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ABSTRACT

In this paper, we focus on a typical two-phase phenomenon in the learning of
multi-layer perceptrons (MLPs). We discover and explain the reason for the fea-
ture collapse phenomenon in the first phase, i.e., the diversity of features over
different samples keeps decreasing in the first phase, until samples of different
categories share almost the same feature, which hurts the optimization of MLPs.
We find that such phenomena usually occur when MLPs are difficult to be trained.
We explain such a phenomenon in terms of the learning dynamics of MLPs. Fur-
thermore, we theoretically analyze the reason why four typical operations can
alleviate the feature collapse. The code has been attached with the submission.

1 INTRODUCTION

It has been widely observed that in initialized neural networks, especially when the network is deep,
the loss decrease is likely to have two phases during early epochs of learning, e.g., phenomena
observed in (Saxe et al., 2013; Simsekli et al., 2019; Stevens et al., 2020). As Figure 1(a) shows, the
first phase is usually relatively short, in which the training loss does not decrease or decreases very
slowly. Then, in the second phase, the training loss suddenly begins to decrease fast.

In particular, as Figure 1(b) shows, the length of the first phase increases along with the network
complexity. In some extreme cases when deep neural networks (DNNs) are very deep, the loss
minimization gets stuck, which can be considered as a strong first phase with an infinite length,
namely, a learning-sticking problem. In fact, the learning-sticking problem is quite common in
practice. Jepkoech et al. (2021) and Stevens et al. (2020) empirically observed the learning-sticking
problem without any theoretical analysis. People usually owed the learning-sticking problem to the
over-parameterized settings of DNNs or the optimization ability of DNNs.

However, we discover and attempt to further theoretically explain a new, quite common, yet counter-
intuitive phenomenon in the first phase (the learning-sticking phase). That is, as Figure 1(b) shows,
features of different categories become increasingly similar to each other. In some cases, the feature
diversity keeps decreasing even until all samples of different categories share almost the same
feature in the first phase. We can consider this as the temporary feature collapse (TFC). This
TFC happens in various DNNs, including multi-layer perceptrons (MLPs), convolutional neural
networks, and recurrent neural networks (see both Figure 2 and Appendix B). DNNs trained with
different loss functions and different learning rates may all exhibit TFC phenomena. The TFC
phenomenon usually happens in the early epochs of the training process, especially when the DNN
is difficult to optimize. According to our analysis, when the DNN is very deep, when the task
is difficult, when the variance of initial weights is small, and when the DNN is trained without
momentum or batch normalization layers, the DNN is more likely to exhibit the TFC phenomenon.

Based on our theoretical analysis, we discover a set of conditions that strengthen the TFC phe-
nomenon. Then, we can easily control such conditions by applying typical operations i.e., batch
normalization, momentum, L2 regularization, and network initialization. Specifically, we investi-
gate the learning dynamics of the MLP. Moreover, we theoretically explain that these conditions
make the training of DNNs more likely to perform like a “self-enhanced system” towards the TFC
phenomenon in early iterations. In comparison, (Glorot & Bengio, 2010; Saxe et al., 2013) inves-
tigated the influence of initialization methods on the learning-sticking problem. To this end, we
find that the effectiveness of initialization methods is probably owing to the large variance of initial
weights, which avoids the TFC phenomenon during the learning-sticking phase.
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Figure 1: (a) The first phase (learning iterations before the dotted line) gets an increasing length and
finally becomes the learning-sticking problem (purple curve), when the DNN has more layers. (b)
Samples of different categories share almost the same features at the end of the first phase. We can
consider this as a TFC phenomenon. We visualize the learning dynamics of an intermediate-layer
feature in a 9-layer MLP. We select 10 salient dimensions to illustrate the feature similarity.

Fortunately, we discover that, when we use four typical operations to alleviate the TFC phenomenon,
the learning-sticking problem can also be solved. Although previous studies have provided insightful
analysis for these well-known operations, e.g., batch normalization and network initialization, we
are the first to establish the relationship between the TFC phenomenon and these typical operations.
This provides theoretical guidance for the design of DNNs.

More crucially, the TFC phenomenon with the MLP is counter-intuitive, and has been neglected for
a long time. The investigation of the learning dynamics of the TFC phenomenon would be useful
for explaining complex optimization behaviors of DNNs and is of considerable value.

Contributions of this study can be summarized as follows. (1) We discover the common TFC phe-
nomenon in early learning of the MLP, which has been ignored for a long time. (2) We explain
this phenomenon from the perspective of learning dynamics. (3) We explain why four types of
operations can alleviate the TFC phenomenon.

2 DISCOVERING THE TFC PHENOMENON

It has been widely observed that the loss decrease of DNNs is likely to have two phases (Saxe
et al., 2013; Simsekli et al., 2019; Stevens et al., 2020). As Figure 1(b) shows, the training loss
does not decrease significantly in the first phase, and the training loss suddenly begins to decrease
in the second phase. In this paper, we discover a new and counter-intuitive phenomenon in the
first phase that both the diversity of intermediate-layer features over different samples and
the diversity of feature gradients keep decreasing, until samples of different categories share
almost the same feature in the first phase. We consider this as a TFC phenomenon.

We consider an MLP f with L concatenated linear layers, each being followed by a ReLU layer.
Only the last linear layer is followed by a softmax operation. Let W (l)

t ∈ Rh×d denote the weight
matrix of the l-th linear layer with h neurons (1 ⩽ l ⩽ L), and W

(l)
t has been learned for t iterations.

Given an input sample x, the layer-wise forward propagation in the l-th layer is represented as

F
(l)
t = ReLU(W

(l)
t F

(l−1)
t ) = D

(l)
t W

(l)
t F

(l−1)
t , (1)

where F
(l)
t ∈ Rh denotes the output feature of the l-th layer after the t-th iteration. D

(l)
t denotes a

diagonal matrix, which represents gating states in the ReLU layer, and D
(l)

t,(i,i) ∈ {0, 1}.

Thus, the TFC phenomenon is shown as follows. Given two input samples x1 and x2, the cosine
similarity of features cos(F

(l)
t |x1 , F

(l)
t |x2), and the cosine similarity of gradients cos(Ḟ

(l)
t |x1 , Ḟ

(l)
t |x2)

keep increasing, which demonstrates the phenomenon. Here, Ḟ (l)
t denotes the gradient of the loss

w.r.t. the feature F
(l)
t . Besides, the increasing trend of feature similarity only exists in the first phase.

The TFC phenomenon is widely shared by different DNNs learned for different tasks. In early
epochs (or iterations) of the training process, we observed such TFC phenomena on MLPs, VGG-11
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Figure 2: The TFC phenomenon. (a) Cosine similarity of features between samples in different
categories Ex,x′∈X [cos(F

(l)
t |x, F (l)

t |x′)] keeps increasing in the first phase (left to the dotted line),
until the second phase. The low cosine similarity indicates the high diversity. (b) Cosine similarity
of feature gradients between different samples of a category Ex,x′∈Xc [cos(Ḟ

(l)
t |x, Ḟ (l)

t |x′)] keeps in-
creasing in the first phase until the second phase, where Xc denotes samples of the category c. (c)
Cosine similarity of weight changes between weight vectors in a layer Ex∈X cos(∆w

(l)
t,i |x,∆w

(l)
t,j |x)

keeps increasing in the first phase. Please see Appendix B for results on more DNNs.

Discussed in Section 4.2.
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(Simonyan & Zisserman, 2014), and the revised long short-term memory (LSTM) on different types
of data, including image data (MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009),
and the Tiny ImageNet dataset (Le & Yang, 2015)), tabular data (two UCI datasets of census income
and TV news (Asuncion & Newman, 2007)), and natural language data (CoLA (Warstadt et al.,
2019), SST-2 (Socher et al., 2013), and AGNews (Del Corso et al., 2005)). We also tested MLPs
with different loss functions, with Leaky ReLU layers (Maas et al., 2013), with different learning
rates, and with different batch sizes. Figure 2(a,b) shows TFC phenomena on these DNNs, and
please Appendix B for results on more DNNs.

Besides, the learning-sticking problem can be considered as an extreme long first phase. As
Figure 1(a) shows, the length of the first phase increases along with the network complexity (depth).
In extreme cases when DNNs are very deep or the task is difficult, the first phase reaches an infinite
length, and the learning gets stuck (please see Appendix C for more discussions).

3 EXPLAINING THE DYNAMICS OF THE TFC PHENOMENON

In this section, we aim to investigate dynamics of network parameters in early epochs, so as to ex-
plain the condition that may boost the likelihood of the TFC phenomenon. In Section 3.1, we find
that the decreasing diversity of feature gradients over different samples is owing to the phenomenon
that different neurons in a layer are optimized towards a common direction in the first phase. There-
fore, we propose two perspectives to illustrate the significance of the common direction. Then, in
Section 3.2, we compare these two perspectives to analyze learning dynamics, and we find that the
significance of the common direction may be enhanced, just like a “self-enhanced system.” Finally,
the self-enhanced common direction can explain the TFC phenomenon. The overall logic of the
explanation is illustrated in Figure 3(b). In Section 3.3, we explain the reason why four types of
operations can alleviate the TFC phenomenon based on our analysis.

3.1 TWO PERSPECTIVES TO ANALYZE THE COMMON DIRECTION OF LEARNING EFFECTS

In the beginning, let us first focus on the conjecture that the decreasing diversity of feature gradi-
ents over different samples can be explained by the phenomenon that different neurons in a layer
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are optimized towards a common direction in the first phase. For example, as Figure 3(a) shows, at
the beginning of the learning, different neurons are originally optimized towards different directions,
but then gradients of different neurons gradually change to a similar direction. Let Ḟ (l)

t denote the
gradient of the loss w.r.t. the feature F

(l)
t at the l-th layer. Then, according to Eq. (1), the back

propagation of feature gradients Ḟ
(l)
t ∈ Rh at the l-th layer can be written as

Ḟ
(l−1)
t = W

(l)⊤

t D
(l)
t Ḟ

(l)
t . (2)

The emergence of a common direction of weight changes means that gradients of the d weight
vectors in W

(l)⊤

t = [w
(l)
t,1, w

(l)
t,2, · · · , w

(l)
t,d]

⊤∈ Rd×h, i.e., ∂Loss/∂w(l)
t,i , gradually become approximately

collinear. According to Remark 1, we can explain why the enhancement of such a common direction
decreases the diversity of feature gradients.

Remark 1. Let us assume that different weight vectors [w
(l)
t,1, w

(l)
t,2, · · · , w

(l)
t,d]

⊤ have a dominating
common direction C(l)∈ Rh. Then, we can represent w(l)

t,i = βiC
(l) + ϵi, where βi ∈ R; ϵi ∈ Rh

denotes a small residual; β = [β1, β2, · · · , βd], and ϵ = [ϵ1, ϵ2, · · · , ϵd]⊤. Then, we have

Ḟ
(l−1)
t = (C(l)⊤D

(l)
t Ḟ

(l)
t ) · β + ϵD

(l)
t Ḟ

(l)
t . (3)

Remark 1 well explains the rationale for the above conjecture. That is, if ∂Loss/∂w(l)
t,i on different

samples are roughly collinear to each other, then such a collinearity would make feature gradi-
ents Ḟ

(l−1)
t of different samples similar to each other. Specifically, during the learning process, if

the DNN keeps optimizing W
(l)⊤

t along the common direction C(l) for a long time, which keeps
strengthening the value C(l)⊤D

(l)
t Ḟ

(l)
t ∈R, then feature gradients Ḟ

(l−1)
t of different samples are grad-

ually pushed towards the same direction β. In other words, as long as different weight vectors are
optimized towards the same dominating direction, then feature gradients Ḟ

(l−1)
t are pushed in the

same direction β.

Therefore, the first core task of proving the decreasing diversity of feature gradients is to
explain the existence of the common optimization direction shared by different weight vectors.
Thus, we propose two perspectives to illustrate how different weight vectors w

(l)
t,i are changed ∆Wt

along a common direction during the learning process. By comparing these two perspectives, we
can further explain the reason why the significance of the common direction will be further boosted,
just like a “self-enhanced system.” Such a “self-enhanced system” will be proven in Section 3.2.

Perspective 1. This perspective focuses on the influence of the common direction C(l) of the weight
change in l-th layer. For clarity, we omit the superscript (l) to simplify the notation in the following
paragraphs in Section 3.1, i.e., ∆w

(l)
t,i , ∆W

(l)
t , and C(l) can be simplified by ∆wt,i, ∆Wt, and C,

respectively. Let ∆W⊤
t = [∆wt,1,∆wt,2, · · · ,∆wt,d]

⊤ denote weight changes of d weight vectors
in the l-th layer. We decompose ∆W⊤

t into the component along a common direction C and a
component along other directions as follows.

∆W⊤
t = ∆VtC

⊤ +∆εt, (4)

where ∆Vt = [∆vt,1,∆vt,2, · · · ,∆vt,d] ∈ Rd denotes the coefficient vector for weight changes of
different weight vectors along the common direction C. Specifically, ∆εt is relatively small “noise”
term, which is orthogonal to C, i.e., ∆εtC = 0.
Lemma 1. (Proof in Appendix E) For the decomposition ∆W⊤

t =∆VtC
⊤+∆εt, given weight changes

over different samples ∆W⊤
t , we can compute the common direction C by minimizing the fitting error

∆ϵt when we use ∆vt,iC
⊤ to approximate ∆w⊤

t,i over different samples across different iterations.
I.e., minC,∆Vt|x

(
Et∈[Tstart,Tend]Ex∈X ∥∆εt|x∥2F

)
, s.t. ∆εt|x = ∆W⊤

t |x − ∆Vt|xC⊤. Thus, we obtain

∆Vt =
∆W⊤

t C

C⊤C
and ∆εt= ∆W⊤

t −∆W⊤
t

CC⊤

C⊤C
, s.t. ∆εtC = 0. Such settings minimize ∥∆εt∥F .

