
Value-Based Deep RL Scales Predictably

Oleh Rybkin 1 Michal Nauman 1 2 Preston Fu 1 Charlie Snell 1 Pieter Abbeel 1 Sergey Levine 1 Aviral Kumar 3

Abstract
Abstract: Scaling data and compute is critical
to the success of modern ML. However, scaling
demands predictability: we want methods to not
only perform well with more compute or data, but
also have their performance be predictable from
small-scale runs, without running the large-scale
experiment. In this paper, we show that value-
based off-policy RL methods are predictable de-
spite community lore regarding their pathological
behavior. First, we show that data and compute
requirements to attain a given performance level
lie on a Pareto frontier, controlled by the updates-
to-data (UTD) ratio. By estimating this frontier,
we can predict this data requirement when given
more compute, and this compute requirement
when given more data. Second, we determine
the optimal allocation of a total resource budget
across data and compute for a given performance
and use it to determine hyperparameters that max-
imize performance for a given budget. Third, this
scaling is enabled by first estimating predictable
relationships between hyperparameters, which is
used to manage effects of overfitting and plastic-
ity loss unique to RL. We validate our approach
using three algorithms: SAC, BRO, and PQL on
DeepMind Control, OpenAI gym, and IsaacGym,
when extrapolating to higher levels of data, com-
pute, budget, or performance.

1. Introduction
Many latest advances in various areas of machine learning
have emerged from training big models on large datasets.
In this scaling guided research landscape, successfully ex-
ecuting even one single training run often requires a large
amount of data, computational resources, and wall-clock
time, such as weeks or months (Achiam et al., 2023; Team
et al., 2023; Ramesh et al., 2022; Brooks et al., 2024). To

1UC Berkeley 2University of Warsaw 3CMU. Correspondence
to: Oleh Rybkin <oleh.rybkin@gmail.com>, Aviral Kumar <avi-
ralku@andrew.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

maximize the success of these large-scale runs, the trend in
the machine learning (ML) community has shifted toward
not just performant, but also more predictable algorithms
that scale reliably with more computation and training data
size, such that downstream performance can be predicted
from small-scale experiments, without actually running the
large-scale experiment (McCandlish et al., 2018; Kaplan
et al., 2020; Hoffmann et al., 2023; Dubey et al., 2024).

In this paper, we study if deep reinforcement learning (RL)
is also amenable to such scaling and predictability benefits.
We focus on value-based methods that train value func-
tions using temporal difference (TD) learning, which are
known to be performant at small scales (Mnih et al., 2015;
Lillicrap et al., 2016; Haarnoja et al., 2018). Compared to
policy gradient (Mnih et al., 2016; Schulman et al., 2017)
and search methods (Silver et al., 2016), value-based RL
can learn from arbitrary data and require less sampling or
search, which can be inefficient or infeasible for open-world
problems where environment interaction is costly.

We study scaling properties by predicting relationships be-
tween different resources required for training. Data
requirement D is the amount of data needed to attain a cer-
tain level of performance. Likewise, compute requirement
C refers to the amount of FLOPs or gradient steps needed
to attain a certain level of performance. In RL uniquely,
performance can be improved by increasing either available
data or compute (e.g., training multiple times on the same
data), which we capture via a budget requirement that com-
bines data and compute F = C + δ · D, where δ is some
constant. An additive budget function is useful when the
cost of data and compute can be expressed in similar units,
such as wall-clock time or required finances.

To establish scaling relationships, we first require a way
to predict the best hyperparameter settings at each scale.
We find that learning rate η, batch size B, and the updates-
to-data (UTD) ratio σ are the most crucial hyperparame-
ters for value-based RL. While supervised learning benefits
from abundant theory to establish optimal hyperparame-
ters (Krizhevsky, 2014; McCandlish et al., 2018; Yang et al.,
2021), value-based RL often does not satisfy assumptions
typical of supervised learning. For example, value-based
RL needs to account for the non-i.i.d. nature of training data.
Distribution shift due to periodic changes in the data col-

1

Value-Based Deep RL Scales Predictably

(I) Compute-Data Pareto frontier (II) Budget extrapolation (III) Fits for multiple J

Is
aa

c
G

ym
DM

C
O

pe
nA

I G
ym

Figure 1: Scaling properties when increasing compute C, data D, budget F , or performance J . Left: Compute versus data requirements
Pareto frontier controlled by the UTD ratio σ. We observe that we can trade off data for compute and vice versa, and this relationship
is predictable. Middle: Extrapolation from low to high performance. We observe that the optimal resource allocation controlled by σ
evolves predictably with increasing budget, and can be used to extrapolate from low to high performance. Right: Pareto frontiers for
several performance levels J .

lection policy (Levine et al., 2020) contributes to a form of
overfitting where minimizing training TD error may not re-
sult in a low TD error under the data distribution induced by
the new policy. In addition, objective shift due to changing
target values (Dabney et al., 2021) contributes to “plasticity
loss” (D’Oro et al., 2023; Kumar et al., 2021). We show that
it is possible to account for the training dynamics unique to
value-based RL, and are able to find the best hyperparam-
eters by setting the batch size and learning rate inversely
proportional to the UTD ratio. We estimate this dependency
using a power law (Kaplan et al., 2020), and observe that
this model makes effective predictions.

Using the best predicted hyperparameters, we are now able
to establish that data and compute requirements evolve as
a predictable function of the UTD ratio σ. Furthermore, σ
defines the tradeoff between data and compute, which can
be visualized as a Pareto frontier (Figure 1, left). Using this
model, we are able to extrapolate the resource requirements
from low-compute to high-compute setting, as well as from
low-data to high-data setting as shown in the figure.

Using the Pareto frontiers, we are now able to extrapolate

from low to high performance levels. Instead of extrap-
olating as a function of return, which can be arbitrary and
non-smooth, we extrapolate as a function of the allowed
budget F . We can define an optimal tradeoff between data
and compute, and we observe that such optimal tradeoff
value evolves predictably to higher budgets, which also at-
tains a higher performance level (Figure 1, middle). Thus
we are able to predict optimal hyperparameters, as well as
data and compute allocation, for high-budget runs using
only data from low-budget runs.

Our contribution is showing that the behavior of value-
based deep RL methods based on TD-learning is predictable
in larger data and compute regimes. Specifically, we:

1. establish predictable rules for dependencies between
hyperparameters batch size (B), learning rate (η), and
UTD ratio (σ) in value-based RL, and show that these
rules enable more effective scaling.

2. show that data and compute required to attain a given
performance level lie on a Pareto frontier, and are re-
spectively predictable in the higher-compute or higher-
data regimes.

2

Value-Based Deep RL Scales Predictably

3. show the optimal allocation of budget between data
and compute, and predict how such allocation evolves
with higher budgets for best performance.

Our findings apply to algorithms such as SAC, BRO, and
PQL, and domains such as the DeepMind Control Suite
(DMC), OpenAI Gym, and IsaacGym. The generality of
our conclusions challenges conventional wisdom that value-
based deep RL does not scale predictably.

2. RL Preliminaries and Notation
We study standard off-policy online RL, which maximizes
the agent’s return by training on a replay buffer and pe-
riodically collecting new data (Sutton and Barto, 2018).
Value-based deep RL methods train a Q-network, Qθ, to
minimize the temporal difference (TD) error:

L(θ) = EP

[(
r(s, a) + γQ̄(s′, a′)−Qθ(s, a)

)2]
, (2.1)

where P is the replay buffer, Q̄ is the target Q-network, s
denotes a state, and a′ is an action drawn from a policy
π(·|s) that aims to maximize Qθ(s, a). We implement this
operation by sampling a batch of size B from the buffer
and taking a gradient step along the gradient of this loss
with a learning rate η. In theory, off-policy algorithms can
be made very sample efficient by minimizing the TD er-
ror fully over any data batch, which in practice translates to
making more update steps to the Q-network per environment
step, or higher “updates-to-data” ratio (UTD) (Chen et al.,
2020). However, increasing the UTD ratio naı̈vely can lead
to worse performance (Nikishin et al., 2022; Janner et al.,
2019). To this end, unlike the standard supervised learning
or LLM literature that considers B and η as two main hyper-
parameters affecting training (Kaplan et al., 2020; Hoffmann
et al., 2023), our setting presents another hyperparameter,
the UTD ratio σ, that we also study in our paper.

