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Abstract

As generative artificial intelligence (AI) continues to transform education, most
existing Al evaluations rely primarily on technical metrics such as BLEU and
ROUGE, focusing on accuracy and speed while overlooking human identity,
agency, contextual learning processes, and ethical considerations. In this paper,
we present TEACH-AI (Trustworthy and Effective Al Classroom Heuristics)—a
domain-independent, pedagogically grounded, and stakeholder-aligned benchmark
framework with measurable indicators and a practical toolkit for guiding the de-
sign, development, and evaluation of generative Al systems in educational contexts.
Built on an extensive literature review and synthesis, the ten-component assessment
framework and toolkit checklist provide a foundation for scalable, value-aligned
Al evaluation in education. TEACH-AI rethinks “evaluation” through sociotechni-
cal, educational, theoretical, and applied lenses, engaging designers, developers,
researchers, and policymakers across Al and education. Our work invites the
community to reconsider what constructs “effective”” Al in education and to design
model evaluation approaches that promote co-creation, inclusivity, and long-term
human, social, and educational impact.
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1 Introduction and Related Work

As generative Al systems increasingly become intelligent assistant in learning environments, they
challenge the traditional roles of teachers, tools, and humans [} 2]]. Al education interventions are
often designed for and evaluated based on the efficacy of the Al technology in terms of its behavior,
sensing capabilities, and reasoning [3, 4] centered on agent-human interactions. Rarely do these
works involve the broader learning context of their designs and evaluations [5, 16, [7, |8]]. Therefore,
rather than benchmarking against the status quo or competing models, this article attempts to enable
researchers to evaluate how well their Al-based interventions work with a multi-faceted framework
and a practical toolkit that captures both the top-down and bottom-up factors related to human success
with generative Al tools. We aim to investigate our research question: What criteria define effective,
value-aligned human—Al collaboration in educational settings, and how might these criteria guide
the development of the TEACH-AI benchmark and practical toolkit for evaluating generative Al
assisting tools?
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1.1 Generative Al in Educational Contexts

Recent research highlights generative Al (GenAl)’s potential to support multiple areas of education,
including: a) educational administration by reducing teachers’ workload (e.g., auto-grading and
instructional content generation)[9]]; b) personalized learning[10]], c) digital literacy development
[L112]], and d) with growing interest in its role in developing higher order thinking skills[13} |14,
15]. Al-supported learning aligns with theories like Zone of Proximal Development(ZPD)[16] and
Constructionism [17]], which emphasize contextualized support and human agency. However, GenAI’s
effectiveness in K—12 and higher education remains underexplored due to ongoing concerns about
over-reliance on Generative Al, socio-emotional and creative limitations in Al-generated feedback,
and broader ethical risks including bias, factual inaccuracies, trust, equity, and accountability [S} [18]].

Addressing these issues requires design and evaluation approaches aligned with human identities,
values, and community norms [[10} |19} 20]. In response, we propose a stakeholder-aligned, human-
centered benchmark framework that emphasizes explainability, value alignment, co-adaptive refine-
ment, and iterative assessment[21} 7, [22]]. We consider stakeholder aligned human-centered design
and evaluation as an approach that centers educational design around humans’ needs, engagement,
and cognitive growth in this paper[6} 23} [7].

