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ABSTRACT

Forecasting counterfactual outcome in the longitudinal setting can be critical for
many time-related applications. To solve this problem, the previous works propose
to apply different sequence models including long short-term memory (LSTM)
networks and transformers to model the relationship between the observed histories,
treatments and outcomes, and apply various approaches to remove treatment selec-
tion bias. However, these methods neglect the hidden heterogeneity of outcome
generation among samples induced by hidden factors which can bring hurdles
to counterfactual outcome forecast. To alleviate this problem, we capture the
hidden heterogeneity by recovering the hidden factors and incorporate it into the
outcome prediction process. Specifically, we propose a Time-shared Heterogeneity
Learning from Time Series (THLTS) method which infers the shared part of hidden
factors characterizing the heterogeneity across time steps with the architecture
of variational encoders (VAE). This method can be a flexible component and
combined with arbitrary counterfactual outcome forecast method. Experimental
results on (semi-)synthetic datasets demonstrate that combined with our method,
the mainstream models can improve their performance.

1 INTRODUCTION

Decision-making problems are widely prevalent in many applications, such as healthcare (Huang
& Ning, 2012) and marketing (Bottou et al., 2013). Therefore, it is of paramount importance to
forecast the counterfactual outcome for different choice of treatments to assist decision. The gold
standard for estimating the outcome of different treatments is conducting randomized controlled trials
(RCTs) (Booth & Tannock, 2014), which randomly assign treatments to the samples. However, the
high expense and time cost of RCTs (Kohavi & Longbotham, 2011) induce the people to instead
learning from large amounts of observational data to fulfill this purpose. A lot of previous literature
investigate the problem of counterfactual outcome forecast based on the observational dataset with
different approaches to address the treatment selection bias (Hassanpour & Greiner, 2019; Assaad
et al., 2021), such as treatment invariant representation learning (Johansson et al., 2016; Shalit
et al., 2017; Tanimoto et al., 2021; Schwab et al., 2020; Yao et al., 2018; Zeng et al., 2020), sample
re-weighting for adjusting distributions (Assaad et al., 2021; Hassanpour & Greiner, 2019; 2020;
Johansson et al., 2018; Zou et al., 2020) and data imputation (Bica et al., 2020c; Yoon et al., 2018;
Qian et al., 2021).

In many scenarios, the decision-making problems can be more complex and may span a long period
of time. It is thus required to forecast the counterfactual outcome at different time steps instead of
a single time. Since the size of historical covariate information is varied among the time steps, the
methods developed under the static setting can not be directly applied to this setting. To bridge this
gap induced by the longitudinal property of the task, some methods apply the sequence models, such
as LSTM networks (Hochreiter & Schmidhuber, 1997) and transformers (Vaswani et al., 2017), to
characterize the time-dependency between the histories of varying length and outcomes. Generally, a
representation is extracted from the histories and play a substitute role of the raw confounder vectors
in the static setting. The outcome prediction module forecasts the counterfactual outcome with the
learned representation and the counterfactual treatment. Based on this design, the technologies for
removing treatment selection bias, can be integrated to achieve more accurate outcome forecast in the
setting of time-series.
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Figure 1: The diagram of counterfactual outcome forecast with hidden heterogeneity. Although the
observed histories of the four individuals are same, the true counterfactual outcomes of them are in
significantly distinct due to the latent factors. Predicting based on solely the same history results in
the same prediction which brings hurdle to the performance. By uncovering latent factors capturing
the hidden heterogeneity, we can achieve more precious prediction result.

The paradigm above attributes the heterogeneity of outcome generation among samples to the
observed variables of histories in dataset. This hypothesizes that the outcome-related factors are
all recorded in the histories. However, in many scenarios, this prerequisite does not hold. There
may exist extra factors unrecorded by the observed histories, and can also affect outcome. Thereby,
forecasting heterogeneous outcome conditional on solely the observed histories may neglect the
outcome variation among samples (i.e. heterogeneity of outcome generation) of the same observed
variables. Consequently, the neglect of this outcome variation can lead the prediction to be a coarse
approximation of individual outcome and deteriorate the forecast performance (Zou et al., 2023). We
call this problem as hidden heterogeneity and visually demonstrate it in Figure 1.

