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ABSTRACT

Diffusion models (DMs) are widely used for generating high-quality high-
dimensional images in a non-differentially private manner. However, due to the
notoriously slow training process of DMs, applying differential privacy (DP) to
the training routine requires adding large amounts of noise, yielding poor-quality
generated images. To address this challenge, recent papers suggest pre-training
DMs with public data, then fine-tuning them with private data using DP-SGD
for a relatively short period. In this paper, we further improve the current state
of DMs with DP by adopting the Latent Diffusion Models (LDMs). LDMs are
equipped with powerful pre-trained autoencoders that map the high-dimensional
pixels into lower-dimensional latent representations, in which DMs are trained,
yielding a more efficient and fast training of DMs. In our algorithm, DP-LDMs,
rather than fine-tuning the entire DMs, we fine-tune only the attention modules
of LDMs at varying layers with privacy-sensitive data, reducing the number of
trainable parameters by roughly 90% and achieving a better accuracy, compared
to fine-tuning the entire DMs. The smaller parameter space to fine-tune with
DP-SGD helps our algorithm to achieve new state-of-the-art results in several
public-private benchmark data pairs. Our approach also allows us to generate
more realistic, high-dimensional images (256x256) and those conditioned on text
prompts with differential privacy, which have not been attempted before us, to
the best of our knowledge. Our approach provides a promising direction for train-
ing more powerful, yet training-efficient differentially private DMs, producing
high-quality high-dimensional DP images.

1 INTRODUCTION

Creating impactful machine learning solutions for real-world applications often requires access
to personal data that may compromise privacy, raising ethical and legal concerns. These reasons
motivate differentially private data generation as an active area of research. The main objective of
this research is to generate synthetic data that preserves the privacy of the individuals in the original
data while maintaining the statistical properties of the original data. Unlike traditional methods that
require strict assumptions about the intended use of synthetic data (Mohammed et al., 2011; Xiao
et al., 2010; Hardt et al., 2012; Zhu et al., 2017), recent approaches aim to create synthetic data that
is general-purpose and useful for a range of downstream tasks, including training a classifier and
performing statistical testing. These popular approaches include GAN-based models (Xie et al., 2018;
Torkzadehmahani et al., 2019; Yoon et al., 2019; Chen et al., 2020), optimal transport or kernel-based
distance approaches (Cao et al., 2021; Harder et al., 2021; Vinaroz et al., 2022; Yang et al., 2023),
and diffusion models (Dockhorn et al., 2023; Ghalebikesabi et al., 2023).

Many of these popular approaches for differentially private data generation operate on small generative
models, such as two-layer convolutional neural networks (CNNs), and simple datasets such as MNIST
and FashionMNIST. This is because the DP training algorithm, called differentially private stochastic
gradient descent (DP-SGD) by Abadi et al. (2016), does not scale well for large models that are
necessary for learning complex distributions. For instance, the recent approach by Dockhorn et al.
(2023) uses diffusion models that have shown impressive performance on high-dimensional image
generation in non-DP settings. However, due to the scalability issue of DP-SGD, DP trained diffusion
models yield rather underwhelming performance when evaluated on complex datasets such as
CIFAR10 and CelebA.
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More recent approaches attempt to overcome this issue by utilizing the abundant resource of public
data. For example, Harder et al. (2023) use public data for pre-training a large feature extractor model
to learn useful features without incurring a privacy loss, then use those features to train a generator
using private data. As another example, Ghalebikesabi et al. (2023) pretrain a large diffusion-based
generator using public data, then fine-tune it for private data for a relatively small number of epochs
using DP-SGD. This method currently achieves the state-of-the-art performance on CIFAR10 image
generation using DMs with differential privacy.

In this paper, we attempt to further improve the performance of differentially private image generation
by reducing the number of parameters to fine-tune. To achieve this, we build off of latent diffusion
models (LDMs) by Rombach et al. (2022), which uses a pre-trained autoencoder to reduce the size
of images, often called latent variables, entering into the diffusion model. This latent diffusion
model defined on this latent space has a significantly lower number of parameters than the diffusion
model defined on the pixel space. Inspired by You & Zhao (2023) that establishes a transfer learning
paradigm for LDMs in non-DP settings, we pre-train the entire LDM including the auto-encoder
using public data, and fine-tune only attention modules and a conditioning embedder using our private
data. As a result, the number of trainable parameters under our approach is only 10% of that of the
diffusion models used in (Ghalebikesabi et al., 2023) and achieves better performance.

While readers might find the use of DP-SGD to fine-tune a pre-trained model unremarkable at first
glance, the potential impact of this seemingly ordinary method is substantial. We describe the
significance in the following:

• We improve the state-of-the-art (SOTA) results in all three commonly used image benchmark
datasets in DP literature, including CIFAR10, CelebA64, and MNIST. This is thanks to the
unique aspects of our proposed method, i.e., training DMs in the latent space and fine-tuning
only a few selected parameters. This makes our training process considerably more efficient
than training a DM from scratch with DP-SGD in (Dockhorn et al., 2023), or fine-tuning the
entire DM with DP-SGD in (Ghalebikesabi et al., 2023). Reducing the fine-tuning space
not only improves the performance but also helps to democratize DP image generation
using diffusion models, which otherwise have to rely on massive computational resources
only available to a small fraction of the field and would leave a huge carbon footprint (e.g.,
reducing the training time from 192 GPU hours Dockhorn et al. (2023) to mere 10 GPU
hours for similar performance).

• We push the boundary of what DP-SGD fine-tuned generative models can achieve, by being
the first to produce high-dimensional images (256x256) at a reasonable privacy level. We
showcase this in text-conditioned and class-conditioned image generation, where we input a
certain text prompt (or a class label) and generate a corresponding image from a DP-fine-
tuned LDM for CelebAHQ. These conditional, high-dimensional image generation tasks
present more complex but also more realistic benchmarks compared to the conventional
CIFAR10 and MNIST datasets. These latter datasets, though widely used in DP image
generation literature for years, are now rather simplistic and outdated. Our work contributes
to narrowing down the large gap between the current state of synthetic image generation in
non-DP settings and that in DP settings.

In the following section, we provide relevant background information. We then present our method
along with related work and experiments on benchmark datasets.

2 BACKGROUND

We first describe latent diffusion models (LDMs), then the definition of differential privacy (DP) and
finally the DP-SGD algorithm, which we will use to train the LDM in our method.

