
Mitigating Forgetting in Online Continual Learning
with Neuron Calibration

Haiyan Yin, Peng Yang, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA

{haiyanyin, pengyang01, liping11}@baidu.com

Abstract

Inspired by human intelligence, the research on online continual learning aims to
push the limits of the machine learning models to constantly learn from sequentially
encountered tasks, with the data from each task being observed in an online fashion.
Though recent studies have achieved remarkable progress in improving the online
continual learning performance empowered by the deep neural networks-based
models, many of today’s approaches still suffer a lot from catastrophic forgetting,
a persistent challenge for continual learning. In this paper, we present a novel
method which attempts to mitigate catastrophic forgetting in online continual
learning from a new perspective, i.e., neuron calibration. In particular, we model
the neurons in the deep neural networks-based models as calibrated units under a
general formulation. Then we formalize a learning framework to effectively train
the calibrated model, where neuron calibration could give ubiquitous benefit to
balance the stability and plasticity of online continual learning algorithms through
influencing both their forward inference path and backward optimization path.
Our proposed formulation for neuron calibration is lightweight and applicable
to general feed-forward neural networks-based models. We perform extensive
experiments to evaluate our method on four benchmark continual learning datasets.
The results show that neuron calibration plays a vital role in improving online
continual learning performance and our method could substantially improve the
state-of-the-art performance on all the evaluated datasets.

1 Introduction

While humans and animals exhibit remarkable ability to deal with new tasks by effectively adapting
their acquired knowledge without forgetting the previously learned skills, in stark contrast, it is
challenging for artificial learning systems to effectively deal with continuously inquiring tasks.
When switching to a new task from some previously learned ones, there is sometimes a significant
drop in performance, where such a phenomenon is also referred to as catastrophic forgetting. To
overcome such an issue, the research on continual learning has emerged, which defines the learning
protocol for the scenarios when the training data of different tasks procedurally arrives in a sequential
order [20, 23, 28, 35]. The catastrophic forgetting problem is rooted in the model training process, as
the gradients to train the model parameters encode great amount of information about the dynamically
shifting data distribution seen by the model, which could keep changing throughout the entire
continual learning period.

In this paper, we consider a challenging task which poses a more restrictive requirement on the
conventional continual learning setting, i.e., online continual learning [1]. Inspired by many real life
scenarios, online continual learning requires the data for each training task to appear as a (one-pass)
stream of samples. To tackle such challenges, we focus on the replay-based approach [19, 34], which
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grants the model with limited access to the data from past tasks for the rehearsal of past experience.
To mitigate the catastrophic forgetting issue, such methods leverage the replay memory to consolidate
the past knowledge in various forms, such as raw data [1] and past gradients [27, 32], to facilitate
effective transfer of knowledge. Though the research community has also started to pay attention on
a number of non replay-based directions to tackle the continual learning problems, such as leveraging
energy-based models [14] and neuron modulation approaches [15], the replay-based methods still
play a pivot role in continual learning with state-of-the-art performance in many challenging scenarios.
However, despite of the promise in their performance, the replay-based attempts easily lead to a
data-imbalance issue, which is also formally referred to as the stability-plasticity dilemma [21]. In
particular, high plasticity refers to the case when old experience is drastically forgotten, and high
stability refers to the case that too much attention has been paid on stabilizing the previously learned
knowledge so that the learning hinders the acquisition of knowledge on the new tasks. Lose of
balance between plasticity and stability would deteriorate the performance of continual learning.

The existing replay-based approaches have taken into account of different perspectives of the model
training process to remedy the stability-plasticity dilemma, such as regularizing the parameter change
during training [4, 12, 23], selective memory storage or replay [1, 11], Bayesian and variational
Bayesian training [4, 12, 22], and task-specific parameterization of the model [25, 36]. In this paper,
we tackle the problem from a novel angle that is distinct to all the aforementioned attempts, i.e.,
seeking a better balance between stability and plasticity with neuron calibration. Specifically, we
refer to neuron calibration as a process of mathematically adjusting the transformation functions
in various layers of deep neural networks. Considering that besides the task setting, catastrophic

forgetting in contemporary deep learning-based continual learning models is also closely related
to the vulnerability of deep neural networks, our proposed neuron calibration approach aims to
regularize the parameter update against catastrophic forgetting via posing a trainable soft mask on the
parameters, which then influences both the model inference process and the model training process
through the forward inference path and the backward optimization path. Our work is inspired by
the earlier works that seek optimal model generalization through calibrating the neural networks
parameters or labels [9, 10], as well as a recent continual learning work that learns task-specific
calibrations for retaining task-specific parameters without memory rehearsal [36]. Compared to
those works, the neuron calibration approach we propose shares an enjoyable property of being
task-agnostic in terms of parameter sharing among the tasks. That is, instead of reserving task-specific
parameters for preserving the task knowledge against forgetting, we train a shared calibrated model
where we interleave data from different task distributions to effectively optimize the model.