Notation. In this paper, we focus on the following key
hyperparameters: the UTD ratio σ, learning rate η, and
the batch size B. We will answer questions pertaining to
performance of a policy π denoted by J(π), the total data
utilized by an algorithm to reach a given target level of
performance J (denoted by DJ), and the total compute
budget utilized by the algorithm to reach performance J
(denoted by CJ), which is measured in terms of FLOPs or
wall-clock time taken by the algorithm.

3. Problem Statement and Formulation
To demonstrate that the behavior of value-based RL can be
predicted reliably at scale, we first post multiple resource
optimization questions that guide our scaling study. Viewing
data and compute as two resources, we answer questions
of the form: what is the minimum value of [resource]
needed to attain a given target performance? And what
should the hyperparameters (e.g., B, η, σ) be in such this

training run? We will answer such questions by fitting em-
pirical laws from low data and compute runs to determine
relationships between hyperparameters. Doing so, in turn,
enables us to determine how to set hyperparameters and
allocate resources to maximize performance when provided
with a larger data and compute budget. Note that we wish to
make these hyperparameter predictions without running the
large data and compute budget experiment. While questions
of this form have been studied in supervised learning, the
answers are different for online RL, because online RL con-
tinuously collects its own data, which ties data and compute
in a complex manner and breaks i.i.d. nature of datapoints.

Concretely, we study three resource optimization questions:
(1) maximizing sample efficiency (i.e., minimize the amount
of data D to attain a target performance under a given com-
pute budget), (2) conversely, minimizing compute C (e.g.,
FLOPs or gradient steps, whichever is more appropriate) to
attain a given performance given an upper bound on data
that can be collected, and (3) maximizing performance given
a total bound on data and compute.

Problem 3.1 (Resource optimization problems). Find
the best configuration (B, η, σ) for algorithm Alg that
minimizes either the data D or compute C consumed to
obtain performance J0:

1. Maximal sample efficiency:

(B∗, η∗, σ∗) := arg min
(B,η,σ)

D

s.t. J (πAlg(B, η, σ)) ≥ J0

C ≤ C0.

2. Maximal compute efficiency:

(B∗, η∗, σ∗) := arg min
(B,η,σ)

C

s.t. J (πAlg(B, η, σ)) ≥ J0

D ≤ D0.

We solve these problems by fitting empirical models of
the minimum data and compute needed to attain a target
performance for different values of J0. Doing so allows us to
then solve the third setting (3) for maximizing performance
given a total budget on data and compute as shown below.

Problem 3.2 (Maximize performance at large data and
compute budget). Find the best configuration (B, η, σ)
and resource allocations for data D and compute C that
enable Alg to maximize performance at budget F0

(B∗, η∗, σ∗) := arg max
(B,η,σ)

J (πAlg(B, η, σ))

s.t. C + δ · D ≤ F0.

3

Value-Based Deep RL Scales Predictably

Figure 2: The data-compute tradeoff on DMC. Left: The minimum
required data DJ scales with the UTD σ as a power law. Right:
The minimum required compute CJ increases with the UTD σ as
a sum of two power laws.

4. Scaling Results For Value-Based Deep RL
We will now present our main results addressing Problem 3.1
under the two settings discussed above. We will then use
these results to present results for Problem 3.2. In order to do
so, we run several experiments and estimate scaling trends
from the results. Although this procedure might appear stan-
dard from scaling studies in language modeling, we found
that instantiating it for value-based RL requires understand-
ing the interaction of the various hyperparameters appearing
in TD updates, and the data and compute efficiency of the
algorithm. We will formalize these relationships via empiri-
cally estimated laws and show that these laws extrapolate
reliably to new settings not used to obtain these empirical
laws. Therefore, in this section, we present empirical and
conceptual arguments to build functional forms of relation-
ships between different hyperparameters. Before doing so,
we provide our answers to Problems 3.1 and 3.2.

4.1. Main Scaling Results
We begin by answering Problem 3.1 where we maximize
sample efficiency. We wish to estimate the minimal amount
of data DJ needed to attain a given target performance,
given an upper bound on compute C ≤ C0. To do so, we
fit DJ needed to attain the target performance J = J0 pa-
rameterized by the UTD ratio σ (Eq. (4.1)). Intuitively, the
minimum amount of data needed to attain a given perfor-
mance is lower as more updates are made per datapoint (i.e.,
when σ is high), as more “value” could be derived from
the same datapoint. In addition, we would expect that even
for the best value of σ, there is a minimum number of dat-
apoints Dmin that are needed to learn given the “intrinsic”
difficulty of the task at hand. Based on these intuitions, we
hypothesize a power law relationship between DJ(σ) and
σ, with an offset Dmin and constants αJ and βJ .

DJ(σ) ≈ Dmin
J +

(
βJ

σ

)αJ

(4.1)

Empirical fits of DJ and σ on the DMC suite are in Figure 2
and they validate the efficacy of this fit. We also emphasize
that the existence of this power law makes DJ predictable,
in that we can predict DJ for larger values of σ that fall
outside the range of σ values used to get the fit (Figure 6).

Scaling Observation 1: Data Requirements

The amount of data DJ needed to reach a given
return target J0 decreases as a predictable function
of the UTD σ, and is a power law (Eq. (4.1)).

To answer the optimization questions in Problem 3.1, we
also need an expression for required compute until the target
return CJ . As σ determines the number of gradient steps per
data point, CJ is a function of σ. In particular, total compute
is equal to the number of gradient steps taken multiplied
by the parameter count of the model. Our study does not
optimize over the model size and treats it as a constant.
Thus, we write the compute CJ as a function of σ as:

CJ(σ) ≈ 10 ·N ·B(σ) · σ · DJ(σ) (4.2)

where N denotes the model size, B(σ) denotes the “best
choice” batch size for a given UTD value σ, and other vari-
ables follow definitions from before. Note the additional
factor of 10 in Eq. (4.2) emerges from the use of multiple
forward passes to compute the loss function for value-based
RL and the backward pass, through the Q-network (to con-
trast with language modeling, the typical multiplier is 6; the
gap in our setting comes from the use of multiple forward
passes). We plot CJ(σ) for different values of σ and J = J0
in Figure 2. Since DJ(σ) is not a constant and depends itself
on σ, we note that this particular relationship between CJ(σ)
and σ is not a simple power law unlike Eq. (4.1). Instead,
our derivation in Eq. (A.4) shows that CJ(σ) is given by a
sum of two different power laws in σ. Similarly to DJ , we
also observe that the compute utilized is a predictable func-
tion of σ: we are able to accurately estimate the compute at
larger values of σ using the relationship in Eq. (4.2).

Scaling Observation 2: Compute Requirements

The compute CJ to attain a given return target J0
increases as a predictable function of the UTD ratio
σ, and is a sum of two power laws (Eq. (4.2)).

We observe that both required compute and data are con-
trolled by the UTD ratio σ, which allows us to define a
tradeoff between compute and data controlled by σ. We plot
this tradeoff as a curve with compute CJ(σ) as x-axis and
DJ(σ) as y-axis in Figure 1 (left). Further, as DJ(σ) is a
monotonically decreasing function of σ, this curve defines
a Pareto frontier: we can move left on the curve to increase
data efficiency as the expense of compute and move right
to increase compute efficiency at the expense of data. Also
interestingly, due to the compute law being a sum of two
power laws, in many environments there is a minimum σ
after which compute efficiency no longer improves as seen
on OAI Gym in Figure 1.