2.1 LATENT DIFFUSION MODELS (LDMS)

Diffusion Models gradually denoise a normally distributed variable through learning the reverse
direction of a Markov Chain of length T . Latent diffusion models (LDMs) by Rombach et al. (2022)
are a modification of denoising diffusion probabilistic models (DDPMs) by Ho et al. (2020) in
the following way. First, Rombach et al. (2022) uses a powerful auto-encoder, consisting of an
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encoder Enc and a decoder Dec . The encoder transforms a high-dimensional pixel representation
x into a lower-dimensional latent representation z via z = Enc(x); and the decoder transforms
the lower-dimensional latent representation back to the original space via x̂ = Dec(z). Rombach
et al. (2022) use a combination of a perceptual loss and a patch-based adversarial objective, with
extra regularization for better-controlled variance in the learned latent space, to obtain powerful
autoencoders (See section 3 in (Rombach et al., 2022) for details). This training loss encourages the
latent representations to carry equivalent information (e.g., the spatial structure of pixels) as the pixel
representations, although the dimensionality of the former is greatly reduced.

Second, equipped with the powerful auto-encoder, Rombach et al. (2022) trains a diffusion model
(typically a UNet (Ronneberger et al., 2015)) in the latent representation space. Training a DM in this
space can significantly expedite the training process of diffusion models, e.g., from hundreds of GPU
days to several GPU hours for similar accuracy.

Third, LDMs also contain attention modules (Vaswani et al., 2017) that take inputs from a conditioning
embedder, inserted into the layers of the underlying UNet backbone as the way illustrated in Fig. 1 to
achieve flexible conditional image generation (e.g., generating images conditioning on text, image
layout, class labels, etc.). The modified Unet is then used as a function approximator τθ to predict
an initial noise from the noisy lower-dimensional latent representations at several finite time steps t,
where in LDMs, the noisy representations (rather than data) follow the diffusion process defined in
Ho et al. (2020).

The parameters of the approximator are denoted by θ = [θU ,θAtt,θCn], where θU are the parameters
of the underlying Unet backbone, θAtt are the parameters of the attention modules, and θCn are the
parameters of the conditioning embedder (We will explain these further in Sec. 3). These parameters
are then optimized by minimizing the prediction error defined by

Lldm(θ) = E(zt,y),τ,t

[
∥τ − τθ(zt, t, y)∥22

]
, (1)

where τ ∼ N (0, I), t uniformly sampled from {1, · · · , T}, xt is the noisy version of the input x at
step t, zt = Enc(xt) and y is what the model is conditioning on to generate data, e.g., class labels, or
a prompt. Once the approximator is trained, the drawn samples in latent space, z̃, are transformed
back to pixel space through the decoder, i.e., x̃ = Dec(z̃). Our work introduced in Sec. 3 pre-trains
both auto-encoder and τθ using public data, then fine-tunes only θAtt,θCn, the parameters of the
attention modules and the conditioning embedder, using DP-SGD for private data.

2.2 DIFFERENTIAL PRIVACY (DP)

A mechanism M is (ϵ, δ)-DP for a given ϵ ≥ 0 and δ ≥ 0 if and only if Pr[M(D) ∈ S] ≤
eϵ · Pr[M(D′) ∈ S] + δ for all possible sets of the mechanism’s outputs S and all neighbouring
datasets D, D′ that differ by a single entry. A single entry difference could come from either
replacing or removing one entry from the dataset D. One of the most well-known and widely used DP
mechanisms is the Gaussian mechanism. The Gaussian mechanism adds a calibrated level of noise to
a function µ : D 7→ Rp to ensure that the output of the mechanism is (ϵ, δ)-DP: µ̃(D) = µ(D) + n,
where n ∼ N (0, σ2∆2

µIp). Here, σ is often called a privacy parameter, which is a function of ϵ and δ.
∆µ is often called the global sensitivity (Dwork et al., 2006; 2014), which is the maximum difference
in L2-norm given two neighbouring D and D′, ||µ(D)− µ(D′)||2. Because we are adding noise, the
natural consequence is that the released function µ̃(D) is less accurate than the non-DP counterpart,
µ(D). This introduces privacy-accuracy trade-offs.

Two properties of DP: The post-processing invariance property of DP (Dwork et al., 2006; 2014)
implies that the composition of any data-independent mapping with an (ϵ, δ)-DP algorithm is also
(ϵ, δ)-DP. So no analysis of the released synthetic data can yield more information about the real
data than what our choice of ϵ and δ allows. The composability property Dwork et al. (2006; 2014)
states that the strength of privacy guarantee degrades in a measurable way with repeated use of
DP-algorithms. This composability property of DP poses a significant challenge in deep learning.

DP-SGD (Abadi et al., 2016) is one of the most widely used DP algorithms for training deep neural
network models. It modifies stochastic gradient descent (SGD) by adding an appropriate amount of
noise to the gradients in every training step, where the amount of noise is controlled by Gaussian
mechanism. This adjustment ensures the parameters of a neural network are differentially private.
However, there are two challenges in DP-SGD. First, it is infeasible to obtain an analytic sensitivity of

3



Under review as a conference paper at ICLR 2024

Figure 1: A schematic of DP-LDM. In the non-private step, we pre-train the auto-encoder depicted in
yellow (Right and Left) with public data. We then forward pass the public data through the encoder
(blue arrow on the left) to obtain latent representations. We then train the diffusion model (depicted
in the green box) on the lower-dimensional latent representations. The diffusion model consists of
the Unet backbone and added attention modules (in Red) with a conditioning embedder (in Red, at
top-right corner). In the private step, we forward pass the private data (red arrow on the left) through
the encoder to obtain latent representations of the private data. We then fine-tune only the red blocks,
which are attention modules and conditioning embedder, with DP-SGD. Once the training is done,
we sample the latent representations from the diffusion model, and pass them through the decoder to
obtain the image samples in the pixel space.

gradients under complex deep neural network models. A remedy to this issue is explicitly normalizing
the norm of each sample-wise gradient with some pre-chosen value C such that the gradient norm
given any datapoint’s difference between two neighbouring datasets cannot exceed C. Second, due
to the composability property of DP, privacy loss is accumulating over a typically long course of
training. Abadi et al. (2016) exploit the subsampled Gaussian mechanism (i.e., applying the Gaussian
mechanism on randomly subsampled data) to achieve a tight privacy bound. The Opacus package
(Yousefpour et al., 2021) implements the privacy analysis in DP-SGD, which we adopt in our method.
One thing to note is that we use the removing definition of DP in the experiments as in Opacus.