To resolve the problem, we try to address the hidden heterogeneity problem by uncovering the hidden
factors and capturing the extra outcome variation. Due to the limited supervision information (i.e.
outcome variable is of few-dimension) in this problem, the solution by aggressively learning latent
factors for all samples and time steps is excessively flexible and undergoes sub-optimal performance,
which is empirically presented in the experiments. To mitigate this circumstance, we propose a novel
Time-shared Heterogeneity Learning from Time Series (THLTS) method, which instead learn the
shared part of latent factors across time steps for each sample. While sacrificing the flexibility in
modeling time-varying dynamics of latent factors, this design is targeting the pursuit of forecast
performance like a regularizer.

For practical implementations, we resort to variational autoencoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014) to model the joint distribution of the outcome and the time-shared latent
factors given the observed history and treatments. Due to the longitudinal property of the problem, we
extend the model architecture to support the inference of latent factors with the varying prior, which
are updated according to the successive observation over time. With the encoder component, we can
easily infer the latent factors. By incorporating the learned factors into outcome prediction module,
we can forecast the individual outcome more preciously compared to the same model-backbone
ignoring the hidden heterogeneity. Theoretical analysis validate the rationality of our proposed
strategy to learn time-shared latent factors. We conduct extensive experiments on the synthetic
datasets and semi-synthetic datasets, where the results reveal the effectiveness of our method.

The main contribution of our paper can be summarized as following:

• This paper investigate counterfactual outcome forecast with the existence of hidden hetero-
geneity. To the best of our knowledge, this is the pioneer work tailored to improving the
off-the-shelf counterfactual forecast model by addressing the hidden heterogeneity problem.

• We expose the insightful idea that learning the shared part of latent factors over time steps and
propose a novel Time-shared Heterogeneity Learning from Time Series (THLTS) method.

• Extensive experimental results demonstrate that our method acts like a flexible component
and is beneficial for the mainstream counterfactual outcome forecast models when be
integrated into them.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

We respectively review the related literature under both static setting and longitudinal setting.

2.1 COUNTERFACTUAL OUTCOME PREDICTION IN THE STATIC SETTING

There have been a large amount of works devoted to counterfactual outcome forecast in the static
setting. The main challenge is the treatment selection bias manifested as the dependency of treatment
assignment on the observed confounders. To overcome this challenge, some papers (Johansson
et al., 2016; Shalit et al., 2017; Tanimoto et al., 2021; Schwab et al., 2020; Yao et al., 2018; Zeng
et al., 2020) borrow the idea of domain adaptation (Tzeng et al., 2014; Ganin & Lempitsky, 2015)
to learn the treatment invariant representation of confounders and predict counterfactual outcome
by taking the representation as input. Since over-forcing the independency may bring hurdles to
prediction performance (Assaad et al., 2021), some other methods (Assaad et al., 2021; Hassanpour
& Greiner, 2019; 2020; Johansson et al., 2018; Zou et al., 2020) re-weight samples to adjust the
joint distribution of confounders and treatments, and train the countefactual predictive model on the
re-weighted dataset. Moreover, there are also some works perform data augmentation to imputes the
counterfactual outcome for the observational samples (Bica et al., 2020c; Yoon et al., 2018; Qian
et al., 2021). When faced with unobserved confounders, the prediction result may suffer from severe
confounding bias. The previous literature resort to extra tools, such as instrumental variables (IVs)
and negative controls (Hartford et al., 2017; Heckman, 1997; Wu et al., 2022) to overcome it. Since
the assumptions on these tools are restricted, other methods (Louizos et al., 2017; Wang & Blei,
2019; Zou et al., 2023) try to recover the information of unobserved confounders according to the
knowledge of data generation process.

