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Abstract

There is substantial experimental evidence that learning- and memory-related
behaviours rely on local synaptic changes, but the search for distinct plasticity rules
has been driven by human intuition, with limited success for multiple, co-active
plasticity rules in biological networks. More recently, automated meta-learning
approaches have been used in simplified settings, such as rate networks and small
feed-forward spiking networks. Here, we develop a simulation-based inference
(SBI) method for sequentially filtering plasticity rules through an increasingly fine
mesh of constraints that can be modified on-the-fly. This method, filter SBI, allows
us to infer entire families of complex and co-active plasticity rules in spiking
networks. We first consider flexibly parameterized doublet (Hebbian) rules, and
find that the set of inferred rules contains solutions that extend and refine—and also
reject—predictions from mean-field theory. Next, we expand the search space of
plasticity rules by modelling them as multi-layer perceptrons that combine several
plasticity-relevant factors, such as weight, voltage, triplets and co-dependency. Out
of the millions of possible rules, we identify thousands of unique rule combinations
that satisfy biological constraints like plausible activity and weight dynamics.
They can be used as a starting point for further investigations into specific network
computations, and already suggest refinements and predictions for classical
experimental approaches on plasticity. This flexible approach for principled
exploration of complex plasticity rules in large recurrent spiking networks presents
the most advanced search tool to date for enabling robust predictions and deep
insights into the plasticity mechanisms underlying brain function.

1 Introduction and related work

Synaptic plasticity has received continuous attention over the past decades [1–5]. Nevertheless,
how functions such as learning and memory emerge from local synaptic changes is still poorly
understood. Given the experimental inaccessibility of synapses in vivo, many studies have relied

*, †: equal contributions
37th Conference on Neural Information Processing Systems (NeurIPS 2023)



on theoretical methods to shed light on the plasticity rules at play [6–12]. However, this approach
does not scale [3, 4]—in particular, previous attempts at tuning complex, co-active plasticity rules
have been limited by human intuition, and had to rely on theoretical frameworks based on strongly
simplifying assumptions [8, 9].

Recently, several studies have aimed to address these issues by automating the discovery of plasticity
rules using numerical meta-learning approaches [13–20]. Given the non-differentiability of biological
systems, along with the steep compute requirements of simulating plastic networks at scale, these
studies have been restricted to rate networks [13–16, 18–20] or small feed-forward spiking networks
[15, 17]. Moreover, these approaches require the a priori definition and optimization of a loss
function that enforces a desired network computation, as well as various regularizers to ensure the
implementation of the task is biologically plausible. Lastly, the above studies typically propose single
plasticity mechanisms compatible with the data or network function considered.

Here, we aim at a more comprehensive approach to discovering biologically plausible plasticity rules.
We study network dynamics in large recurrent spiking networks with plasticity rules that are flexibly
parameterized (using polynomials or neural networks, Fig. 1A). We introduce filter simulation-based
inference (fSBI), a new meta-learning approach that can thoroughly explore the space of potential
rules. This method allows us to select sets of rules using metrics that effectively constrain network
dynamics to fulfill the desired conditions. Our approach successfully infers entire families of rules
that robustly establish plausible dynamics in large spiking networks. We demonstrate the scalability
of fSBI by applying it to neural-network-based search spaces that include additional factors known
to influence plasticity, such as, e.g., synaptic weight or membrane potentials. Despite the nonlinear
interactions induced by the neural network parameterization of plasticity and the increase in the
number of factors, fSBI successfully recovers plausible rules. Interestingly, when considered in
isolation, the inferred candidate rules often result in contradictory experimental predictions, revealing
that the classical pre-post protocols may only have marginal explanatory power.

Overall, our study introduces a principled approach for meta-learning plasticity rules in complex
networks. The inferred distributions of plausible rules can be used as starting points for future studies
of specific network computations, and raise questions about classical theoretical and experimental
protocols for understanding plasticity.

Figure 1: Flexible inference of plasticity rules in recurrent spiking networks with fSBI.
A: Plastic recurrent spiking networks are simulated with parameterized plasticity rules (parameters θ),
either as polynomials (Figs. 2, 3) or as multi-layer perceptrons (Fig. 4). B: Filter-SBI (fSBI). Starting
from a prior over plasticity parameters π0(θ), we infer a posterior given a first network metric, for
instance the population firing rate, p1(θ|rexc ∩ rinh). In contrast to other classical Bayesian inference
approaches, π1 = p1(θ|rexc ∩ rinh) is used as a prior for the inference in the subsequent round, given
a different network metric. We then repeat this process for various network metrics.