Lemma 2. (We can also decompose the weight W (l)
t into the component along the common di-

rection C and the component εt in other directions. Proof is in Appendix F.) Given the weight W⊤
t

and the common direction C, the decomposition W⊤
t = VtC

⊤ + εt can be conducted as Vt =
W⊤

t C

C⊤C

and εt= W⊤
t −W⊤

t
CC⊤

C⊤C
s.t. εtC = 0. Such settings minimize ∥εt∥F .

We conduct experiments to verify the strength of the primary common direction C. To this end,
let us focus on the average weight change over different samples ∆W t = Ex∈X∆Wt|x. Then, we

4



Under review as a conference paper at ICLR 2023

C
at

  
ca

te
go

ry

St
re

ng
th

Tr
uc

k

St
re

ng
th

Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

direction direction direction direction directiondirection direction direction direction direction

1e-4
9.5

0.0 0.0 0.0 0.0 0.0

9.51.2 1.5
1e-3 1e-3 1e-3 1e-3

1.9
1e-3 1e-3

2.1

1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 0.0 0.0 0.0 0.0 0.0

1.4 1.6 1.8 2.2
1e-4 1e-31e-3 1e-3 1e-3

Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

ca
te

go
ry

Figure 4: The strength of different common directions in the CIFAR-10 dataset. We trained 9-layer
MLPs, where each layer of the MLP had 512 neurons. We illustrated results on the two categories
with the highest training accuracies. si = ∥Ci∆V

⊤
i ∥F measures the strength of weight changes along

the i-th common direction, where ∆V i = Et[∆V i,t]. The strength of the primary direction was much
greater than the strength of other directions. Please see Appendix D for more results on the MNIST
dataset and the Tiny ImageNet dataset.

Table 1: Strength of components of weight changes along the common direction and other directions.
We trained 9-layer MLPs on the CIFAR-10 dataset and the Tiny ImageNet dataset, respectively.
Each layer of the MLP had 512 neurons. The strength of the primary common direction was much
greater than those of other directions. Appendix D provides results on the MNIST dataset and
Appendix H.2 explains the phenomenon that S(l)

1 , S(l)
2 , and S

(l)
3 do not decrease monotonically.

C
IF

A
R

-1
0

Category Cat Truck
S (×10−3) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
S
(l)
primary 154.0±17.1 176.5±16.8 201.6±18.7 253.6±24.6 277.4±25.6 169.9±20.8 208.1±21.5 223.6±20.1 248.4±19.2 281.5±20.4

S
(l)
1 11.5±1.5 13.0±0.9 11.6±1.7 16.1±1.8 9.0±0.8 15.6±2.1 14.0±1.8 14.3±1.1 14.3±1.7 10.0±1.1

S
(l)
2 12.7±1.7 11.9±1.3 10.9±1.3 11.9±0.8 8.8±1.1 14.4±1.4 15.1±2.0 11.3±1.4 12.3±0.9 12.9±1.2

S
(l)
3 11.0±1.1 14.4±1.7 12.5±2.2 13.9±1.7 8.6±1.1 14.3±2.2 12.4±1.9 12.8±1.6 13.1±1.2 9.7±1.0

Ti
ny

Im
ag

eN
et

Category Flagpole Bottle
S (×10−3) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
S
(l)
primary 97.8±3.7 143.9±5.6 198.9±8.1 259.8±10.1 322.8±12.7 202.3±12.2 234.4±13.1 276.8±13.9 345.2±16.6 440.2±22.2

S
(l)
1 10.6±0.9 9.5±0.8 14.4±1.4 24.9±1.3 8.8±1.0 10.3±1.4 11.2±1.6 12.2±1.3 11.9±1.1 13.2±1.6

S
(l)
2 7.5±0.9 7.9±1.2 9.7±1.2 9.2±1.2 8.3±0.6 10.4±1.1 11.6±1.0 13.8±1.3 10.0±0.8 13.6±1.2

S
(l)
3 7.1±0.8 9.1±1.1 11.3±1.0 17.9±2.2 16.6±1.5 11.6±1.4 15.7±1.4 10.7±1.1 10.8±1.2 19.8±1.6

decompose ∆W t into components along five common directions as ∆W t = C1∆V
⊤
1,t + C2∆V

⊤
2,t +

· · ·+C5∆V
⊤
5,t+∆ε⊤5,t, where C1=C is termed the primary common direction. C2, C3, C4 and C5 rep-

resent the second, third, forth, and fifth common directions, respectively. C1, C2, C3, C4, and C5 are
orthogonal to each other. Ci and ∆V i,t are computed based on Lemma 1 when we remove the first
(i− 1) components along the direction C, · · · , Ci−1 from the ∆W t. Figure 4 shows that the strength
of the primary common component C1∆V

⊤
1 is approximately ten times greater than the strength of

the secondary common component C2∆V
⊤
2 . Please see Appendix G for more discussions.

Perspective 2 based on feature gradients Ḟ (l+1)
t . We decompose the weight change by considering

the influence of the common direction of the upper layer C(l+1). In order to distinguish variables
belonging to different layers, we add the superscript (l) back to ∆W

(l)
t ,∆V

(l)
t , and ∆ε

(l)
t to denote

the layer in the following paragraphs.

Theorem 1. (Proof in Appendix H.1) The weight change made by a sample can be decomposed into
(h+ 1) terms after the t-th iteration as follows.

∆W
(l)
t = ∆W

(l)

primary,t +
∑h

k=1
∆W

(l,k)

noise,t = Γ
(l)
t F

(l−1)⊤

t + κ
(l)⊤

t , (5)

where ∆W
(l)
primary,t= D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 denotes the component

along the primary common direction, and ∆W
(l,k)
noise,t= D

(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 de-

notes the component along the k-th common direction in the noise term. ε
(l+1,k)
t = ΣkkUkV⊤

k ,
where the SVD of ε

(l+1)
t ∈ Rh×h′

is given as ε
(l+1)
t = UΣV⊤ (h ≤ h′), and Σkk denotes the

k-th singular value ∈ R. ε
(l+1)
t =

∑
k ε

(l+1,k)
t . Uk and Vk denote the k-th column of the

matrix U and V, respectively. Besides, we have ∀k ∈ {1, 2, . . . , h}, U⊤
k C(l+1) = 0. Con-

sequently, we have Γ
(l)
t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t /∥F (l)

t ∥22 ∈ Rh, and κ
(l)⊤

t =

D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22∈ Rh×d.

Given weight changes ∆W
(l)
t made by a sample x, the primary term ∆W

(l)
primary,t represents the com-

ponent of weight changes along the common direction C(l+1). The k-th noise term ∆W
(l,k)
noise,t repre-

sents the component along the k-th direction Uk, which is orthogonal to C(l+1).
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We conduct experiments to verify the significant strength of the component along the common
direction C(l+1). We compute the average strength of the component along C(l+1) over all samples
in X as S

(l)
primary = Et∈[Tstart,Tend]Ex∈X[∥∆W

(l)
primary,t|x∥F ]. Similarly, the strength of the component along

the k-th noise direction is computed as S
(l)
k= Et∈[Tstart,Tend]Ex∈X [∥∆W

(l,k)
noise,t|x∥F ]. Table 1 illustrates

that the strength of the primary component S(l)
primary is more than ten times greater than the strength of

components along noise directions S
(l)
1 , S

(l)
2 , and S

(l)
3 .

Discussion about comparing with the sum of all other directions’ significance. According to Table 1,
it seems that the sum of strengths of components along other directions is also large. However, dif-
ferent directions decomposed by the above method are orthogonal to each other. Therefore, weight
changes along different directions are independent, and their strengths cannot be summed up. Thus,
we can directly compare the strength of the component of weight changes along each direction to
verify the significant strength of the primary direction.

3.2 EXPLAINING THE ENHANCEMENT OF THE SIGNIFICANCE OF THE COMMON DIRECTION

The previous subsection owes the decreasing diversity of feature gradients to the typical common
optimization direction shared by different weight vectors. In the current subsection, we explain
that the common optimization direction phenomenon is very likely to be further enhanced, just
like a “self-enhanced system.” The self-enhancement of the optimization direction will explain
the decreasing diversity. Specifically, the overall logic of this subsection has three steps. In Step
1, we explain the phenomenon that the significance of the common direction can be enhanced by
training samples in a certain category in very early epochs. In Step 2, we extend the analysis of
the enhancement of the common direction to a more generic case, i.e., explaining the enhancement
caused by training samples from different categories. In Step 3, we further explain that the self-
enhancement of the common direction decreases the diversity of features and feature gradients, i.e.,
explaining the TFC phenomenon.

Before explaining the enhancement of the significance of the common direction, let us first clar-
ify assumptions in the proof. (1) The direct proof of the emergence of a “self-enhanced system”
from the very beginning of training an initialized MLP is difficult. Instead, we explain that the
self-enhancement of the common direction probably started under the background assumption that
features of different samples have been pushed a little bit towards a specific common direction. (2)
The MLP usually first learns a few categories, instead of simultaneously learning all categories. Ex-
perimental results in Figure 7 and Appendix O have verified the trustworthiness of this assumption.

According to Eq. (4) and Eq. (5), weight changes made by the sample x can be given as

Perspective 1: ∆W
(l)
t = C(l)∆V

(l)⊤

t +∆ε
(l)⊤

t Perspective 2: ∆W
(l)
t = Γ

(l)
t F

(l−1)⊤

t + κ
(l)⊤

t (6)

By comparing the above two perspectives, we discover an interesting potential that the common
direction C(l) is similar to ±Γ

(l)
t , and the feature F

(l−1)
t is similar to the vector ±∆V

(l)
t .

Inspired by this, we aim to prove the self-enhancement of the significance of the common direc-
tion, by explaining the intuition that the feature F

(l−1)
t and the vector V

(l)
t become more and

more similar to each other in the first phase. As the first step of the proof, Theorem 2 shows that
if we only consider training samples x ∈ Xc in the same category c, then features F

(l−1)
t of samples

in this category would become increasingly similar to each other. On the other hand, such training
samples have similar training effects, i.e., pushing weights of different neurons V

(l)
t all towards the

average feature αcEx∈Xc [F
(l−1)
t |x].

Step 1: Explaining the significance of the common direction is enhanced by all training samples
in a certain category. Specifically, let us first consider the aforementioned background assumption
that features F

(l−1)
t of different samples have been pushed a little bit towards a specific common

direction. We can obtain that there exists at least one learning iteration in the first phase, in which
∆F

(l−1)
t and F

(l−1)
t of most samples have similar directions, and ∆V

(l)
t and V

(l)
t have similar direc-

tions (see Appendix J for more discussions). Note that the assumed initial common direction is quite
vague, and it is far from the TFC phenomenon. However, if we take the vague common direction as
the starting point, we can further prove the significant self-enhancement of the common direction,
which is responsible for the TFC phenomenon.
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Figure 5: The average cosine similarity between the feature F
(l−1)
t and the vector ∆V

(l)
t over dif-

ferent samples in the first phase. We conducted experiments on 9-layer MLPs trained on the (a)
CIFAR-10 dataset, and the (b) Tiny ImageNet dataset. The shade in each subfigure represents the
standard deviation of the cosine similarity over different samples.
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Figure 6: The change of o(l) in the first phase. We trained 9-layer MLPs on the (a) CIFAR-10 and
the (b) Tiny ImageNet. Each layer of the MLP had 512 neurons. The Appendix D provides results
on the MNIST. The shade represents the standard deviation over different samples.

Thus, Theorem 2 explains how the significance of the common direction is enhanced by all training
samples in the category c, i.e., F

(l−1)
t and αcV

(l)
t become increasingly similar. We can consider

cos(αcV
(l)
t ,∆F

(l−1)
t |x) ≥ 0 in Theorem 2 means that features of training samples in the same cat-

egory c are all pushed towards a common direction αcV
(l)
t , and make ∆F

(l−1)
t |x highly similar

to αcV
(l)
t , i.e., making sample features F

(l−1)
t |x in the category c become increasingly similar to

each other. On the other hand, cos(αc∆V
(l)
t |x, F (l−1)

t |x)≥ 0 in Theorem 2 means that training sam-
ples in the category c all push V

(l)
t towards αcEx∈Xc [F

(l−1)
t |x], and make ∆V

(l)
t roughly parallel

to αcEx∈Xc [F
(l−1)
t |x], i.e., pushing weights of different neurons V

(l)
t towards the average feature.

This phenomenon is verified in Figure 5, where cos(αc∆V
(l)
t , F

(l−1)
t ) is always positive over dif-

ferent samples of the same category. The above analysis also well explains the dynamics behind
cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0 in Lemma 3.

Lemma 3. (Proof in Appendix K) Given an input sample x ∈ X and a common di-
rection C(l) after the t-th iteration, if the noise term ε

(l)
t is small enough to satisfy

|∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t | ≫ |∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t |, we can

obtain cos(∆V
(l)
t , F

(l−1)
t ) ·cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0, where ∆V

(l)
t =

∆W
(l)⊤
t C(l)

C(l)⊤C(l)
, and V

(l)
t =

W
(l)⊤
t C(l)

C(l)⊤C(l)
.

