projection IIg, (u)

on Sy will intersect the diagonal segment {(¢,t) : ¢t € [0,1]}, and the £, distance between u and
IIs, (u) is no more than e.

Then we construct ' as follows. The strategy is to modify each group-wise component of h, such
that the conditional (FPR, TPR) pair after the modification are in Sy. If 11, € Sy already, we let
N (xz,a) = hqe(z). Otherwise, let (¢,t) be the point on the diagonal that intersects with the line
that passes through points i, and Ig, (14,), and we know from Facts and that there exist
Aq and h, (whose TPR and FPR are on the diagonal) such that the conditional FPR and TPR of
haXa + (1 — Xg)hq on pis ITg, (11q), which is what we will set 2/ (-, a) to. Clearly, 2’ maintains the
Lipschitz property.

Then to bound Eq. (8), we use the fact that the risk of a classifier can be expressed in terms of its
(conditional) TPR and FPR:

Ry(h) =Y p(A =a)(£(0,0)(1 — FPR,(h)) + £(0, 1)FPR 4 (h)
acA + £(1,0)(1 — TPR,4(h)) + £(1,1)TPR,(h)),

then because the conditional TPRs and FPRs of A’ on p is within ¢ distance of those of Bq,

Ry(W') = Ry(hg) < &> p(A=a)(£(0,0) +£(0,1) + £(1,0) + £(1,1)) < 4e|[{]lo. D
acA

Proof of Example[I} We first verify the distribution shift:
1
Drv(px|a=0,4x|4=0) = ) Z\p(X =z|A=0)—q¢X =2]A=0)
x=0

<
27

l-a—¢ 1—«
2 2

and similarly for Drv(px|a=1,¢x|a=1)-

Next, the Bayes-optimal fair classifier i_Lq on q coincides with the Bayes-optimal classifier, which is
the function h,(z);, = L[z = k]: it always outputs class 0 on z = 0, and class 1 on z = 1, and has
an error rate of 0. We verify that it satisfies c-approximate statistical parity: by Eq. @),

1

VeP(he) = D he(@)o(@(X =2 | A=0)—q(X =2 | A=1))
=0

=[g(X=0]A=0)—¢(X=0[A=1)]

l—-a 14+«

2 2

For the Bayes-optimal fair classifier Bp on p, we derive its error rate as follows. Denote its con-
ditional probability of outputting class 1 on input 0 by mo = h,(0)1, and that on input 1 by
m1 = hyp(1)1. We can express its error rate as

- 1 1 1
R(hp) = §7T0 + 5(1 —m) = 5 + —(mo — ™),

N —
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and its statistical parity violation as
1

VS () = |3 Bp(@h (p(X = | A= 0) — p(X =2 | A= 1)

=|m(p(X =0[A=0)-p(X =0[A=1))
+mpX =1[A=0)-p(X =1[A=1))

= [mo(poo — po1) + m1(Pro — p11)|

= [mo(poo — Po1) + m1(1 — poo — (1 — po1))|

= [mo(poo — Po1) — T1(Poo — Po1)|

= |(mo — 71)(Poo — Po1)|

= |mo — m1|poo — Po1

= (a+e)|lmy — m].

Then the error rate of i_zp is the solution to the problem

in L4 lamgom) st <
min -7 sit. |mg—m ;
mo,m€[0,1] 2 2 ! 0 W= a+e

it is immediate that an optimal solution is 7y = 0 and m; = «/(c+¢), so the error rate is € /2(+¢),
which is also the excess risk as 0 is the error rate of h,.

D PROOFS FOR LINEARPOST

First, we review and provide the derivation for the post-processing weights of the single-distribution
LinearPost (Theorem [4.1)) in terms of the optimal dual values of a linear program (LP). We then
extend this derivation for the multiple distribution setting and prove Theorem .2}

D.1 SINGLE-DISTRIBUTION LINEARPOST

Recall the single-distribution fair classification problem,
argmin R,(h) st Vp(h) <a.
h

By Egs. (2) and , it can be expressed as the following linear program with variables h € RI¥IXK
andt € R™:
}gi()r}t /X Z rp(z)kh(z)kpx (x) dz
key
Z hiz), =1, Vr e X, )
key
PA Z\J;(a7 Zc) (0%
h(z),, —/————px(zr)de —t.| < =, Vae A ce|C],
/X (s paz(a, z) px(z) 2 ]

where the first constraint ensures that /i represents a valid randomized classifier (row-stochasticity),
and ¢ are auxiliary variables introduced to reduce the number of constraints (each ¢, will be opti-
mized to the midpoint between the two most violating groups).