3 DIFFERENTIALLY PRIVATE LATENT DIFFUSION MODELS (DP-LDMS)

In our method, which we call differentially private latent diffusion models (DP-LDMs), we carry out
two training steps: non-private and private steps.

Non-Private Step: Pre-training an autoencoder and a DM using public data. Following
Rombach et al. (2022), we first pre-train an auto-encoder. The encoder scales down an image
x ∈ RH×W×3 to a 3-dimensional latent representation z ∈ Rh×w×c by a factor of f , where
f = H/h =W/w. This 3-dimensional latent representation is chosen to take advantage of image-
specific inductive biases that the Unet contains, e.g., 2D convolutional layers. Following Rombach
et al. (2022), we also train the autoencoder by minimizing a combination of different losses, such
as perceptual loss and adversarial loss, with some form of regularization. See Appendix Sec. A.1
for details. As noted by Rombach et al. (2022), we also observe that a mild form of downsampling
performs the best, achieving a good balance between training efficiency and perceptually decent
results. See Appendix Sec. A.1 for details on different scaling factors f = 2m, with a different value
of m. Training an auto-encoder does not incur any privacy loss, as we use public data Dpub that is
similar to private data Dpriv at hand. The trained autoencoder is, therefore, a function of public data:
an encoder Enc(Dpub) and a decoder Dec(Dpub).

A forward pass through the trained encoder Enc(Dpub) gives us a latent representation of each image,
which we use to train a diffusion model. As in (Rombach et al., 2022), we consider a modified Unet
for the function approximator τθ shown in Fig. 1. We minimize the loss given in (1) to estimate the
parameters of τθ as:

θU
Dpub

,θAtt
Dpub

,θCn
Dpub

= argmin
θ

Lldm(θ). (2)

Since we use public data, there is no privacy loss incurred in estimating the parameters, which are a
function of public data Dpub.
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Figure 2: A SpatialTransformer Block Figure 3: An AttentionBlock

Algorithm 1 DP-LDM

Input: Latent representations through a pre-trained auto-encoder and conditions (if conditioned
generation) {(zi, yi)}Ni=1, a pre-trained diffusion model with parameters θ, number of iterations
P , mini-batch size B, clipping norm C, learning rate η, privacy parameter σ corresponding to (ϵ,
δ)-DP. Denote θ̂ = {θAtt,θCn}
for p = 1 to P do

Step 1. Take a mini-batch Bp uniformly at random with a sampling probability, q = B/N

Step 2. For each sample i ∈ Bp compute the gradient: gp(zi, yi) = ∇θ̂p
Lldm(θ̂p, zi, yi)

Step 3. Clip the gradient: ĝp(zi, yi) = gp(zi, yi)/max(1, ∥gp(zi, yi)∥2/C)
Step 4. Add noise: g̃p = 1

B

(∑B
i=1 ĝp(zi, yi) +N (0, σ2C2I)

)
Step 5. Gradient descent: θ̂p+1 = θ̂p − ηg̃p

end for
Return: (ϵ, δ)-differentially private θ̂P = {θAtt

P ,θCn
P }

Private Step: Fine-tuning attention modules & conditioning embedder for private data. Given
a pre-trained diffusion model, we fine-tune the attention modules and a conditioning embedder using
our private data. For the models with the conditioned generation, the attention modules refer to the
spatial transformer blocks shown in Fig. 2 which contains cross-attentions and multiple heads. For the
models with an unconditional generation, the attention modules refer to the attention blocks shown in
Fig. 3. Consequently, the parameters of the attention modules, denoted by θAtt, differ, depending on
the conditioned or unconditioned cases. The conditioning embedder only exists in the conditioned
case. Depending on the different modalities the model is trained on, the conditioning embedder takes
a different form. For instance, if the model generates images conditioning on the class labels, the
conditioning embedder is simply a class embedder, which embeds class labels to a latent dimension.
If the model conditions on language prompts, the embedder can be a transformer.

The core part of the spatial transformer block and the attention block is the attention layer, which has
the following parameterization (For simplicity, we explain it under the conditioned case):

Attention(ψi(zt), ϕ(y);Q,K, V ) = softmax
(

QKT

√
dk

)
V ∈ RN×dk , (3)

where ψi(zt) ∈ RN×di

is an intermediate representation of the latent representation zt through
the ith residual convolutional block in the backbone Unet, and ϕ(y) ∈ RM×dc is the embedding
of what the generation is conditioned on (e.g., class labels, CLIP embedding). Furthermore, Q =

ψi(zt)W
(i)
Q

⊤,K = ϕ(y)W
(i)
K

⊤, and V = ϕ(y)W
(i)
V

⊤, where the parameters are denoted by W (i)
Q ∈

Rdk×di

; W (i)
K ∈ Rdk×dc ; and W (i)

V ∈ Rdk×dc . Unlike the conditioned case, where the key (K) and
value (V ) vectors are computed as a projection of the conditioning embedder, the key and value
vectors are a projection of the pixel embedding ψi(zt) only in the case of the unconditioned model.
We run DP-SGD to fine-tune these parameters to obtain differentially private θAtt

Dpriv
and θCn

Dpriv
,

starting from θAtt
Dpub

,θCn
Dpub

. Our algorithm is given in Algorithm 1.

Why do we choose the attention modules to be fine-tuned among any other parts of the model?
Our rationale behind this choice is as follows. The output of the attention in (3) assigns a high focus
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to the features that are more important, by zooming into what truly matters in an image depending on
a particular context, e.g., relevant to what the image is conditioned on. This can be quite different
when we move from one distribution to the other. By fine-tuning the attention modules (together
with the conditioning embedder when conditioned case), we are able to effectively transfer what we
learned from the public data distribution to the private data distribution, as shown in Sec. 5. However,
if we fine-tune other parts of the model, e.g., the ResBlocks, the fine-tuning of these blocks can make
a large change in the features themselves, which could reduce the performance in the private training.
See our results when fine-tuning other parts of the model in Sec. 5.