Solving for maximal data efficiency (Problem 3.1, (1)).
We can now solve Problem 3.1 in setting (1). our strategy

4

Value-Based Deep RL Scales Predictably

to address setting (1) is to find the largest σ (say σmax)
that satisfies the compute constraint CJ(σ) ≤ C0, and then
plug this σmax into DJ(σ) to obtain the data estimate. This
approach enables us to express DJ directly as a function of
the available compute C0, as we calculate in Eq. (4.2). This
can be visualized as finding the value DJ corresponding to
some value C0 on the Pareto frontier (Figure 1, left)

Solving for maximal compute efficiency (Problem 3.1,
(2)). Likewise, the solution in (2) can be obtained by finding
the smallest value of σ in the range that satisfies the data
constraint DJ(σ) ≤ D0, and computing the corresponding
value of CJ(σ). This can similarly be visualized on the
Pareto frontier (Figure 1, left). We summarize our observa-
tions in terms of the following takeaway.

Solving 3.1: The Compute-Data Pareto frontier

The UTD ratio σ defines a Pareto frontier between
data and compute requirements, and estimating this
frontier yields predictable solutions to resource op-
timization problems in settings (1) and (2). Theo-
retically, the optimal D∗

J for an available compute
budget C0 is:

D∗
J(C0) ≈ C0 · (10 ·N ·B(σ∗) · σ∗)

−1
. (4.3)

The optimal CJ for a given data budget D0 is:
C∗
J(D0) ≈ 10 ·N ·B(σ∗) · σ∗ · D0. (4.4)

Above, σ∗ denotes the minimizing UTD value. Cal-
culation details are in Appendix A.

Maximize return within a budget (Problem 3.2). Finally,
we tackle Problem 3.2 in order to extrapolate from low to
high return. Here, we do not want to minimize resources,
but rather want to maximize performance within a given
total “budget” on data and compute. As discussed in Sec-
tion 3, we consider budget functions linear in both data and
compute, i.e., F = C + δ · D, for a given constant δ. Our
estimated Pareto frontier in Eq. (4.4) will enable answering
this question. To do so, we turn to directly predicting a good
UTD value σ∗. This UTD value is one that not only leads
to maximal performance, but also stays within the total re-
source budget F0. Once the UTD value has been identified,
it prescribes a concrete way to partition the total resource
budget into good data and compute requirements using the
solutions to Problem 3.1.

We plot the data-compute Pareto frontiers for multiple val-
ues of J0 in Figure 3 and in Figure 1 (right), and find that
these curves move diagonally to the top-right for larger J0.
Intersecting these curves with iso-budget frontiers over D
and C prescribed by the budget function, gives us the largest
possible J0 for which there is still a (D, C) pair that just
falls just within the budget F0 but attains performance J0
(see Figure 3 for a worked out version of this procedure).
Since both D and C are explained by σ, we can associate

Figure 3: Visualization of the solution to Problem 3.2. Several
Pareto frontiers (Figure 1, left) are shown, together with lines
of iso-budget F , which define optimal budget points (D∗, C∗).
Corresponding optimal UTD ratios σ∗ are a predictable function
of the budgets F0, trend line shown dashed.

this point with a given σ value. Hence, we can estimate
the best value of σ∗(F0) for a given budget threshold F0.
Concretely, we observe a power law between σ(F0) and F0,
with constants βσ and ασ .

σ∗(F0) ≈
(
βσ

F0

)ασ

. (4.5)

Solving 3.2: Maximize Return Given a Budget

The best UTD value σ that leads to maximal J is a
predictable function of the budget F0 over data and
compute, this relationship follows a power law, and
also extrapolates to large budgets.

This relationship produces the optimal σ, and as a result,
the optimal data and compute allocations to reliably attain
maximum performance. As shown in Figure 1, estimating
this law from low-budget experiments is sufficient for pre-
dicting good σ values for large budget runs. These predicted
σ∗(F0) values extrapolate reliably to budgets outside the
range used to fit this law (as shown by × in Figure 1). This
concludes an exposition of our main results.

4.2. Fitting Relationships Between (B, η, σ)

To arrive at these scaling law fits above, we had to set hy-
perparameters B and η, which we empirically observed to
be important. We fit these hyperparameters as a function
of σ, the only variable appearing in many of the scaling
relationships discussed above. In this section, we will now
describe how to estimate good values of B and η in terms
of σ. Our analysis here relies crucially on the behavior of
TD-learning that is distinct from supervised learning, where
the UTD ratio σ does not exist.

To understand relationships between batch size B, learning
rate η, and the UTD ratio σ, we ran an extensive grid search.
We first attempted to explain the relationship between the B

5

Value-Based Deep RL Scales Predictably

-- Supervised Learning
– TD Learning

●
●

(II) Effect of UTD ratio σ

Batch size

Lo
ss

Learning rate

Lo
ss

(I) Hparam choice for SL vs RL

O
ve

rfi
tti

ng
Pl

as
tic

ity

(III) Effect of B and η

-- Training

– Validation

● Best batch size

● Critical batch Size

Figure 4: Hyperparameter effects in supervised learning and TD learning on DMC. Top: Overfitting increases with UTD while batch size
can be used to counteract it. Bottom: Higher UTD leads to poor training dynamics and plasticity loss (D’Oro et al., 2023). Lower learning
rates can be used to counteract it. While these relationships are not perfectly predictable, we use them to inform our design choices.

and η values that attain the highest data efficiency (denoted
B∗, η∗) using the standard heuristic in supervised learning:
when the batch size is smaller than the critical batch size, B
and η are inversely correlated with each other (McCandlish
et al., 2018). However, as shown in Figure 5 (right), we
find that without including the UTD ratio σ, best B∗ and
η∗ exhibit very weak correlation. Further, the critical batch
size (McCandlish et al., 2018) does not correlate with em-
pirically best batch size as we show in Appendix F. Instead,
surprisingly, we observe a strong correlation between B∗

and σ, as well as η∗ and σ, respectively. Since B∗ and
η∗ exhibit near zero correlation among themselves, we can
simply omit their dependency and opt for modeling them
independently as a function of the UTD ratio, σ. We con-
ceptually explain relationships between B∗ and σ, and η∗

and σ below and show that models developed from this un-
derstanding enable us to reliably predict good values of B
and η, allowing us to fully answer Problem 3.1.

Predicting best choice of B in terms of σ. Our proposed
functional form for the best batch size B∗ takes the form
of a power law in σ, which we also empirically validate in
Figure 5 (left). We posit this form because, intuitively, large
batch sizes increase the risk of overfitting because they lead
to repetitive training on a fixed set of data. Furthermore, a
small training loss on the distribution of data in the buffer
does not necessarily reflect the behavior policy distribution
of a learning agent (Levine et al., 2020). This means that
minimizing the training loss to a large extent can result in
poor test performance J(π), as also seen by prior work (Li

et al., 2023a; Nauman et al., 2024a). One way to counteract
this form of “overfitting” from a high UTD value σ is to
instead reduce the batch size in the run so that the training
process sees a given sample fewer times. In fact, for a fixed
UTD value σ, we empirically validate this hypothesis that a
lower B leads to substantially reduced overfitting on several
tasks in Figure 4. Hence, we post an inverse relationship
between the best batch size B∗ and the UTD value σ. We
show in Figure 5 that indeed this inverse relationship can be
estimated well by a power law, given formally as:

B∗(σ) ≈
(
βB

σ

)αB

. (4.6)

Predicting best choice of learning rate η as a function of
σ. Next we turn to understanding the relationship between
η and σ. We start from a simple observation: a very large
σ typically leads to worse performance not only due to
overfitting but also due to plasticity loss (Kumar et al., 2021;
D’Oro et al., 2023; Lyle et al., 2023), defined broadly as the
inability of the value network to fit TD targets appearing
later in training. Prior work states that plasticity loss is
inherently related to the number of gradient steps performed
and claims that larger norms of parameters of the Q-network
are indicative of plasticity loss (D’Oro et al., 2023; Lyle
et al., 2023). We would expect a larger learning rate to make
higher magnitude updates against the same TD target, and
hence move parameters to a state that suffers from difficulty
in fitting subsequent targets (Dabney et al., 2021; Lee et al.,
2024). As shown in Figure 4, the parameter norm indeed
increases with a high learning rate. Therefore, given a UTD

6

Value-Based Deep RL Scales Predictably

Figure 5: Left, middle: Fitting the best learning rate η∗ and batch size B∗ given UTD σ on DMC. Modeling the dependency on σ is
crucial to obtain good hyperparameters, whereas using constant B, η as is commonly done leads too poor extrapolation. Right: the best
learning rate and batch size are not significantly correlated, a major difference from supervised learning.

value σ, we hypothesize that the best choice of learning rate,
η∗(σ) for a given performance should scale inversely in σ.
Empirically we observe that this is indeed the case (Figure
5 (middle)), and we model this relationship:

η∗(σ) ≈
(
βη

σ

)αη

. (4.7)

Scaling Observation 3: Hyperparameter Selection

The best choices for the batch size and learning rate
are predictable functions of the UTD σ, and both of
these relationships follow a power law.