2.2 COUNTERFACTUAL OUTCOME FORECAST IN TIME SERIES

In many applications, it is required to forecast counterfactual outcome for a period of time. Under
these scenarios, the outcome of a specific time is determined by not only the observations at the
present time but also the whole histories. To handle the information of long history, Robins et al.
(2000) conduct linear/logistic regression on the truncated history to predict the outcome. Due to
the potential complex dependency of outcome on covariates and treatments, previous works (Lim
et al., 2018; Bica et al., 2020b; Li et al., 2020; Melnychuk et al., 2022; Hatt & Feuerriegel, 2021;
Bica et al., 2020a; Kuzmanovic et al., 2021) propose to utilize sequence models (Chung et al., 2014;
Vaswani et al., 2017; Hochreiter & Schmidhuber, 1997) to transform the histories of varying length
to representations of fixed size and forecast outcome based on it. Lim et al. (2018) utilize long
short-term memory (LSTM) networks to encode the histories and re-weights the samples by the
estimated propensity scores for removing selection bias. Alternatively, Bica et al. (2020b) resort to
impose treatment invariant representation regularizer on the represention learned by LSTM networks
to remove treatment selection bias. Since the ability of LSTM networks to model complex and long
dependencies in time is limited, Melnychuk et al. (2022) build the model based on transformers
(Vaswani et al., 2017) and propose a novel counterfactual domain confusion (CDC) loss for training
the models. Bouchattaoui et al. (2023) is a similar work to ours. However, this work designed a fixed
model architecture which can only deal with the problem setting of binary treatment. By contrast, our
proposed THLTS method can be viewed as a flexible component which is able to be combined with
various model backbones of counterfactual outcome forecast and deal with more complex treatment
scenarios. Moreover, this paper also consider the setting of time-varying latent factors and delivers
the insightful strategy of learning shared part of latent factors across time steps to deal with it.

3 PROBLEM FORMULATIONS AND STATEMENTS

We define X ∈ X ⊂ Rdx as the observed covariate vector which records the individual information
of each sample, A ∈ A as the treatment and Y ∈ R as outcome. Therefore, the observational
datasets is denoted as D = {{x(i)

t ,a
(i)
t ,y

(i)
t }T

(i)

t=1 }ni=1, where the superscripts and subscripts refer to
the sample indexs and time indexs respectively. For the sake of description, we abbreviate the his-
tory of individuals by X

(i)
t:t+τ = (x

(i)
t ,x

(i)
t+1,x

(i)
t+2, ...,x

(i)
t+τ ), A

(i)
t:t+τ = (a

(i)
t ,a

(i)
t+1,a

(i)
t+2, ...,a

(i)
t+τ ),

Y
(i)
t:t+τ = (y

(i)
t ,y

(i)
t+1,y

(i)
t+2, ...,y

(i)
t+τ ) and H

(i)
t = {X(i)

1:t,A
(i)
1:t−1,Y

(i)
1:t−1}.
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Figure 2: The diagram of time-shared heterogeneity learning framework.

The ultimate target is the outcome function at individual-level Y(i)
t+τ (A

c
t:t+τ ), which refers to the

counterfactual outcome of the ith sample at the (t+τ)th time step under the counterfactual treatments
Ac

t:t+τ . Many methods have been proposed in the previous literature to estimate the expected outcome
given counterfactual treatments and histories, that is E[Yt+τ |do(At:t+τ = Ac

t:t+τ ),H
(i)
t ]. This

estimator attributes the heterogeneity of outcome generation to the observed historical information.
However, in many scenarios, some factors that can also affect the outcomes may be not recorded,
which we denote by e

(i)
t ∈ E ⊂ Rde . This potentially results in extra hidden heterogeneity of

outcome among different samples and time steps (Zou et al., 2023), which cause that the expected
outcome conditional on histories is not equal to the true individual outcome. Formally, that is

E[Y(i)
t+τ (A

c
t:t+τ )] ̸= E[yt+τ |do(At:t+τ = Ac

t:t+τ ),H
(i)
t ].

To bridge this gap, we propose to uncover the hidden factors related to outcomes and augment the
forecast module with the learned factors. By capturing the hidden heterogeneity, we can forecast
the counterfactual outcome more preciously for the individuals. In this paper, we assume the latent
factors do not affect treatment assignment, and therefore the standard assumptions (Rosenbaum &
Rubin, 1983) in causal inference hold. The identification condition of counterfactual outcome are
satisfied. We mainly consider the 1-step forecast problem (i.e. τ = 1). The problem of multi-step
forecast is left to future work.

4 THLTS: THE PROPOSED METHOD

In this section, we present the details of our proposed Time-shared Heterogeneity Learning from
Time Series (THLTS) algorithm. It is a flexible component that can be combined with the different
models and subsequently improve their performance.