The idea of fine-tuning attention blocks is explored elsewhere. For instance, in fine-tuning large
language models, existing work introduces a few new parameters to transformer attention blocks, and
those new parameters are fine-tuned (Yu et al., 2022; Hu et al., 2021) to adapt to new distributions. In
the context of pre-trained diffusion models, adding, modifying, and controlling attention layers are
gaining popularity for tasks such as image editing and text-to-image generation(Hertz et al., 2022;
Park et al., 2023; Zhang et al., 2023; You & Zhao, 2023).

Which public dataset do I use for a given private dataset? This is an open question in transfer
learning literature. Generally, if the two datasets are close to each other in some sense, they are
assumed to be a better pair. We use FID as a proxy to judge the similarity between two image datasets.
For instance, if a public dataset from the private dataset has a smaller FID than other candidates, we
use that public data to begin with (See Sec. 5). In other datasets out of the image domain, there could
be a more appropriate metric to use than FID, e.g., in the case of discrete data, kernel-based distance
metrics with an appropriately chosen kernel could be more useful.

4 RELATED WORK

Early efforts in differentially private data generation imposes strict limitations on the data type and the
intended purpose of the released data (Snoke & Slavković, 2018; Mohammed et al., 2011; Xiao et al.,
2010; Hardt et al., 2012; Zhu et al., 2017), which leads to the difficulties in generating large-scale
data. Later, several works have explored generating discrete data with restricted range of values,
by understanding the relationships of small groups of features and then privatizing them (Zhang
et al., 2017; Qardaji et al., 2014; Chen et al., 2015; Zhang et al., 2021). However, these techniques
cannot be applied to high-dimensional data due to the constraint of discretization. Recently, more
efforts have focused on leveraging advanced generative models to achieve better differentially private
synthetic data (Hu et al., 2023). Some of them (Xie et al., 2018; Torkzadehmahani et al., 2019;
Frigerio et al., 2019; Yoon et al., 2019; Chen et al., 2020) utilize generative adversarial networks
(GANS) (Goodfellow et al., 2014), or trained GANs with the PATE structure (Papernot et al., 2017).
Other works have employed variational autoencoders (VAEs) (Acs et al., 2018; Jiang et al., 2022;
Pfitzner & Arnrich, 2022), or proposed customized structures (Harder et al., 2021; Vinaroz et al.,
2022; Cao et al., 2021; Liew et al., 2022a; Harder et al., 2023). For instance, Harder et al. (2023)
pretrained perceptual features using public data and privatized only data-dependent terms using
maximum mean discrepancy.

Limited works have so far delved into privatizing diffusion models. Dockhorn et al. (2023) develop a
DP score-based generative models Song et al. (2021) using DP-SGD, applied to relatively simple
datasets such as MNIST, FashionMNIST and CelebA (downsampled to 32×32). Ghalebikesabi et al.
(2023) fine-tune the ImageNet pre-trained diffusion model (DDPM) (Ho et al., 2020) with more than
80 M parameters using DP-SGD for CIFAR-10. We instead adopt a different model (LDM) and
fine-tune only the small part of the DM in our model to achieve better privacy-accuracy trade-offs. As
concurrent work to ours, Lin et al. (2023) propose an API-based approach that uses a DP-histogram
mechanism to generate high-quality synthetic data. However, Lin et al. (2023) do not privatize
diffusion models directly, so we do not compare our method against it.

5 EXPERIMENTS

Here, we demonstrate the performance of our method in comparison with the state-of-the-art methods
in DP data generation, using several combinations of public/private data of different levels of
complexity at varying privacy levels.
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Table 1: FID scores (lower is better) for synthetic CIFAR-10 data.

ϵ = 10 ϵ = 5 ϵ = 1
DP-LDM 8.4 ± 0.2 13.4 ± 0.4 22.9 ± 0.5
DP-Diffusion 9.8 15.1 25.2
DP-MEPF (ϕ1,ϕ2) 29.1 30.0 54.0
DP-MEPF (ϕ1) 30.3 35.6 56.5

Table 2: Test accuracies (higher is better) of ResNet9 (left) and WRN40-4 (right) trained on CIFAR-
10 synthetic data. When trained on real data, test accuracy is 88.3% on ResNet9.

ResNet 9
ϵ = 10 ϵ = 5 ϵ = 1

DP-LDM 65.3 ± 0.3 59.1 ± 0.2 51.3 ± 0.1
DP-MEPF (ϕ1,ϕ2) 48.9 47.9 28.9
DP-MEPF (ϕ1) 51.0 48.5 29.4
DP-MERF 13.2 13.4 13.8

WRN40-4
ϵ = 10

DP-LDM 78.6 ± 0.3
DP-Diffusion 75. 6

Datasets. For private datasets, we considered three image datasets1 of varying complexity: the
commonly used datasets MNIST (LeCun & Cortes, 2010), the more complex datasets CelebA (Liu
et al., 2015) , and also CIFAR-10 (Krizhevsky et al., 2009). In addition, we also consider the
high-quality version CelebAHQ (Karras et al., 2018) of size 256× 256 to generate high-dimensional
images. For text-to-image generation, we used Multi-Modal-CelebAHQ (MM-CelebAHQ)(Xia et al.,
2021) dataset, containing of 30,000 256× 256 images, each of which is accompanied by descriptive
text captions. As public datasets, we used EMNIST (Cohen et al., 2017) English letter split parts
for MNIST, ImageNet (Deng et al., 2009) (rescaled it to the corresponding sizes) for CelebA and
CIFAR-10 and CelebAHQ, and LAION-400M (Schuhmann et al., 2021) for MM-CelebAHQ.

Implementations. We implemented DP-LDMs in PyTorch Lightning (Paszke et al., 2019) building
on the LDM codebase by Rombach et al. (2022) and Opacus (Yousefpour et al., 2021) for DP-SGD
training. Several recent papers present the importance of using large batches in DP-SGD training to
improve accuracy at a fixed privacy level (Ponomareva et al., 2023; De et al., 2022; Bu et al., 2022).
To incorporate this finding in our work, we write custom batch splitting code that integrates with
Opacus and Pytorch Lightning, allowing us to test arbitrary batch sizes. Our DP-LDM also improves
significantly with large batches as will be shown soon, consistent with the findings in the recent work.