The contributions of our work are three-fold: (i) we introduce a general and light-weight neuron
calibration approach to tackle task-incremental online continual learning problems where the models
are formulated as feed-forward deep neural networks-based function approximations; (ii) we for-
mulate a novel task-incremental learning paradigm to train the calibrated model with an interleaved
optimization scheme to achieve a better balance between stability and plasticity; (iii) we show through
extensive empirical experiments that our proposed method could outperform the state-of-the-art con-
tinual learning algorithms as well as the related layer calibration approach with significant margins
on all the evaluation datasets.

2 Related Work

Based on how the existing methods deal with catastrophic forgetting, following [7, 8, 13, 25],
we classify the continual learning methods into three major categories: (i) memory-based, (ii)
regularization-based and (iii) dynamic architectural strategies.

Memory rehearsal based methods partially stores the data from past tasks into episodic memories
to be later used in a form of knowledge rehearsal [29]. The old data are often used in a standard
way of performing experience replay [1, 3, 30, 37], but there are also a number of other purposes of
use, such as leveraging the data to perform representation learning [26] and forming constraints for
model optimization [6, 19]. To facilitate more effective memory rehearsal, there are also a number
of methods that attempt to improve the memory selection process for continual learning, such as
iCaRL [26] which stores the samples close to the center of each class, MIR [1] that selects most
interfered samples for memory rehearsal, and HAL [5] that selects the anchor points of past tasks
and interleaves them with new tasks for future training. Overall the memory-based approaches
address catastrophic forgetting issue from training with past data but their performance could easily
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be degraded under a tight memory restriction. Our proposed neuron calibration approach could
effectively scale up the performance standard of memory rehearsal-based approaches under varying
memory restrictions.

Regularization based methods extend the loss function in continual learning with regularization
terms to promote selective consolidation of past knowledge stored in the model parameters. Often, an
importance measure over the model parameters need to be established. In [12], an elastic weight

consolidation (EWC) approach is proposed with an importance measure defined as promoting the
parameters that have a higher value in terms of the Fisher information matrix. In [2], a selfless

sequential learning algorithm is proposed which exploits the sparse and de-correlated representations
to avoid overlapping of representations. In [33], hard attention is learned on the task embeddings to
identify important neurons during gradient propagation. We inherit the idea of EWC to regularize the
degree of parameter change during online continual learning , but such regularization in our method
is to work with the specific calibrated neural network models, whereas applying the EWC regularizer
by itself often leads to much inferior performance on conventional online continual learning tasks.

Dynamic architectural methods attempts to address catastrophic forgetting through approximating
the training of a separate network per task. In [31, 33, 36, 38] a sub-network is trained for each
task and in [16, 39] the architecture of model grows over time during training. Though isolating
shared model parameters could for sure mitigate forgetting of past knowledge, the drawbacks are
in terms of extensive resource usage and scalability. On the other hand, such methods also fail to
utilize the multi-task nature of continual learning to exploit the relationship between related tasks
for achieving better generalization. Our work is mostly related to [25], which engages task-specific
embeddings to calibrate the feature output of neural networks and train the task-specific parameters
with hold-out validation data to promote generalization. Our method differs from [25] in terms of
the following three points: (i) our method is built upon a neuron calibration approach, where such
contribution is orthogonal to that from all the previous works; (ii) our proposed method does not
engage any task-specific part; (iii) we do not use any hold-out data from the episodic memories
during training, considering that holding out data over the episodic memories which typically come
with restrictive storage budgets might not be a desirable practice. Our work is also related to [36]
which calibrates neural networks to obtain task-specific parameters. However, the method only trains
the task-specific calibrator parameters after the first task and freezes the base parameters thereafter.
Such model design makes the model to face a potential risk that when the data distributions of the
later tasks are significantly biased from the first task, freezing the base model might lead to inferior
performance. Our proposed task-agnostic calibrator shares all the parameters among tasks and it
trains all its parameters with interleaved optimization throughout continual learning so that it can
better exploit task relationships.