2 Methods

2.1 Spiking network model

We consider a recurrent spiking network of 4096 excitatory and 1024 inhibitory leaky integrate-and-
fire neurons with conductance-based synapses, relative refractoriness, adaptive threshold and NMDA
currents. The model parameter values follow Zenke et al. [8] (Fig. 1A; see Supp. 6.1 for a complete
description of parameters). The membrane potential dynamics of neuron j (excitatory or inhibitory)
are given by

τm
dVj

dt
= − (Vj − Vrest)− gE

j (t) (Vj − EE)− gI
j(t) (Vj − EI) , (1)
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where E stands for excitation and I for inhibition. A postsynaptic spike is emitted whenever the
membrane potential Vj(t) crosses a threshold V th

j (t), with an instantaneous reset to Vreset. This
threshold V th

j (t) is incremented by V th
spike every time neuron j spikes and otherwise decays following

τth
dV th

j

dt
= V th

base − V th
j . (2)

The excitatory and inhibitory conductances, gE and gI evolve such that

gE
j (t) = agAMPA

j (t) + (1− a)gNMDA
j (t) and

dgI
j

dt
= −

gI
j

τGABA
+

∑
i∈Inh

wij(t)δi(t)

with
dgAMPA

j

dt
= −

gAMPA
j

τAMPA
+

∑
i∈Exc

wij(t)δi(t) and
dgNMDA

j

dt
=

gAMPA
j (t)− gNMDA

j

τNMDA
,

(3)

with wij(t) the connection strength between neurons i and j (unitless), δk(t) =
∑

δ(t− t∗k) the spike
train of pre-synaptic neuron k, where t∗k denotes the spike times of neuron k, and δ the Dirac delta.
All neurons received input from 5k Poisson neurons, with 5% random connectivity and constant rate
rext, randomly sampled from the uniform distribution U(5, 15)Hz in each simulation. The recurrent
connectivity was instantiated with random sparse connectivity (10%).

2.2 Synaptic plasticity parameterizations

In order to explore a wide range of possible plasticity rules, we defined parameterized functional
forms for these rules (i.e., search spaces) enabling us to flexibly generate various rules, by changing
the parameters of the function. We considered two such parameterizations:

For polynomial plasticity rules, each recurrent synapse underwent spike-timing dependent plasticity
(STDP) [21]. The weight from neuron i to j (of type X and Y; (X,Y) ∈ {E, I}) evolved such that

dwij

dt
= η [δi(t)(αXY + κXYxj(t)) + δj(t)(βXY + γXYxi(t))] , (4)

with η a fixed learning rate. The variables xi(t) and xj(t) trace the pre- and post-synaptic spike trains

dxi

dt
= − xi

τ pre
XY

+ δi(t) and
dxj

dt
= − xj

τ post
XY

+ δj(t), (5)

where τ pre
XY and τ post

XY are the time constants of the traces associated with the pre- and postsynaptic
neurons, respectively. Thus, the plasticity updates at each connection type depended on 6 parameters:
θXY = [αXY, βXY, γXY, κXY, τ

pre
XY, τ

post
XY ], for a total of 24 parameters across all connection types

(Fig. 2A).

For the MLP plasticity rules, only the recurrent EE and IE synapses underwent spike-triggered
updates (Fig. 4A). Change of the weight from neuron i to j (of type X and E, X ∈ (E, I)) was
computed by running forward multi-layer perceptrons (MLPs) that took as inputs several synaptic
variables relevant to plasticity1:

dwij

dt
= η

[
δi(t)MLPpre

XE

(
x
(2)
i , x

(1)
j , wij , ⟨Vj⟩, Cexc

j , C inh
j

)
+

δj(t)MLPpost
XE

(
x
(1)
i , x

(2)
j , wij , ⟨Vj⟩, Cexc

j , C inh
j

)]
,

(6)

with Cexc
j = ⟨gE

j (EE − Vj)⟩ and C inh
j = ⟨gI

j (EI − Vj)⟩ co-dependent terms representing the activity
of neighboring synapses [10] (here all synapses with the same postsynaptic neuron), and ⟨Vj(t)⟩ the
low-pass filtered membrane potential [11]. In this search space, time constants of synaptic traces were
fixed at τ (1)EE = τ