4.3. Empirical Workflow

Fitting Empirical Relationships

1. Run a sweep for batch size B and learning rate η
for several values of UTD σ. Since the batch size
and learning rate are independent for the best σ,
we can run these sweeps independently.

2. Estimate empirically the best of batch size B̃ and
learning rate η̃, with statistical bootstrapping.

3. Fit B∗(σ) and η∗(σ) on B̃, η̃ according to Equa-
tions (4.6) and (4.7).

4. Using the found fits B∗(σ), η∗(σ), run different
values of σ that cover a range spanning an order
of magnitude; we use 16×, i.e., σmax/σmin > 16.

5. Fit DJ(σ) according to Eq. (4.1).

6. Using fits of DJ(σ) for different values of J0, fit
σ∗(F0) according to Eq. (4.5).

7. Optimal hyperparameters can now be extrapo-
lated to larger data, larger compute, or larger bud-
get settings according to Problem 3.1.

Having presented solutions to Problems 3.1 and 3.2, we now
present the workflow we utilize to estimate these empirical
fits. Further details are in Section 5 and Appendix D. This

workflow can serve as a useful skeletion for scaling law
studies with other value-based algorithms as well.

4.4. Evaluating Extrapolation
Evaluating budget extrapolation. Results on all environ-
ments are shown in Figure 1 (middle). We estimate several
Pareto frontiers corresponding to points with equal changes
in budget. We perform the σ∗(F0) fit, while holding out
two largest budgets. The quality of our fit for these two
extrapolated budgets can be seen in the figure.

Evaluating Pareto frontier extrapolation. Results on Ope-
nAI Gym are shown in Figure 6. We fit the data efficiency
equation DJ(σ) Eq. (4.1) while holding out either two UTD
values σ with largest data requirement (left) or two σ values
with largest compute requirement (right). The quality of our
fit for these two extrapolated σ values can be seen in the
figure.

Hyperparameter fit extrapolation. Results on OpenAI
Gym are shown in Figure 6 (right). We plot the data ef-
ficiency fit when using hyperparameters according to our
found dependency B∗(σ), η∗(σ) (shown in red). These
fits are estimated from σ = 1, . . . , 8 and extrapolated to
σ = 0.5. We compare the typical approach of tuning hyper-
parameters in online RL, where hyperparameters are tuned
for one setting of σ = 2 and this setting is used for all UTD
values (shown in blue). We see that our proposed hyper-
parameter fits improve results for values other than σ = 2.
Further, this improvement is larger for larger values of σ,
showing that accounting for hyperparameter dependency is
critical.

5. Experimental Details
Experimental Setup We focus on 12 tasks from 3 do-
mains in our study. On OpenAI Gym (Brockman et al.,
2016), we use Soft Actor Critic, a commonly used TD-
learning algorithm (Haarnoja et al., 2018). We first run a
sweep on 5 values of η, then a grid of runs with 4 values
of σ and 3 values of B, and then use hyperparameter fits

7

Value-Based Deep RL Scales Predictably

0.50 1.00 2.00 4.00 8.00
: UTD Ratio

15

24

39

62

100

J:
Da

ta
 u

nt
il

J

×1e4

Empirical value
Ours J()
Constant fit J()

Figure 6: Extrapolation towards unseen values of σ on OpenAI Gym. Left: We show Pareto frontier extrapolation towards higher data
regime. Middle: We show Pareto frontier extrapolation towards higher compute regime. Right: We compare the best-performing
hyperparameters (red) for σ = 2 to hyperparameters predicted via our proposed workflow (blue).

to run 2 more value of σ with 8 seeds per task. To test our
approach with larger models, we use DMC (Tassa et al.,
2018), where, we utilize the state-of-the-art Bigger, Regu-
larized, Optimistic (BRO) algorithm (Nauman et al., 2024b)
that uses a larger and more modern architecture. We first
run 5 values of B, 4 values of η, and 4 σ; and then use
hyperparameters fits to run 2 more values of σ, with 10
seeds per task. Finally, we test our approach with more data
on IsaacGym (Makoviychuk et al., 2021), where we use
the Parallel Q-Learning (PQL) algorithm (Li et al., 2023b),
which was designed to leverage massively parallel simu-
lation like Isaac Gym that can quickly produce billions of
environment samples. Because of computational expense,
we only run one IsaacGym task. We first run 4 values of
σ, 3 values of η, as well as 5 values of B, with 5 seeds per
task, after which we run a second round of grid search with
7 values of σ. Further details are in Appendices B and D
and Table 3.

Fitting Functional Forms for Scaling Laws We approxi-
mate Eq. (4.1) via brute-force search followed by LBFG-S
with a log-MSE loss following (Hoffmann et al., 2023). For
Equations (4.6) and (4.7), we fit a line in log space using
least squares regression following Kaplan et al. (2020). In
our experiments, we run a single fit that is shared across
different tasks in a given benchmark. Specifically, we share
the slope αB , αη and use task-specific intercepts σenv

B , σenv
η

(as defined in Equations (4.6) and (4.7)) to be different
for separate tasks. This technique is standard in ordinary
least squares modeling and is referred to as fixed effect re-
gression (Bishop and Nasrabadi, 2006). Sharing this slope
serves the goal of variance reduction, which can be impor-
tant if the granularity of the grid search over various hyper-
parameters run is coarse. More details are in Appendices B
and D.

6. Related Work
Scaling laws and predictability. Prior work has studied
scaling laws in the context of supervised learning (Kaplan
et al., 2020; Hoffmann et al., 2023), primarily to predict

the effect of model size and training data on validation
loss, while marginalizing out hyperparameters like batch
size (McCandlish et al., 2018) and learning rate (Kaplan
et al., 2020). There are several extensions of such scal-
ing laws for language models, such as laws for settings
with data repetition (Muennighoff et al., 2023) or mixture-
of-experts (Ludziejewski et al., 2024), but most focus on
cross-entropy loss, with an exception of Gadre et al. (2024),
which focuses on downstream metrics. While scaling laws
have guided supervised learning experiments, little work
explores this for RL. The closest works are: Hilton et al.
(2023) which fits power laws for on-policy RL methods
using model size and the number of environment steps;
Springenberg et al. (2024) who study model size scaling
for offline RL; Jones (2021) which studies the scaling of
AlphaZero on board games of increasing complexity; and
Gao et al. (2023) which studies reward model overoptimiza-
tion in RLHF. In contrast, we are the first ones to study
predictability off-policy value-based RL methods that are
trained via TD-learning. Not only do off-policy methods
exhibit training dynamics distinct from supervised learn-
ing and on-policy methods (Kumar et al., 2022; Lyle et al.,
2023), but we show that this distinction also results in a
different functional form for scaling law altogether. We
also note that while Hilton et al. (2023) use minimal com-
pute, i.e., CJ in our notation as a metric of performance, our
analysis goes further in several respects: (1) we also study
the tradeoff between data and compute (Figure 1), (2) we
can predict the algorithm configuration for best performance
(Problem 3.1); (3) we study many budget functions (C+δ ·D
can be any affine function).