1.2 Foundational UX and Human-AI Evaluation Frameworks

User experience (UX) evaluation plays a crucial role in assessing the effectiveness and acceptability
of educational Al systems, particularly in human-centered contexts. Frameworks typically combine
core evaluation criteria such as accuracy, clarity, feedback usefulness or engagement potential
[24} 25| [26]]. Human evaluation remains critical[27, 28]]. However, studies show that Al-generated
feedback, although often perceived as an immediate assistant, also poses unique challenges related to
explainability, bias, and ethical use [29, 30} [31]]; Trust, fairness, academic integrity, and need of Al
literacy among educators and humans[32, 33} 34]. A notable limitation in existing UX evaluation
research is its emphasis on domain specific systems, such as tutoring systems for STEAM like
code.org[15]or writing tasks[35]]. Our work addresses this gap by proposing a domain independent
UX evaluation framework that can generalize across creative, interdisciplinary learning environments
such as Scratch, a block-based programming platform that supports storytelling, games[36]; Teachable
Machine, train machine learning models through images, sounds[37,|38]], or Earsketch, expressive
programming learning platform that support teaching both music and coding [39]]. These platforms
support diverse, cross-disciplinary learning, but lack standardized frameworks to assess outcomes
like adaptability, ethical awareness, human values, and stakeholder alignment. A flexible, domain
independent benchmark is needed to capture the broader educational impact of these tools across
varied contexts [40, 41]]. In this paper, we define "Domain Independent Evaluation" as evaluating Al
across multiple subject areas, requiring generalizable, content-neutral metrics[42} 40].

1.3 Benchmarking and Evaluation of Intelligent Tutoring Systems

For decades, traditional Intelligent Tutoring Systems (ITS) have aimed to deliver individualized
instruction by modeling student knowledge and guiding problem-solving (inner loop) and instructional
sequencing (outer loop) through predefined rule-based decision trees. These systems have shown
positive learning outcomes through features such as immediate feedback and adaptivity [4, |43]].
However, their reliance on rules limits responsiveness to dynamic learning scenarios and diverse
student behaviors. In contrast, generative Al tutors are emerging to address these limitations by using
adaptive techniques such as retrieval augmented generation for producing context-aware and coherent
response[44, 45|, reinforcement learning to optimize teaching strategies based on students feedback
[46], deep knowledge tracing for modeling and predicting student understand over time[47], and
long-term retention and self-regulated learning over immediate correctness to support deeper learning
[25] /48]

Benchmarks are critical for evaluating educational Al systems, offering standardized tasks, datasets,
and metrics to assess performance. In this context, we adopt the definition of benchmarking as “a
combination of task, dataset, and metric” used to evaluate how Al systems support learning [42} [25].
But most existing benchmarks for large language models (LLMs) focus on general reasoning or
factual recall [40], with few targeting pedagogical efficacy in real-world learning contexts [49]. This
gap raises concerns about the lack of stakeholder validation and limited alignment with teaching



and learning needs and context [42]. As Shute and Ventura emphasize, educational evaluation
must move beyond correctness to include formative, contextual, and human-centered outcomes
[25] 28]. Anderson et al. [S0] further demonstrated how Al tutors can be benchmarked to support
procedural knowledge through structured feedback. Building on this, our work addresses the need for
pedagogically grounded, stakeholder-aligned benchmarks that reflect how generative Al supports
learning in authentic, situated contexts [6} [7]].

Our contribution to this paper is to address these research gaps through proposing the TEACH-AI
(Trustworthy and Effective Al Classroom Heuristics) Benchmark Framework—a domain independent,
value-aligned human-centered conceptual benchmark, along with a practical toolkit for evaluating
generative Al tutors. Informed by a synthesis of over 126 publications, our framework serve as a start
point to guide the design and evaluation of pedagogically meaningful Al-driven learning experiences.

2 Methodology

We conducted a scoping review following Arksey and O’Malley’s framework [511152] to examine
how Al agents are evaluated in educational environments. Guided by the question “How are Al
agents evaluated in educational environments?”, we performed targeted searches across major venues
(e.g., CHI, NeurIPS, IDC, AIED) and Google Scholar. In total, we reviewed 126 relevant sources,
including 27 conference papers, 78 journal articles, and 21 books and gray literature. These
were categorized into three thematic phases: the pre-LLM era (pre-2017, focused on early ITS
and HCI) with 37 papers, the transformer era (2017-2022, marked by the rise of XAI and Al
literacy)[53},134] with 43 papers, and the generative AI phase (2023-present, emphasizing co-design
and agent collaboration)[54} 551, with 36 papers.