(1)
IE = 10ms and τ

(2)
EE = τ

(2)
IE = 100ms [22, 7, 8, 10]. We chose a two-hidden-layer

MLP, composed of 50 sigmoidal units in the first hidden layer, and 4 in the second. We trained only
the final layer, keeping all other layers fixed. While this is standard practice with pre-trained ML

1Note that all input variables to the MLP are functions of t, which we elide to lighten notation.
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models, we randomly initialised the parameters of the frozen layers, rather than pre-training them.
We verified that when using random initializations for the first 2 hidden layers (∼ U( −1

ninp
, 1
ninp

), where
ninp is the number of input features at a given layer), and only training the weights, bias, and output
learning rate of the final layer, previously observed plasticity rules could be approximated (Supp. 6.7).

A given plasticity rule (EE or IE) thus consisted of one MLP (with 5 parameters: 4 weights and 1
bias) to update the synaptic weight when a pre-spike occurred, another MLP updating the synaptic
weight for post-spikes (Fig. 4B), and a common learning rate ηXE for both MLPs, resulting in 11
parameters per rule, and a total of 22 parameters between EE and IE.

2.3 Mean-Field predictions

In the polynomial case, we performed a self-consistent analysis of the weight and activity dynamics
in the network at steady state, following previous work [23, 7, 10] (more details for all connection
types in Supp. 6.3). For example, at EE synapses, we could calculate an expected firing rate r∗exc from
the parameters of the rule such that:

r∗exc =
−αEE − βEE

λEE
, (7)

with λEE = κEEτ
post
EE + γEEτ

pre
EE

2.4 Assessing network plausibility with metrics

To assess whether a particular plasticity rule was a suitable candidate, we simulated a spiking neuronal
network (SNN) with that rule and quantified the resulting dynamics with multiple metrics on the
activity and weight traces. The metric choices and values were informed by—and in line with—a
range of modeling and experimental cortical studies [7, 8, 24–34]. For every simulation, we stored
the raw spike trains and weight traces for 10s after 110s of simulated time (60s for the MLP rules).
We grouped 15 individual metrics into four main criteria:

Stable activity dynamics: Rules were flagged as suitable when the excitatory and inhibitory popula-
tion firing rates were bounded between 1 and 50 Hz, i.e., rexc ∈ [1, 50]Hz and rinh ∈ [1, 50]Hz, in line
with a large swathe of literature reporting cortical firing rates of a few Hertz on average [24, 29, 30].

Stable weight dynamics: Fraction of synaptic weights that reached extreme values (0 or wmax),
fwblow ; mean absolute change in synaptic weights between simulation start and end across all synapse
types, wcreep; mean weight at the last time-step across all synapses of a specific type, ⟨wXY⟩. These
metrics excluded rules whose weights changed too rapidly, did not converge, or reached unrealistic
values. Rules were flagged as suitable if they satisfied fwblow < 0.1, wcreep < 0.05, ⟨wEX⟩ < 0.5 and
⟨wIX⟩ < 5 simultaneously.

Near-irregular dynamics: Mean coefficient of variation of the inter-spike intervals across all
excitatory neurons, ⟨cv(ISIi)⟩; auto-covariance for each spike-train, and its integral, averaged over
time and the neural population, ⟨ρ⟩i,t; Fano factor for each spike train averaged over the population,
⟨Fano⟩i; standard deviation of the firing rate of individual neurons averaged across the population,
⟨σ⟩i. These metrics quantified the regularity of a spike train, but, either due to metric assumptions or
hyperparameter choices, each metric exhibited a different failure mode, which could be filtered out by
combining the metrics. Rules were flagged as suitable if they satisfied ⟨cv(ISIi)⟩ > 0.7, ⟨ρ⟩i,t < 0.1,
⟨Fano⟩i ∈ [0.5, 2.5] and ⟨σ⟩i < 5 simultaneously.

Near-asynchronous dynamics: Standard deviation of the excitatory population firing rate, σrexc ; the
Fano factor averaged across the population and then across time windows, ⟨Fano⟩t; we also computed
the population average of binned spike-trains, Fourier-transformed it and averaged the resulting
power spectrum across all frequencies f (except 0), < S >i,f . Rules were flagged as suitable if
they satisfied ⟨Fano⟩t ∈ [0.5, 2.5], < S >i,f< 1 and σrexc < 0.05 simultaneously. These bounds
enforced the broadly asynchronous-irregular activity observed in cortex [24, 25, 27, 29, 30]. Ranges
for metrics assessing synchrony/regularity were thus devised with independent Poisson spike trains
in mind, with leeway for spatiotemporal correlations, as seen in cortical recordings [32–34].