Methods for large-scale deep RL. Recent work has scaled
deep RL across three axes: model size (Kumar et al., 2023;
Schwarzer et al., 2023; Nauman et al., 2024b), data (Kumar
et al., 2023; Gallici et al., 2024; Singla et al., 2024), and
UTD (Chen et al., 2020; D’Oro et al., 2023). Naı̈ve scaling
of model size or UTD often degrades performance or causes
divergence (Nikishin et al., 2022; Schwarzer et al., 2023),
mitigated by classification losses (Kumar et al., 2023), layer
normalization (Nauman et al., 2024a), or feature normaliza-

8

Value-Based Deep RL Scales Predictably

tion (Kumar et al., 2022). In our work, we use scaled net-
work architectures from Nauman et al. (2024b) (Section 5).
In on-policy RL, prior works focus on effective learning
from parallelized data streams in a simulator or a world
model (Mnih et al., 2016; Silver et al., 2016; Schrittwieser
et al., 2020). Follow-up works like IMPALA (Espeholt
et al., 2018) and SAPG (Singla et al., 2024) use a central-
ized learner that collects experience from distributed work-
ers with importance sampling updates. These works differ
substantially from our study as we focus exclusively on
value-based off-policy RL algorithms that use TD-learning
and not on-policy methods. In value-based RL, prior work
on data scaling focuses on offline (Yu et al., 2022; Kumar
et al., 2023; Park et al., 2024) and multi-task RL (Hafner
et al., 2023). In contrast, we study online RL and fit scaling
laws to answer resource optimization questions.

7. Discussion, Limitations, and Future Work
In this paper, we show that value-based deep RL algorithms
scale predictably. We establish relationships between good
values of hyperparameters of value-based RL. We then es-
tablish a relationship between required data and required
compute for a certain performance. Finally, this allows us to
determine an optimal allocation of resources to either data
and compute. Although only estimated from small-scale
runs, our empirical models reliably extrapolate to large com-
pute, data, budget, or performance regimes. Despite folk
wisdom to the contrary, we show it is possible to predict
behavior of value-based off-policy RL algorithms at larger
scale using small-scale experiments.

At the same time, this first study also presents a number of
open questions and challenges:

1. While simple power law models work well, an open
question remains as to whether such laws are theoreti-
cally grounded, and whether there are better and more
refined functional forms.

2. Our study only focused on three hyperparameters (B,
η, and σ). We do not focus on optimal tradeoff between
model size and UTD, which is important for compute
scaling. For data efficient RL, it is important to ana-
lyze the dependency of weight decay and weight reset
frequency on UTD, which are typical tricks employed
by many of the most performant methods in literature.

3. While we focus on online RL, it is important to study
scaling of offline-to-online and offline RL, which will
allow direct applications of scaling law findings to
large model training.

4. Finally, while we study relatively small models, future
work will focus on verifying our results with larger
model scales, larger scale tasks, study the effect of
modern architectures, and cover a larger range of com-
pute scales spanning multiple orders of magnitude.

Our work is only one step in studying scaling laws for
value-based RL methods. Further research has the potential
to improve our understanding of value-based RL at scale,
provide researchers with tools to focus innovation on more
important components, and eventually provide guidelines
towards scaling value-based RL similarly to scaling enjoyed
by other modern deep learning approaches.

Acknowledgements
We would like to thank Zhang-Wei Hong, Amrith Setlur,
Rishabh Agarwal, Seohong Park, and Max Simchowitz for
feedback on an earlier version of this paper. We would
like to thank Andrea Zanette, Seohong Park, Kyle Stachow-
icz, and Qiyang Li for informative discussions. This re-
search was supported by ONR under N00014-24-12206,
N00014-22-1-2773, and ONR DURIP grant, with compute
support from the Berkeley Research Compute, Polish high-
performance computing infrastructure, PLGrid (HPC Cen-
ter: ACK Cyfronet AGH), that provided computational re-
sources and support under grant no. PLG/2024/017817.
Pieter Abbeel holds concurrent appointments as a Professor
at UC Berkeley and as an Amazon Scholar. This work was
done at UC Berkeley and CMU, and is not associated with
Amazon.

Impact Statement
This paper aims to contribute to the advancement of re-
inforcement learning. While our work may have various
societal implications, none warrant specific emphasis here.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. GPT-4 technical report. arXiv preprint,
2023.

Richard E Barlow and Hugh D Brunk. The isotonic re-
gression problem and its dual. Journal of the American
Statistical Association, 1972.

Christopher M Bishop and Nasser M Nasrabadi. Pattern
Recognition and Machine Learning. Springer, 2006.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym, 2016.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators.
2024.

9

Value-Based Deep RL Scales Predictably

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W Ross.
Randomized ensembled double Q-learning: Learning
fast without a model. In International Conference on
Learning Representations, 2020.

Will Dabney, André Barreto, Mark Rowland, Robert
Dadashi, John Quan, Marc G Bellemare, and David Silver.
The value-improvement path: Towards better representa-
tions for reinforcement learning. In AAAI Conference on
Artificial Intelligence, 2021.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-
Luc Bacon, Marc G Bellemare, and Aaron Courville.
Sample-efficient reinforcement learning by breaking the
replay ratio barrier. In International Conference on Learn-
ing Representations, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al.
The Llama 3 herd of models. arXiv preprint, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Si-
monyan, Volodymir Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA:
Scalable distributed deep-RL with importance weighted
actor-learner architectures. International Conference on
Machine Learning, 2018.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar,
Suchin Gururangan, Mitchell Wortsman, Rulin Shao,
Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al.
Language models scale reliably with over-training and on
downstream tasks. arXiv preprint, 2024.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu
Pou, Ivan Masmitja, Jakob Nicolaus Foerster, and Mario
Martin. Simplifying deep temporal difference learning.
arXiv preprint, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws
for reward model overoptimization. In International Con-
ference on Machine Learning, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timo-
thy Lillicrap. Mastering diverse domains through world
models. arXiv preprint, 2023.

Jacob Hilton, Jie Tang, and John Schulman. Scaling laws
for single-agent reinforcement learning. arXiv preprint,
2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, et al. Training compute-optimal large lan-
guage models. Advances in Neural Information Process-
ing Systems, 2023.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey
Levine. When to trust your model: Model-based pol-
icy optimization. In Advances in Neural Information
Processing Systems, 2019.

Andy L. Jones. Scaling scaling laws with board games,
2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. arXiv preprint, 2020.

Alex Krizhevsky. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint, 2014.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey
Levine. Implicit under-parameterization inhibits data-
efficient deep reinforcement learning. In International
Conference on Learning Representations, 2021.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron
Courville, George Tucker, and Sergey Levine. DR3:
Value-based deep reinforcement learning requires explicit
regularization. International Conference on Learning
Representations, 2022.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George
Tucker, and Sergey Levine. Offline Q-learning on diverse
multi-task data both scales and generalizes. In Interna-
tional Conference on Learning Representations, 2023.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon
Gwak, Joonkee Kim, Jaegul Choo, Se-Young Yun, and
Chulhee Yun. Plastic: Improving input and label plastic-
ity for sample efficient reinforcement learning. Advances
in Neural Information Processing Systems, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint, 2020.

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine.
Efficient deep reinforcement learning requires regulating
overfitting. In International Conference on Learning
Representations, 2023a.

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and
Pulkit Agrawal. Parallel Q-learning: Scaling off-policy
reinforcement learning under massively parallel simula-
tion. In International Conference on Machine Learning,
2023b.

10

Value-Based Deep RL Scales Predictably

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. International Conference on Learning
Representations, 2016.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski,
Maciej Pióro, Michał Krutul, Szymon Antoniak, Kamil
Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr
Sankowski, et al. Scaling laws for fine-grained mix-
ture of experts. In International Conference on Machine
Learning, 2024.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila
Pires, Razvan Pascanu, and Will Dabney. Understanding
plasticity in neural networks. In International Conference
on Machine Learning, 2023.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac
Gym: High performance GPU-based physics simulation
for robot learning. Advances in Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2021.