Evaluation. For the simple dataset MNIST, we take generated samples to train downstream classifiers
and compute the accuracy on real data. We consider CNN and MLP classifiers as in standard practice,
and also Wide ResNet (WRN-40-4), a much larger classifier. For CelebA, CIFAR-10, CelebAHQ, and
MM-CelebAHQ, we measure the model performance by computing the Fréchet Inception Distance
(FID) (Heusel et al., 2017) between the generated samples and the real data. For CIFAR-10, we
additionally train downstream classifiers (ResNet-9 and WRN-40-4) to compare against other state-
of-the-art methods. Each number in our tables represents an average value across three independent
runs, with a standard deviation (unless stated otherwise). Values for comparison methods are taken
from their papers, with an exception for the DP-MEPF comparison to CelebAHQ, which we ran their
code by loading this data.

5.1 TRANSFERRING FROM IMAGENET TO CIFAR10 DISTRIBUTION

First, we pre-train a class-conditional LDM model considering ImageNet32 as public data. The
Unet we use has 16 SpatialTransformer blocks as in Fig. 2. For the fine-tuning part, we consider
CIFAR-10 as the private dataset and test the performance of DP-LDM at different privacy levels for 3
independent sampling runs. See Appendix Sec. A.3 for all experimental details.

Comparison to other SOTA methods in terms of FID (the lower the better) is given in Table 1. Our
DP-LDM outperforms other methods at all epsilon levels (ϵ = 1, 5, 10 and δ = 10−5). These FID
values correspond to the case where only 9-16 attention modules are fine-tuned (i.e., fine-tuning

1Dataset licenses: MNIST: CC BY-SA 3.0; CelebA: see https://mmlab.ie.cuhk.edu.hk/
projects/CelebA.html; Cifar10: MIT
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Table 3: Fine-tuning different parts of the model for synthetic CIFAR-10 images.

ϵ = 1
Input block Attention module

FID 50.2 ± 0.2 22.9 ± 0.5

ϵ = 10
Resblocks Attention module

FID 86.9 ± 0.6 8.4 ± 0.2

Table 4: CelebA FID scores (lower is better) for images of resolution 64× 64.

ϵ = 10 ϵ = 5 ϵ = 1
DP-LDM (ours, average) 14.3 ± 0.1 16.1 ± 0.2 21.1 ± 0.2
DP-LDM (ours, best) 14.2 15.8 21.0
DP-MEPF (ϕ1) 17.4 16.5 20.4
DP-GAN (pre-trained) 57.1 62.3 72.5

only 10% of trainable parameters in the model) and the rest remain fixed. See Table 10 for ablation
experiments for fine-tuning different attention modules. In terms of downstream accuracy of ResNet-9
and WRN40-4 classifiers, DP-LDM also outperforms others, as shown in Table 2. Both classifiers
are trained with 50K synthetic samples and then evaluated on real data samples.

When we fine-tune other parts of the model, we see a significant drop in accuracy as shown in Table
3. This confirms that fine-tuning resblocks or input blocks alone is less effective than fine-tuning
attention modules at a fixed privacy budget.

5.2 TRANSFERRING FROM IMAGENET TO CELEBA DISTRIBUTION

We evaluate the performance of our model on the task of unconditional image generation for CelebA
(rescaled to 64x64) using an LDM pretrained on ImageNet. Additional experiments for CelebA32 are
available in appendix A.4 We compare DP-LDM to existing methods at the privacy settings δ = 10−6

and ϵ = 1, 5, 10 in Table 4. We achieve a new SOTA results at ϵ = 10, 5 and are comparable to
DP-MEPF at ϵ = 1. Samples are available in Figure 9. Table 5 provides evidence suggesting that
training with larger batch sizes improves the performance of the model.

Table 5: Effect of increasing batch size on FID. At a fixed epsilon level, larger batches improve FIDs.

Batch size ϵ = 10 ϵ = 5 ϵ = 1
512 17.2± 0.1 18.0± 0.1 22.3± 0.2
2048 16.2± 0.2 17.1± 0.2 22.1± 0.1
8192 14.3 ± 0.1 16.1 ± 0.2 21.1 ± 0.2

5.3 TRANSFERRING FROM EMNIST TO MNIST DISTRIBUTION

To choose the public dataset for MNIST, we consider SVHN (Netzer et al., 2011), KMNIST (Clanuwat
et al., 2018), and EMNIST (Cohen et al., 2017) as candidates. As a selection criterion, we computed
the FID score between the samples from each candidate dataset and those from MNIST. Based
on the FID scores (See Appendix Sec. A.2.1 for FIDs and additional experiments for SVHN and
KMNIST), we chose EMNIST as the public dataset to pretrain a class-conditional LDM. We only
took the English letter split of EMNIST such that the model does not see the MNIST data during
the non-private pre-training step. We then finetune the attention modules with MNIST and test the
performance of DP-LDM with downstream classifiers. We compare DP-LDM to existing methods
with the most common DP settings ϵ = 1, 10 and δ = 10−5 in Table 7 in Appendix Sec. A.2. We
also did ablation experiments to reduce the trainable parameters in Appendix Sec. A.2.2.

5.4 DIFFERENTIALLY PRIVATE GENERATION FOR HIGH QUALITY CELEBA

With the latent representations of the inputs, LDMs can better improve DP training. We present
high-dimensional differentially private generation for CelebAHQ in this section.
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”This woman has brown hair, and ”This man has sideburns, ”She wears heavy makeup.
black hair. She is attractive and mustache.” She is attractive and has

and wears lipstick” wavy hair, and black hair.”

ϵ = 10

ϵ = 1

Figure 4: Text-to-image generation for CelebAHQ 256 by 256 with three sample prompt inputs.
Privacy condition is set to ϵ = 10, 1 and δ = 10−5.

DP-LDM (Ours) DP-MEPF

ϵ = 10

ϵ = 1

Figure 5: Synthetic 256× 256 CelebA samples generated at different levels of privacy. Samples for
DP-MEPF are generated from code available in Harder et al. (2023). We computed FID between our
generated samples and the real data and achieve FIDs of 19.0± 0.0 at ϵ = 10, 20.5± 0.1 at ϵ = 5,
and 25.6± 0.1 at ϵ = 1. DP-MEPF achieves an FID of 200.8 at ϵ = 10 and 293.3 at ϵ = 1.