Rules were considered plausible if they fulfilled all four broad criteria above (more details and
analysis of individual metrics in Supp. 6.2).
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2.5 Filter simulation-based inference

Having defined plasticity rules search spaces and network metrics, we turned to the problem of
exploring these spaces, systematically filtering out unsuitable rules.

Simulation-based inference (SBI) is broadly defined as an approach for performing Bayesian
inference given stochastic models (with tunable parameters θ, and generating samples x) in cases
where the likelihood of the model p(x|θ) is analytically inaccessible but simulation is possible [35–
37]. SBI infers the posterior distribution p(θ|x), using samples from a prior distribution θ ∼ π(θ) and
corresponding simulations x ∼ p(x|θ), i.e., it applies Bayes’ rule such that p(θ|x) ∝ p(x|θ) π(θ),
where p(θ|x) represents the distribution over model parameters most likely to have generated x.

This is an appealing framework for the problem of identifying plausible plasticity rules: we treated
the parameters of the plasticity rule as parameters θ of a stochastic plastic spiking network that
generated simulations x consisting of the metrics defined in Section 2.4. We then used SBI—e.g.,
Neural Posterior Estimation (NPE) [35, 38, 39]—to identify the posterior distribution over plasticity
rule parameters that were most likely to have resulted in plausible network dynamics. However, as we
could not know beforehand which parameters were most likely to establish plausible dynamics, we
had to define a broad prior over the parameters of the plasticity rule π0(θ). In turn, the broadness of
the prior meant that potentially millions of SNN simulations would be needed to find a few plausible
rules, rendering this search method computationally unfeasible [40, 41].

In order to address this issue, we developed filter SBI (fSBI). In fSBI, we applied the metrics quanti-
fying plausibility sequentially, rather than all at once (Fig. 1B). Towards this goal, we first sampled
plasticity rule parameters θ from a uniform prior and simulated an SNN with the corresponding rules.
Next, we computed the various metrics defined in Section 2.4. We then used NPE to fit a posterior
density over the plasticity rule parameters. Finally, we sampled all parameters that satisfied a given
criterion from the posterior, e.g., stable network activity p(θ|rexc ∈ [1, 50]Hz ∩ rinh ∈ [1, 50]Hz),
in the first instance, effectively "filtering out" other rules from the prior. These posterior samples
were then used as the prior samples for the next round of inference, in which an additional criterion
was applied to obtain a new, narrower posterior. Mathematically speaking, a filtering round k using
metrics mk = fk(x) and corresponding conditions gk(mk) proceeds as follows:

πk(θ) = pk−1(θ|mk−1 s.t. Igk−1
(mk−1)) (8)

pk(θ|mk) ∝ p(mk|θ) πk(θ) (9)
πk+1(θ) = pk(θ|mk s.t. Igk(mk)), (10)

where I is an indicator function over the condition g. This process is repeated until only plausible
candidate rules remain, for a total of around 200k simulated rules per search space.

The distribution obtained at each filtering round is not necessarily a true Bayesian posterior, since (a)
we change the metric on which we condition the posterior at each round, (b) we sample the posterior
for a range of metric values rather than a single value, and (c) we also do not correct for the fact that
at each round, we are sampling from the posterior of the previous round rather than from the prior
[42] (more detailed analysis of this "pseudo"-posterior in Supp. 6.5).

3 Results

In our attempt to discover plasticity rules compatible with a given function, we introduced fSBI, a meta
learning method that sequentially filters out unfit candidates rules from vast sets of possible plasticity
rules in large recurrent spiking networks (SNNs, Methods. 2.1,10). We first applied fSBI in the
polynomial search space described in Section 2.2, and compared the resulting distributions of rules to
those predicted by mean-field analysis. We then applied fSBI to plasticity rules which themselves were
parameterized by neural networks. In both cases, fSBI inferred expected and novel rules that robustly
establish plausible dynamics in SNNs, while also eliminating some theoretically viable solutions.