3 NCCL: (N)euron (C)alibration for online (C)ontinual (L)earning

Notation. In this section, we first introduce the notations for online continual learning. Formally, we
denote the sequence of training tasks in online continual learning as {T1, · · · , TT }, where Tt is the
t-th task. The tasks arrives in order and the training data for each task is observed in an online fashion.
Inheriting a memory-based setting, each task is granted with a small amount of storage to save the
past data, which is termed as a episodic memory. For the task Tt, we denote its training dataset as Dt

and its episodic memory as Mt. The assembly of all the episodic memories for the past tasks prior to
t is denoted as M<t. Note that Mt is a subset sampled from Dt and in our work we adopt uniform
sampling throughout the learning. The objective of the task is to learn a neural networks-based
classifier. Our work tackles the image classification-based continual learning problems and thus the
classifier is typically modeled as a feed-forward neural network with L layers (i.e., {li}Li=1), with its
corresponding parameters denoted as {✓i}Li=1.

3.1 Neuron Calibration

We introduce a general neuron calibration mechanism to tackle the online continue learning problems
on image classification, where the models are formulated as feed-forward neural networks. By
applying neuron calibration, we aim to adapt the transformation functions in the deep neural network
layers, which aims to effectively mitigate catastrophic change on the model parameters while
accomplishing a stable consolidation of knowledge from different tasks. Specifically, in this work,
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Figure 1: Overview of our proposed Neural Calibration for online Continual Learning (NCCL)
framework. NCCL consists of two types of calibration modules: weight calibration module (WCM)
and feature calibration module (FCM), which are sequentially applied to the layers in the base model
(as shown in the figure) to calibrate the model weights and feature maps, respectively.

we formalize the calibration of two types of commonly adopted transformation layers in feed-forward
deep neural networks: fully connected layers and convolutional layers1. Figure 1 provides an
illustrative example of our neuron calibration process.

The neural networks model before calibration is denoted as the base network. Formally, we introduce
two types of general calibration modules to be applied on the base network layers: (i) weight calibra-
tion module (WCM) and (ii) feature calibration module (FCM). The weight calibration module learns
to scale the weights of the parameters from the transformation function whereas the feature calibration
module learns to scale the output feature maps predicted by the transformation function [24]. When
calibrating the i-th layer of a neural network, we use ✓i and e✓i to denote its transformation function
parameters before and after applying weight calibration (WCM), and use hi and ehi to denote the
output feature maps before and after applying feature calibration (FCM), respectively.

We first introduce the formulation for WCM. Let ⌦ i(·) denote the weight calibration function
employed by the i-th layer of the network, which is parameterized by  i. Overall, the weight
calibration unit is modularized by an element-wise multiplication operation, which is applied between
the base network parameters and the calibrator parameters. Specifically, we refer to the i-th layer
parameters from the base network transformation function as ✓i. Then the weight calibration function
is defined in the following manner,

⌦ i(✓i) =

(
tile( i)� ✓i,  i 2 RO⇥I (Convolution Layer),

tile( i)� ✓i,  i 2 RO (Fully Connected Layer),
(1)

where � denotes element-wise multiplication, O and I denote the number of output channels and
input channels, respectively. To reduce the size of the calibrator parameters for efficient computation,
we specify the calibration size to be much smaller than the original size of ✓i. To this end, the
calibration for the convolutional layers and fully connected layers is specified to work at per-channel-
level and per-feature-level, respectively. To scale up the shape of the calibrator parameters  i to
match that for ✓i, a tile(·) function is applied on the calibrator parameters  i. With the aforementioned
weight calibration approach, the calibrator module plays a crucial role during the model training
process: at the forward inference path, it scales the value of the base network parameters to make
prediction; at the backward optimization path, it serves as a prioritized weight to regularize the update

1Calibrating the fully connected and convolutional layers suffices to deal with primary continual learning
tasks on image classification, and our method could also be easily extended to calibrate other types of layers.
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on important parameters (e.g., 5✓1Lb is derived in the form of 5e✓1Lb � tile( 1), scaled by the
calibrator parameters).