Sam McCandlish, Jared Kaplan, Dario Amodei, and Ope-
nAI Dota Team. An empirical model of large-batch train-
ing. arXiv preprint, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International
Conference on Machine Learning, 2016.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven
Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo
Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling
data-constrained language models. Advances in Neural
Information Processing Systems, 2023.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz
Trzcinski, Mateusz Ostaszewski, and Marek Cygan. Over-
estimation, overfitting, and plasticity in actor-critic: The
bitter lesson of reinforcement learning. In International
Conference on Machine Learning, 2024a.

Michal Nauman, Mateusz Ostaszewski, Krzysztof
Jankowski, Piotr Miłoś, and Marek Cygan. Bigger,
regularized, optimistic: Scaling for compute and
sample-efficient continuous control. Advances in Neural
Information Processing Systems, 2024b.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-
Luc Bacon, and Aaron Courville. The primacy bias in
deep reinforcement learning. In International Conference
on Machine Learning, 2022.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Ku-
mar. Is value learning really the main bottleneck in offline
RL? Advances in Neural Information Processing Systems,
2024.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional image
generation with CLIP latents. arXiv preprint, 2022.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering Atari, Go, chess and Shogi by planning
with a learned model. Nature, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint, 2017.

Max Schwarzer, Johan Samir Obando Ceron, Aaron
Courville, Marc G Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, better, faster: Human-level
Atari with human-level efficiency. In International Con-
ference on Machine Learning, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of Go with
deep neural networks and tree search. Nature, 2016.

Jayesh Singla, Ananye Agarwal, and Deepak Pathak. SAPG:
Split and aggregate policy gradients. International Con-
ference on Machine Learning, 2024.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei
Zhang, Oliver Groth, Michael Bloesch, Thomas Lampe,
Philemon Brakel, Sarah Bechtle, Steven Kapturowski,
Roland Hafner, et al. Offline actor-critic reinforcement
learning scales to large models. International Conference
on Machine Learning, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez,
Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deep-
Mind control suite. arXiv preprint, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M Dai, Anja Hauth, Katie Millican, et al.

11

Value-Based Deep RL Scales Predictably

Gemini: A family of highly capable multimodal models.
arXiv preprint, 2023.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron,
Siqi Liu, Steven Bohez, Josh Merel, Tom Erez, Timothy
Lillicrap, Nicolas Heess, and Yuval Tassa. dm control:
Software and tasks for continuous control. Software Im-
pacts, 2020.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, et al. SciPy 1.0: Fundamental algorithms for
scientific computing in Python. Nature Methods, 2020.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor,
Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki,
Weizhu Chen, and Jianfeng Gao. Tensor programs V:
Tuning large neural networks via zero-shot hyperparame-
ter transfer. Advances in Neural Information Processing
Systems, 2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Haus-
man, Chelsea Finn, and Sergey Levine. How to leverage
unlabeled data in offline reinforcement learning. In Inter-
national Conference on Machine Learning, 2022.

12

Value-Based Deep RL Scales Predictably

Appendices
A. Additional details on derivations
FLOPs calculation. Recall that FLOPs per forward and backward passes are equal to Cforward

J (σ) ≈ 2 ·N ·B(σ) · σ · DJ(σ)
and Cbackward

J (σ) ≈ 4 ·N ·B(σ) ·σ · DJ(σ), with σ denoting the number of gradient steps per environment steps. Q-learning
methods used in our study use MLP and ResNet architectures, which are well modeled with this approximation. Assuming
same size for actor and critic as an approximation, a training iteration of the critic requires three forward passes and one
backward pass, totaling Ccritic

J (σ) ≈ 10 ·N ·B(σ) · σ · DJ(σ). A training iteration of the actor requires two forward and two
backward passes, totaling Cactor

J (σ) ≈ 12 ·N ·B(σ) · σ · DJ(σ). Here we follow the standard practice of updating the actor
every time a new data point collected, while the critic is updated according to the UTD ratio σ. Since we expect the critic to
be updated more then the actor. As such, in this study we assume

CJ(σ) ≈ Ccritic
J (σ) ≈ 10 ·N ·B(σ) · σ · DJ(σ). (A.1)

Compute and sample efficiency. Following Eq. (4.1), the number of data points required to achieve performance J is
equal to:

DJ(σ) ≈ Dmin
J +

(
βJ

σ

)αJ

(A.2)

Given the expressions for required data points, practical batch size, and FLOPs Equations (4.1), (4.6) and (A.1), we can now
derive the expression for compute required to reach a particular performance expressed in terms of σ. First, note that the
number of parameter updates is

σ · DJ(σ) ≈ σ · Dmin
J +

βαJ

J

σαJ−1
(A.3)

Combining above, Eq. (4.6) with Eq. (A.1) yields:

CJ(σ) ≈ 10 ·N ·B(σ) ·
(
σ · Dmin

J +
βαJ

J

σαJ−1

)
≈ 10 ·N ·

(
βB

σ

)αB

·
(
σ · Dmin

J +
βαJ

J

σαJ−1

)
≈ 10 ·N ·

(
Dmin

J · βαB

B

σαB−1
+

βαJ

J · βαB

B

σαJ+αB−1

)
.

(A.4)

We observe that the resulting expression is a sum of two power laws. In practice, one of the power laws will dominate the
expression and a simple mental model is that compute increases with UTD as a power law with a coefficient < 1 (see Figure
2).

Maximal compute efficiency. Here, we solve the compute optimization problem presented in Section 3. We write the
problem:

(B∗, η∗, σ∗) := arg min
(B,η,σ)

C s.t. J (πAlg(B, η, σ)) ≥ J0 ∧ D ≤ D0. (A.5)

Firstly, we formulate the Lagrangian L:

13

Value-Based Deep RL Scales Predictably

L(σ, λ) = CJ(σ) + λ · (DJ(σ)−D0)

≈ 10 ·N ·B(σ) ·
(
σ · Dmin

J +
βαJ

J

σαJ−1

)
+ λ ·

(
Dmin

J +

(
βJ

σ

)αJ

−D0

) (A.6)

Here, the constrained with respect to performance J0 is upheld through the use of CJ(σ) and DJ(σ) which are defined such
that J = J0. We proceed with calculating the derivative with respect to λ to find the minimal σ that is able to achieve the
desired sample efficiency DJ . We denote such optimal UTD as σ∗:

∂L
∂λ

= Dmin
J +

(
βJ

σ

)αJ

−D0 = 0 =⇒ σ∗ =
−βJ(

Dmin
J −D0

)1/αJ
(A.7)

Then, we substitute the σ∗ into the expression defining compute, as well as use Eq. (4.6):

CJ(σ∗) ≈ 10 ·N ·
βαB

B

σαB−1
·
(
Dmin

J +
βαJ

J

σαJ

)
≈ 10 ·N ·

βαB

B

(σ∗)αB−1
·

(
Dmin

J +
βαJ

J ·
(
Dmin

J −D0

)
−βαJ

J

)
≈ 10 ·N · βαB

B · (σ∗)1−αB · D0

(A.8)

Maximal sample efficiency. Firstly, we note that we treat B(σ) as a constant and do not optimize with respect to it. We
start with the problem definition:

(B∗, η∗, σ∗) := arg min
(B,η,σ)

D s.t. J (πAlg(B, η, σ)) ≥ J0 ∧ C ≤ C0. (A.9)

Similarly to the maximal compute efficiency problem, we formulate the Lagrangian L:

L(σ, λ) = DJ(σ) + λ · (CJ(σ)− C0)

≈ Dmin
J +

(
βJ

σ

)αJ

+ λ ·
(
10 ·N ·B(σ) · σ ·

(
Dmin

J +
βαJ

J

σαJ

)
− C0

) (A.10)

Again, we uphold the constraint with respect to the performance through the use of DJ(σ) and CJ(σ). We calculate the
derivative with respect to λ:

∂L
∂λ

= 10 ·N ·B(σ) · σ ·
(
Dmin

J +
βαJ

J

σαJ

)
− C0 = 0 =⇒ Dmin

J +
βαJ

J

σαJ
=

C0
10 ·N ·B(σ) · σ

= DJ (A.11)

Since DJ is monotonic in σ and does not model impact of B on the sample efficiency, the optimization problem can be
solved via Weierstrass extreme value theorem. As such, we find the biggest σ and that fulfills the compute constraint, and
find the data requirement for such σ.