Text-to-image generation. For text-to-image generation, we fine-tune the LDM models pretrained
with LAION-400M (Schuhmann et al., 2021) for MM-CelebAHQ (256 × 256). Each image is
described by a caption, which is fed to the conditioning embedder, BERT (Devlin et al., 2018). We
freeze the BERT embedder during fine-tuning to reduce the trainable parameters, then we bring back
BERT for sampling. DP-LDM achieves FID scores of 44.5 for ϵ = 10 and 55.0 for ϵ = 1. We
illustrate our samples with example prompts in Fig. 5.4. The samples are faithful to our input prompts
even at the ϵ = 1 level.

Class conditional generation. We build our model on the LDM model provided by Rombach et al.
(2022) which is pretrained on Imagenet at a resolution of 256× 256. Following our experiments in
Section 5.2, we fine-tune all of the SpatialTransformer blocks. While CelebAHQ does not provide
class labels, each image is associated with 40 binary attributes. We choose the attribute “Male” to act
as a binary class label for each image. Generated samples are available in Figure 5 along with FID
values. Compared to DP-MEPF, based on the FID scores and perceptual image quality, DP-LDM is
better suited for generating detailed, plausible samples from the high-resolution dataset at a wide
range of privacy levels.

6 CONCLUSION AND DISCUSSION

In Differentially Private Latent Diffusion Models (DP-LDM), we utilize DP-SGD to finetune only
the attention modules (and embedders for conditioned generation) of the pretrained LDM at varying
layers with privacy-sensitive data. We demonstrate that our method is capable of generating images
for simple datasets like MNIST, more complex datasets like CIFAR-10 and CelebA, and high-
dimensional datasets like CelebAHQ. We perform an in-depth analysis of ablation of DP-LDM to
explore the strategy to reducing parameters for more applicable training of DP-SGD. Based on our
promising results, we conclude that fine-tuning LDMs is an efficient and effective framework for
DP generative learning. We hope our results can contribute to future research in DP data generation,
considering the rapid advances in diffusion-based generative modelling.

9
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7 ETHICS AND REPRODUCIBILITY

As investigated in (Carlini et al., 2023), diffusion models can memorize individual images from
the training data and gives the same as generating samples. Aiming to bringing positive effects
to society, our research is driven by the necessity of robust and scalabel data privacy. However, it
is also important to approach the use of public data cautiously. As (Tramèr et al., 2022) pointed
out, public data themselves may still be sensitive due to lack of curation practices. In addition, the
public data usually achieve similar distribution as the private data, however, no proper public data is
available currently as this might require heavy domain shift of the data themselves. We understand
these potential issues but current DP machine learning research leads to minimal effects because of
the inadequacy of the utility. From our perspective, auxiliary public data still emerges as the most
promising option for attaining satisfactory utility, comparing to the potential harm it might inject.
We hope our discussion will contribute to further research in differential privacy in machine learning
using public data.

To guarantee the reproduciblity, our code is available at https://anonymous.4open.
science/r/DP-LDM-4525 with detailed instructions. And all the hyperparameters are dis-
cussed in detail in Appendix Sec. B.
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Appendix

A ADDITIONAL EXPERIMENTS

A.1 SCALING FACTOR EFFECT IN PRE-TRAINING THE AUTOENCODER

In Table 6, we provide FID results after pre-training the autoencoder with Imagenet dataset for
different scaling factors f and number of channels.

Table 6: FID scores (lower is better) for pre-trained autoencoders with different f and number of
channels.

# channels
128 64 32

f = 2 27.6 36.4 46.8
f = 4 32.9 51.0 83.5

A.2 TRANSFERRING FROM EMNIST TO MNIST DISTRIBUTION

Here we compare DP-LDM to existing methods with the most common DP settings ϵ = 1, 10 and
δ = 10−5 in Table 7.

Table 7: Downstream accuracies by CNN, MLP and WRN-40-4, evaluated on the generated MNIST
data samples. We compare our results with existing work DPDM (Dockhorn et al., 2023), DP-
Diffusion (Ghalebikesabi et al., 2023), PEARL (Liew et al., 2022b), DPGANr (Bie et al., 2022), and
DP-HP (Vinaroz et al., 2022). The GPU hours is for DP training only. The GPU hours for pretraining
steps of our method are present in Table 14 and Table 15.

DP-LDM (Ours) DP-DM DP-Diffusion DP-HP PEARL DPGANr

ϵ = 10
CNN 97.4± 0.1 98.1 - - 78.8 95.0
WRN 97.5± 0.0 - 98.6 - - -

ϵ = 1 CNN 95.9± 0.1 95.2 - 81.5 78.2 80.1

# params 0.8M 1.75M 4.2M - - -
GPU Hours 10h 192h - - - -

A.2.1 CHOOSE PUBLIC DATASET FROM SVHN, KMNIST AND EMNIST FOR MNIST

We consider SVHN (street number digit but 3 channels), KMNIST (Japanese character in MNIST
format 1 channel), and EMNIST (English letter in MNIST format 1 channel) as public dataset
candidates. In general, if the two datasets are close to each other, then transfer learning from one to
another is assumed to achieve better results within few iterations. To choose the best candidate, we
compute the FID between each one with respect to MNIST and pick EMNIST as the public dataset
in the end. We also did additional experiments using SVHN and KMNIST under the same privacy
condition ϵ = 10, δ = 10−5 in Table 8, which furthermore verifies our choice of EMNIST.

Table 8: FID scores for datasets with respect to MNIST. We also pretrained LDMs using SVHN and
KMNIST then fine-tuned with MNIST, and list the best CNN accuracy here respectively.

Dataset pair FID Best CNN accuracy
(SVHN, MNIST) 231.6 94.3
(KMNIST, MNIST) 53.7 96.3
(EMNIST, MNIST) 27.5 97.4

A.2.2 ABLATION EXPERIMENTS FOR MNIST
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Figure 7: Unet Structure for CIFAR-10

Figure 6: Unet Structure for MNIST.

There are 7 attention modules in the Unet struc-
ture for MNIST, 1-2 are in input blocks, 3 is in
middle block, 4-7 are in out blocks as illustrated
in Fig. 6. Modules in blue are frozen during fine-
tuning. Parameters of condition embedder is al-
ways trained. We consider fine tune only i-th to
7th attention modules to reduce more trainable
parameters. Results for ϵ = 10, δ = 10−5 are
listed in Table 9. The best results is achieved
when fine tune with 4-7 attention blocks, which
means out blocks are more important than oth-
ers during training.