By applying weight calibration on neural network layers, the transformation function at the i-th layer
F✓̃i is parameterized by ✓̃i and produces the output as follows,

hi = F✓̃i(h̃i�1) s.t. ✓̃i = ⌦ i(✓i). (2)

The output hi of the transformation function is then processed by a feature transformation module
(FCM) to generate the calibrated feature map for that layer. We use ⌦�i(·) to denote the feature
transformation function at the i-th layer, parameterized by �i. With FCM, the calibration parameters
also interact with the feature map hi with a multiplicative operation. Specifically, the calibrated
feature map is computed as:

⌦�i(hi) =

(
tile(�i)� hi,  i 2 RO and hi 2 RH⇥W⇥O (Convolution Layer),

�i � hi,  i 2 RO and hi 2 RO (Fully Connected Layer),
(3)

where O is the output (channel) size for fully connected layers and the convolutional layers.

In the end, the outputs from (2) and (3) get added up in an element-wise manner by a residual
connection. This is followed by normalization and activation operations to produce a final output for
that layer. In summary, the overall calibration process for the i-th layer could be formulated as follows,

h̃i = �

⇣
BN

⇣
⌦�i

⇣
F✓̃i

⇣
h̃i�1

⌘⌘
� F✓̃i

⇣
h̃i�1

⌘⌘⌘
, s.t. ✓̃i = ⌦ i(✓i) (4)

where BN (·) denotes the batch normalization, � denotes an element-wise addition operator, and �(·)
is an activation function. h̃i is sent as input to the i+ 1-th layer in the feed-forward neural network.
All the calibrator parameters are initialized with a value of 1 at the start of training. We demonstrate
an example case of applying neuron calibration on a CNN-based model in Figure 1.

3.2 Learning Calibration Parameters

We propose a new learning paradigm to train the calibrated neural networks model. During model
training, we aim to utilize the training of the calibrator parameters to maximally prevent the catas-
trophic forgetting issue for online continual learning. Considering that such plasticity in training is
often reflected as drastic changes in parameter values, we set the objective for this calibrator learning
as to regularize the parameter change after consolidating the new knowledge and past knowledge
(from Dt and M<t) not to be biased too much from the parameter values before the update. Given the
formulation of neuron calibration, the parameter change to be regularized is in terms of the calibrated

values rather than that for the vanilla base model parameters.

To formulate the loss function for the training of calibrator parameters, we inherit the elastic weight

consolidation (EWC) approach proposed in [12] . Specifically, EWC approximates the true posterior
distribution for the continual learning parameters by a Gaussian distribution given by the mean from
the previous tasks and a diagonal precision given by the Fisher information matrix. In our work, we
formulate a weight consolidation process to avoid catastrophic change on calibrated parameters. In
particular, the consolidation process takes place after the base model parameters are trained to absorb
new knowledge and rehearsing the past knowledge by replaying data from the episodic memory.
Then we train the calibrator parameters with the following loss function,

Lc({ ,�, ✓}, (x, y, k)) =
1

2
vec

⇣
e✓ � e✓t

⌘>
⇤tvec

⇣
e✓ � e✓t

⌘

| {z }
term (a)

+�DKL

✓
S(

ẑ

⌧
)

����S(
ẑk

⌧
)

◆

| {z }
term (b)

, (5)

where � is a trade-off parameter, S(·) is the softmax function, ⌧ is a softmax temperature, ẑ are the
logits of current model’s prediction before the softmax function, and ẑk is the logits predicted by
previous models saved to the episodic memory. The operator vec (·) stacks the tensor into a vector.

The matrix ⇤t in term (a) are the Fisher information matrix, which is obtained from a knowledge
distillation loss for memory rehearsal. To consolidate the weight in terms of the calibrated values,
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Algorithm 1: Neural Calibration for online Continual Learning (NCCL) Algorithm
Input: Base model f✓, calibrator f( ,�) learning rate ↵in/↵out, outer loss weight �, training

dataset {Dtr
1 , ...,Dtr

T }, testing dataset {Dte
1 , ...,Dte

T }, episodic memory {M1, ...MT },
observation batch size bso, rehearsal batch size bsr and a confusion matrix to store online
learning results CM 2 RT⇥T .

Output: Base model f✓, calibrator f( ,�), ACC ("), FM (#) and LA (").
1 function train_and_eval
2 Randomly initialize ✓,  and �.
3 Initialize Mt  ; for t = {1, ..., t}.
4 for t 1 toT do

/* Training */

5 for b 1 tonbatch do
6 Observe a now stream of online data {xi, y

t
i}

bso
i=1 from task t.