Through iterative coding and synthesis, we identified ten recurring components relevant to human-
centered evaluation, including explainability, adaptivity, usability, ethical use, and accessibility. These
insights informed a practical toolkit of reflective prompts [56} [7]] and a simplified scoring structure
inspired by Meadows’ leverage points [57]]. Regular weekly meetings with a senior faculty advisor
facilitated thematic validation and iterative refinement of interpretations, ensuring conceptual rigor
and alignment with human-centered Al evaluation principles in both the TEACH-AI benchmark and
toolkit design.

3 TEACH-AI Benchmark Framework and Early Design Implications

In this section, we revisit our research question and present an initial benchmark framework along
with a practical toolkit, drawing on existing literature, to address what evaluation components
construct effective, value-aligned human—AlI collaboration in educational domains. We define each
component in detail and synthesize these findings into preliminary design implications to inform
future benchmark development for generative Al tutoring agents. This benchmark framework adopts
a value-sensitive human-centered perspective and structures the analysis to address the gap in existing
evaluation approaches by strengthening the focus across cognitive and sociotechnical arguments and
offers a foundation for iterative refinement through future research.

3.1 TEACH-AI Evaluation Components

To address the first part of the research question: What criteria define effective, value-aligned
human—AlI collaboration in education? We first define ten core components that form the basis of
our evaluation framework (see Table[I)): explainability, helpfulness, adaptivity, consistency, creative
exploration, system usability, ethical responsibility, accessibility, workflow, and refinement. We
then provide a detailed table outlining sub-components with indicators or metrics, and relevant key
references.

Explainability: The agent’s ability to present its reasoning and decision making in clear, contextual
meaningful, and human-understandable terms[58| [59 60]].

Helpfulness: The extent to which the agent supports educational stakeholders such as teachers and
humans’ needs in achieving their goals through actionable, pedagogically appropriate assistance
(61} 162} 16].



Adaptivity: The system’s responsiveness to human preferences, contexts, and needs through person-
alization and dynamic guidance. This includes flexible exploration to foster humans autonomy and
confidence [63, 164, 165, 126].

Consistency: The stability and trustworthy of system outputs under similar conditions and alignment
of behavior, languages, and situations across tasks [58 126].

Learning Exploration: The agent’s capacity to foster curiosity, support diverse solution paths, and
encourage reflective, open-ended inquiry, long-term human autonomy [6} 66! 16,67} 26].

System Usability: The effectiveness and ease of interaction that support efficient, intuitive, role-
shifting, and error-resistant interactions between users and Al systems [24, 26/ |68].

Responsiblity and Ethics: The system’s ability to act in alignment with human values, legal,
ethical, and educational norms, and cultural sensitivities, even under adversarial conditions. It
requires agents to avoid harm, ensure fairness, protect privacy and safeguard student data and voice
(691 (70} 311 [71] 140].

Accessibility: The extent to which the system is usable and equitable access by humans with diverse
abilities, including those using assistive technologies [[72} (73,155} 74, [75]].

Workflow Integration & Stakeholder Coordination: The agent’s ability to support multi-steps,
human-AlI collaboration between teachers, students, and other stakeholders, while maintaining
adaptability in a dynamic learning context [S5) 24].

Refinement: The system’s ability to support iterative improvement through a) the user correcting Al
errors, b) user adjustment of vague or biased feedback, and c) ethical traceable revisions [[76} 169, 26].