4.1 PRELIMINARY FOR CAPTURING HIDDEN HETEROGENEITY

The mainstream models predict counterfactual outcome based on the heterogeneity informed by the
representation encoding the histories. Formally, the prediction can be expressed by h(ϕ(H(i)

t ),act),
where ϕ(·) is the representation function built upon sequence models, and h is the predictive model.

However, hidden heterogeneity of outcome generation beyond the histories can still exist among
different samples and time steps, which is caused by hidden outcome-related factors e

(i)
t . It has
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been verified in previous literature (Zou et al., 2023) that by augmenting the prediction model input
with the extra hidden factors, that is g(ϕ(H(i)

t ), e
(i)
t ,act), we can approximate the true individual

outcome more closer. There have been large amount of works in reinforcement learning investigating
the problem of partially observed markov decision process (POMDP) and trying to recover latent
states(Lee et al., 2020; Lei et al., 2022; Igl et al., 2018) across time steps. The supervision information
for time-varying latent variable inference (i.e. the high-dimensional observation) is usually sufficient
in POMDP. Conversely, the supervision information (i.e. outcome variable) is much limited in our
problem, since it is only one-dimensional. Therefore, the models built for capturing the time-varying
latent factors is excessively flexible and may result in sub-optimal performance. This will be presented
thoroughly in the section of experiments. To mitigate this circumstance, we give an subtle method
to learn the shared part of time-varying latent factors. This is designed for computational efficiency
while trading off the flexibility of models.

4.2 LEARNING TIME-SHARED LATENT FACTORS

Inspired by the analysis above, we attempt to build up a framework that infer the shared part ē of
time-varying latent factors {et}Tt=1, and learn the forecast model g taking the histories, time-shared
latent factors and treatments as input. Through theoretical analysis below, we determine to learn the
mean value of factor factors across time steps as the time-shared latent factors.

Proposition 4.1. Assuming the function of prediction model g is β-Lipschitz on e, formally
|g(ϕ(H), e,a)− g(ϕ(H), e′,a)| ≤ β · ||e − e′||2, then the total increased error across time in-
duced by substitute time-varying et with constant ē can be characterized as following:

T∑
t=1

(g(ϕ(Ht), ē,a
c
t)−Yt(a

c
t))

2 ≤ 2

T∑
t=1

(g(ϕ(Ht), et,a
c
t)−Yt(a

c
t))

2 + 2β2 ·
T∑

t=1

||et − ē||22 (1)

We observe that when the latent factors is substituted as the mean value across time steps, the upper
bound in the r.h.s of Equation 1 reaches the minimal value. Formally, the substituted latent factors is

ē =
1

T

T∑
t=1

et (2)

We can observe from Equation 2 that when the latent factors are generated from a distribution with
constant expectation, our pursuit becomes to infer the expectation for each sample. This is a first-order
statistic of latent factors and can be learned with variational inference technology (Kingma & Welling,
2014; Rezende et al., 2014).

Proposition 4.2. We assume the following conditions are satisfied:

1. The latent factors are generated by et = ē+ ηt, where ηt ∼ p(η) is a noise term with zero
mean.

2. The outcome distribution p(yt|Ht,a, ē) =
∫
η
p(yt|Ht,a, e = ē + η) · p(η)dη is in the

function family of decoder pρ(yt|Ht,a, ē).

3. The posterior distribution p(ē|Ht,at,yt) is in the function family of encoder
qφ(ē|Ht,at,yt).

Then there is an optimal solution for maximizing the evidence lower bound (ELBO) of variational
autoencoders, which characterizes the underlying data generation process:

qφ(ē|Ht,at,yt) = p(ē|Ht,at,yt), pρ(y|Ht,a, ē) = p(y|Ht,a, ē), pρ(ē|Ht) = p(ē|Ht)

where the ELBO is defined as:

n∑
i=1

T (i)∑
t=1

(
E
ē∼qφ(ē|H(i)

t ,a
(i)
t ,y

(i)
t )

[
log pρ(y

(i)
t |H

(i)
t ,a

(i)
t , ē)

]
+DKL(pρ(ē|H(i)

t )|qφ(ē|H(i)
t ,a

(i)
t ,y

(i)
t ))

)
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Therefore, the mean of latent factors can be learned with the architecture of variational autoencoders
(VAEs) by assuming the learned latent factors keeps constant across time and maximizing the ELBO.
The detailed background information of VAEs can be found in the section F of Appendix.