7 Update episodic memory for task t: Mt  (Mt, {xi, y
t
i}

bso
i=1).

8 for i 1 to step do
/* Inner step: consolidate new knowledge and old knowledge */

9 Sample bso samples from task t: Bt  Mt // intra-class sampling

10 Sample bsr samples from old tasks: B<t  M<t // inter-class sampling

11 Binner  Bt [ B<t

12 ✓
0  ✓ � ↵inr✓Lb(Binner; ✓, ,�)

/* Outer step: elastic weight consolidation */

13 Bouter  M<t

14  
0   � ↵outerr Lc(Bouter; ✓0, ,�)

15 �
0  �� ↵outerr Lc(Bouter; ✓0, ,�)

16 end
17 end
18 Update logits prediction for data from current task: ẑ  f(Bnbatch

i=1 ; ✓, ,�)
/* Evaluation */

19 for te 1 toT do
20 Evaluate testing accuracy (ACC

(t)
te ) for the current model on Dte

teval
.

21 Update CM CM [ACC
(t)
te .

22 end
23 end
24 Compute ACC ("), FM (#) and LA (") from CM.
25 return Base model f✓, calibrator f( ,�), ACC ("), FM (#) and LA (").
26 end

the Fisher information matrix needs to be computed upon the gradients evaluated on the calibrated

parameter values. Formally, we derive its gradient by the chain rule as follows,

5e✓t DKL

✓
S(

ẑ

⌧
)

����S(
ẑk

⌧
)

◆
= 5✓t DKL

✓
S(

ẑ

⌧
)

����S(
ẑk

⌧
)

◆
· 5e✓t ✓

t

| {z }
tile( )�1

(6)

Thus the Fisher information matrix distinguishes the parameters that are important to retain past
knowledge and penalizes their weight change appropriately following the term (a). We add an
additional knowledge distillation term (b) to let the training take care of the stabilization issue as well,
where the stabilization issue refers to the case of avoiding the parameters to experience much sudden
change which is considered as a potential source of catastrophic forgetting.

3.3 Interleaved Optimization

We formulate the optimization process to train the calibrated model under an interleaved optimization
schema [17], with the parameters from the base model and those from the calibrator model being opti-
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mized by their respective loss functions. Formally, the training process can be formulated as follows:

Outer Loop: ( ⇤
,�

⇤) = argmin(�, ) Lc(( ,�), ✓⇤,M<t), (7)
Inner Loop: s.t. ✓

⇤ = argmin✓ Lb(( ,�), ✓,Mt), (8)

where ( ⇤
,�

⇤) denote the optimal calibrator parameters when fixing base model ✓, and vice versa. At
the inner loop, the base model parameters are updated to learn new knowledge from Dt and rehearse
old knowledge from M<t. Thus the data for the inner loop update comes from Mt with Lb being a
cross-entropy loss. At the outer loop, the calibrator parameters are updated to consolidate the weight
update from the inner loop against catastrophic change by employing a loss Lc which is introduced
in Section 3.2. During the interleaved optimization process, we first fix ( t,�t) and take gradient
steps with regard to ✓ as follows:

✓t+1  ✓t � ↵in 5✓ Lb (( t,�t), ✓t,Mt) . (9)

Then, we go on to optimize the calibrator when the inference takes place with the updated base model,

 t+1   t � ↵out 5 Lc (( ,�), ✓t+1,M<t) , (10)
�t+1  �t � ↵out 5� Lc (( ,�), ✓t+1,M<t) , (11)

where ↵in and ↵out are the learning rates for the inner loop update and the outer loop update,
respectively. By employing the calibrated parameterization of the neural networks-based model
and optimizing it with the interleaved learning scheme, our method could potentially tackle the
catastrophic forgetting issue in online continual learning with greater effectiveness than many
conventional approaches. We present the detailed algorithm in Algorithm 1.

4 Experiments

In this section, we demonstrate the empirical evaluation results on comparing our method with a
number of closely related baselines under various experimental settings. Our method is implemented
using the PaddlePaddle (PArallel Distributed Deep LEarning) framework.