3.1 fSBI infers plausible rules from a polynomial search space

We initially considered 4 co-active plasticity rules, E-to-E (EE), E-to-I (EI), I-to-E (IE) and I-to-
I (II) in a recurrent spiking network of 5120 conductance-based leaky integrate-and-fire neurons
(Fig. 2A). The network architecture and parameters were chosen following Zenke et al. [8]. Each
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Figure 2: Posterior of plausible plasticity rules with fSBI. Polynomial search-space.
A: Recurrent spiking network receiving Poisson inputs at a random rate rext, with each recurrent
connection parameterized with an STDP plasticity rule. Dotted lines denote plastic connections. B:
Starting from uniform draws (π0) from the polynomial search space, fSBI progressively filtered out
the rules that do not establish plausible dynamics in an SNN (π1, π2, π3), A.I. stands for asynchronous
irregular. C: Fraction of rules sampled from each intermediate fSBI posterior that obey conditions
on the corresponding network metrics. D: Principal component analysis (PCA) on samples from
each intermediate fSBI posterior (π0 → π3). Variance explained along the corresponding PCA
directions across rounds. E: For each plastic network simulated in fSBI (pooled across all rounds),
the corresponding CV and auto-covariance (Methods. 2.4). F: Example edge-case of the auto-
covariance metric: network fulfills the auto-covariance condition (ρ < 0.1), but not the CV condition
(⟨cv(ISIi)⟩ ≠ 1). G: Example edge-case of the CV metric: network fulfills the CV condition, but not
the auto-covariance condition. H: Left: Example plausible candidate rule simulated in two networks
with different input rates. Right: pre-post pairing protocol on the 4 co-active rules.

rule was parameterized as a polynomial (Eqn 6, [15]), with a total of 24 parameters θ (6 parameters
per connection type). We applied fSBI to this 24-dimensional search space, to identify and retain
the rules that established biologically plausible dynamics in SNNs. To ensure the inferred rules
robustly enforced plausible dynamics in SNNs, any simulation was assigned a random input rate and
connectivity matrix.

We started fSBI with uniform priors for all plasticity parameters: τ pre
XY , τ

pre
XY ∼ U [10, 100]ms, and

αXY, βXY, γXY, κXY ∼ U [−2, 2]. The resulting rules formed the initial prior π0. We then sampled
multiple plasticity rules θ ∼ π0, simulated SNNs with these plasticity rules, and saved their spike-
trains and weight evolutions for offline analysis of the network metrics x (see Section 2.4). For the
first round, we trained Neural Posterior Estimation (NPE) to produce posteriors conditioned only on
a subset of metrics—the excitatory and inhibitory population firing rates—p(θ|rexc, rinh). Next, we
sampled plasticity rules from this posterior corresponding to networks with excitatory and inhibitory
rates between 1 and 50 Hz, i.e., θ′ ∼ p(θ′|rexc ∈ [1, 50]Hz, rinh ∈ [1, 50]Hz). These rules were
used for the next round of inference, which we conditioned on the metrics associated with stable
weight dynamics (fwblow , wcreep, ⟨wXY⟩), in addition to the population activity rates. We thus made the
posterior from the previous iteration, p(θ|rexc ∈ [1, 50]Hz, rinh ∈ [1, 50]Hz), into the prior π1(θ) of
the current iteration. We progressively applied all above mentioned metrics (defined in Section 2.4),
in the order of the least to the most restrictive metric, to maximize sample efficiency (Fig. 2B, C).

We quantified the behaviour of the network with a range of metrics [23, 25] and noticed that some
networks satisfied some conditions, but not others which should discern similar qualities. For
example, some networks passed the auto-covariance criterion (⟨ρ⟩i,t < 0.1) but not the CV criterion
(⟨cv(ISIi)⟩ > 0.7), by allowing a small population of neurons with unrealistically high firing rates
to "cheat" the metric (Fig. 2E, F). Conversely, other networks passed the CV condition but failed
the auto-covariance one, e.g., with a bimodal inter-spike interval (ISI) distribution (Fig. 2G). To
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filter out these edge cases, we used several metrics for each desired aspect of the network dynamics
(Section 2.4).