Introduce dual variables ¢ : X — R and 1) € R“*C, then the dual problem of the above is

mln/qb x)px (x )de_*ZZh/)ac

ce[ClacA

st tae=0, Ve e [C],

acA

+ > Zwacp“'x“‘:) <ry(z), VeeX ke

a,z
cy.=k acA pa, Z C)
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Let ¢* denote the optimal dual variable, | Xian & Zhao|(2024) show that the weights for the linear
post-processing in Theorem 4. T]are given by

Vac
ﬁk,a,z = - Z ]l[k =Y, 2 = Zc]iy-

c€[C] pA,Z<afa Zc)
D.2 MULTIPLE-DISTRIBUTION LINEARPOST
Let p and ¢4, . . ., qas be distributions. Similar to above, the multiple-distribution fair classification
problem,
argmin R,(h) st Vp(h) <a, Vi (h) <a, ..., Vg, (h) <a,
h
can be expressed as the following linear program:
i h d
min [ 3 @l (e) da
key
> h(z), =1, Vo € X,
key
xr a ZC
/ h(x pAZ‘ ( )px(x)dx—toyc §g, Va € A, c € [C],
* pazl(a,z) 2 (10)
Q14,2120 %) o
hz)y, —————q x(z)dz —t1 .| < =, Ya € A, c € [C],
[ H@ A ) e | < 5 ]

qIWAAZ|w(aaZC)
h(x)y, ————F——qm x(z)de —tp e
/X @)y am a,z(a, 2c) x(7) a

< %, Va € A, c € [C].

To derive the dual, we introduce dual variables ¢ : X — R and ¢t~ € RIMFDXEXC The
Lagrangian is

L(h,t, ¢, 9", 97)
/sz; Depx (@) do+ /X <1%h(l’)k>px(:c)¢(x) de
+ Z §<—+toc—/ h(z) cmpx(x)dx>¢&a,c
* Z (;‘(_ ~loet / h(z mw{(x) da:)z/)o—,w

@ dm A Z|x(aaZC) ) +
_7+tmc_/h C,7Qm x)dx m.a.c
2 ( ) QmA,Z(ChZc) X( ) ,a,

o] qu Z|:v(a Ze)
- mc+/ h 7~ 4m (x) de m,a,c?
2 © Gma, z(a, zc) X w

m=1 ce[C] aEA<
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collecting terms,

L(hvta ®, ¢+ﬂ/)_)
M
= /}; ¢($)px (37) dz — Z Z (tm,c(l/};tb,a,c - T_rz,a,c) - %(w;;,a,c + w;L,a,c))

m=0ce[C] a€A

- / > <rp(x)k - (¢(x) + i >y qMA’le(::i;) q;nXX(S;)( e m,a,c))>

X key m=0 c:y.=k a€ A qu’Z

() h(z)kpx () dz,

where we defined ¢g = p.

By strong duality, miny>q ¢ max¢7¢+20,¢,720L = IMaXep p+>0,— >0 ming>o,¢ L. Note that, if
rp(x)r < (%) for some (z, k), then we can send L to —oo by setting h(z); = 0o, so we must have
that r,(x), > (%) for all z, k. But with this constraint, the best we can do for miny >, L is to set
h = 0, so the last line is omitted. Similarly, we must have Yaca@h ac = Vm.ae) = 0 from its
interaction with ¢,,, . for all m, c.

So the dual problem is

a M
r(;uurjl /Xq/)(a?)px(l‘)dm— b} Z Z lem,a,6|

m=0 ce[C] a€ A
st Ymae=0, Ve e [C], m € [M]
acA

M
QmA,z|I(CL,Zc) Gm x ()
d)('r) + Z Z wm,a,c qu’Z((l,ZC) px(ﬂﬂ) < Tp(x)k, Vre X, ke ).

m=0 c:y.=k a€A
Now, we follow a similar analysis in (Xian & Zhao| 2024) to prove Theorem (4.2

Proof of Theorem[d.2] Let h* be a minimizer of the primal LP (Eq. (I0)) and ¢)* an optimal dual
variable. By definition, h* is the Bayes-optimal randomized fair classifier achieving the minimum
risk on p and satisfying fairness on p, q1, . . . , gps simultaneously.