∆F
(l−1)
t denotes the change of features ∆F

(l−1)
t = F

(l−1)
t+1 − F

(l−1)
t made by the training sample x

after the t-th iteration. To this end, we approximately consider the change of features ∆F
(l−1)
t af-

ter the t-th iteration negatively parallel to feature gradients Ḟ
(l−1)
t , although strictly speaking, the

change of features is not exactly equal to the feature gradients.

Theorem 2. (Proof in Appendix L) Under the aforementioned background assumption, for any
training samples x, x′∈Xc in the category c, if [C(l)⊤D

(l)
t |xḞ (l)

t |x]·[C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ] > 0 (i.e., F (l)

t |x
and F

(l)
t |x′ have kinds of similarity in very early iterations), then cos(αc∆V

(l)
t |x, F (l−1)

t |x)≥ 0, and
cos(αcV

(l)
t ,∆F

(l−1)
t |x) ≥ 0, where αc∈{−1,+1} is a constant shared by all samples in category c.

We conduct experiments to verify the relationship between the feature F
(l−1)
t and the vector V (l)

t . To
this end, we measure the change of the value o(l)=cos(∆V

(l)
t , F

(l−1)
t )·cos(V (l)

t ,∆F
(l−1)
t ). Figure 6 re-

ports the average o(l) value over different samples at each iteration. For each sample x, o(l) is always
positive and usually increases over iterations, which verifies Lemma 3. Besides, the assumption for
a tiny ε

(l)
t in Lemma 3 is verified by experimental results in Appendix K.

In sum, Step 1 focuses on the significance of the common direction enhanced by training samples in
a certain category. In order to further analyze the learning effect of training samples from different
categories, we propose Assumption 1 according to extensive experimental observations.
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first phase.

Assumption 1. We assume that the MLP encodes features of very few (a single or two) categories
in the first phase, instead of simultaneously learning all or most categories in this phase.

Assumption 1 indicates that MLPs first learn a single or two categories in the first phase. Figure 7
verifies that only a single or two categories exhibit much higher accuracies than the random guessing
at the end of the first phase. This means that the learning of the MLP is dominated by training
samples of a single or two categories in very early iterations. Please see Appendix O for more
results on different DNNs.

Step 2: Extending the enhancement of the significance of the common direction to a more
general case that considers all training samples from different categories, i.e., F (l−1)

t and αĉV
(l)
t

become increasingly similar. The overall learning dynamics in the first phase can be roughly de-
scribed, by combining Theorem 2 and Assumption 1 as follows. Assumption 1 indicates that MLPs
encode features of very few (a single or two) categories in early epochs. In other words, the over-
all learning effects of all training samples are dominated by very few categories ĉ. Based on this,
Theorem 2 indicates two effects. First, features F

(l−1)
t of different samples are all pushed towards

the vector αĉV
(l)
t , where αĉ is determined by the dominating category/categories ĉ. Second, V (l)

t is
pushed towards αĉEx∈Xĉ [F

(l−1)
t |x]. Therefore, features F

(l−1)
t of different samples and αĉV

(l)
t en-

hance each other, just like a “self-enhanced system.” The “self-enhanced system” starts from from
the assumed state that ∆F

(l−1)
t and F

(l−1)
t of most samples have similar directions, and ∆V

(l)
t and V

(l)
t

have similar directions. In other words, the component along the common direction C(l)∆V
(l)⊤

t in
∆W

(l)
t =C(l)∆V

(l)⊤

t +∆ε
(l)⊤

t will be further enhanced.

Step 3: Explaining the increasing feature similarity and the increasing gradient similarity.
i.e., explaining the TFC phenomenon. As aforementioned, features F

(l−1)
t of different samples are

consistently pushed towards the same vectorαĉV
(l)
t . It increases the similarity between features of

different samples Ex,x′∈X [cos(F
(l−1)
t |x, F (l−1)

t |x′)] in the first phase. On the other hand, the increas-
ing similarity between feature gradients can be also explained from two views. (1) The increasing
feature similarity over different samples makes different training samples generate similar gating
states D

(l)
t in each ReLU layer. The increasing similarity of ReLU layers’ gating states between

different samples also increases the similarity of feature gradients between different samples in the
same category Ex,x′∈Xc[cos(Ḟ

(l−1)
t |x, Ḟ (l−1)

t |x′)]. (2) Another view is that the component along the
common direction C(l)V

(l)⊤

t in W
(l)
t is enhanced in the first phase. Because C(l) denotes the principle

weight direction of the i-th column w
(l)
t,i of W

(l)
t , each weight vector w

(l)
t,i is optimized towards the

common direction C(l). Eq. (3) shows that the increasing cosine similarity between w
(l)
t,i and C(l) for

all weight vectors will boost the similarity between feature gradients of different samples.

Vanishing gradients on correctly classified samples destroy the “self-enhanced system.” All our
explanation focuses on the early epochs of training, when only a few training samples of one or two
dominating categories can be confidently classified. However, when the optimization of a single or
two dominating categories in the first phase soon saturates at the end of the first phase, gradients on
the correctly classified samples of the dominating categories vanish. Then, gradients from training
samples of other categories weaken the dominating role of a single or two categories in the learning
of the MLP. Thus, the “self-enhanced system” is destroyed, and the learning of the MLP enters the
second phase.

3.3 THEORETICALLY ALLEVIATING THE TFC PHENOMENON

In previous sections, we have discovered and explained a fundamental yet counter-intuitive TFC
phenomenon with the MLP. This is the distinctive contribution of this study, which has not been
theoretically explained for a long time. Besides, we find that we can use the above findings to
explain that four typical operations can usually alleviate or strengthen the TFC phenomenon, i.e.,
normalization, momentum, initialization, and L2 regularization. Although these operations have
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Figure 8: Effects of (a) normalization and (b) initialization. We trained L-layer MLPs, where each
layer had 512 neurons. A shorter first phase indicates that the TFC phenomenon is more alleviated.
Effects of momentum and L2 regularization are shown in Appendix M.2.

been widely used, previous studies failed to theoretically explain their effectiveness. To this end, our
analysis can explain a high likelihood for such operations to affect the TFC phenomenon, although
it is not a proof of a strict sufficient condition or a necessary condition for the TFC phenomenon.

Centering operations for normalization. Based on theoretical analysis, we explain that the cen-
tering operation in normalization operations (e.g., that in batch normalization (BN)) can alleviate
the TFC phenomenon in the first phase. Specifically, according to Theorem 2, the “self-enhanced
system” of decreasing feature diversity requires features F

(l)
t of any two training samples x and x′

in the same category to be similar to each other. However, the centering operation prevents features
F

(l)
t of different samples from being similar to each other, because it subtracts the mean feature

F̄
(l)
t = Ex∈X [F

(l)
t |x] from features of all samples, i.e., F ′ (l)

t |x = F
(l)
t |x− F̄

(l)
t . Therefore, the dissimi-

larity between features of different samples breaks the “self-enhanced system.” Please see Appendix
M.1 for more discussions.

We conducted experiments to verify the above analysis. We compared MLPs trained with and
without BN layers. Specifically, we added a BN layer after each linear layer to construct MLPs.
Figure 8(a) shows that the feature similarity in MLPs with BN layers kept decreasing. This verified
that BN layers alleviated the TFC phenomenon.

Momentum. Our theorems explain that momentum in gradient descent can alleviate the TFC phe-
nomenon. Based on Lemma 3, the “self-enhanced system” of the decreasing of feature diversity
requires weights along other directions ε

(l)
t to be small enough. However, because the momentum

operation strengthens influences of the initialized noisy weights W (l)
t=0, it strengthens singular values

of ε(l)t , to some extent, thereby alleviating the TFC phenomenon. Specifically, a larger momentum
coefficient usually more alleviates the TFC phenomenon. To this end, we trained MLPs with differ-
ent momentum coefficients, and experimental results in Appendix M.2 verified the above analysis.

Initialization. We explain that the initialization of MLPs affects the TFC phenomenon. According
to Lemma 3, the “self-enhanced system” requires very small weights along noise directions ε

(l)
t .

However, increasing the variance of the initialized weights W
(l)
t=0 can boost singular values of ε

(l)
t ,

which alleviates the TFC phenomenon. Please see Appendix M.3 for more discussions.

To verify the above claim, we conducted experiments by comparing MLPs trained using different
initializations with different variances. We used γ to control the variance of the initialization, i.e.,
W

(l)
t=0 ∼ N (0, γσ2

varI), where σvar is a constant computed following (Glorot & Bengio, 2010). Figure
8(b) verifies that the initialization with a large variance alleviated the TFC phenomenon.

L2 regularization (ridge loss). We also explain that the L2 regularization (the ridge loss) can
strengthen the TFC phenomenon. The total loss is given as L(Wt) = LCE(Wt) + λ∥Wt∥22, where
LCE(Wt) represents the cross entropy loss, and λ∥Wt∥22 denotes the ridge loss. As aforementioned,
the TFC phenomenon requires singular values of ε(l)t to be small enough. However, because the loss
of ∥Wt∥22 penalizes singular values of ε

(l)
t , it strengthens the TFC phenomenon. The experimental

verification is provided in Appendix M.4.

4 CONCLUSION

In this paper, we find that in the early stage of the training process, the MLP exhibits a fundamental
yet counter-intuitive TFC phenomenon, i.e., the feature diversity keeps decreasing in the first phase.
We explain this phenomenon by analyzing the learning dynamics of the MLP. Furthermore, we
explain the reason why four typical operations can alleviate the TFC phenomenon.
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we focus on a typical two-phase phenomenon in the learning of multi-layer perceptrons (MLPs).
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A RELATED WORK

Understanding the optimization and the representation capacity of DNNs is an important direction to
explain DNNs. The information bottleneck theory (Wolchover, 2017; Shwartz-Ziv & Tishby, 2017)
quantitatively explained the information encoded by features in intermediate layers of DNNs. Xu &
Raginsky (2017), Achille & Soatto (2018), and Cheng et al. (2018) used the information bottleneck
theory to evaluate and improve the DNN’s representation capacity. Arpit et al. (2017) analyzed the
representation capacity of DNNs with real training data and noises. In addition, several metrics were
proposed to measure the generalization capacity or robustness of DNNs, including the stiffness (Fort
et al., 2019), the sensitivity metrics (Novak et al., 2018), the Fourier analysis (Xu, 2018), and the
CLEVER score (Weng et al., 2018). In comparison, we explain the MLP from the perspective of the
learning dynamics, i.e., we explain the TFC phenomenon in early iterations of the MLP.

Analyzing the learning dynamics is another perspective to understand DNNs. Many studies analyzed
the local minima in the optimization landscape of linear networks (Baldi & Hornik, 1989; Saxe et al.,
2013; Hardt & Ma, 2016; Daniely et al., 2016) and nonlinear networks (Choromanska et al., 2015;
Kawaguchi, 2016; Safran & Shamir, 2018). Some studies discussed the convergence rate of gradient
descent on separable data (Soudry et al., 2018; Xu et al., 2018; Nacson et al., 2019). Hoffer et al.
(2017) and Jastrzębski et al. (2017) have investigated the effects of the batch size and the learning
rate on SGD dynamics. In addition, some studies analyzed the dynamics of gradient descent in the
overparameterization regime (Arora et al., 2018; Jacot et al., 2018; Lee et al., 2018; Du et al., 2018).
Besides, (Papyan et al., 2020; Han et al., 2021) explored the neural collapse phenomenon, which was
observed at the end of the training stage. Unlike previous studies, we analyze the learning dynamics
of features and weights of the MLP, in order to explain the TFC phenomenon in the early training
process of the MLP.
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B COMMON PHENOMENON SHARED BY DIFFERENT DNNS FOR DIFFERENT
TASKS.

In this section, we aim to demonstrate an interesting phenomenon of the decrease of the feature
diversity when we train an MLP in early iterations. Specifically, the training process of the MLP can
usually be divided into the following two phases according to the training loss. In the first phase, the
training loss does not decrease significantly, and the training loss suddenly begins to decrease in the
second phase.

The two-phase phenomenon of the training loss is well-known, because many previous studies (Sim-
sekli et al., 2019; Saxe et al., 2013; Vogl, 2018; Nguyen et al., 2018; Arab et al., 2020; Jepkoech et al.,
2021; Stevens et al., 2020) have shown this phenomenon during the training process in their papers.
However, previous studies did not theoretically explain the emergence of such a phenomenon. In-
stead, they usually understood this phenomenon in an intuitive manner, i.e., initialized DNNs failed
to find a clear optimization direction, and thus these DNNs usually spent a long time searching for
a reliable optimization direction. In this way, the training loss did not decrease significantly in very
early epochs of training.

More crucially, the feature diversity decreases in the first phase. This phenomenon is widely shared
by different DNNs with different architectures for different tasks. As Figure 1, Figure 2, and Figure
3 show, the feature diversity keeps decreasing (i.e., the cosine similarity between features of differ-
ent samples keeps increasing) until samples of different categories share almost the same feature in
the first phase. We can consider this as the temporary feature collapse (TFC). This TFC happens
in various DNNs, including multi-layer perceptrons (MLPs), convolutional neural networks, and re-
current neural networks. DNNs trained with different loss functions and different learning rates may
all exhibit TFC phenomenon. Specifically, we calculated the feature cosine similarity between fifty
samples from ten categories on the CIFAR-10 dataset, the MNIST dataset, and the Tiny ImageNet
dataset. The abscissa and ordinate of each heatmap represent the sample index. For each grid, color
indicates the cosine similarity of that sample pair. Note that all the features are extracted after the
ReLU layer. Thus, the cosine similarity is always greater than zero.