Although the learned time-shared latent factors can not exactly capture the time-varying process
of latent factors, it still can facilitate more precious counterfactual outcome forecast with trade-off
between model flexibility and computation efficiency. This will be empirically validated in the section
of experimental results. The detailed proof of the propositions above can be found in Section C of
Appendix.

4.3 IMPLEMENTATIONS

In this paper, we choose the architecture of variational autoencoders (VAEs) to infer time-shared
latent factors ē(i) for each sample. The instantiated model architecture consists of three parts, which
are inference result memory, encoders and forecast models respectively. The overall framework is
demonstrated in the Figure 2. We successively introduce the components in this subsection.

Inference Result Memory Since the stochastic nature of the data generation process, the time-shared
latent factors can not be inferred with a deterministic manner. Hence, our inference result is expressed
by a distributional estimation rather than point-wise estimation. Inspired by the common practice
in variational inference, the estimated distribution is characterized by a gaussian distribution with
the mean vector µ(i)

t and variance vector σ(i)
t . When there is no observation of treatment outcome at

the initial time step, we set the initial distributional inference of latent factors as standard gaussian
distribution N (0, Ie). Formally, the vector of mean and variance is set as µ(i)

0 = 0e, σ
(i)
0 = 1e. We

keep record of the inferred distribution information for each sample. When new observations of
treatment outcome arrive, we can obtain the new inference result (i.e. the mean vector µi and variance
vector σi) and update the distribution record for the corresponding sample.

Latent Factor Encoders When the outcome y
(i)
t+1 of new treatment a(i)t+1 is observed, we can update

the inference result of latent factors based on the new observation. According to Bayes’ theorem
(Davies, 1988), the posterior is determined by the likelihood and prior distribution. Therefore, the
input of our encoders includes not only the information of observations (i.e. new outcome y

(i)
t+1, new

treatments a(i)t+1 and representation of histories ϕ(H(i)
t+1)), but also the mean µpr and variance σpr

of prior distribution pρ(ē|Ht+1). Specifically, the encoder qφ(·) represents a gaussian distribution
characterized by two deep neural networks fµφ (·) and fσφ (·) as following:

qφ(ē|H(i)
t+1,a

(i)
t+1,y

(i)
t+1) = N (fµφ (y

(i)
t+1,a

(i)
t+1, ϕ(H

(i)
t+1), µ

pr, σpr),

Diag(fσφ (y
(i)
t+1,a

(i)
t+1, ϕ(H

(i)
t+1), µ

pr, σpr)2)), (3)
where φ is the parameters of deep neural networks and ϕ(·) is implemented by sequence model. The
specification of µpr and σpr will be demonstrated in the part of training process.

Forecast Model The forecast model gρ(·) output the counterfactual outcome based on the coun-
terfactual treatments ac, the representation of histories ϕ(H(i)

t+1) and inferred latent factors ēi. By
exploiting the hidden heterogeneity encoded in ēi, we can forecast counterfactual outcome more
accurately. The model gρ(·) can act as the key component of the decoder in VAEs and therefore be
trained with the encoder together by the technology of variational inference.

Training Process We train the model components above by decomposing the histories into several
time steps. According to the Bayes’ Theorem, the obtained posterior distribution can be viewed as
the prior distribution of the next time step. Therefore, the obtained µ(i)

t−1 and σ(i)
t−1 can substitute the

role of µpr and σpr for the tth time step. Specifically, the objective function of the ith sample for
training at the tth time step is:

L(i)
t = E

ē∼qφ(ē|H(i)
t ,a

(i)
t ,y

(i)
t )

[
log pρ(y

(i)
t |H

(i)
t ,a

(i)
t , ē)−

DKL

(
qφ(ē|H(i)

t ,a
(i)
t ,y

(i)
t )

∣∣∣N (
µ
(i)
t−1,Diag((σ(i)

t−1)
2)
)) ]

.