Overall, TEACH-AI benchmark framework address three critical interconnected arguments in evalua-
tion: (1) the agent’s capacity for explainability, adaptability, helpfulness, and consistency, including
interpretable, context-aware justifications [6}163]], dynamic adaptation to human needs [62,[77,[78.79],
and stable, reliable outputs scross similar conditions [26 [80]; (2) the extent to which the agent fos-
ters creative exploration, emotional engagement, and deep thinking, by scaffolding open-ended
problem-solving, supporting divergent approaches, encouraging productive struggle, and enabling
transferable learning process cross domains[24, 43l 81}, 163} 26]; and (3) the degree to which the
agent operates responsibly, accessibly, and is open to refinement, including ethical behavior under
adversarial conditions [69} 1311140, 82]], equitable access for diverse humans, and support for iterative
improvement through feedback, error recovery, and coordination in multi-step, multi-stakeholder
workflows [26, [83]].

3.2 TEACH-AI Benchmark: Early Implications

To illustrate how TEACH-AI can inform early-stage evaluation, we outline how the TEACH-AI
framework could be applied to evaluate domain-independent generative Al assistants in educational
settings [[110]. The framework’s ten components can be selectively applied depending on research
goals, stakeholder roles, and contextual factors. For instance, studies involving a single agent may
emphasize components such as helpfulness or explainability, whereas multi-agent settings may
prioritize coordination or workflow support. Similarly, accessibility considerations should be adapted
based on the characteristics and needs of the target user population.

More broadly, TEACH-AI encourages researchers and designers to reflect on how generative Al
systems support education, creativity, values, and human agency. By applying the framework itera-
tively, practitioners can identify where the system meets expectations and where further refinement is
needed, guiding more thoughtful and contextually grounded algorithmic design decisions.

3.3 Practical Toolkit

3.3.1 TEACH-AI Toolkit Development: Checklist Example

We also introduce a preliminary toolkit intended to help practitioners apply TEACH-AI in practice.
The toolkit offers a set of reflective questions aligned with each framework component, supporting
structured evaluation across different educational and design contexts. Rather than serving as
a prescriptive checklist, these prompts help users identify strengths, gaps, and opportunities for
improvement in an Al system’s behavior and alignment with human-centered values. The goal of



Table 1: TEACH-AI Benchmark Framework: Evaluation Components for Generative Al Assistants

Component Subcomponents Indicators / Metrics Key References

1. Explainability Reasoning XAI metrics, trust ratings, task agreement rate, XAl question  [58!(84[851/8611401163]
Clarity bank (8711241881129
Traceability
Fidelity
Interpretability

2. Helpfulness

3. Adaptivity

4. Consistency

5. Learning Explo-
ration

6. System Usabil-
ity

7. Responsiblity &
Ethics

8. Accessibility

9. Workflow & Co-
ordination

10. Refinement

Goal support
human-aligned pedagogy

Personalization
Context awareness
Controllability

Appropriate determinism
Implementation invariance
Cross-evaluator reliability

Creativity

Metacognition

Transfer

Affective & social engagement

Usability
Interface quality
Co-regulation support

Fairness
Transparency
Privacy compliance

Functional adaptation
Assistive technology integration
multi-modal UX compatibility

Multi-agent coordination
Multi-role flow control (teach-
ers, students, stakeholders)

Iterative feedback
Error correction
Ethical traceability

Task success rate, hint relevance (knowledge tracing), human
modeling accuracy, user ratings (e.g., CAS-UX)

Adaptation rate, System Usability Scale (SUS scores), User
Experience Questionnaire (UEQ scores), NASA-TLX, controlla-
bility metrics, human modeling accuracy

Output stability across runs, inter-coder agreement, threshold
tuning precision, value map stability index

Creativity support index (CSI) scores, human modeling accuracy,
transfer task performance, LX scale, Self-Determination Theory
(SDT) indicators (autonomy, competence, relatedness)

CSI scores, usability heuristics checklist, interface clarity, feed-
back visibility, co-regulation cues rating(e.g., tutoring role-
switching affordances), cognitive walkthrough analysis

Fairness stress tests, adversarial prompt handling, stakeholder
alignment, traceability, privacy compliance audit, group fairness
metrics