Besides, as Figure 1 in the main paper shows, samples from different categories share diverse fea-
tures in the beginning of the training, but share almost the same feature at the end of the training.
Specifically, we used t-SNE for visualization (initialized by PCA).

Let us take the 9-layer MLP trained on the CIFAR-10 dataset for an example, where each layer of
the MLP had 512 neurons. As Figure 4(e)(f) shows, before the 1300-th iteration (the first phase),
both the feature diversity and the gradient diversity kept decreasing, i.e., both the cosine similarity
between features over different samples and the cosine similarity between gradients kept increasing.
After the 1300-th iteration (the second phase), the feature diversity and the gradient diversity sud-
denly began to increase, i.e. their similarities began to decrease. Therefore, the MLP had the lowest
feature diversity and the lowest gradient diversity at around the 1300-th iteration. Specifically, the
training loss was evaluated on the whole training set.
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Figure 1: Cosine similarity between features of different samples on the CIFAR-10 dataset. We
trained a 9-layer MLP, where each layer had 512 neurons. The cosine similarity between features of
different samples kept increasing until samples of different categories share almost the same feature
in the first phase. The features were used in the fourth linear layer of the MLP. The TFC phenemonon
happens in the 1000-th iteration. The abscissa and ordinate of each heatmap represent the sample
index. For each grid, color indicates the cosine similarity of that sample pair.
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Figure 2: Cosine similarity between features of different samples on the MNIST dataset. We trained
a 9-layer MLP, where each layer had 512 neurons. The cosine similarity between features of different
samples kept increasing until samples of different categories share almost the same feature in the
first phase. The features were used in the fourth linear layer of the MLP. The TFC phenemonon
happens in the 700-th iteration. The abscissa and ordinate of each heatmap represent the sample
index. For each grid, color indicates the cosine similarity of that sample pair.
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Figure 3: Cosine similarity between features of different samples on the Tiny ImageNet dataset. We
trained a 9-layer MLP, where each layer had 512 neurons. The cosine similarity between features of
different samples kept increasing until samples of different categories share almost the same feature
in the first phase. The features were used in the fourth linear layer of the MLP. The TFC phenemonon
happens in the 3000-th iteration. The abscissa and ordinate of each heatmap represent the sample
index. For each grid, color indicates the cosine similarity of that sample pair.

B.1 ON THE CIFAR-10 DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the CIFAR-10 dataset (Krizhevsky et al., 2009). For different MLPs, we adopted the learning rate
η = 0.1, the batch size bs = 100, the SGD optimizer, and the ReLU activation function. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of MLPs trained on the CIFAR-10 dataset
are shown in Figure 4.
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Figure 4: (a) The training loss of four MLPs trained on the CIFAR-10 dataset. (b) The testing loss
of four MLPs. (c) Training accuracies of four MLPs. (d) Testing accuracies of four MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the third linear
layer of MLPs.
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B.2 ON THE MNIST DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the MNIST dataset (LeCun et al., 1998). For different MLPs, we adopted the learning rate
η = 0.01, the batch size bs = 100, the SGD optimizer, and the ReLU activation function. The
training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of
features, and the cosine similarity of feature gradients of MLPs trained on the MNIST are shown in
Figure 5.
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Figure 5: (a) The training loss of four MLPs tranined on the MNIST dataset. (b) The testing loss
of four MLPs. (c) Training accuracies of four MLPs. (d) Testing accuracies of four MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the third linear
layer of MLPs.

B.3 ON THE TINY IMAGENET DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the Tiny ImageNet dataset (Le & Yang, 2015). Specifically, we randomly selected the follow-
ing 50 categories, orangutan, parking meter, snorkel, American alligator, oboe, basketball, rocking
chair, hopper, neck brace, candy store, broom, seashore, sewing machine, sunglasses, panda, pret-
zel, pig, volleyball, puma, alp, barbershop, ox, flagpole, lifeboat, teapot, walking stick, brain coral,
slug, abacus, comic book, CD player, school bus, banister, bathtub, German shepherd, black stork,
computer keyboard, tarantula, sock, Arabian camel, bee, cockroach, cannon, tractor, cardigan, sus-
pension bridge, beer bottle, viaduct, guacamole, and iPod for training. For different MLPs, we
adopted the learning rate η = 0.1, the batch size bs = 100, the SGD optimizer, and the ReLU acti-
vation function. Besides, we used two data augmentation methods, including random cropping and
random horizontal flipping. Note that we took a random cropping with 32×32 sizes.The training
loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of features,
and the cosine similarity of feature gradients of MLPs trained on the Tiny ImageNet are shown in
Figure 6.

B.4 ON THE CENSUS DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the UCI census income tabular dataset (Census) (Asuncion & Newman, 2007). For different
MLPs, we adopted the learning rate η = 0.1, the batch size bs = 1000, the SGD optimizer, and
the ReLU activation function. The training loss, the testing loss, the training accuracy, the testing
accuracy, the cosine similarity of features, and the cosine similarity of feature gradients of MLPs
trained on the census are shown in Figure 7.

B.5 ON THE COMMERCIAL DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the UCI TV news channel commercial detection dataset (Commercial) (Asuncion & Newman,
2007). For different MLPs, we adopted the learning rate η = 0.1, the batch size bs = 1000, the
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Figure 6: (a) The training loss of three MLPs tranined on the Tiny ImageNet dataset. (b) The testing
loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The features and the feature gradient were used in the second
linear layer of MLPs.
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Figure 7: (a) The training loss of three MLPs trained on the Census dataset. (b) The testing loss
of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the fifth linear
layer of MLPs.

SGD optimizer, and the ReLU activation function. The training loss, the testing loss, the training
accuracy, the testing accuracy, the cosine similarity of features, and the cosine similarity of feature
gradients of MLPs trained on the census are shown in Figure 8.
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Figure 8: (a) The training loss of three MLPs trained on the Commercial dataset. (b) The testing loss
of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the fifth linear
layer of MLPs.
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B.6 ON THE COLA DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by the revised
LSTMs on the CoLA dataset (Warstadt et al., 2019). We used two-layer unidirectional LSTMs
concatenated with MLPs. Specifically, we trained two LSTMs with 5-layer MLPs, where each
layer of the MLP had 256 and 512 neurons. We adopted the learning rate η = 0.1, the batch size
bs = 1000, the SGD optimizer, and the ReLU activation function. The training loss, the testing loss,
the training accuracy, the testing accuracy, the cosine similarity of features, and the cosine similarity
of feature gradients of LSTMs trained on the CoLA are shown in Figure 9. Since training samples in
the CoLA dataset were imbalanced, we constructed a new training set by randomly sampling 2000
training samples from two categories, respectively. DNNs were trained on this new training set.
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Figure 9: (a) The training loss of two LSTMs trained on the CoLA dataset. (b) The testing loss
of two LSTMs. (c) Training accuracies of two LSTMs. (d) Testing accuracies of two LSTMs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the third linear
layer of MLPs.

B.7 ON THE SST-2 DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by the revised
LSTMs on the SST-2 dataset (Socher et al., 2013). We used unidirectional LSTMs concatenated
with MLPs. Specifically, we trained three LSTMs with 4-layer MLPs, 4-layer MLPs, and 5-layer
MLPs, respectively, where each layer of the MLP had 32, 64, 128 neurons. We adopted the learning
rate η = 0.1, the batch size bs = 500, the SGD optimizer, and the ReLU activation function. Since
the training of LSTMs on the SST-2 with the SGD optimizer is unstable, we randomly selected
15000 training samples from the training set. We trained LSTMs on these 15000 training samples.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of
features, and the cosine similarity of feature gradients of LSTMs trained on the SST-2 are shown in
Figure 10.

B.8 ON THE AGNEWS DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by the revised
LSTMs on the AGNEWS dataset. We used two-layer unidirectional LSTMs concatenated with
MLPs. Specifically, we trained three LSTMs with 4-layer MLPs, 4-layer MLPs, 5-layer MLPs,
respectively, where each layer of the MLP had 32, 64, and 128 neurons, respectively. We adopted the
learning rate η = 0.1, the batch size bs = 500, the SGD optimizer, and the ReLU activation function.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of LSTMs trained on the AGNEWS are
shown in Figure 11.

B.9 DIFFERENT TRAINING BATCH SIZES

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained
on the CIFAR-10 dataset with different training batch sizes. For different MLPs, we adopted the
learning rate η = 0.1, the SGD optimizer, and the ReLU activation function. Besides, we used
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Figure 10: (a) The training loss of three LSTMs trained on the SST-2 dataset. (b) The testing loss of
three LSTMs. (c) Training accuracies of three LSTMs. (d) Testing accuracies of three LSTMs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.
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Figure 11: (a) The training loss of three LSTMs trained on the AGNEWS dataset. (b) The testing loss
of three LSTMs. (c) Training accuracies of three LSTMs. (d) Testing accuracies of three LSTMs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.

two data augmentation methods, including random cropping and random horizontal flipping. We
trained three 7-layer MLPs with 256 neurons in each layer, with bs = 100, 500, 1000 respectively.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of MLPs trained with different batch sizes
are shown in Figure 12.
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Figure 12: (a) The training loss of three MLPs trained with different batch sizes. (b) The testing loss
of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.
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B.10 DIFFERENT LEARNING RATES

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained
on the CIFAR-10 dataset with different learning rates. For different MLPs, we adopted the batch
size bs = 100, the SGD optimizer, and the ReLU activation function. Besides, we used two data
augmentation methods, including random cropping and random horizontal flipping. We trained two
7-layer MLPs with 256 neurons in each layer, with learning rates η = 0.1, 0.01 respectively. The
training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of
features, and the cosine similarity of feature gradients of MLPs trained with different learning rates
are shown in Figure 13.
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Figure 13: (a) The training loss of two MLPs trained with different learning rates. (b) The testing
loss of two MLPs. (c) The training accuracies of two MLPs. (d) The testing accuracies of two
MLPs. (e) Cosine similarity between features of different categories. (f) Cosine similarity between
gradients of different samples in a category. The feature and the feature gradient were used in the
second linear layer of MLPs.

B.11 DIFFERENT ACTIVATION FUNCTIONS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs with
different activation functions. For different MLPs, we adopted the learning rate η = 0.1, the batch
size bs = 100, and the SGD optimizer. Besides, we used two data augmentation methods, including
random cropping and random horizontal flipping. We trained three 9-layer MLPs with 512 neurons
in each layer with the ReLU activation function, the Leaky ReLU (slope=0.1) activation function,
and the Leaky ReLU (slope=0.01) activation function, respectively. The training loss, the testing
loss, the training accuracy, the testing accuracy, the cosine similarity of features, and the cosine
similarity of feature gradients of MLPs trained with different activation functions are shown in
Figure 14.

MLP with ReLU
MLP with LeakyReLU (slope=0.01)
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Tr
ai

ni
ng

 A
cc

ur
ac

y(
%
)

Te
st

in
g 

A
cc

ur
ac

y(
%
)

C
os

in
e 

si
m

ila
rit

y 
of

 fe
at

ur
es

C
os

in
e 

si
m

ila
rit

y 
of

 g
ra

di
en

ts

Tr
ai

ni
ng

 L
os

s

Te
st

in
g 

Lo
ss

iteration iteration iteration

(a) (b) (c)

(d) (e) (f)

Different activation layer

Figure 14: (a) The training loss of three MLPs with different activation functions. (b) The testing
loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.
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Cifar10 7-layer2-mom

7-layer MLP with 512
neurons in each layer,

momentum = 0.9

7-layer MLP with 512
neurons in each layer,

momentum = 0.5

7-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 15: (a) The training loss of three MLPs with different momentums trained on the CIFAR-10
dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing
accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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mnist 7-layer1-mom

7-layer MLP with 512
neurons in each layer,

momentum = 0.9

7-layer MLP with 512
neurons in each layer,

momentum = 0.5

7-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 16: (a) The training loss of three MLPs with different momentums trained on the MNIST
datasets. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing
accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.

B.12 DIFFERENT MOMENTUMS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained on
the CIFAR-10, MNIST and Tiny ImageNet dataset with different momentums. For different MLPs,
we adopted the learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
We trained 7-layer MLPs and 9-layer MLPs with 512 neurons in each layer with the ReLU activation
function. The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine
similarity of features, and the cosine similarity of feature gradients of MLPs trained with different
momentum are shown in Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20,
respectively.

B.13 DIFFERENT WEIGHT DECAYS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained on
the CIFAR-10, MNIST and Tiny ImageNet dataset with different weight decays. For different MLPs,
we adopted the learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
We trained 7-layer MLPs and 9-layer MLPs with 512 neurons in each layer with the ReLU activation
function. The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine
similarity of features, and the cosine similarity of feature gradients of MLPs trained with different
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Tiny-7-layer4-mom

7-layer MLP with 512
neurons in each layer,

momentum = 0.9

7-layer MLP with 512
neurons in each layer,

momentum = 0.5

7-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 17: (a) The training loss of three MLPs with different momentums trained on the Tiny Im-
ageNet dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d)
Ttesting accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the fourth linear layer of MLPs.