Define

M
Tfair(l'a k) = rp(x)k - Z Z Z ’l/];:z,a,c qu,le(a’ ZC) qmX(x)

m=0 c:y.=k a€A qu’Z(a7 ZC) px (1‘)

M
m x \T
@it Y Bukastma g, 2) 22X

a€A,zEZ m=0 bx (.’13)

with

*

B ka,e = — L[k = ye, 2 = 2] —25—;
m a,z CGZ[CV] [ C C} qu’Z(a,’ ZC)

note that x — arg min,, re(x, k) is the classifier proposed in Theorem 4.2]

Then, the second constraint of the dual problem reads ¢(z) — rpir(x, k) < 0 for all z, k. By com-
plementary slackness (Papadimitriou & Steiglitz, [1998), ¢(z) — rir(z, k) <= h*(z)r > 0, with
the right hand side meaning that the optimal randomized fair classifier has a non-zero probability of
outputting class & on input z, and it can be shown that

h*(z)r >0 = k € arg min rei(2, k).
key

To show that the function on the right hand side is equivalent to the optimal fair classifier on
the left hand side, we need to establish the “<=" relation (almost surely), which is saying that
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the argmin is unique (almost surely); this is where the continuity condition helps. Note that
r — argming (7, k) is a K-class linear classifier with features (r,,(z),pa, 7|z DAz
qM a, Z|z), and the class prototypes always have a non-zero component in the r),-features, so ties
occur (i.e., argmin is non-unique) when the features lie on any of the hyperplanes associated with
the class prototypes. The continuity condition simply implies that this occurs with probability zero

with respect to x ~ px or any of q; x,...,qr x, SO “<=" holds almost surely on p, qy,...,qn-
Finally, by strong duality, the proposed function achieves the same risk as h* and satisfies the same
fairness constraints, hence is an optimal fair classifier. O

E EXPERIMENT DETAILS

Dataset. Our experiments are performed on the ACSIncome dataset (Ding et al.| 2021]), which is
based on the UCI Adult dataset (Kohavi, |1996)), a standard benchmark in the algorithmic fairness lit-
erature. We use data from the 2018 survey year (1-year horizon), partitioned into 51 subsets accord-
ing to the individual’s home U.S. state or territory, and retain the 27 largest subsets by sample size:
the largest is California (CA) with 78281 examples, and the smallest among them is Louisiana (LA)
with 8240 examples; Florida (FL) has 39541 examples. We apply standard pre-processing for tabu-
lar data: categorical features are one-hot encoded, and all features are standardized.

The uncertainty estimates in Figs. [T} [} [6] [0] and [I0] and Table [T] are obtained by averaging over 5
runs with different random seeds for splitting the dataset.

Reductions. The Reductions fair classification algorithm, proposed by |Agarwal et al.| (2018)), is
based on a two-player game formulation of the fair classification problem. The algorithm relies on a
cost-sensitive classification oracle and uses no-regret learning, and outputs a randomized ensemble
of classifiers.

We use the implementation provided in the AIF360 library with default hyperparameters (Bellamy
et al.,[2018)), and sweep the tolerance parameter for the “allowed fairness constraint violation” (eps)
from {100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001}. The base
prediction model is a gradient-boosted decision tree (GBDT), trained using Light GBM with default
hyperparameters (Ke et al.,[2017). The data is split 70/30 for training and testing.

LinearPost. A technical description of LinearPost is provided in Section we follow the “pre-
train then post-process” procedure where we first fit a GBDT predictor for (A,Y") given X (which
suffices for the fairness criteria we consider, SP, EOpp, and EO, and for using 0-1 loss as the ob-
jective), then apply LinearPost to enforce fairness. The data is split 60/10/30 for pre-training, post-
processing, and testing. LinearPost involves solving a linear program (LP) with (N K 4 C') variables
and (N + GC) constraints (Definition , where N is the number of post-processing examples.
We use the Gurobi optimizer to solve these LPs.

We sweep the fairness tolerance parameter o over 15 evenly spaced values between opin = 0.001
and aumax, Where oy 1S set to the fairness violation of the unmitigated GBDT base classifier on the
test set (of the training/source distribution).