Table 9: CNN accuracy and number of trainable parameters for MNIST ablation experiments with
varying number of fine-tuning layers. Privacy condition is set to ϵ = 10, δ = 10−5.

1-7(all) 2-7 3-7 4-7 5-7
CNN 97.3 97.3 90 97.4 97.3
# of trainable params 1.6M 1.5M 1.2M 0.8M 0.5M
out of 4.6M total params (34.3%) (32.4%) (25.2%) (18.0%) (10.9%)

A.3 TRANSFERRING FROM IMAGENET TO
CIFAR10 DISTRIBUTION

Here, we provide the results for ablation experiments to test the performance of DP-LDM when
fine-tuning only certain attention modules inside the pre-trained model and keeping the rest of the
parameters fixed. There are 16 attention modules in total as illustrated in Fig. 7. Table 10 shows the
FID obtained for ϵ = 1, 5, 10 and δ = 10−5 for the different number of attention modules fine-tuned.
The results show that fixing up to the first half of the attention layers in the LDM has a positive effect
in terms of the FID (the lower the better) in our model.

We also report the different hyper-parameter settings used in ablation experiments in table Table 11.

Table 12 shows the hyper-parameters used during training ResNet9 and WRN40-4 downstream
classifiers on CIFAR10 synthetic samples.

A.4 TRANSFERRING FROM IMAGENET TO CELEBA32

We also apply our model in the task of generating 32 × 32 CelebA images. The same pretrained
autoencoder as our CIFAR-10 experiments in Section 5.1 is used, but since this experiment is for
unconditional generation, we are unable to re-use the LDM. A new LDM is pretrained on Imagenet
without class conditioning information, and then fine-tuned on CelebA images scaled and cropped
to 32× 32 resolution. Our FID results for δ = 10−6, ϵ = 1, 5, 10 are summarized in Table 13. We
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Table 10: FID scores (lower is better) for synthetic CIFAR-10 data with varying the number of
fine-tuning layers and privacy guarantees. Top row (1-16 layers): Fine-tuning all attention modules.
Second row (5-16 layers): Keep first 4 attention modules fixed and fine-tuning from 5 to 16 attention
modules. Third row (9-16 layers): Keep first 8 attention modules fixed and fine-tuning from 9 to 16
attention modules. Bottom row (13-16 layers): Keep first 12 attention modules fixed and fine-tuning
from 13 to 16 attention modules.

DP-LDM ϵ = 10 ϵ = 5 ϵ = 1
1-16 layers 25.8 ± 0.3 29.9 ± 0.2 33.0 ± 0.3
5 - 16 layers 15.7 ± 0.3 21.2 ± 0.2 28.9 ± 0.2
9 - 16 layers 8.4 ± 0.2 13.4 ± 0.4 22.9 ± 0.5
13 - 16 layers 12.3 ± 0.2 18.5 ± 0.2 25.2 ± 0.5

Table 11: DP-LDM hyper-parameter setting on CIFAR-10 for different ablation experiments.

ϵ = 10 ϵ = 5 ϵ = 1

1-16 layers (24.4M parameters)

batch size 1000 2000 1000
clipping norm 10−5 10−5 10−3

learning rate 10−6 10−6 10−6

epochs 30 30 10

5-16 layers (20.8M parameters)

batch size 5000 5000 2000
clipping norm 10−6 10−5 10−3

learning rate 10−6 10−6 10−5

epochs 50 50 10

9-16 layers (10.2M parameters)

batch size 2000 2000 5000
clipping norm 10−6 10−6 10−2

learning rate 10−6 10−6 10−6

epochs 30 30 10

13-16 layers (4M parameters)

batch size 2000 2000 2000
clipping norm 10−6 10−6 10−2

learning rate 10−6 10−6 10−6

epochs 30 30 10

achieve similar results to DP-MEPF for ϵ = 5 and ϵ = 10. As with our results at 64× 64 resolution,
our LDM model does not perform as well in higher privacy settings (ϵ = 1). Sample images are
provided in Figure 8

B HYPERPARAMETERS

Here we provide an overview of the hyperparameters of the pretrained autoencoder in Table 14,
hyperparameters of the pretrained diffusion models in Table 15. Note that base learning rate is the
one set in the yaml files. The real learning rate passed to the optimizer is accumulate grad batches
× num gpus × batch size × base learning rate.

Table 12: Hyperparameters for downstream classification ResNet9 and WRN40-4 trained on CIFAR10
synthetic data

ResNet9 WRN40-4
learning rate 0.5 0.1
batch size 512 1000
epochs 10 10000
optimizer SGD SGD
label smoothing 0.1 0.0
weight decay 5 · 10−4 5 · 10−4

momentum 0.9 0.9
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Table 13: CelebA FID scores (lower is better) for images of resolution 32 × 32 comparing with
results from DPDM (Dockhorn et al., 2023), DP Sinkhorn (Cao et al., 2021), and DP-MEPF (Harder
et al., 2023).

ϵ = 10 ϵ = 5 ϵ = 1
DP-LDM (ours, average) 16.2 ± 0.2 16.8 ± 0.3 25.8 ± 0.9
DP-LDM (ours, best) 16.1 16.6 24.6
DP-MEPF (ϕ1) 16.3 17.2 17.2
DP-GAN (pre-trained) 58.1 66.9 81.3
DPDM (no public data) 21.2 - 71.8
DP Sinkhorn (no public data) 189.5 - -

Real Data DP-MERF (ϵ = 10)

DP-Sinkhorn (ϵ = 10)

DPDM (ϵ = 10)

pre-trained DP-GAN (ϵ = 10) pre-trained DP-GAN (ϵ = 1)

DP-MEPF (ϵ = 10) DP-MEPF (ϵ = 1)

Ours (ϵ = 10) Ours (ϵ = 1)

Figure 8: Synthetic 32× 32 CelebA samples generated at different levels of privacy. Samples for
DP-MERF and DP-Sinkhorn are taken from (Cao et al., 2021), DPDM samples are taken from
(Dockhorn et al., 2023), and DP-MEPF samples are taken from (Harder et al., 2023).

Table 16 shows the hyperparameters we used for fine-tuning on MNIST. Table 17 shows the
hyperparameters we used for CelebA32. Table 18 shows the hyperparameters we used for CelebA64.
Table 19 shows the hyperparameters we used for text-to-image CelebAHQ generation. Table 20
shows the hyperparmeters we used for class-conditioned CelebAHQ generation.