9-layer MLP with 512
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momentum = 0.9
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Cifar10 9-layer2-mom

9-layer MLP with 512
neurons in each layer,

momentum = 0.5

9-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 18: (a) The training loss of three MLPs with different momentums trained on the CIFAR-10
dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing
accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.

weight decays are shown in Figure 21, Figure 22, Figure 23, Figure 24, Figure 25, and Figure 26,
respectively.
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mnist 9-layer2-mom

9-layer MLP with 512
neurons in each layer,

momentum = 0.5

9-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 19: (a) The training loss of two MLPs with different momentums trained on the MNIST
dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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Tiny-9-layer4-mom

9-layer MLP with 512
neurons in each layer,

momentum = 0.9

9-layer MLP with 512
neurons in each layer,

momentum = 0.5

9-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 20: (a) The training loss of three MLPs with different momentums trained on the Tiny Im-
ageNet dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d)
Testing accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the fourth linear layer of MLPs.
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Cifar10 7-layer2-wd

7-layer MLP with 512
neurons in each layer,
weight decay = 0.001

7-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 21: (a) The training loss of two MLPs with different weight decays trained on the CIFAR-
10 dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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mnist 7-layer2-wd

7-layer MLP with 512
neurons in each layer,
weight decay = 0.001

7-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 22: (a) The training loss of two MLPs with different weight decays trained on the MNIST
dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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Tiny-7-layer3-wd

7-layer MLP with 512
neurons in each layer,
weight decay = 0.0001

7-layer MLP with 512
neurons in each layer,

weight decay =  0.00001

Figure 23: (a) The training loss of two MLPs with different weight decays trained on the Tiny
ImageNet dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d)
Testing accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of MLPs.
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Cifar10 9-layer2-wd

9-layer MLP with 512
neurons in each layer,
weight decay = 0.001

9-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 24: (a) The training loss of two MLPs with different weight decays trained on the CIFAR-
10 dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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mnist 9-layer2-wd

9-layer MLP with 512
neurons in each layer,
weight decay = 0.001

9-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 25: (a) The training loss of two MLPs with different weight decays trained on the MNIST
dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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Tiny-9-layer3-wd

9-layer MLP with 512
neurons in each layer,
weight decay = 0.0001

9-layer MLP with 512
neurons in each layer,

weight decay =  0.00001

Figure 26: (a) The training loss of two MLPs with different weight decays trained on the Tiny
ImageNet dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d)
Testing accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of MLPs.
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B.14 THE TFC PHENOMENON WITH THE FOCAL LOSS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs learned
on the CIFAR-10 dataset with the focal loss. Specifically, for different MLPs, we adopted the
learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we used two
data augmentation methods, including random cropping and random horizontal flipping. We trained
9-layer MLPs and 7-layer MLPs with 512 neurons in each layer with the ReLU activation function.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of MLPs trained with different focusing
parameters γ are shown in Figure 27 and Figure 28. Figure 27 and Figure 28 show that the TFC
phenomenon was still observed by different MLPs with the focal loss on the CIFAR-10 dataset.
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512 7Figure 27: (a) The training loss of three 7-layer MLPs with different focusing parameters γ trained
on the CIFAR-10 dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three
MLPs. (d) Testing accuracies of three MLPs. (e) Cosine similarity between features of different
categories. (f) Cosine similarity between gradients of different samples in a category. The feature
and the feature gradient were used in the third linear layer of MLPs.
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512 9
Figure 28: (a) The training loss of three 9-layer MLPs with different focusing parameters γ trained
on the CIFAR-10 dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three
MLPs. (d) Testing accuracies of three MLPs. (e) Cosine similarity between features of different
categories. (f) Cosine similarity between gradients of different samples in a category. The feature
and the feature gradient were used in the third linear layer of MLPs.
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B.15 DIFFERENT TRAIN/TEST SPLIT FOR DATASETS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained
on the CIFAR-10 dataset with different train/test splits. There are 50000 samples in the training set
and 10000 samples in the testing set on the CIFAR-10 dataset. We combined the training set and the
testing set into one dataset and split it with the train/test split ratios of 5:1, 4:2, and 3:3, respectively.
Note that the ratio of 5:1 was the official ratio for the CIFAR-10 dataset. For different MLPs, we
adopted the learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
We trained 9-layer MLPs with 512 neurons in each layer with the ReLU activation function on these
three different datasets. The training loss, the testing loss, the training accuracy, the testing accuracy,
the cosine similarity of features, and the cosine similarity of feature gradients of MLPs trained on
different train/test split ratios are shown in Figure 29. Figure 29 shows that the TFC phenomenon
was still observed by different train/test split ratios.
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Figure 29: (a) The training loss of three MLPs with different train/test dataset split ratios trained on
the CIFAR-10 dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d)
Testing accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of MLPs.
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C DISCUSSION OF THE PRACTICAL VALUES: THE LEARNING-STICKING
PROBLEM

In this section, we aim to discuss the learning-sticking problem in the learning of MLPs. In fact, this
problem appears in various DNNs, including MLPs, CNNs, and RNNs, when the task is difficult
enough. Explaining and solving the occasional sticking of the training of DNNs are of significant
values on different tasks. We consider the learning-sticking problem as the first phase with an
infinite length. Moreover, we theoretically explain mechanisms of several heuristic solutions to the
learning-sticking problem.

To this end, the learning-sticking problem can be solved based on our study, as shown in Figure
30, Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35. Specifically, we trained a 9-
layer MLP on the CIFAR-10 dataset, where each layer of the MLP had 512 neurons and its initial
weights were sample from N (0,Σ = γ1σ

2
varI). σ2

var was computed following (Glorot & Bengio,
2010) and γ1 = 0.1. We trained a VGG-11 model on the CIFAR-10 dataset and its initial weights
of fully connected layers were sample from N (0,Σ = γ1σ

2
varI) (γ1 = 0.1). We trained a VGG-13

model on the CIFAR-10 dataset and its initial weights of fully connected layers were sample from
N (0,Σ = γ1σ

2
varI) (γ1 = 0.1). We trained two ResNet-18 models (without BN layers) on the CIFAR-

10 dataset and the Tiny ImageNet dataset, respectively, and initial weights of fully connected layers
were sample from N (0,Σ = γ1σ

2
varI) (γ1 = 0.1).

We observed that these DNNs all suffered from the learning-sticking problem (i.e., the loss mini-
mization of these DNNs get stuck), when their initial weights were sampled from N (0,Σ = γ1σ

2
var)

(orange curves). According to our study, the technique of increasing the variance of initial weights
can shorten the first phase, thereby solving the learning-sticking problem. To this end, we trained
compared versions of these DNNs, and the only difference from previous DNNs is that the variance
of initial weights was increased to γ2σ

2
varI (γ2 = 1). Figure 30, Figure 31, Figure 32, Figure 33,

Figure 34, and Figure 35 verify that we could solve the learning-sticking problem by increasing
the variance of initialization.

Actually, far beyond solving the learning-sticking problem, the two-phase phenomenon of MLPs is
generally considered a counter-intuitive phenomenon. In this paper, our distinctive contribution is
to explain the counter-intuitive two-phase phenomenon of MLPs theoretically.
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Figure 30: (a) The training loss of two MLPs trained on the CIFAR-10 dataset. When the loss
minimization gets stuck (orange curve), we can consider it as the first phase with an infinite length.
Therefore, the “learning-sticking” problem can be solved by techniques of shortening the first phase,
such as the technique of increasing the variance of initial weights, which is a theoretically certificated
solution in our study (blue curve). (b) The training accuracy of two MLPs. (c) The testing loss of
two MLPs. (d) The testing accuracy of two MLPs.
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Figure 31: (a) The training loss of two MLPs trained on the MNIST dataset. When the loss min-
imization gets stuck (orange curve), we can consider it as the first phase with an infinite length.
Therefore, the “learning-sticking” problem can be solved by techniques of shortening the first phase,
such as the technique of increasing the variance of initial weights, which is a theoretically certifi-
cated solution in our study (blue curve). (b) The training accuracy of two MLPs. (c) The testing loss
of two MLPs. (d) The testing accuracy of two MLPs.
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Figure 32: (a) The training loss of two VGG-11 models trained on the CIFAR-10 dataset. When
the loss minimization gets stuck (orange curve), we can consider it as the first phase with an infinite
length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening the
first phase, such as the technique of increasing the variance of initial weights, which is a theoretically
certificated solution in our study (blue curve). (b) The training accuracy of two VGG-11 models. (c)
The testing loss of two VGG-11 models. (d) The testing accuracy of two VGG-11 models.
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Figure 33: (a) The training loss of two VGG-13 models trained on the CIFAR-10 dataset. When
the loss minimization gets stuck (orange curve), we can consider it as the first phase with an infinite
length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening the
first phase, such as the technique of increasing the variance of initial weights, which is a theoretically
certificated solution in our study (blue curve). (b) The training accuracy of two VGG-13 models. (c)
The testing loss of two VGG-13 models. (d) The testing accuracy of two VGG-13 models.
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Figure 34: (a) The training loss of two ResNet-18 models trained on the CIFAR-10 dataset. When
the loss minimization gets stuck (orange curve), we can consider it as the first phase with an infinite
length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening the
first phase, such as the technique of increasing the variance of initial weights, which is a theoretically
certificated solution in our study (blue curve). (b) The training accuracy of two ResNet-18 models.
(c) The testing loss of two ResNet-18 models. (d) The testing accuracy of two ResNet-18 models.
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Figure 35: (a) The training loss of two ResNet-18 models trained on the Tiny ImageNet dataset.
When the loss minimization gets stuck (orange curve), we can consider it as the first phase with an
infinite length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening
the first phase, such as the technique of increasing the variance of initial weights, which is a theo-
retically certificated solution in our study (blue curve). (b) The training accuracy of two ResNet-18
models. (c) The testing loss of two ResNet-18 models. (d) The testing accuracy of two ResNet-18
models.
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D MORE RESULTS ON OTHER DATASETS

In this section, we provide more results on the MNIST dataset and the Tiny ImageNet dataset.
Figure 36 and Table 1 empirically verify the strength of the primary common direction, which are
supplementary to Figure 4 and Table 1 in the main paper, respectively. Figure 37 illustrates the
change of o(l) = cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) in the first phase, which is supplementary to

Figure 6 in the main paper.
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Figure 36: The strength of top-ranked common directions on the (a) MNIST dataset and the (b) Tiny
ImageNet dataset. We trained a 9-layer MLP, where each layer of the MLP had 512 neurons. We
computed the strength of common directions on the two categories with the highest training accu-
racies. si = ∥Ci∆V

⊤
i ∥F measures the strength of weight changes along the i-th common direction,

where ∆V i = Et[∆V i,t]. It can be observed that the strength of the primary direction was much
greater than the strength of other directions.

Table 1: Strength of components of weight changes along the primary common direction and other
directions. We trained a 9-layer MLP on the MNIST dataset. Each layer of the MLP had 512
neurons. It can be observed that the strength of the primary common direction was much greater
than those of other directions.

M
N

IS
T

Category Eight Zero
S (×10−3) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
S
(l)
primary 367.1±56.8 364.5±52.8 381.9±56.3 444.4±68.7 504.0±81.3 441.7±86.0 448.2±83.5 429.0±78.1 493.1±87.2 504.1±89.0

S
(l)
1 14.9±0.8 15.9±1.4 15.5±1.1 15.6±1.5 13.5±2.0 24.6±3.1 30.0±4.3 18.4±2.6 17.2±2.2 15.6±1.8

S
(l)
2 16.3±1.7 13.1±0.9 16.4±0.8 18.1±3.2 11.7±1.6 16.6±1.7 23.9±4.2 17.9±2.4 14.3±1.5 12.2±1.9

S
(l)
3 15.1±1.5 16.3±1.7 13.5±0.6 15.1±1.4 15.0±1.1 29.4±5.2 21.1±4.2 15.5±1.8 21.2±3.6 14.7±1.6
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Figure 37: The change of o(l) = cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) in the first phase. We trained a

9-layer MLP on the MNIST dataset. Each layer of the MLP had 512 neurons. The shade represents
the standard deviation over different samples.
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E PROOF FOR THE LEMMA 1

In this section, we present the detailed proof for Lemma 1.

Lemma 1. For the decomposition ∆W⊤
t = ∆VtC

⊤ + ∆εt, given weight changes over different
samples ∆W⊤

t , we can compute the common direction C by minimizing the fitting error ∆ϵt
when we use ∆vt,iC

⊤ to approximate ∆w⊤
t,i over different samples across different iterations.

I.e., minC,∆Vt|x
(
Et∈[Tstart,Tend]Ex∈X ∥∆εt|x∥2F

)
, s.t. ∆εt|x = ∆W⊤

t |x − ∆Vt|xC⊤. Thus, we obtain

∆Vt =
∆W⊤

t C

C⊤C
and ∆εt= ∆W⊤

t −∆W⊤
t

CC⊤

C⊤C
, s.t. ∆εtC = 0. Such settings minimize ∥∆εt∥F .

proof. Let ∆ε⊤t [j] denote the j-th column of the matrix ∆ε⊤t ∈ Rh×d. Given a sample x, we can
represent ∆ε⊤t [j] by the vector C and a residual term ∆ε⊤t [j]

′ as follows:

∆ε⊤t [j] = λC +∆ε⊤t [j]
′
, (1)

where C⊤∆ε⊤t [j]
′
= 0, and λ is a scalar.