Robust LinearPost. A technical description of robust LinearPost is provided in Section ] which
iteratively alternates between finding a perturbation within the uncertainty set and enforcing fair-
ness with respect to all previously found perturbations using multiple-distribution LinearPost (Sec-
tion . Here, we sweep the fairness tolerance parameter « logarithmically between o, = 0.001
and oyax-

The tolerance parameter for the pessimization step is set to 7 = 0.001, and we limit the number
of iterations to 7' = 20 (Algorithm [I). The uncertainty set is implemented using the covariate
and concept shift perturbation models described in Section[d.1] parameterized by one-hidden-layer
neural nets of width 128 with LeakyReLU activation. The input to these neural nets is the output of
the GBDT base model (i.e., the probabilistic predictions of (A,Y") given X).

For the pessimization, we optimize the perturbation models to maximize the fairness violation (of the
current classifier) via full-batch gradient ascent using Adam (default hyperparameters, learning rate
0.01) for 1000 epochs. To reduce variance, we warm-start training by minimizing the KL divergence
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Noisy group label experiments (train on FL)
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Figure 5: Fairness violations under increasing group label noise level by Reductions, non-robust
LinearPost, and robust LinearPost (Acs € {50,200,500}, A\;w = 00), each under the tolerance
setting that minimizes the average violation. See Table 2] for the selected tolerances.

between p and ¢ for 1000 epochs, and perform 5 trials with different random initializations, selecting
the one that induces the highest fairness violation.

For geographic shift experiments (Section [5), we sweep the hyperparameters of the perturbation
models over Arw € {20,50} and Acs € {200, 500}. Results for the Arw = 20, Arw = 500 configu-
ration are shown in the main text; results for the remaining configurations are in Fig.[T1]

F EXPERIMENTS FOR NOISY GROUP LABELS

In this set of experiments, we evaluate robust LinearPost under noisy group labels, where the sen-
sitive attribute A is randomly replaced with a uniformly drawn value from A = {0,...,G — 1}
on a fraction «y of the training data, following [Wang et al.| (2020). This corresponds to a concept
shift between the training (perturbed) and the test (true) distribution, as pP (A = ¢ | X) =
v/G+ (1 —7)p"™ (A = a | X). To account for this, we apply the concept shift model from Sec-
tion .2) within our robust LinearPost framework (which in fact generally handles adversarial label
noise, not just uniform noise), while disabling the covariate shift model (i.e., Ajw = 00).

We run these experiments on data from Florida (FL) in the ACSIncome dataset, on which the un-
mitigated GBDT classifier exhibits substantial violations of all three fairness criteria (SP, EOpp, and
EO). And, rather than sampling group labels uniformly as described above, we flip the binary sensi-
tive attribute on a random +y fraction of the data (referred to as the group label noise level). All other
experimental settings are the same as those in Section[3] e.g., the base model is GBDT.

Results. Figure [5] shows the fairness violations under increasing group label noise levels, using
each algorithm’s best tolerance setting chosen to minimize the macro-average violation on the val-
idation set across noise levels (not necessarily the strictest setting tested). As expected, fairness
violations increase with noise level. Robust LinearPost consistently achieves the lowest violations,
with weaker regularization settings (Acs) providing better robustness by inducing a larger uncer-
tainty set. These results confirm that the concept shift component of our uncertainty set construction
indeed captures such shifts, and that robust LinearPost can, in turn, effectively mitigate their impact.

We plot the accuracy-fairness tradeoffs achieved by robust LinearPost under varying fairness tol-
erances in Fig. [/} compared to the interpolation between non-robust LinearPost and the constant 0
classifier. Robust LinearPost can achieve tradeoffs that lie above this interpolation line, indicating
that its fairness improvements are non-trivial. However, for EO under large noise levels, the tradeoffs
are no better than interpolation; we will discuss possible improvements in Appendix
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Worst-case covariate shift experiments (train on FL)
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Figure 6: Fairness violations under increasing worst-case bounded covariate shift by Reductions,
non-robust LinearPost, and robust LinearPost (A\rw € {5, 20, 50}, Acs = 00), each under the toler-
ance setting that minimizes the maximum violation. See Table [2] for the selected tolerances.