B. Experimental details
For our experiments, we use a total of 12 tasks from 3 benchmarks (DeepMind Control (Tunyasuvunakool et al., 2020),
Isaac Gym (Makoviychuk et al., 2021), and OpenAI Gym (Brockman et al., 2016)). We list all considered tasks in Table 1.

14

Value-Based Deep RL Scales Predictably

Table 1: Tasks used in presented experiments.

Domain Task Optimal π Returns

DeepMind Control Cartpole-Swingup 1000
Cheetah-Run 1000
Dog-Stand 1000
Finger-Spin 1000

Humanoid-Stand 1000
Quadruped-Walk 1000

Walker-Walk 1000

Isaac Gym Franka-Push 0.05

OpenAI Gym HalfCheetah-v4 8500
Walker2d-v4 4500

Ant-v4 6625
Humanoid-v4 6125

Figure 1. We use all available UTD values for the fits, which is 6 for DMC, 5 for OAI Gym, and 7 for Isaac Gym. Given
the dependency of compute and data on UTD, we plot the resulting curve. We average the data efficiencies across all tasks
in each domain, as described in Appendix D. For plots on the left, we use J = 800.

We calculate compute given the model sizes of N = 4.92e6 for DMC, N = 1.5e5 for OAI Gym, and N = 2e6 following
standard implementations of the respective algorithms.

For budget extrapolation, we use tradeoff values δ to mimic the wall-clock time of the algorithm. We use δ = 1e10 for
DMC, δ = 5e9 for OAI Gym, and δ = 1e4 for Isaac Gym. We exclude runs affected by resets (σ = 8) for DMC since the
returns right after the reset are lower, which adds noise to the results.

Figure 2. We use the same data as for DMC in Figure 1 (left).

Figure 3. We use the same data as for DMC in Figure 1 (right).

Figure 4. Left: we show an illustration that reflects our observed empirical results about the dependencies between
hyperparameters.

Right, middle: we investigate the correlations between overfitting, parameter norm of the critic network, and σ. We
observed the same relationships on all tasks. Here, to avoid clutter, we plot 3 tasks from DMC benchmark: cheetah-run,
dog-stand, and quadruped-walk. To measure overfitting, we compare the TD loss calculated on samples randomly sampled
from the buffer (corresponding to training data) to TD loss calculated on 16 newest transitions (corresponding to validation
data) according to:

Overfitting = TDtraining − TDvalidation. (B.1)

We fit the linear curves using ordinary least squares with mean absolute error loss.

Figure 5. In the left and central Figures, we evaluate the B∗ and η∗ models. For each DMC task, we find the best
hyperparameters according to our workflow and procedure described in Section 5 and Appendix D. While the intercepts vary
across environments, for simplicity we plot data points and fits from all environments in the same figure by shifting them
with the corresponding intercept. In the right Figure, we marginalize over σ and visualize best performing pairs of B and η.

Figure 6. Here, we investigate 4 tasks from OpenAI Gym, listed in Table 1, and compare the extrapolation performance
of two hyperparameter sets: the best performing hyperparameters for σ = 1, found by testing 8 different hyperparameter
values listed in Table 3 (we refer to this configuration as baseline); and hyperparameters predicted by our proposed models
of B∗ and η∗. We fit our models using σ ∈ (1, 2, 4, 8), and extrapolate to σ ∈ (0.5, 16). The graph shows the data efficiency
with threshold as 700, normalized according to the procedure in Appendix D.

15

Value-Based Deep RL Scales Predictably

Figure 7. The goal of the left Figure is to visualize the effects of isotropic regression fit on a noisy data. We use the SciPy
package (Virtanen et al., 2020) to run the isotropic model. In the right Figure we visualize the process of best hyperparameter
selection using bootstrapped confidence intervals. We describe the bootstrapping strategy in Appendix D.

C. Resulting Fits
DMC Refer to Table 5 for environment-specific values.

η∗ = βη · σ−0.26

B∗ = βB · σ−0.47

DJ = Dmin ·
(
1 +

(σ

0.45

)−0.74
)

σ∗ = 1.4e8 · F−0.53
0

(C.1)

OpenAI Gym Refer to Table 5 for environment-specific values.

η∗ = βησ
−0.30

B∗ = βBσ
−0.33

DJ = Dmin ·
(
1 +

(σ

4.02

)−0.69
)

σ∗ = 1.4e8 · F−0.53
0

(C.2)

Isaac Gym

η∗ = 8.77 ·
(
1 +

(σ

2.57e-3

)−0.26
)

B∗ = 38.6 ·
(
1 +

(σ

1.42e-2

)−0.68
)

DJ = 6.8e7 ·
(
1 +

(σ

1.88

)−0.87
)

σ∗ = 11.3 · F−0.57
0

(C.3)

Table 2: Coefficients for DMC and OpenAI Gym fits.

Domain Task βη βB Dmin

DMC cartpole-swingup 7.55e-4 538.2 2.4e4
cheetah-run 6.25e-4 564.9 3.5e5
finger-spin 8.77e-4 608.2 2.9e4
humanoid-stand 3.86e-4 451.8 3.8e5
quadruped-walk 8.46e-4 526.4 6.2e4
walker-walk 9.38e-4 313.3 3.3e4

OpenAI Gym Ant-v4 1.35e-4 447.0 2.7e5
HalfCheetah-v4 1.86e-3 415.4 7.8e4
Humanoid-v4 1.65e-4 351.6 1.8e5
Walker2d-v4 7.85e-4 399.1 1.7e5

D. Additional details on the fitting procedure
Preprocessing return values. In order to estimate the fits from our laws, we need to track the data and compute needed by
a run to hit a target performance level. Due to stochasticity both in training and and evaluation, naı̈ve measurements of this

16

Value-Based Deep RL Scales Predictably

Table 3: Tested configurations.

Hyperparameters DeepMind Control Isaac Gym OpenAI Gym

Updates-to-data σ 1, 2, 4, 8 1
1024 ,

1
2048 ,

1
4096 ,

1
8192 ,

1
16384 ,

1
32768 ,

1
65536 1, 2, 4, 8

Batch size B 32, 64, 128, 256, 512 512, 1024, 2048, 4096, 8192 128, 256, 512
Learning rate η 15e-5, 3e-4, 6e-4, 12e-3 1e-4, 2e-4, 3e-4 1e-4, 2e-4, 5e-4, 1e-3, 2e-3

point can exhibit high variance. This in turn would result in low-quality fits for DJ and CJ . Thus, we preprocess the return
values before estimating the fits by running isotonic regression (Barlow and Brunk, 1972). Isotonic regression transforms
return values to the most aligned monotonic sequence of values that can then be used to estimate DJ . While in general
return values can decrease with more training after reaching a target value, and this will result in a large deviation between
the isotonic fit and true return values, the proposed isotonic transformation still suffices for us as our goal is to simply fit
the minimum number of samples or compute needed to attain a target return. As we can still make reliable predictions that
extrapolate to larger scales, the downstream impact of this error is clearly not substantial. We also average across random
seeds before running isotonic regression to further reduce noise. We normalize the returns for all environments to be between
0 and 1000 (Table 1 lists pre-normalized returns), and reserve the points of 700 and 800 for budget extrapolation in Figure 1.