Then, ∥∥∆ε⊤t [j]
∥∥2
2
=

∥∥∥λC +∆ε⊤t [j]
′
∥∥∥2
2

= (λC +∆ε⊤t [j]
′
)⊤(λC +∆ε⊤t [j]

′
)

= λ2C⊤C + (∆ε⊤t [j]
′
)⊤∆ε⊤t [j]

′

= λ2C⊤C +
∥∥∥∆ε⊤t [j]

′
∥∥∥2
2

(2)

Obviously,
∥∥∆ε⊤t [j]

∥∥2
2

is the smallest when λ = 0. In other words, ∆ε⊤t [j] does not contain the

component along the direction C and C⊤∆ε⊤t [j] = 0. Therefore,
∥∥∆ε⊤t [j]

∥∥2
2

reaches its minimum
if and only if ∆εtC = 0.

When
∥∥∆ε⊤t [j]

∥∥2
2

reaches its minimum, ∥∆εt∥2F becomes the smallest. Thus, we have:

∆Wt =C∆V ⊤
t +∆ε⊤t

C⊤∆Wt =C⊤C∆V ⊤
t + CT∆ε⊤t

= C⊤C∆V ⊤
t + 0

(3)

Then, ∆V ⊤
t can be represented as follows.

∆V ⊤
t =

C⊤∆Wt

C⊤C
(4)

Substituting Eq. 4 into ∆Wt = C∆V ⊤
t +∆ε⊤t , we have

∆εt = ∆W⊤
t −∆W⊤

t

CC⊤

C⊤C
(5)

F PROOF FOR THE LEMMA 2

In this section, we present the detailed proof for Lemma 2.

Lemma 2. (We can also decompose the weight W
(l)
t into the component along the common

direction C and the component εt in other directions.) Given the weight W⊤
t and the common

direction C, the decomposition W⊤
t = VtC

⊤ + εt can be conducted as Vt =
W⊤

t C
C⊤C

and εt=

W⊤
t −W⊤

t
CC⊤

C⊤C
s.t. εtC = 0. Such settings minimize ∥εt∥F . .
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proof. Let ε⊤t [j] denote the j-th column of the matrix ε⊤t ∈ Rh×d. We can represent ε⊤t [j] by the
vector C and a residual term ε⊤t [j]

′ as follows:

ε⊤t [j] = λC + ε⊤t [j]
′
, (6)

where C⊤ε⊤t [j]
′
= 0 and λ is a scalar.

Then, ∥∥ε⊤t [j]∥∥22 =
∥∥∥λC + ε⊤t (x)[j]

′
∥∥∥2
2

= (λC + ε⊤t [j]
′
)⊤(λC + ε⊤t [j]

′
)

= λ2C⊤C + (ε⊤t [j]
′
)⊤ε⊤t [j]

′

= λ2C⊤C +
∥∥∥ε⊤t [j]′∥∥∥2

2

(7)

Obviously,
∥∥ε⊤t [j]∥∥22 becomes the smallest when λ = 0. In other words, ε⊤t [j] does not contain the

component along the direction C and C⊤ε⊤t [j] = 0. Therefore,
∥∥ε⊤t [j]∥∥22 reaches its minimum if

and only if εtC = 0.

When
∥∥ε⊤t [j]∥∥22 reaches its minimum, ∥εt∥2F becomes the smallest. Thus, we have:

Wt =CV ⊤
t + ε⊤t

C⊤Wt =C⊤CV ⊤
t + C⊤ε⊤t

=C⊤CV ⊤
t + 0

(8)

Then, V ⊤
t can be written as follows.

V ⊤
t =

C⊤Wt

C⊤C
(9)

Substituting Eq. 9 into Wt = CV ⊤
t + ε⊤t , we have

εt = W⊤
t −W⊤

t

CC⊤

C⊤C
(10)

G DECOMPOSITION OF COMMON DIRECTIONS

Actually, the estimation of the common direction C is similar to the singular value decomposition
(SVD), although there are slight differences.

We compute the average weight change ∆W t = Ex∈X∆Wt|x, where ∆Wt|x denotes the weight
change made by the sample x. Then, we decompose ∆W t into components along five common
directions as ∆W t = C1∆V

⊤
1,t + C2∆V

⊤
2,t + · · · + C5∆V

⊤
5,t + ∆ε⊤5,t, where C1=C is termed the

primary common direction. C1, C2, C3, C4, and C5 are orthogonal to each other. C2, C3, C4 and
C5 represent the second, third, forth, and fifth common directions, respectively. Ci represents the
i-th common direction. ∆V i,t denotes the average weight change along the i-th common direction
decomposed from ∆W t.

Specifically, we first decompose the average weight change ∆W t after the t-th iteration as ∆W t =

C∆V
⊤
t + ∆ε⊤t . We remove all components along the common direction C from ∆W t, and obtain

∆W new,t = ∆W t − C∆V
⊤
t = ∆ε⊤t . Then, we further decompose ∆W new,t = C2∆V ⊤

2,t + ∆ε⊤2,t.
In this way, we can consider C2 as the secondary common direction, while C1 = C is termed
as the primary common direction. Thus, we conduct this process recursively and obtain common
directions {C1, C2, · · ·C5}. Accordingly, ∆W t is decomposed into ∆W t = C1∆V

⊤
1,t + C2∆V ⊤

2,t +
· · ·+ C5∆V ⊤

5,t +∆ε⊤5,t.
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H DECOMPOSITION OF THE WEIGHT CHANGE MADE BY A SAMPLE x

H.1 PROOF FOR THEOREM 1.

In this subsection, we present the detailed proof for Theorem 1.

Theorem 1. The weight change made by a sample can be decomposed into (h+ 1) terms after the
t-th iteration as follows.

∆W
(l)
t = ∆W

(l)

primary,t +
∑h

k=1
∆W

(l,k)

noise,t
rewritten
==== Γ

(l)
t F

(l−1)⊤

t + κ
(l)⊤

t , (11)

where ∆W
(l)
primary,t= D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 denotes the component

along the primary common direction, and ∆W
(l,k)
noise,t= D

(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 de-

notes the component along the k-th common direction in the noise term. ε
(l+1,k)
t = ΣkkUkV⊤

k ,
where the SVD of ε

(l+1)
t ∈ Rh×h′

is given as ε
(l+1)
t = UΣV⊤ (h ≤ h′), and Σkk denotes the

k-th singular value ∈ R. ε
(l+1)
t =

∑
k ε

(l+1,k)
t . Uk and Vk denote the k-th column of the

matrix U and V, respectively. Besides, we have ∀k ∈ {1, 2, . . . , h}, U⊤
k C(l+1) = 0. Con-

sequently, we have Γ
(l)
t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t /∥F (l)

t ∥22 ∈ Rh, and κ
(l)⊤

t =

D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22∈ Rh×d.

proof. We can represent weight matrix as W (l)
t = C(l)V

(l)
t

⊤
+ ε

(l)⊤

t . In addition, according to the

back propagation and chain rule, we have ∆W
(l)
t = −ηD

(l)
t Ḟ

(l)
t F

(l−1)⊤

t , where Ḟ
(l)
t = ∂Loss

∂F
(l)
t

, and

η denotes the learning rate.

According to Lemma 1 and Lemma 2, we have ∆ε
(l+1)
t C(l+1) = 0 and ε

(l+1)
t C(l+1) = 0. After

the t-th iteration, the weight change made by a training sample x can be computed as follows.

∆W
(l)
t = −ηD

(l)
t Ḟ

(l)
t F

(l−1)⊤

t

= −ηD
(l)
t W

(l+1)⊤

t D
(l+1)
t Ḟ

(l+1)
t F

(l−1)⊤

t

= D
(l)
t W

(l+1)⊤

t ∆W
(l+1)
t F

(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t

[
V

(l+1)
t C(l+1)⊤ + ε

(l+1)
t

] [
C(l+1)∆V

(l+1)⊤

t +∆ε
(l+1)⊤

t

]
F

(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t [V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t + V
(l+1)
t C(l+1)⊤∆ε

(l+1)⊤

t

+ ε
(l+1)
t C(l+1)∆V

(l+1)⊤

t + ε
(l+1)
t ∆ε

(l+1)⊤

t ]F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t

[
V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t + ε
(l+1)
t ∆ε

(l+1)⊤

t

]
F

(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

+D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

(12)

ε
(l+1,k)
t = ΣkkUkV⊤

k , where the singular value decomposition of ε(l+1)
t is given as ε

(l+1)
t = UΣV⊤,

and Σkk denotes the k-th singular value. Uk and Vk denote the k-th column of the matrix U and V,
respectively. We can derive the following equations.
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∆W
(l)
t = D

(l)
t V

(l+1)
t C(l+1)TC(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

+D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t V

(l+1)
t C(l+1)TC(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

+

h∑
k=1

D
(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2
.

= ∆W
(l)
primary,t +

h∑
k=1

∆W
(l,k)
t,noise

(13)

In addition, if we set Γ
(l)
t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t /∥F (l)

t ∥22, and κ
(l)⊤

t =

D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22. Then we can re-write the Eq. (13) as follows.

∆W
(l)
t

rewritten
==== Γ

(l)
t F

(l−1)⊤

t + κ
(l)⊤

t (14)

H.2 THE EXPLANATION FOR THE PHENOMENON THAT S
(l)
1 , S(l)

2 , AND S
(l)
3 DO NOT

DECREASE MONOTONICALLY.

In this subsection, we explain the phenomenon that S
(l)
1 , S

(l)
2 , and S

(l)
3 does not decrease mono-

tonically in Table 1 in Appendix and Table 1 in the main paper (Page 6). In fact, we first decom-
pose ε

(l+1)
t =

∑
k ε

(l+1,k)
t according to the SVD. Then ∆W

(l,k)
noise,t is computed as ∆W

(l,k)
noise,t =

D
(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2
. Accordingly, the strength of weight changes along

the primary direction is computed as S
(l)
primary = Et∈[Tstart,Tend]Ex∈X

[
∥∆W

(l,k)
primary,t|x∥F

]
. The

strength of weight changes along the k-th noise direction is computed as S
(l)
k =

Et∈[Tstart,Tend]Ex∈X

[
∥∆W

(l,k)
noise,t|x∥F

]
. In this way, S

(l)
1 , S

(l)
2 , and S

(l)
3 do not decrease mono-

tonically, although ∥ε(l+1,1)
t ∥F , ∥ε(l+1,2)

t ∥F , and ∥ε(l+1,3)
t ∥F are directly decomposed from ε

(l+1)
t

based on the SVD and decrease monotonically.

I ANALYSIS BASED ON EQ. (3) IN THE MAIN PAPER AND EXPLANATION FOR
THE PARALLELISM.

According the Eq. (3) in the main paper, we have

Ḟ
(l−1)
t = (C(l)⊤D

(l)
t Ḟ

(l)
t ) · β + ϵD

(l)
t Ḟ

(l)
t (15)

Thus, if C(l)⊤D
(l)
t Ḟ

(l)
t is large enough (i.e., keeping optimizing W

(l)⊤

t along the common direction
C(l) for a long time), then the feature gradients Ḟ

(l−1)
t of different samples will be roughly parallel

to the same vector β. This is because C(l)⊤D
(l)
t Ḟ

(l)
t is a scalar and the term ϵD

(l)
t Ḟ

(l)
t is small. In

other words, the diversity between feature gradients Ḟ
(l−1)
t of different samples decreases. Here,

β = [β1, β2, · · · , βd], and ϵ = [ϵ1, ϵ2, · · · , ϵd]⊤.

J DISCUSSION ON THE BACKGROUND ASSUMPTION.

In the above section, we demonstrate that on the ideal state, i.e., W
(l)⊤

t has been optimized towards
the common direction C(l) for a long time, we can consider that the feature gradients Ḟ

(l−1)
t of

different samples will be roughly parallel to the same vector β. In this way, we can explain that the
diversity between feature gradients Ḟ

(l−1)
t of different samples decreases.
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In comparison, in the current section, we mainly discuss the trustworthiness of the background
assumption in Section 4.2 in the main paper. We aim to discuss that on the assumption that features
F

(l−1)
t of different samples have been pushed a little bit towards a specific common direction, we

can find at least one learning iteration in the first phase where ∆F
(l−1)
t and F

(l−1)
t of most samples

have similar directions, and V
(l)
t and ∆V

(l)
t have similar directions. The assumption that features

F
(l−1)
t of different samples have been pushed a little bit towards a specific common direction is an

intermediate state between the chaotic initial state of the MLP and the ideal state introduced in the
above section. In this way, we can assume that C(l)⊤D

(l)
t Ḟ

(l)
t is large.