4.1 Benchmark Datasets

We consider the following four continual learning datasets as our evaluation testbeds: Permuted
MNIST (denoted as pMNIST) [19], Split CIFAR [19], Split miniImageNet [6], and a continual
learning benchmark created with the real world dataset Split CORe50 [18]. For fair comparison
in Split miniImageNet and Split CORe50, we adopt identical datasets as those used in [25]. For
online continual learning with pMNIST, we create 20 independent tasks with each task being created
by randomly permuting the order of the pixels in an MNIST image. Each task in pMNIST consists of
1000 samples for the 10 MNIST classes and all the tasks share a common label space. Split CIFAR
is constructed by evenly splitting the 100 classes for CIFAR into 20 disjoint subsets, where each task
takes 2500 training samples. Split miniImageNet consists of 17 tasks, where each task has 5 classes
disjoint from other tasks and each task takes 2500 samples. Split CORe50 is constructed by evenly
splitting the 50 classes in the dataset into 10 disjoint tasks, where each task has 5 classes. The details
on the dataset statistics is available in appendix.

4.2 Architectures

For the pMNIST experiments, we use a multi-layer perceptron with two hidden layers of size 256 [25].
For Split CIFAR and Split miniImageNet experiments, we use a reduced ResNet18 with three times
fewer CNN filters than the full ResNet18 [19, 25]. For CORe50 experiments, we use a pretrained
ResNet18 where the pretrained parameters are loaded from paddleCV in PaddlePaddle (we do not
use a new model to be trained from scratch in this task because such models yield extremely poor
accuracy which is at around 30% during most of the learning period and thus fail to be a valid domain
to compare the continual learning ability for different approaches). We show the model capacity
in terms of trainable parameter sizes for different models in Table 1. The results demonstrate that
our proposed calibration approach leads to moderate increases in parameter size compared to its
corresponding backbone models for all the architectures. The parameter increase is approximately
10% ⇠15% for the CNN-based models, and that for the multi-layer perceptron-based models are
much more smaller, i.e., much less than 1%.
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Table 1: Light-weight model complexity w.r.t parameter size for various network architectures. NCCL
results in moderate parameter increase over its backbone architectures in all testified datasets.

Architecture Backbone Structure NCCL Increase# Params # Params
MLP (pMNIST) 269,322 Linear 270,366 0.39%
ResNet18-reduced (CIFAR) 1,109,240 Linear, Convolution 1,265,440 14.08%
ResNet18-reduced (miniIMN) 1,106,825 Linear, Convolution 1,263,025 14.11%
ResNet18-full (CORe50) 11,202,162 Linear, Convolution 12,430,450 10.96%

4.3 Baselines and Evaluation Metrics

For evaluation, we compare our method with the following continual learning baselines: GEM [19]
and AGEM [6] which are two representative gradient projection-based rehearsal approaches which
find and store the important sub-spaces for past gradients and let the learning on new task to take
gradient steps orthogonal to the saved sub-spaces, MER [27] which performs experience replay with
reptile update that regularize updated parameter values to be close to the initial values, MIR [1] which
retrieves samples that would be maximally interfered by the new samples to update the model, and
CTN [25] which is a recently published state-of-the-art method that performs task-specific scaling
on the output of the prediction layers. Apart from the established baselines, we also consider an
independent baseline, where each of the online continual learning task is trained with an independent
model that share the same model architecture with each other, an offline baseline where the task
setting assumes the data for all the tasks are available at hand in an off-line fashion where we do
not specify a limit for the epoches we train the model. We denote our proposed method (N)euron
(C)alibration for online (C)ontinual (L)earning as NCCL. During evaluation, we adopt identical
datasets and task ordering for each method. It is also important to note that during the online continual
learning process, each mini-batch of samples could be used to update the model for several times
and each of the considered method shares such permission. Each score reported is derived from 10
independent runs. We present the detailed hyperparameter settings for all the baseline methods as
well as NCCL on all the datasets in appendix.

To evaluate the methods, we adopt three standard evaluation metrics on all the datasets: ACC (")
(higher is better) [19], FM (#) (lower is better) [4], and LA (") (higher is better) [27]:

• Averaged Accuracy (ACC "): is the continual learning accuracy evaluated after the model
has been trained on all the tasks, i.e., ACC = 1

T

PT
i=1 ai,T , where ai,j denotes the accuracy

on task i after training on the task j.
• Forgetting Measure (FM #): the average difference between the final performance obtained

for each task compared to the best performance on each task, i.e., FM = 1
T

PT
i=1 |ai,T �a⇤i |,

where a
⇤
i denotes the best performance on task i.