We found that fSBI successfully identified relevant parts of the search space: the 10,000 samples from
the uniform prior π0(θ) contained no plausible rules (i.e., no rules producing networks satisfying
all criteria). However, by sequentially adding constraints we arrived at a posterior π3(θ) that, at
the end of the fourth search round, led to more than 50% suitable rules (Fig. 2C). Interestingly, the
dimensionality of the posterior, i.e., of the “suitable rule space", shrunk as we sequentially refined the
criteria for plausible network dynamics (Fig. 2D), suggesting that fSBI captured specific relationships
between the plasticity parameters. On the other hand, the final posterior remained relatively high
dimensional, comprising a variety of different rules, with no apparent posterior collapse onto a single
rule. The plausible rules sampled from this final posterior showed stable activity and weight dynamics,
regardless of their input rates (Fig. 2H).

Interdependencies between plasticity parameters in the fSBI inferred rules: Next, we examined
interdependencies between fSBI-inferred parameters as a possible explanation for the reduced
effective dimensionality of the parameter space (Fig. 2D). We found that the correlation was overall
weak between the parameters of the plausible rules (Supp. Fig. 6.2B). This was not surprising, as we
compared a range of rules that establish a wide diversity of SNN dynamics, such that individual rules
can be expected to have different parameter inter-dependencies. We thus narrowed our investigation
to rules that produced excitatory firing rates of 10Hz (as opposed to a range of rates between 1 and
50Hz, Fig. 3A). The corresponding correlation matrix revealed a fine-grained structure for parameters
within the same rule (block diagonal structure), where we observed mostly negative correlations,
especially between the non-Hebbian parameters within each rule, αXY and βXY. Additionally, we
found both positive and negative correlations between any given connection types (off-diagonal
structure, Fig. 3A), suggesting that plasticity mechanisms must be co-tuned to function properly.

fSBI rules improve upon mean-field predictions: We also compared the fSBI-inferred rules to
mean-field predictions. Mean-field analysis links the plasticity rule parameters to the average expected
firing rate (Section 2.3, Fig. 3B), thus allowing us to obtain theoretically viable rules. Samples from
the initial prior did not show any similarity to theoretical predictions when projected along the
mean-field axes (Fig. 3C, left). As rules were filtered by progressively more constraints, a similar
structure to the mean-field predictions emerged, albeit confined to firing rates below 10Hz, possibly
because of synchronisation effects for higher firing rates (Fig. 3C for EE; similar conclusions for the
other three synapse types in Supp. Fig.6.2). Interestingly, the set of rules predicted by mean field
theory was not a superset of those selected by fSBI: Some rules were exclusively predicted by one but
not the other approach (Fig. 3D, E). Notably, many rules predicted by mean-field, but not by fSBI, did
not result in plausible dynamics when tested numerically (Fig. 3D, middle). In contrast, several rules
predicted by fSBI but rejected by mean-field proved numerically viable (Fig. 3E, middle). Finally,
the EE rules predicted by both mean-field and fSBI were plausible (Fig. 3D, bottom). We noted that
fSBI rules lead to plausible network dynamics both when simulated with only the EE parameters
(keeping the weights of the other connection types fixed, Fig. 3E, bottom), and also when using the
rule for all connection types (Fig. 3E, middle), thus confirming the success of fSBI.

Comparing rules under pre-post protocols: We visualized the fSBI rules under the pre-post pairing
protocol widely used experimentally and theoretically to uniquely identify STDP rules [1, 6, 43, 44].
We found that among the various rules simulated, there was no apparent link between how rules
appeared in the pre-post protocol, and their ability to establish plausible dynamics in SNNs. Some
rules appeared near-identical under the pre-post visualization and yet resulted in vastly different
network dynamics (Fig. 3D). Conversely, rules with visibly differing pre-post protocols established
similar network dynamics (Fig. 2H and Fig. 3E). Taken together, these results question the relevance
of such classical pre-post protocols in elucidating and uniquely determining the plasticity rules at play
in the brain, particularly when they are performed without additional disambiguating experiments.