According to Eq. (2) in the main paper and Lemma 2, we have Ḟ
(l−1)
t = W

(l)⊤

t D
(l)
t Ḟ

(l)
t and

W
(l)⊤

t = V
(l)
t C(l)⊤ + ε

(l)⊤

t . Thus, we have

Ḟ
(l−1)
t = W

(l)⊤

t D
(l)
t Ḟ

(l)
t

= (V
(l)
t C(l)⊤ + ε

(l)⊤

t )D
(l)
t Ḟ

(l)
t

= V
(l)
t C(l)⊤D

(l)
t Ḟ

(l)
t + ε

(l)⊤

t D
(l)
t Ḟ

(l)
t

(16)

If the scalar C(l)⊤D
(l)
t Ḟ

(l)
t is large, we can roughly consider

Ḟ
(l−1)
t ≈ V

(l)
t C(l)⊤D

(l)
t Ḟ

(l)
t

= V
(l)
t · (C(l)⊤D

(l)
t Ḟ

(l)
t ) // V

(l)
t

(17)

It means that the feature gradient Ḟ (l−1)
t is roughly parallel to the vector V (l)

t . Furthermore, the
feature gradient Ḟ (l−1)

t and the change of feature ∆F
(l−1)
t can be considered negatively parallel to

each other, we have
∆F

(l−1)
t // Ḟ

(l−1)
t // V

(l)
t (18)

Similarly, we have ∆F
(l−1)
t+1 // V

(l)
t+1. Therefore, we can roughly consider that V (l)

t ≈ kt∆F
(l−1)
t ,

and V
(l)
t+1 ≈ kt+1∆F

(l−1)
t+1 , where kt, kt+1 ∈ R are two scalars. Then, we can derive that

∆V
(l)
t = V

(l)
t+1 − V

(l)
t ≈ kt+1∆F

(l−1)
t+1 − kt∆F

(l−1)
t (19)

If features F
(l−1)
t of different samples have been pushed a little bit towards a specific common

direction, then it is easy to find at least one learning iteration that ∆F
(l−1)
t and F

(l−1)
t of most

samples have similar directions, i.e. ∆F
(l−1)
t // F

(l−1)
t . Meanwhile, we can find at least one

learning iteration in the first phase where the change of feature in t-th iteration ∆F
(l−1)
t and (t+1)-

th iteration ∆F
(l−1)
t+1 are roughly the same. In other words, ∆F

(l−1)
t ≈ ∆F

(l−1)
t+1 . Thus, we have

∆V
(l)
t ≈ (kt+1 − kt)∆F

(l−1)
t // ∆F

(l−1)
t // V

(l)
t (20)

In this way, we can obtain that V (l)
t and ∆V

(l)
t have similar directions.

K PROOF FOR LEMMA 3

In this section, we present the detailed proof for Lemma 3.

Lemma 3. Given an input sample x ∈ X and a common direction C(l) after the t-th iteration,
if the noise term ε

(l)
t is small enough to satisfy |∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t | ≫

|∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t |, we can obtain cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0,

where ∆V
(l)
t =

∆W
(l)⊤
t C(l)

C(l)⊤C(l)
, and V

(l)
t =

W
(l)⊤
t C(l)

C(l)⊤C(l)
. ∆F

(l−1)
t denotes the change of features

∆F
(l−1)
t = F

(l−1)
t+1 − F

(l−1)
t made by the training sample x after the t-th iteration. To this end,

we approximately consider the change of features ∆F
(l−1)
t after the t-th iteration negatively parallel

to feature gradients Ḟ
(l−1)
t , although strictly speaking, the change of features is not exactly equal to

the feature gradients.
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proof. Given a sample x, we can prove that cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0.

According to chain rule, we have

∆W
(l)
t = −ηD

(l)
t Ḟ

(l)
t F

(l−1)T

t (21)

According to Lemma 1 and Lemma 2, we have C(l)⊤∆ε
(l)⊤

t = 0 and ε
(l)
t C(l) = 0. Then, we have

cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t , Ḟ
(l−1)
t ) =

[
∆V

(l)⊤

t F
(l−1)
t

∥∆V
(l)
t ∥ · ∥F (l−1)

t ∥

]
·

[
V

(l)⊤

t Ḟ
(l−1)
t

∥V (l)
t ∥ · ∥Ḟ (l−1)

t ∥

]
(22)

Therefore, we have

sign(cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t , Ḟ
(l−1)
t ))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t Ḟ
(l−1)
t ]/(∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t W
(l)⊤

t D
(l)
t Ḟ

(l)
t ]/(∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t (V
(l)
t C(l)⊤ + ε

(l)
t )D

(l)
t Ḟ

(l)
t ]/(∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t (V
(l)
t C(l)⊤ + ε

(l)
t )(∆W

(l)
t F

(l−1)
t /(−η

∥∥∥F (l−1)
t

∥∥∥2
2
))]

/(∥∆V
(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤ + V

(l)⊤

t ε
(l)
t )∆W

(l)
t F

(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤ + V

(l)⊤

t ε
(l)
t )(C(l)∆V

(l)⊤

t +∆ε
(l)⊤

t )F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t + V
(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t

+ V
(l)⊤

t V
(l)
t C(l)⊤∆ε

(l)⊤

t + V
(l)⊤

t ε
(l)
t C(l)∆V

(l)⊤

t )F
(l−1)
t ]/(−η

∥∥∥F (l−1)
t

∥∥∥2
2
∥∆V

(l)
t ∥2∥Ḟ (l−1)

t ∥2∥V (l)
t ∥2∥F (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t + V
(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t )F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t + V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t +∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))
(23)

According to our assumption, the noise term ε
(l)
t is small enough to satisfy

|∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t | ≫ |∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t |.

This assumption is verified in Figure 38. Then we can ignore the last term and obtain

sign([∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t +∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

≈ sign([∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t ]

(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2)) ≤ 0

(24)
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Figure 38: Visualization of the Frobenius norm of the two components
∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t and ∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t .

We trained a 9-layer MLP on the MNIST dataset, where each layer had 512 neurons. Iterations
were chosen at the end of the first phase.

Thus,

sign(cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t , Ḟ
(l−1)
t )) ≤ 0 (25)

In this paper, we approximately consider ∆F
(l−1)
t and Ḟ

(l−1)
t are negatively parallel to each

other. Thus, we have sign(cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t )) = sign(cos(∆V

(l)
t , F

(l−1)
t ) ·

(− cos(V
(l)
t , Ḟ

(l−1)
t ))) ≥ 0.

L PROOF FOR THEOREM 2

In this section, we aim to prove that training samples of the same category have the same effect in
the first phase.

Theorem 2. Under the aforementioned background assumption, for any training samples x, x′∈Xc

in the category c, if [C(l)⊤D
(l)
t |xḞ (l)

t |x]·[C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ] > 0 (i.e., F (l)

t |x and F
(l)
t |x′ have kinds of

similarity in very early iterations), then cos(αc∆V
(l)
t |x, F (l−1)

t |x)≥0, and cos(αcV
(l)
t ,∆F

(l−1)
t |x) ≥ 0,

where αc∈{−1,+1} is a constant shared by all samples in category c.

proof. Given a sample x and a sample x′ from the same category, we can prove that
cos(∆V

(l)
t |x, F (l−1)

t |x) · cos(∆V
(l)
t |x′ , F

(l−1)
t |x′) ≥ 0.

sign(cos(∆V
(l)
t |x, F (l−1)

t |x) · cos(∆V
(l)
t |x′ , F

(l−1)
t |x′))

= sign([∆V
(l)⊤

t |xF (l−1)
t |x] · [∆V

(l)⊤

t |x′F
(l−1)
t |x′ ])

= sign([
C(l)⊤∆W

(l)
t |x

C(l)⊤C(l)
F

(l−1)
t |x] · [

C(l)⊤∆W
(l)
t |x′

C(l)⊤C(l)
F

(l−1)
t |x′ ])

= sign([C(l)⊤∆W
(l)
t |xF (l−1)

t |x] · [C(l)⊤∆W
(l)
t |x′F

(l−1)
t |x′ ])

= sign([C(l)⊤(−ηD
(l)
t |xḞ (l)

t |xF (l−1)⊤

t |x)F (l−1)
t |x] · [C(l)⊤(−ηD

(l)
t |x′ Ḟ

(l)
t |x′F

(l−1)⊤

t |x′)F
(l−1)
t |x′ ])

= sign([C(l)⊤D
(l)
t |xḞ (l)

t |x] · [C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ])

(26)

According to the assumption that F
(l)
t |x and F

(l)
t |x′ have kinds of similarity, we can consider

[C(l)⊤D
(l)
t |xḞ (l)

t |x] · [C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ] > 0. In this way, for the category c, there exists a constant

αc, which satisfies sign(cos(αc∆V
(l)
t |x, F (l−1)

t |x) ≥ 0, where αc ∈ {−1,+1} and training sampl e
x ∈ Xc belongs to the category c.

According to Lemma 3, we have cos(∆V
(l)
t |x, F (l−1)

t |x) · cos(V (l)
t ,∆F

(l−1)
t |x) ≥ 0. Thus, we have

sign(cos(αc∆V
(l)
t |x, F (l−1)

t |x) · cos(αcV
(l)
t ,∆F

(l−1)
t |x)) ≥ 0. In addition, the above proof indicates

that sign(cos(αc∆V
(l)
t |x, F (l−1)

t |x) ≥ 0. Therefore, we have sign(cos(αcV
(l)
t |x,∆F

(l−1)
t |x) ≥ 0
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Figure 39: Cosine similarity of features between samples in different categories. We trained 7-layer
MLPs and 9-layer MLPs on the CIFAR-10, the MNIST, and the Tiny ImageNet dataset.

M DISCUSSION FOR FOUR TYPICAL OPERATIONS

M.1 CENTERING OPERATIONS FOR NORMALIZATION

The output feature of the l-th linear layer w.r.t. the input sample x can be described as
[f1, f2, . . . , fh] = W

(l)
t F

(l−1)
t ∈ Rh, where fi denotes the i-th dimension of the feature. In this

way, the batch normalization operation can be formulated as BN(fi) = γscale[(fi − µi)/σi] + βshift,
where γscale and βshift denote the scaling and the shifting parameters, respectively. In this way, the
batch normalization operation subtracts the mean feature F̄

(l)
t = Ex∈X [F

(l)
t |x] from features of all

samples. Therefore, features of different samples in a same category are no longer similar to each
other.

We also propose a simplified normalization operation (i.e., centering operations for normalization)
to alleviate the TFC phenemonon in the first phase. The centering operations for normalization is
given as norm1(fi) = (fi − µi)/σi, where µi and σi denote the mean value and the standard
deviation of fi over different samples, respectively. This operation is similar to the batch normal-
ization (Ioffe & Szegedy, 2015), but we do not compute the scaling and shifting parameters in the
batch normalization.

In order to verify the centering operations for normalization can alleviate the TFC phenemonon dur-
ing the training process of the MLP, we trained 7-layer MLPs and 9-layer MLPs with and without the
centering operations. Specifically, for the centering normalization operation norm1, we added the
centering operations after each linear layer, except the last linear layer. Each linear layer in the MLP
had 512 neurons. Figure 39 shows that the feature similarity in MLPs with centering operations
kept decreasing, while the feature similarity of the MLP without centering operations kept increas-
ing. This indicated that centering operations for normalization alleviate the TFC phenomenon.

M.2 MOMENTUM

We can explain that momentum in gradient descent can alleviate this phenomenon. Based on Lemma
3, the “self-enhanced system” of the TFC phenemonon requires singular values of weights along
other directions ε

(l)
t to be small enough. However, because the momentum operation strengthens

influences of the initialized noisy weights W
(l)
t=0, it strengthens singular values of ε

(l)
t , to some

extent, thereby alleviating the TFC phenemonon.

Specifically, considering the momentum with the coefficient m, the dynamics of weights Wt+1 can
be described as,

Wt+1 = Wt − η
∂Loss

∂Wt
−m

∂Loss

∂Wt−1
, (27)

where η denotes the learning rate. Because we only focus on weights in a single layer, without
causing ambiguity, we omit the superscript (l) to simplify the notation in this subsection. In this
way, we can write the gradient descent as

WT+1 = W0 + η

T∑
t

1−mT+1−t

1−m

∂Loss

∂Wt
. (28)

Since 0 < m < 1, the coefficient 1−mT+1−t

1−m decreases when the variable t increases. Thus, a large
m represents that influences of W0 on WT+1 are significant. Because εT+1 is decomposed from

38



Under review as a conference paper at ICLR 2023

C
os

in
eS

im
ila

rit
y

of
 fe

at
ur

es
iteration iteration

(a) (b)

iteration iteration iteration iteration

0.6

0.4

0.2

0.6

0.4

0.2

0.8

0.4

0.0
0 1000 2000 0 1000 2000 0 2500 5000

0.6

0.4

0.6

0.4

0.8

0.5

0.6

0 1000 2000 0 1000 2000 0 2500 5000

L=9, m=0 L=9, m=0.5 L=9, m=0.9
L=7, m=0 L=7, m=0.5 L=7, m=0.9

L=9, 𝜆𝜆=1e-3L=9, 𝜆𝜆=1e-4
L=7, 𝜆𝜆=1e-3

L=7, 𝜆𝜆=1e-4
L=9, 𝜆𝜆=1e-5 L=7, 𝜆𝜆=1e-5

CIFAR-10 MNIST Tiny ImageNet CIFAR-10 MNIST Tiny ImageNet

Figure 40: Effects of (a) momentum and (b) L2 regularization. We trained L-layer MLPs, where
each layer had 512 neurons. A shorter first phase indicates that the TFC phenomenon is more
alleviated.

WT+1 and singular values of εT+1 are mainly determined by the noisy W0. Accordingly, singular
values of εT+1 are relatively large, which disturb the “self-enhanced system” and alleviate the TFC
phenemonon.

To verify the above analysis, we trained MLPs with m = 0, 0.5, 0.9, respectively. Figure 40(a)
verifies that a larger value of m usually more alleviates the TFC phenomenon.

M.3 INITIALIZATION

We explain that the initialization of MLPs also affects the TFC phenemonon. According to Lemma
3, such “self-enhanced system” requires singular values of weights along other directions ε

(l)
t to be

small enough. However, because increasing the variance of the initialized weights W (l)
0 will increase

singular values of ε(l)t based on Lemma 2, alleviating the TFC phenemonon. Specifically, we ini-
tialize weights with Xavier normal distribution (Glorot & Bengio, 2010), i.e. W0 ∼ N (0, γσ2

varI),

where σvar =
√

2
fanout+fanin

. fanin and fanout denote the input dimension and the output dimension
of the linear layer, respectively. In this way, a large γ yields large singular values of initial weights

W0. Based on Lemma 2, we also have ε
(l)
0 = W

(l)⊤

0 − W
(l)⊤

0
C(l)C(l)⊤

C(l)⊤C(l)
. Large singular values of

initial weights W0 lead to large singular values of ε(l)0 . Therefore, a large variance of initialized
weights disturbs the “self-enhanced system” and alleviates the TFC phenemonon.