• Learning Accuracy (LA "): the average of best accuracy evaluated through continual
learning for each task domain, i.e., LA = 1

T

PT
i=1 ai,i.

We present the empirical results on the continual learning benchmark datasets in Table 2. We observe
that our method NCCL consistently outperforms the other baseline approaches with large margins
and achieves state-of-the-art performance on all the datasets. Even compared with CTN, a strong
baseline with remarkable performance records, our method still outperform it on all the evaluation
domains with noticeable margin. Overall, compared to CTN, the improvement of our method in terms
of ACC ("), FM (#) and LA (") are 4.67%, 1.62% and 2.79%, which are averaged among the four
datasets. On Split CIFAR, Split miniImageNet and CORe50, our method results in (almost) the highest
LA (") which records the best accuracy achieved throughout the continual learning process. We wish
to remind that Independent and Offline are two baselines created by abusing the data accessibility
and model consistency to demonstrate the potential upper bound of the online continual learning
performance. From the results presented in Table 2, we observe that the performance of our method
is close to the Independent baseline on the task pMNIST and better than it on the task Split CIFAR and
Split miniImageNet. This might due to the reason that our model training could effectively exploit the
multi-task property among the tasks. Moreover, in terms of the best accuracy achieved for each task
throughout the learning (i.e., LA (")), our method is better than the strong baseline Independent on
all the datasets except for CORe50 where the gap is quite small.
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Table 2: Evaluation results on four continual learning benchmark datasets. The results are obtained
with a replay memory size of 50. We adopt identical (backbone) network architecture for all the
compared methods on all the datasets. Each score is derived from 10 independent runs.

Split CIFAR Split miniImageNet
Method ACC (") FM (#) LA (") ACC (") FM (#) LA (")
GEM 62.85 ±0.83 9.60±0.76 71.91±0.78 59.36±1.28 6.97±0.93 65.35±0.67
AGEM 60.43±2.35 9.60±2.65 69.20±0.79 52.70±2.12 7.52±1.80 58.33±1.01
MER 61.83±1.18 8.44±0.94 69.03±1.30 55.49±2.01 9.11±2.40 62.33±1.65
MIR 62.51±1.45 8.29±1.12 69.20±1.16 57.25±1.04 5.73±0.79 60.23±1.16
CTN 68.62±0.59 5.92±0.73 73.83±0.71 65.25±1.65 3.78±2.31 67.54±2.87
NCCL (ours) 74.39±0.97 4.88±0.97 78.28±0.53 69.49±0.92 3.36±0.91 70.69±1.06
Independent* 70.78±0.73 0.0 70.78±0.73 64.42±1.13 0.0 64.42±1.13
Offline 76.98±0.43 – – 70.47±0.99 – –

pMNIST CORe50
Method ACC (") FM (#) LA (") ACC (") FM (#) LA (")
GEM 74.57±0.10 7.40±0.11 79.13±0.42 77.48±2.72 12.12±4.49 87.92±0.37
AGEM 69.50±0.76 13.10±0.63 82.61±0.41 78.13±2.14 11.60±1.62 88.30±0.65
MER 75.75±0.65 8.74±0.73 83.52±0.38 82.75±1.30 7.54±0.79 88.04±1.21
MIR 78.31±0.63 7.15±0.67 84.48±0.28 83.34±1.48 7.30±1.32 89.52±0.45
CTN 79.70±0.44 5.08±0.44 84.08±0.36 83.87±1.13 5.71±1.08 88.93±0.53
NCCL (ours) 83.47±0.43 3.44±0.26 86.59±0.25 88.80±0.32 2.22±0.49 90.12±0.38
Independent* 83.50±0.39 0.0 83.50±0.39 90.34 ±0.45 0.0 90.34±0.45
Offline 89.05±0.27 – – 90.89 ±0.44 – –

4.4 Evaluation Results on Continual Learning Benchmarks

We also evaluate our method under the cases when online continual learning is performed with
varying memory size per task. We evaluate the methods when the memory size per task is obtained
from the following set: {50, 100, 150, 200, 250}. We train the methods on two tasks, Split CIFAR
and Split miniImageNet, and show the evaluation results for NCCL, CTN, MIR and GEM in Figure 2.