The decoded outcome distribution pρ(y
(i)
t |H

(i)
t ,a

(i)
t , ē) is determined by the forecast model, for-

mally pρ(y
(i)
t |H

(i)
t ,a

(i)
t , ē) = N (gρ(a

(i)
t , ϕ(H

(i)
t ), ē), (σy)

2), where σy is set as hyper-parameter.
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We model the posterior distribution of time-shared latent factors as the gaussian distribution
N (µ

(i)
t ,Diag((σ(i)

t )2)) obtained from the encoder. To be specific, the vectors of mean and vari-
ance are learned as following:

µ
(i)
t = fµφ (y

(i)
t ,a

(i)
t , ϕ(H

(i)
t ), µ

(i)
t−1, σ

(i)
t−1),

σ
(i)
t = fσφ (y

(i)
t ,a

(i)
t , ϕ(H

(i)
t ), µ

(i)
t−1, σ

(i)
t−1).

(4)

For the initial time step, the prior distribution is set as µ(i)
0 = 0e, σ

(i)
0 = 1e. Finally, inspired by the

analysis in Proposition 4.2, we define the objective function for training the model as the sum of L(i)
t

among the samples and time steps:

L =

n∑
i=1

T (i)∑
t=1

L(i)
t .

Forecast Process When the model has been trained, we can forecast counterfactual outcome from
the model gρ(·) based on simultaneously histories, treatments and the inferred latent factors. For the
individual with observed histories Ht+1, counterfactual treatment act+1, the counterfactual outcome
is estimated with the following two steps.

At the first step, the posterior distribution of time-shared latent factors ē is obtained by successively
feeding the elements of histories {(yj ,aj , ϕ(Hj))}tj=1 into the encoder qφ(·) and updating the
parameters of inferred distribution µj and σj until j = t according to Equation 4. The resulting
distribution of latent factors is N (µt,Diag((σt)2)).

Secondly, we repeatedly sample latent factors for m times and empirically estimate the expectation
E[gρ(act+1, ϕ(Ht+1), ē)] as the forecast result. Formally, the estimated result is as following:

ŷt+1(a
c
t+1) =

1

m

m∑
j=1

gρ(a
c
t+1, ϕ(Ht+1), ē

j), (5)

ēj ∼ N (µt,Diag((σt)2)), 1 ≤ j ≤ m

The pseudo-code of whole algorithm can be found in Algorithm 1 of Appendix. It is noteworthy
that our model and forecast process is agnostic to the architecture of sequence model. Therefore,
our method can be viewed as a flexible model component. When plugged into any off-the-shell
counterfactual forecast model, it can significantly enhance the forecast performance. This claim will
be substantiated in the section of experiments.

5 EXPERIMENTS

In this section, we first evaluate the effectiveness of THLTS by conducting various experiments
using synthetic dataset. To further verify the effectiveness of THLTS in real scenarios, we leverage
a real-world medical dataset MIMIC-III (Johnson et al., 2016; Wang et al., 2020) to construct a
semi-synthetic dataset.

5.1 EXPERIMENTAL SETUP

We validate the effectiveness of our THLTS method by combining it with the representative instances
of the advanced counterfactual forecast models in time series, that are long-short term memory
(LSTM) architecture with IPS-Reweighting (RMSN) (Lim et al., 2018), treatment invariant represen-
tation (CRN) (Bica et al., 2020b) and Transformer architecture with treatment invariant representation
(Causal Transformer) (Melnychuk et al., 2022) respectively. We also compare the forecast perfor-
mance with several other methods, that are G-net (Li et al., 2020) and MSM (Robins et al., 2000).
Furthermore, to justify the rationality of learning shared part of latent factors, we introduce a new
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Table 1: Experimental results for synthetic dataset under the setting of varying strength of latent
factors, the average RMSE ± standard deviation is recorded for 10 repeated experiments.