Uncertainty-adjusted optimal hyperparameters. While averaging across seeds and applying isotonic regression reduces
noise, we observe that the granularity of our grid search on learning rate and batch size limits the precision of the
resulting hyperparameter fits B̃, η̃. Noise due to random seed generation makes hyperparameter selection harder as some
hyperparameters that appear empirically optimal might simply be so due to noise. We observe that we can correct for this
precision loss by constructing a more precise estimate of B̃, η̃ adjusted for this uncertainty. Specifically, we run K = 100
bootstrap estimates by sampling n random seeds with replacement out of the original n random seeds, applying isotonic
regression, and selecting the optimal hyperparameters B̃k, η̃k. We then use the mean of this bootstrapped estimate to
improve the precision:

B̃bootstrap =
1

K

∑
k

B̃k

η̃bootstrap =
1

K

∑
k

η̃k

(D.1)

We have also experimented with more precise laws for learning rate and batchsize by adding an additive offset. In this case,
we follow Hoffmann et al. (2023) and fit the data using brute-force search followed by LBFG-S. We use MSE in log space
as the error: MSElog(a, b) = (log a− log b)

2.

B∗(σ) ≈ Bmin +
σB

σαB
(D.2)

η∗(σ) ≈ ηmin +
ση

σαη
. (D.3)

However, we found that this more complex fit did not validate the decrease of degrees of freedom given a limited sweep
range, resulting in accuracy of extrapolation.

Independence of B and η. Whereas the optimal choice of B and η is often intertwined as UTD changes, we observe in
our experiments that the correlation between them is relatively low (Figure 5). If we ran a cross-product grid search with
hyperparameter space {B1, . . . , BnB

} × {η1, . . . , ηnη
}, we can use this fact to further improve the results by averaging the

estimate B̃ over different values of η. That is, we produce the estimate B̃[η=ηi] (respectively η̃[B=Bi]) by only looking at
the runs where η = ηi, and averaging such estimates.

B̃mean =
1

nη

∑
i

B̃[η=ηi]

η̃mean =
1

nB

∑
i

η̃[B=Bi]
(D.4)

17

Value-Based Deep RL Scales Predictably

Figure 7: Left: Determining performance via isotonic regression on DMC. Right: improving hyperparameter selection with uncertainty
adjustment on DMC. Further details are in Appendix D.

Data efficiency. We fit data efficiency of the runs with our found practical hyperparameters B∗, η∗ according to Eq. (4.1).
We follow Hoffmann et al. (2023) and fit the data using brute-force search followed by LBFG-S. We use MSE in log space
as the error: MSElog(a, b) = (log a− log b)

2.

In DeepMind Control Suite, we would like to share the data efficiency fit across different environments env. We normalize
the data efficiency D by the intra-environment median data efficiency medians Denv

med = median{Denv
[σ=σi]

|i = 1..nσ}. For
interpretability, we further re-normalize D with the overall median Dmed: Dnorm = D · Dmed/Denv

med. We will need to express
the data efficiency law alternatively as:

DJ(σ) ≈ Dmin
J

(
1 +

(
βJ

σ

)αJ
)
. (D.5)

This is equivalent to Eq. (4.1) because the coefficient βJ absorbs Dmin
J . However, this expression makes explicit an overall

multiplicative offset1 Dmin
J . Our median normalization is then equivalent to fitting per-environment coefficients Dmin

J ,
following our procedure for environment-shared hyperparameter fits. However, we further improve robustness by fixing the
per-environment coefficients to be the median data efficiency and do not require fitting them.

E. Additional experimental results

Table 4: Correlation coefficients for empirically optimal DMC hyperparameters.

R
learning rate and batch size 0.04
batch size and UTD -0.40
learning rate and UTD -0.46

Table 5: Error of Pareto frontier extrapolation.

R
toward larger compute 7.8%
toward larger data 10.6%

18

Value-Based Deep RL Scales Predictably

Figure 8: Another example of isotonic regression. Using gaussian smoothing with variance σ = 3 leads to both oversmoothing (right) and
undersmoothing (left).

Figure 9: Additional fit results on OpenAI gym for different values of J .

19

Value-Based Deep RL Scales Predictably

Figure 10: An approximation of the critical batch size over training. Further details are in Appendix F.

F. Critical batch size analysis
Previous work has argued that there is a critical batch size Bcrit for neural network training in image classification, generative
modeling, and reinforcement learning with policy gradient algorithms (McCandlish et al., 2018) — a transition point at
which increasing the batch size begins to yield diminishing returns. We follow this work and compute an estimate of the
gradient noise scale Bnoise ≈ Bcrit according to the following procedure: throughout training, we compute the gradient norm
|GB | of the critic network for batches of size B = Bsmall := 64 and B = Bbig := 1024. Then, we evaluate

|G|2 :=
1

Bbig −Bsmall

(
Bbig|GBbig |2 −Bsmall|GBsmall |2

)
S :=

1

1/Bsmall − 1/Bbig

(
|GBsmall |2 − |GBbig |2

)
and take B̃crit := S/|G|2. In practice, to account for the noisiness of |G|2, we first take rolling averages of |GBsmall | and
|GBbig | over training, and tune the window size so that the estimates for |G|2 and S are stable.

We show the values of B̃crit over training in Figure 10. Unlike policy gradient methods, we find that the critical batch size
(averaged over training) has little correlation with the optimal batch size, as shown in Figure 11.

1This form enforces that Dmin
J is positive.

20

Value-Based Deep RL Scales Predictably

Figure 11: B̃final vs. B̃crit, grouped by task and UTD.

Table 6: Batch size values predicted by the proposed model on DMC.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8

cartpole-swingup 1040 752 544 384 288 208
cheetah-run 1088 784 560 400 288 208
dog-stand 240 176 128 96 64 48
finger-spin 1168 848 608 432 320 224
humanoid-stand 864 624 448 320 240 176
quadruped-walk 1008 736 528 384 272 192
walker-walk 608 432 320 224 160 112

Table 7: Learning rate values predicted by the proposed model on DMC.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8

cartpole-swingup .00108 .000902 .000755 .000631 .000528 .000442
cheetah-run .000893 .000747 .000625 .000523 .000438 .000366
dog-stand .000664 .000555 .000465 .000389 .000325 .000272
finger-spin .00125 .00105 .000877 .000734 .000614 .000514
humanoid-stand .000551 .000461 .000386 .000323 .00027 .000226
quadruped-walk .00121 .00101 .000846 .000708 .000592 .000496
walker-walk .00134 .00112 .000938 .000785 .000657 .000549

Table 8: Batch size values predicted by the proposed model on OpenAI Gym.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Ant-v4 704 560 448 352 288 224 176
HalfCheetah-v4 672 528 416 336 256 208 160
Humanoid-v4 560 432 352 272 224 176 144
Walker2d-v4 640 496 400 320 256 192 160

Table 9: Learning rate values predicted by the proposed model on OpenAI Gym.

Task σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4 σ = 8 σ = 16

Ant-v4 .000206 .000167 .000138 .000109 .000087 .000070 .000060
HalfCheetah-v4 .002820 .002280 .001900 .001510 .001210 .000972 .000827
Humanoid-v4 .000251 .000203 .000169 .000134 .000107 .000086 .000073
Walker2d-v4 .001180 .000958 .000806 .000640 .000512 .000412 .000347

21

Value-Based Deep RL Scales Predictably

Table 10: Batch size values predicted by the proposed model on IsaacGym.

Task σ = 1
65536 σ = 1

32768 σ = 1
16384 σ = 1

8192 σ = 1
4096 σ = 1

2048 σ = 1
1024

Franka-Push 7927 5105 3234 2030 1269 791 493

Table 11: Learning rate values predicted by the proposed model on IsaacGym.

Task σ = 1
65536 σ = 1

32768 σ = 1
16384 σ = 1

8192 σ = 1
4096 σ = 1

2048 σ = 1
1024

Franka-Push 0.000317 0.000265 0.000221 0.000185 0.000154 0.000129 0.000107

22