C ADDITIONAL SAMPLES
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Table 14: Hyperparameters for the pretrained autoencoders for different datasets.

EMNIST ImageNet ImageNet ImageNet
(to MNIST) (to CIFAR10) (to CelebA 32) (to CelebA 64)

Input size 32 32 32 64
Latent size 4 16 16 32
f 8 2 2 2
z-shape 4× 4× 3 16× 16× 3 16× 16× 3 64× 64× 3
Channels 128 128 128 192
Channel multiplier [1,2,3,5] [1,2] [1,2] [1,2]
Attention resolutions [32,16,8] [16, 8] [16, 8] [16,8]
num res blocks 2 2 2 2
Batch size 50 16 16 16
Base learning rate 4.5× 10−6 4.5× 10−6 4.5× 10−6 1.0× 10−6

Learning rate 4.5× 10−4 1.4× 10−4 1.4× 10−4 1.4× 10−4

Epochs 50 2 2 -
GPU(s) 1 NVIDIA V100 1 NVIDIA RTX A4000 1 NVIDIA RTX A4000 1 NVIDIA V100
Time 8 hours 1 day 1 day 1 day

Table 15: Hyperparameters for the pretrained diffusion models for different datasets.

EMNIST ImagNnet ImageNet ImageNet
(to MNIST) (to CIFAR10) (to CelebA 32) (to CelebA64)

input size 32 32 32 64
latent size 4 16 16 32
f 8 2 2 2
z-shape 4× 4× 3 16× 16× 3 16× 16× 3 32× 32× 3
channels 64 128 192 192
channel multiplier [1,2] [1,2,2,4] [1,2,4] [1,2,4]
attention resolutions [1,2] [1,2,4] [1,2,4] [1,2,4]
num res blocks 1 2 2 2
num heads 2 8 - 8
num head channels - - 32 -
batch size 512 500 384 256
base learning rate 5× 10−6 1× 10−6 5× 10−7 1× 10−6

learning rate 2.6× 10−3 5× 10−4 2× 10−4 2.6× 10−4

epochs 120 30 13 40
# trainable parameters 4.6M 90.8M 162.3M 72.2M
GPU(s) 1 NVIDIA V100 1 NVIDIA RTX A4000 1 NVIDIA V100 1 NVIDIA V100
time 6 hours 7 days 30 hours 10 days

use spatial transformer True True False False
cond stage key class label class label - -
conditioning key crossattn crossattn - -
num classes 26 1000 - -
embedding dimension 5 512 - -
transformer depth 1 1 - -

DP-LDM (Ours)

DP-MEPF

ϵ = 10

ϵ = 5

ϵ = 1

Figure 9: Synthetic 64× 64 CelebA samples generated at different levels of privacy. Samples for
DP-MEPF are taken from Harder et al. (2023).
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Table 16: Hyperparameters for fine-tuning diffusion models with DP constraints ϵ = 10, 1 and
δ = 10−5 on MNIST. The “ablation” hyperparameter determines which attention modules are fine-
tuned, where a value of i means that the first i− 1 attention modules are frozen and others are trained.
Setting “ablation” to −1 (default) fine-tunes all attention modules.

ϵ = 10 ϵ = 1

batch size 2000 2000
base learning rate 5× 10−7 6× 10−7

learning rate 1× 10−3 1.2× 10−3

epochs 200 200
clipping norm 0.01 0.001
noise scale 1.47 9.78
ablation 4 -1
num of params 0.8M 1.6M

use spatial transformer True True
cond stage key class label class label
conditioning key crossattn crossattn
num classes 26 26
embedding dimension 13 13
transformer depth 1 1
train condition only True True
attention flag spatial spatial
# condition params 338 338

Table 17: Hyperparameters for fine-tuning diffusion models with DP constraints ϵ = 10, 5, 1 and
δ = 10−6 on CelebA32.

ϵ = 10 ϵ = 5 ϵ = 1

batch size 8192 8192 2048
base learning rate 5× 10−7 5× 10−7 5× 10−7

learning rate 4× 10−3 4× 10−3 1× 10−3

epochs 20 20 20
clipping norm 5.0× 10−4 5.0× 10−4 5.0× 10−4

ablation -1 -1 -1

use spatial transformer False False False
cond stage key - - -
conditioning key - - -
num classes - - -
embedding dimension - - -
transformer depth - - -
train attention only True True True

Table 18: Hyperparameters for fine-tuning diffusion models with DP constraints ϵ = 10, 5, 1 and
δ = 10−6 on CelebA64.

ϵ = 10 ϵ = 5 ϵ = 1

batch size 8192 8192 8192
base learning rate 1× 10−7 1× 10−7 1× 10−7

learning rate 8.2× 10−4 8.2× 10−4 8.2× 10−4

epochs 70 70 70
clipping norm 5.0× 10−4 5.0× 10−4 5.0× 10−4

ablation -1 -1 -1

use spatial transformer False False False
cond stage key - - -
conditioning key - - -
num classes - - -
embedding dimension - - -
transformer depth - - -
train attention only True True True
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Table 19: Hyperparameters for fine-tuning diffusion models with DP constraints ϵ = 10, 1 and
δ = 10−5 on text-conditioned CelebAHQ.

ϵ = 10 ϵ = 1

batch size 256 256
base learning rate 1× 10−7 1× 10−7

learning rate 2.6× 10−5 2.6× 10−5

epochs 10 10
clipping norm 0.01 0.01
noise scale 0.55 1.46
ablation -1 -1
num of params 280M 280M

use spatial transformer True True
cond stage key caption caption
context dim 1280 1280
conditioning key crossattn crossattn
transformer depth 1 1

Table 20: Hyperparameters for fine-tuning diffusion models with DP constraints ϵ = 10, 5, 1 and
δ = 10−5 on class-conditional CelebAHQ.

ϵ = 10 ϵ = 5 ϵ = 1

batch size 2048 2048 2048
base learning rate 1× 10−7 1× 10−7 1× 10−7

learning rate 2.0× 10−4 2.0× 10−4 2.0× 10−4

epochs 50 50 50
clipping norm 5.0× 10−4 5.0× 10−4 5.0× 10−4

ablation -1 -1 -1

use spatial transformer True True True
cond stage key class label class label class label
context dim 512 512 512
conditioning key crossattn crossattn crossattn
transformer depth 1 1 1
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