G EXPERIMENTS FOR COVARIATE SHIFT

We evaluate robust LinearPost under covariate shift, where the test distribution’s marginal distribu-
perturbed

tion p’y differs from the original (true) distribution p‘)r}le (Mandal et al., |[2020).

Classifiers are trained on Florida (FL) data from the ACSIncome dataset using robust LinearPost
with the covariate shift model from Section the concept shift model is disabled (A\cs = 00). At
test time, we evaluate the classifiers under worst-case perturbations to the sample weights of the test
examples that maximize the fairness violation, within a bounded ¢; distance from the uniform em-
pirical distribution (1/N). These worst-case perturbations are computed using the code by [Mandal
et al. (2020)E| All other experimental settings are the same as those in Section

Results. Figure[f]shows the fairness violations of the evaluated classifiers under increasing magni-
tudes of adversarial covariate shift, using each algorithm’s best tolerance setting chosen to minimize
the maximum violation on the validation set (not necessarily the strictest setting tested). Again, as
expected, fairness violations grow with perturbation magnitude, and robust LinearPost consistently
yields the lowest violations. These results validate the role of the covariate shift component in our
uncertainty set construction.

We note that the gains from robust LinearPost are smaller under EOpp and EO fairness than under
SP. This may be partly due to the difficulty of the task: on the related Adult dataset, the robust
fair algorithm of Mandal et al.| (2020) also achieved only modest improvements against worst-case
covariate shift for EO fairness. One potential direction for improvement is to strengthen the covariate
shift model; for example, by allowing the neural network to take the original features in " as input,
rather than the GBDT outputs used in our current setup (Section [4.2).

In Fig. 8] we plot the accuracy-fairness tradeoffs of robust LinearPost along with the baseline formed
by interpolating between the fairest non-robust LinearPost classifier and the constant-0 classifier.
Robust LinearPost achieves tradeoffs lying above this baseline, indicating that its fairness improve-
ments are non-trivial. For EOpp fairness, all tested regularization strengths A\rw € {5, 20,50} yield
similar fairness, with weaker regularization lowering accuracy without improving fairness—in par-
ticular, under EO, setting Ajw = 5 resulted in tradeoffs below the interpolation baseline.

(’https ://github.com/samuel-deng/Ensuring-Fairness-Beyond-the-Training-D
ata/tree/£f8£59390e78696aaad66a8a5cad087613fe0255¢c/main/Part3_Comparisons
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Noisy group label experiments (train on FL)
group label noise level =0.1
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Figure 7: Accuracy-fairness tradeoffs on FL by robust LinearPost trained on FL data with noisy
group labels (Acs € {50,200,500}, Aiw = 00). For comparison, we include the fairest Pareto-
optimal classifiers from non-robust LinearPost and Reductions, as well as the randomized interpo-
lation between the fairer baseline and the constant O classifier (dashed lines).
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Worst-case covariate shift experiments (train on FL)
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Figure 8: Fairness violations under worst-case bounded covariate shifts by robust LinearPost trained
on FL (A\iw € {5,20,50}, Acs = o0), showing alongside the accuracies without perturbation.
For comparison, we include the fairest Pareto-optimal classifiers from non-robust LinearPost and
Reductions, as well as the randomized interpolation between the fairer baseline and the constant 0

classifier (dashed lines).
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Figure 9: Fairness violation and excess risk on each region by Reductions trained on CA data with
GBDT as the base model, under varying tolerances. See the caption of Fig. [T}
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Figure 10: Fairness violation and excess risk on each region by LinearPost trained on CA data with
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GBDT as the base model, under varying tolerances. See the caption of Fig.[I]

29

0.012

0.010

0.008

0.006

0.018

0.016

0.014

0.012

0.010

fairness tolerance (CA-trained classifier)



Under review as a conference paper at ICLR 2026

Geographic shift experiments (train on CA)
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Figure 11: Accuracy-fairness tradeoffs on each region by robust LinearPost trained on CA data (un-
der various Arw and Acs settings). For comparison, we include the fairest Pareto-optimal classifiers
from non-robust LinearPost and Reductions, as well as the randomized interpolation between the
fairer baseline and the constant 0 classifier (dashed lines).
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Table 1: Macro average accuracies and fairnesses by Reductions and LinearPost (non-robust and
robust) trained on CA data, under the tolerance setting that minimizes macro average violation. See
Fig. 2]for results on all regions. For LinearPost, the tolerance is reported as a percentage of o within
[0.001, amax], Where aimay is the violation on CA without post-processing.