The performance standard for AGEM and MER is far from the presented baselines and we show them
in appendix. From the results, we find all the evaluated methods result in consistent performance
improvement as the memory size increases. Overall, NCCL results in superior performance than
the baseline approaches under all of the evaluated settings for memory size. We also notice that the
baseline approaches could hardly outperform the Offline baseline under the restrictions of memory
size per task, but our method could outperform it at the early stages of the curves. We clarify that it is
possible for the method to pass the Offline method as the memory size increases [25]. The reason

(a) Split CIFAR (b) Split miniImageNet

Figure 2: Evaluation results with varying memory size per task on the following two benchmark
datasets: (i) Split CIFAR and (ii) Split miniImageNet. The presented values correspond to the
measures in terms of ACC ("). Each score is derived from 10 independent runs.
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Table 3: Ablation study results on comparison with Calibrating CNNs for Lifelong Learning (CCLL).

Update Update Split CIFAR Split miniImageNet
Calibrator Base ACC(") FM (#) LA(") ACC(") FM (#) LA(")

CCLL X 7 64.77±0.73 0.0 64.77±0.73 60.56±1.26 0.0 60.56±1.26
X X 74.49±0.79 0.0 74.49±0.79 68.80±1.17 0.0 68.80±1.17

NCCL - - 74.39±0.97 4.88±0.97 78.28±0.53 69.49±0.92 3.36±0.91 70.69±1.06

that our method outperforms Offline under partial memory capacity settings could possibly due to
that NCCL could effectively mitigate catastrophic forgetting while exhibiting a desirable ability to
transfer knowledge during its multi-task training. Such findings reveal that the replay-based online
continual learning setting could potentially pose an effective curriculum for the learning of multiple
tasks and become a desirable choice for multi-task training.

4.5 Additional Results on Comparing with CCLL

We mostly consider well adopted memory rehearsal-based algorithms for benchmark comparison. In
this section, we extend such comparison and present additional results on comparing with another
closely related baseline to ours which calibrates CNN models without memory rehearsal, termed
Calibrating CNNs for Lifelong Learning (CCLL) [36].

CCLL calibrates the feature outputs of the CNN layers with additional calibrating layers, to adapt the
model to new tasks. It trains all the model parameters on the first task, and only trains the calibrator

parameters and the classifier parameters on the subsequent tasks with the base parameters being fixed.
Thus it needs to store the parameters for each task and it requires task identities at the inference time
during testing. Moreover, CCLL is sensitive to the choice of the first task, as the base parameters are
desired to be trained on informative tasks that are related to later tasks. As such, the motivation for
CCLL is essentially different from ours, as we train a task-agnostic calibrator with memory rehearsal
and our method calibrator is general to be applied on multiple layers.

We present the comparison results with CCLL in Table 3. We carefully tuned the parameters for
CCLL and the settings are available in Section C of appendix. Overall, we noticed that though CCLL
alleviates forgetting by storing historical parameters which results in zero FM(#), the ACC(") of
CCLL (train calibrator+classifier w/o memory rehearsal) is much inferior than our method NCCL
(train all parameters with memory rehearsal). For sanitary checking, we adapt CCLL model to create
a variant of CCLL that updates both the calibrator parameters and base parameters. We notice that
when updating all the model parameters, the performance is apparently higher than the original CCLL
and the setting is essentially identical to the independent baseline except their difference in model
architecture. The CCLL variant that updates all parameters result in ACC(") scores that are close to
our method in both evaluation domains. But that updates partial parameters following the original
proposed form of CCLL results in much inferior results than NCCL. Overall, the results demonstrate
that calibrating on CNN weights with memory rehearsal is a promising direction to consider.

5 Conclusion

In this paper, we present a novel online continual learning framework for task-incremental learning
problems, which sheds light to a new direction to tackle online continual learning problems with
neuron calibration. We formulate a general neuron calibration approach complemented by an
interleaved optimization scheme for effective model training. Our proposed solution enjoys a
considerable level of generality so that it could potentially tackle many online continual learning
problems which employ feed-forward neural networks. One possible limitation for our method is
that our work focuses on establishing the generality of the method without considering much on the
diversity of neural network layers. Specifically, the formulation we propose tackles the calibration
of the feed-forward neural network layers without dealing with other types of architectures, such as
the networks with recurrent or recursive structures. Extending our work to develop a more inclusive
neuron calibration framework is a promising future research direction to consider. Also, it is worth
considering to adapt our method to be applied on another type of more challenging continual learning
problems which is under the class-incremental settings.
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