Text-to-audio adaptation rate, comprehension scores, error reso-
lution rate, contextual navigability (e.g., keyboard and curricu-
lum switching), XAl question bank, group fairness metrics

Workflow coherence score, task decomposition rate, planning
cost analysis, human—agent alignment

Error detection rate for revisions, refinement trace logs
(keystroke logs, edit history), cross-agent coherence, time-to-
refine, value alignment over revisions, longitudinal user satisfac-
tion

[4311621[771[781161

[791164.189118011401
[241174]

[581190./19111801126]

[61166)[16J167)181
[921193119411261155]

[811168. 24119511261 196/
97]

[69.19811401{7011311199]

[73111001(74![1011199
11021721182

[10311104]1411183]

[10511691176.1106]
[107111081{109

this tool is to guide consistent reflection and comparison across contexts, whether in classroom use,
design, or model development reviews, or early research prototyping. Future iterations will refine
these prompts and explore ways to support broader, scalable evaluation workflows. This checklist
can be used by educators, researchers, and designers to assess human-centered Al alignment.

Table 2: TEACH-AI Toolkit Checklist Example (Index + Tech-Eval depth forthcoming).

Framework

Checklist Questions

1. Explainability

. Does the Al explain its decisions clearly?

. How would you verify the explanation?

2. Helpfulness

3. Adaptivity

. How quickly does the Al provide adaptive feedback (e.g., latency)?

4. Consistency

a
b
a. Does the Al support the task goal you set?
a
a

prompts, or contexts?

. Does the system behave consistently across different conditions,

5. Learning Exploration

a. Does the Al foster creativity, learning transfer, and critical thinking?

b. Does the Al foster emotional connection, motivation, and social
reasoning?

6. System Usability

a. Was the Al easy to use and navigate?

7. Responsibility & Ethics

a. Does the agent support diverse users equitably?

b. Has a safety or privacy audit been conducted?

8. Accessibility

a. Does the system adapt effectively to my accessibility needs?

9. Workflow & Coordination

process?

a. Were roles and responsibilities clear throughout the collaboration

10. Refinement

a. Does the feedback clearly identify areas that need correction?

The checklist is intended to support reflective practice rather than function as a prescriptive to-do
list. It translates abstract values (e.g., explainability) into actionable criteria that can be applied
across technical design, policymaking, training, and research contexts [20]. In classroom settings,
including those using tools like ChatGPT, the checklist guide scalable evaluation by allowing raters to
assess each criterion using either a simple Yes/No option or a progressive scale [S7]. This approach



provides a clear foundation for assessing an Al system’s alignment with human values, contextual
demands, and broad Al development principles such as transparency and safety across diverse
educational environments. The resulting TEACH-AI index can support both reflective classroom
practice and quantitative research analysis, supporting consistent comparisons and guiding ongoing
model evaluation efforts in the educational domain.

4 Conclusion and future work

In summary, we introduce TEACH-ALI, a ten-component, human-centered benchmark framework
and toolkit for evaluating generative Al systems in education. While the current version is primarily
conceptual, it highlights the need for evaluation approaches that align with emerging educational
needs, ethical design principles, and human values. Importantly, TEACH-AI bridges human-generated
feedback and LLLM-generated feedback by providing a unified structure that supports both human
evaluators and LLM-as-judge methods.

Moving forward, our work will involve co-design with diverse stakeholders and iterative refinement of
the framework across different educational contexts. We also plan to explore technical development,
such as integrating TEACH-AI into a scalable digital prototype for large-scale benchmarking. This
direction aligns with broader trends in human-centered Al evaluation, for example, the use of LLM-as-
judge methods for automated assessment, and research on Reinforcement Learning from Al Feedback
(RLAIF), which highlights the growing emphasis on reliable feedback signals in Al behavior. Our
long-term goal is to support the development of accessible, responsible, and pedagogically aligned
Al evaluation ecosystems that drive meaningful impact in real educational settings.
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