Geographic Shift Experiments

Algorithm Accuracy (avg.)  Fairness Vio. (avg.) Selected Tol.
Statistical parity

Reductions 0.7740 + 0.0006  0.0240 4+ 0.0012 2
LinearPost (non-robust) 0.7721 +£0.0006  0.0145 + 0.0013 0.0667
(robust; A;w = 20, Acs = 200) 0.6715 +£0.0015  0.0089 + 0.0014 0.0667
(robust; Arw = 50, Acs = 200)  0.6748 £+ 0.0031 0.0104 + 0.0013 0
(robust; A\jw = 20, Acs = 500) 0.6777 £ 0.0017  0.0085 £ 0.0012 0
(robust; Ajw = 50, Acs = 500)  0.7068 + 0.0038  0.0130 £ 0.0020 0
Constant 0 classifier 0.6315 4+ 0.0006 0 -
Equal opportunity

Reductions 0.7819 +£ 0.0006  0.0163 4+ 0.0016 5
LinearPost (non-robust) 0.7856 4+ 0.0006 0.0160 4+ 0.0015 0
(robust; A;w = 20, Acs = 200)  0.6994 +0.0035  0.0104 4+ 0.0014 0.5333
(robust; A\;w = 50, Acs = 200)  0.7047 £+ 0.0040  0.0114 £ 0.0013 0.4667
(robust; Ajw = 20, Acs = 500) 0.6895 + 0.0018  0.0107 £ 0.0014 0.2
(robust; Ajw = 50, Acs = 500) 0.7422 £+ 0.0056  0.0134 £ 0.0016 0.3333
Constant 0 classifier 0.6315 4+ 0.0006 0 -
Equalized odds

Reductions 0.7819 +0.0006  0.0295 + 0.0015 0.2
LinearPost (non-robust) 0.7853 4+ 0.0006 0.0267 4+ 0.0013 0
(robust; A;w = 20, Acs = 200) 0.6531 £0.0015  0.0168 4+ 0.0016 0
(robust; A\jw = 50, Acs = 200)  0.6655 + 0.0021 0.0187 + 0.0018 0
(robust; A\jw = 20, Acs = 500)  0.7465 £+ 0.0036  0.0223 £+ 0.0019 0.4
(robust; A;w = 50, Acs = 500)  0.7347 £ 0.0045  0.0212 £ 0.0017 0.2
Constant 0 classifier 0.6315 4 0.0006 0 -

Table 2: Tolerance settings of each algorithm for the results in Figs.[|and [6] For LinearPost, the
tolerance is reported as a percentage of o within [0.001, tpax], Where aunay is the violation on CA
without post-processing.

Noisy Group Label Experiments Worst-Case Covariate Shift Experiments
Algorithm Selected Tol. | Algorithm Selected Tol.
Statistical parity
Reductions 0.2 Reductions 0.5
LinearPost (non-robust) 0 LinearPost (non-robust) 0
LinearPost (robust; A\cs = 50) 0 LinearPost (robust; A\jw = 5) 0
LinearPost (robust; Acs = 200) 0 LinearPost (robust; A\jw = 20) 0
LinearPost (robust; Acs = 500) 0 LinearPost (robust; Ajw = 50) 0
Equal opportunity
Reductions 0.2 Reductions 0.2
LinearPost (non-robust) 0 LinearPost (non-robust) 0
LinearPost (robust; Acs = 50) 0.1333 LinearPost (robust; A\jw = 5) 0.8
LinearPost (robust; Acs = 200) 0.0667 LinearPost (robust; Ajw = 20) 0.4
LinearPost (robust; Acs = 500) 0 LinearPost (robust; A\jw = 50) 0.1333
Equalized odds
Reductions 0.002 Reductions 10
LinearPost (non-robust) 0.002 LinearPost (non-robust) 0
LinearPost (robust; Acs = 50) 0.0667 LinearPost (robust; Ajw = 5) 0
LinearPost (robust; Acs = 200) 0 LinearPost (robust; Ajw = 20) 0.3333
LinearPost (robust; A\cs = 500) 0 LinearPost (robust; A\jw = 50) 0.1333
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