3.2 fSBI infers plausible rules from an MLP search space

We wanted to expand our search space to include local and semi-local variables that have been
theoretically or experimentally linked to synaptic changes [2–4], such as the efficacy of the synapse
[44, 8], the post-synaptic membrane potential [11], the spike-history of both the pre- and post-synaptic
neurons [22], as well as the activity of neighboring excitatory and inhibitory synapses (co-dependent
plasticity [10]). Since flexibly combining these variables with a polynomial would result in very
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Figure 3: Polynomial fSBI rules compared to rules predicted by mean-field.
A: Pearson correlation matrix of plasticity rules sampled from the final fSBI posterior (π3), con-
ditioned on the excitatory firing rate rexc = 10Hz. B: EE rules predicted by mean-field, plotted
alongside the relevant parameter combinations (eq. 7). C: Rules sampled from fSBI posteriors,
with an increasing number of conditions, along the same axes as in B. D: Same set of rules as in
B, but shown along 2 of the 6 plasticity parameters (α and β), color coded by the mean Euclidean
distance between each rule and the 10 closest fSBI-inferred EE rules. Middle (resp. bottom), network
dynamics with a rule among the furthest (resp. closest) from fSBI samples, and the corresponding
pre-post protocol. E: Rules sampled from the final fSBI posterior π3, shown along the same axes
as D, color coded by the mean Euclidean distance between each rule and the 10 closest mean-field
plasticity rules. Below, network dynamics with one of the rules furthest from mean-field, and the
corresponding pre-post protocol, either the full rule (EE, EI, IE, II, middle) or only the EE part of the
rule (bottom). Weight traces in Supp. 6.6.

high-dimensional, hard-to-navigate search spaces, we switched to multi-layer perceptrons (MLP).
The MLP-based rules we designed used the aforementioned synaptic variables as inputs at the time of
a spike, and produced a weight change for a given synapse (Fig. 4B), thus representing the plasticity
rule. Crucially, we only trained the final layer of that MLP, thus allowing for potentially highly
non-linear interactions between the plasticity variables while retaining a relatively low dimensional
(searchable) parameter space. We verified that such MLP-parameterized rules can approximate
established plasticity rules on supervised tasks (see Supp. Fig.6.6), and then applied fSBI to inferring
co-active EE and IE rules (Fig. 4A, B). Like for the polynomial space, we found that fSBI produced
progressively more constrained posteriors, such that the final fSBI posterior generated over 50%
plausible rules (Fig. 4C). Furthermore, fSBI reduced the effective dimensionality of the parameter
space, i.e., increased correlations between the parameters (Supp.6.7), like what we had observed
for the polynomial expression of rules. Interestingly, plausible rules from the final fSBI posterior
produce stable activity and weight dynamics, but with unique pre-post protocol profiles that are
markedly different from that of experimentally observed rules, as well as the rules discovered by
the polynomial method above (Fig. 4D, E, Supp.6.7). These rules represent potentially complex
and non-linear interactions between Hebbian, local and semi-local factors, but nevertheless robustly
establish plausible network dynamics.

Generalization capabilities of meta-learned rules: Finally, we verified that both the polynomial
and the MLP rules obtained with fSBI generalized to different network sizes, sparsity, weight
initializations, and ratios of E to I, although a few metrics were sometimes outside the predefined
ranges (Fig. 5A). We then tested the "plausible" rules on 20-minute-long simulations (versus 2min in
Fig. 2&4). Approx. 25% of the polynomial rules still met the conditions on all 15 metrics after 20
minutes (Fig. 5B). Most other rules were disqualified by our ⟨wIE⟩ and ⟨wII⟩ conditions, which select
long-term stable weights, and are thus sensitive to simulation duration. Correspondingly, the II and
IE plasticity parameters appeared more refined compared to the starting set (Fig. 5D). Overall, this
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Figure 4: Posterior of plausible plasticity rules with fSBI. MLP search-space.
A: Recurrent spiking network receiving Poisson inputs at a random rate rext, with recurrent EE
and IE plastic connections parameterized as multi-layer-perceptrons (MLP). B: Weight changes
via a forward pass through an MLP that depends on pre- and post-synaptic traces, current synaptic
weight, smoothed membrane potential and two codependency terms at every spike (Methods. 2.2).
C: Fraction of rules sampled from each intermediate fSBI posterior that obey the corresponding
network metric condition. D: Left: Example plausible candidate rule simulated in two networks with
different input rates. Right: pre-post pairing protocol on the EE and IE rules. Note that these rules
have different outcomes on the pre-post protocol depending on the network activity (Supp.6.4). E:
Pearson correlation matrix of the plasticity rules sampled from the final fSBI posterior, conditioned
on the excitatory firing rate being 10Hz.

suggested that the 2min task had properly constrained the EE and EI rules, but was too short to fully
constrain the II and IE rules. Similarly, 35% of the 2min-plausible MLP rules met all conditions in
the 20min task. Interestingly, dimensionality reduction of the successful plasticity parameters did not
reveal sub-structures, suggesting that the 20min task did not dramatically refine the set of filtered
rules (Fig. 5C).