M.4 L2 REGULARIZATION (RIDGE LOSS)

L2 regularization is equivalent to the weight decay in the case of gradient descent. The total loss
is given as L(Wt) = LCE(Wt) + λ∥Wt∥22, where LCE(Wt) represents the cross entropy loss, and
λ∥Wt∥22 denotes the ridge loss. In this way, we have the following iterates by using gradient descent

Wt+1 = Wt − η∇Lt (Wt)

= Wt − η∇LCE
t (Wt)− 2ηλWt

= (1− 2ηλ)Wt − η∇LCE
t (Wt) , (29)

According to Lemma 3, such “self-enhanced system” requires singular values of weights along other

directions ε(l)t to be small enough. Based on Lemma 2, we also have ε(l)t = W
(l)⊤

t −W
(l)⊤

t
C(l)C(l)⊤

C(l)⊤C(l)
.

In this way, a larger λ yields smaller singular values of ε
(l)
t , which disturbs the “self-enhanced

system” and strengthens the TFC phenemonon. Figure 40(b) Figure 9(d) in the main paper verify
that a larger coefficient λ more strengthened the TFC phenemonon.
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N EXPLANATIONS FOR MORE DNNS.

The theoretical analysis of this study can explain which kinds of DNNs are more likely to exhibit
the TFC phenomenon in early epochs. In fact, we discovered the two-phase phenomenon and the
TFC phenomenon in various DNNs, including MLPs and modern CNNs, e.g., VGG-11 models and
VGG-13 models. Specifically, we trained VGG-11 models and VGG-13 models on the CIFAR-
10 dataset and the Tiny ImageNet dataset. We adopted the learning rate η = 0.01, the batch size
bs = 100, and the SGD optimizer. The training loss, the testing loss, the training accuracy, and the
testing accuracy are shown in Figure 41 and Figure 42. Figure 41(e) and Figure 42(e) show that
VGGs exhibited TFC phenomenoa in practice.
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Figure 41: (a) The training loss of a VGG-11 model and a VGG-13 model trained on the CIFAR-10
dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing
accuracies of two models. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the third linear layer of the MLP in models.
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Figure 42: (a) The training loss of a VGG-11 model and a VGG-13 model trained on the Tiny
ImageNet dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d)
Testing accuracies of two models. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of the MLP in models.

Furthermore, we found that our theoretical analysis can be generalized to modern CNNs and
transformers. We conducted experiments on ResNet-18, ResNet-34 (He et al., 2015), and Vi-
sion Transformers (ViTs) (Dosovitskiy et al., 2020). Because both ResNets and ViTs were the two
most classical network architectures that had been examined for years, it showed that ResNet-18,
ResNet-34, and ViT did not exhibit the TFC phenomenon (or the TFC phenomenon only existed
in very few iterations within the first epoch), owing to the use of normalization operations in these
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DNNs. However, according to our theoretical analysis, if the batch normalization (BN) operations
in ResNet-18/34 and the layer normalization (LN) operations in ViTs were removed, then the TFC
phenomenon was significantly strengthened.

First, we trained ViTs, ResNet-18, and ResNet-34 models on the CIFAR-10 dataset. The classifi-
cation heads in both ViTs and ResNet-18/34 were implemented by 4-layer MLP. Specifically, we
trained two different ViTs with the patch size P = 4, the heads = 18, the dropout rate = 0.1, the
embedding dropout rate = 0.1, the learning rate η = 0.1, the batch size bs = 100, and the SGD
optimizer. For ResNet-18 and ResNet-34 models, we adopted the learning rate η = 0.01, the batch
size bs = 100, and the SGD optimizer. Besides, we used two data augmentation methods, including
random cropping and random horizontal flipping. The training loss, the testing loss, the training
accuracy, and the testing accuracy are shown in blue curves in Figure 43, Figure 44, Figure 45 and
Figure 46. These figures verify that ResNets and ViTs’ first phases were very short, and the TFC
phenomenon only existed in a few iterations, which could be ignored.

Second, in comparison, we further constructed four baseline networks by removing the BN layer
from ResNet-18/34 and removing LN layers from ViTs. Orange curves in Figure 43, Figure 44,
Figure 45 and Figure 46 verify that such new ResNet-18/34 and new ViTs exhibited a significant
TFC phenomenon.
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Figure 43: (a) The training loss of a ResNet-18 and a ResNet-18 (without BN) trained on the CIFAR-
10 dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing
accuracies of two models. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the third linear layer of the MLP in models.
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Figure 44: (a) The training loss of a ResNet-34 and a ResNet-34 (without BN) trained on the CIFAR-
10 dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing
accuracies of two models. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the third linear layer of the MLP in models.
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Figure 45: (a) The training loss of a ViT and a ViT (without LN) trained on the CIFAR-10 dataset.
(b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing accuracies
of two models. (e) Cosine similarity between features of different categories. (f) Cosine similarity
between gradients of different samples in a category. The feature and the feature gradient were
used in the third linear layer of the MLP in models.
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Figure 46: (a) The training loss of a ViT and a ViT (without LN) trained on the CIFAR-10 dataset.
(b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing accuracies
of two models. (e) Cosine similarity between features of different categories. (f) Cosine similarity
between gradients of different samples in a category. The feature and the feature gradient were
used in the third linear layer of the MLP in models.
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O MORE EXPERIMENTAL RESULTS OF ASSUMPTION 1.

Assumption 1. We assume that the MLP encodes features of very few (a single or two) categories
in the first phase, instead of simultaneously learning all or most categories in this phase.

In this section, we aim to verify that Assumption 1 is a common fact in various DNNs, includ-
ing MLPs, VGGs, and ResNets. To this end, we have conducted new experiments to show that
DNNs encoded features of very few (a single or two) categories in early epochs. Specifically, we
trained a 9-layer MLP on the CIFAR-10, the MNIST dataset, and the Tiny ImageNet dataset, respec-
tively. Each layer of the MLP had 512 neurons. Besides, We trained a VGG-11 model, a VGG-13
model, and a ResNet-18 on the CIFAR-10 dataset. We evaluated the training accuracy at the end of
the first phase. For the Tiny ImageNet dataset, we randomly selected the following 50 categories,
orangutan, parking meter, snorkel, American alligator, oboe, basketball, rocking chair, hopper, neck
brace, candy store, broom, seashore, sewing machine, sunglasses, panda, pretzel, pig, volleyball,
puma, alp, barbershop, ox, flagpole, lifeboat, teapot, walking stick, brain coral, slug, abacus, comic
book, CD player, school bus, banister, bathtub, German shepherd, black stork, computer keyboard,
tarantula, sock, Arabian camel, bee, cockroach, cannon, tractor, cardigan, suspension bridge, beer
bottle, viaduct, guacamole, and iPod for training. Figure 47, Figure 48, Figure 49, and Figure 50
show that various DNNs encoded features of very few (a single or two) categories in early epochs.

9-layer MLP trained on the CIFAR-10 dataset

(c)

(a)

9-layer MLP trained on the Tiny ImageNet Dataset

9-layer MLP trained on the MNIST dataset

(b)

Figure 47: The training accuracies of MLPs on the CIFAR-10 dataset, the MNIST dataset, and the
Tiny ImageNet dataset. The accuracies were evaluated at the end of the first phase. MLPs encode
features of very few (a single or two) categories in the first phase, instead of simultaneously learning
all or most categories in this phase. (a) The training accuracy of a 9-layer MLP trained on the
CIFAR-10 dataset. (b) The training accuracy of a 9-layer MLP trained on the MNIST dataset. (c)
The training accuracy of a 9-layer MLP trained on the Tiny ImageNet dataset.

VGG-11 trained on the CIFAR-10 dataset

(a)

VGG-11 trained on the Tiny ImageNet dataset

(b)

Figure 48: The training accuracies of VGG-11 models on the CIFAR-10 dataset and the Tiny Ima-
geNet dataset. The accuracies were evaluated at the end of the first phase. VGG-11 models encode
features of very few (a single or two) categories in the first phase, instead of simultaneously learn-
ing all or most categories in this phase. (a) The training accuracy of VGG-11 models trained on
the CIFAR-10 dataset. (b) The training accuracy of VGG-11 models trained on the Tiny ImageNet
dataset.
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(b)

VGG-13 trained on the Tiny ImageNet DatasetVGG-13 trained on the CIFAR-10 dataset

(a)

Figure 49: The training accuracies of VGG-13 models on the CIFAR-10 dataset and the Tiny
ImageNet dataset. The accuracies were evaluated at the end of the first phase. VGG-13 models
encode features of very few (a single or two) categories in the first phase, instead of simultaneously
learning all or most categories in this phase. (a) The training accuracy of VGG-13 models trained on
the CIFAR-10 dataset. (b) The training accuracy of VGG-13 models trained on the Tiny ImageNet
dataset.

ResNet18 trained on the Tiny ImageNet Dataset

(a) (b)

ResNet18 trained  on  the  CIFAR-10  dataset

Figure 50: The training accuracies of ResNet-18 models on the CIFAR-10 dataset and the Tiny
ImageNet dataset. The accuracies were evaluated at the end of the first phase. ResNet-18 models
encode features of very few (a single or two) categories in the first phase, instead of simultaneously
learning all or most categories in this phase. (a) The training accuracy of ResNet-18 models trained
on the CIFAR-10 dataset. (b) The training accuracy of ResNet-18 models trained on the Tiny
ImageNet dataset.
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P PROPOSE AN IMPROVED TRAINING METHOD

In this section, we use our theory to develop a new normalization method. The new normalization
operation was designed considering the following two findings.
• Our theoretical analysis told us that the centering operation in BN could alleviate the TFC phe-
nomenon.
• Previous studies found some shortcomings of the BN operation, i.e., the BN operation usually
caused unstable features. Thus, the BN operation was found incompatible with the dropout (Li
et al., 2019), hurt the classification accuracy in adversarial training (Galloway et al., 2019), and
decreased the quality of images generated by generative models (Salimans et al., 2016).

Therefore, according to our analysis, we only need to update the dynamic normalization parameters
(i.e., µi and σi in the following equation) in the first phase to avoid the learning-sticking problem,
instead of applying the dynamic normalization parameters in the entire training process. In this way,
we can simultaneously solve the learning-sticking problem and avoid unstable features.

Specifically, we are given the output feature F = [f1, f2, . . . , fh] ∈ Rh of the l-th linear layer w.r.t. the
input sample x, where fi denotes the i-th dimension of the feature. The new normalization operation
is given as

norm(fi) = (fi − µi)/σi, (30)

where µi and σi denote the mean value and the standard deviation of fi over different samples,
respectively. We only update the mean value µi and the standard deviation σi in the first phase, as
follows.

µi =

{
Ex∈batch[fi], at > τ

µi,t−1, at ≤ τ
, σ2

i =

{
Varx∈batch[fi], a > τ

σ2
i,t−1, a ≤ τ

, (31)

where we keep updating at = 0.99at−1 + 0.01Ex,x′∈batch[cos(F |x, F |x′)] through all the t previous
batches to represent the current cosine similarity between features of different samples. If at is
greater than a threshold τ = 0.3, then we consider the learning process to be in the first phase and
normalize the feature. Otherwise, if at ≤ τ , then we consider it has already jumped to the second
phase, stop updating µi and σ2

i , and use constants µi and σ2
i to generate stable features. We set

m = 0.1 and compute µi,t and σ2
i,t in the t-th batch as follows.

µi,t =

{
(1−m)µi,t−1 +mEx∈batch[fi], at > τ

µi,t−1, at ≤ τ
, σ2

i,t =

{
(1−m)σ2

i,t−1 +mVarx∈batch[fi], a > τ
σ2
i,t−1, a ≤ τ

.

(32)
To this end, we conducted experiments on two types of MLPs (i.e., 9-layer MLPs and 11-layer

MLPs) to compare the proposed method with BN. For each type of MLP, we trained three versions
MLPs on the CIFAR-10 dataset. The vanilla MLP had 512 neurons in each layer. We added the
proposed norm operation after the first, the third, the fifth, and the seventh linear layers, and con-
structed the network MLP-norm. For a fair comparison, we constructed a baseline MLP, namely
MLP-BN, by adding the BN operation in the same positions as in MLP-norm. In addition, scaling
and shifting parameters in the BN operation were closed. Figure 51 shows that both the MLP-norm
and MLP-BN alleviated the learning-sticking problem. However, MLP-norm was optimized much
faster than MLP-BN, because our theoretical analysis told us that it was not necessary to continue
updating µi and σ2

i , if the learning process did not have a risk of feature collapse, thereby alleviating
the optimization problems found in (Li et al., 2019; Galloway et al., 2019).
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Figure 51: (a) The training loss of three 11-layer MLPs trained on the CIFAR-10 dataset, where each
layer had 512 neurons. (b) The training accuracies of three 11-layer MLPs. (c) The training loss of
three 9-layer MLPs trained on the CIFAR-10 dataset, where each layer had 512 neurons. (d) The
training accuracy of three 9-layer MLPs. Note that the vibration of the blue curve could be explained
as the failure of jumping out of the first phase, due to the strong power of the “self-enhancement
system.”
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