4 Discussion and Outlook

Plasticity mechanisms are arduous to probe in vivo and theoretically challenging to describe due to
the complex interplay between neural activity and weight dynamics. Here, we introduce fSBI, a tool
to numerically infer families of plasticity rules while enforcing strong plausibility constraints on SNN
dynamics. We show that fSBI can discover generally plausible plasticity rules in large SNNs, with
rules parameterized either as polynomials or MLPs.

fSBI has several advantages compared to previous approaches: analytical methods require various
and sometimes strong assumptions; local optimization methods only provide single solutions; and
brute-force approaches do not scale (in this study, randomly drawing from the full space of plasticity
rules would have required simulating ∼100M rules, compared to 200k, Fig. 2C, 4C). However, these
approaches are not mutually exclusive: analytical frameworks allow us to understand the sets of
rules inferred by fSBI and produce meaningful experimental predictions. Furthermore, the fSBI
distributions of plausible rules are a promising starting point for further investigation into specific
network computations, potentially suited to local optimization approaches.

In contrast with previous in silico studies of plasticity that produce single predictions, fSBI is a
systematic approach to make predictions based on many (if not all) candidate plasticity rules within a
search space. For instance, we showed how an isolated EE rule may suggest a Hebbian mechanism,
but the fSBI-discovered set contains equally valid anti-Hebbian rules that can establish near identical
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Figure 5: Robustness of polynomial and MLP rules.
A: 1k polynomial (left) and 1k MLP (right) rules that fulfilled all plausibility conditions on the 2
min task (Fig.2&4) were simulated on the same task, but with a different probability of connection
(5%), network size (10k, 20k), E:I ratios or initial weights (winit

EE = winit
EI =

winit
IE
10 =

winit
II
10 = 0.05,

or winit
EE = winit

EI =
winit

IE
10 =

winit
II
10 = 0.15). All simulations had a random input strength and initial

connectivity. "Activity", "weights" and "A.I" denote the intersection of all metrics in that category. B:
10k "plausible" polynomial and 10k MLP rules were simulated on a 20-minute extended version of
the 2-minute background task (Fig.2&4). Fraction of the rules that fulfill some plausibility conditions
on the 20-minute task. C: First two features of PCA (left), t-SNE (right) applied to the MLP rules in
B. Rules fulfilling all plausibility conditions on the 20-minute task are in yellow. D: Non-Hebbian
parameters of the polynomial rules from B, with the same color code as C.

network activity (Figs. 2H, 3E), suggesting that studies of single rules or individual connection types
may be grossly under-constrained.

More generally, our study challenges the widely used pre-post pairing protocols [1, 6, 44], when
used in isolation. Indeed, rules that look near identical under such pre-post protocols may have
widely different network-level effects (Fig. 3D, middle and bottom), validating, in hindsight, the
need for finely-tuned orchestration in previous studies [8]. Conversely, rules that appear different
under observation with a pre-post protocol (Fig. 2H and Fig. 3E) may lead to similar network
dynamics. In addition, the results above were obtained in noise-free in silico experiments, suggesting
that the connection between empirical data and plasticity rules may be even more complex. The
interpretability of the pre-post pairing protocols is further compromised in the MLP-based rules,
since these rules include factors linked to plasticity that are not explicitly constrained by such low-
dimensional protocols, leading to widely different outcomes depending on the synaptic and neuronal
state (Fig. 4D). Additionally, we have not touched on the effects of neuromodulation in our study,
something that is currently out of scope but will become the focus of future studies.

Our approach naturally comes with limitations and idiosyncrasies. First, we cannot prove the long-
term stability of the rules, as we are limited by the numerical approach and associated demanding
compute requirements. On longer timescales, slower homeostatic mechanisms may play a part in
synaptic dynamics [45, 46]. Another potential limitation of fSBI is the curse of dimensionality,
inherent to most SBI approaches [36], although some recent improvements have been proposed
[47–50]. Finally, further analysis is needed to forge robust and meaningful predictions from the
commonalities of the large set of inferred rules.

In summary, we meta-learn plasticity rules with an inference-based method, fSBI. This method can
be applied to large spiking networks with flexibly parameterized plasticity rules and narrow down the
set of promising plasticity mechanisms.
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