Fix the sequence length d = 20, varying the latent factor strength σe
σe σe = 0.5 σe = 1.0 σe = 1.5 σe = 2.0 σe = 2.5

MSM 0.657 ± 0.000 0.831 ± 0.000 1.134 ± 0.000 1.375 ± 0.000 1.626 ± 0.000
G-Net 0.542 ± 0.030 0.601 ± 0.021 0.719 ± 0.026 0.851 ± 0.050 0.958 ± 0.041
RMSN 0.379 ± 0.013 0.525 ± 0.019 0.658 ± 0.019 0.797 ± 0.042 0.924 ± 0.032

RMSN-THLTS(v) 0.338 ± 0.010 0.462 ± 0.009 0.573 ± 0.017 0.689 ± 0.017 0.799 ± 0.017
RMSN-THLTS 0.328 ± 0.007 0.441 ± 0.009 0.557 ± 0.011 0.673 ± 0.021 0.783 ± 0.020

CRN 0.302 ± 0.008 0.437 ± 0.009 0.551 ± 0.017 0.665 ± 0.020 0.777 ± 0.019
CRN-THLTS(v) 0.278 ± 0.004 0.392 ± 0.007 0.495 ± 0.014 0.604 ± 0.016 0.722 ± 0.016

CRN-THLTS 0.266 ± 0.005 0.364 ± 0.007 0.463 ± 0.006 0.567 ± 0.003 0.677 ± 0.004
CT 0.366 ± 0.012 0.428 ± 0.005 0.521 ± 0.005 0.620 ± 0.006 0.840 ± 0.007

CT-THLTS(v) 0.471 ± 0.011 0.609 ± 0.002 0.738 ± 0.014 0.903 ± 0.020 1.096 ± 0.039
CT-THLTS 0.296 ± 0.009 0.396 ± 0.010 0.489 ± 0.005 0.599 ± 0.009 0.712 ± 0.014

baseline method for comparison, which is denoted as THLTS(v). It leverages a linear layer ψ(·) to
replace the priors of latent factors µpr and σpr by ψ(µ(i)

t−1) and ψ(σ(i)
t−1) respectively to encourage

the model to capture the temporal variability.

5.2 SYNTHETIC EXPERIMENT

Dataset. We simulated various synthetic dataset under different setting to evaluate the effectiveness
of THLTS. For each sample, we sample the covariates xi with dimension dx at the time step t = 0
independently from Gaussian Distribution:

x
(i)
t=0 ∼ N (0, Idx

). (6)

We set the dimension of context dx to be 10 across all synthetic settings. The covariates of each
sample at the tth time step depends on the previous covariates and treatment:

x
(i)
t =

1

ws

t−1∑
j=t−ws

x
(i)
j + a

(i)
t−1 ·A+N (0, 0.32I), (7)

wherews denotes the window size that determines the influence of previous covariates, andA ∈ Rp×1

is the constant vector sampled fromN (0, Ip). The treatment assignment is confounded by the current
covariates:

ati ∼ Bernoulli(βTx
(i)
t ), (8)

where β ∈ Rp×1 is a parameter vector sampled from Gaussian Distribution N (0, Ip). The outcome
of each sample is generated as following:

y
(i)
t = B · [x(i)

t−ws+1,x
(i)
t−ws+2, ...,x

(i)
t ] · C + CE(t) · e(i)t +N (0, 0.52), 1 ≤ t ≤ T (i) (9)

where B ∈ Rws×1, C ∈ Rp×1 are the weight vectors with each element sampled from N (0, 1),
CE(t) = CE(t−1)

2 + a
(i)
t is the time-decaying treatment effect at the tth time step. In the synthetic

dataset, the time horizon of each sample is set to be constant T (i) = d, 1 ≤ i ≤ n. The variable e
(i)
t

is unrecorded in the histories Ht and encodes the hidden heterogeneity. To verify the necessity of
dealing with hidden heterogeneity, we firstly consider the setting of static latent factors across time
steps. The latent factors are generated with the following two steps:

ē(i) ∼ N (0, σ2
e), e

(i)
t = ē(i), 1 ≤ t ≤ d (10)

where σe is a constant that controls the strength of latent factors.

Results. For each experimental setting, we have conducted repeated experiments for 10 times, and
we record the average RMSE and standard deviation for each method.
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Table 2: Synthetic experimental results under different trajectory horizon d, the average RMSE ±
standard deviation is recorded for 10 repeated experiments.

Fix the hidden factor strength σe = 1.5, varying the sequence length d
d d = 10 d = 15 d = 20 d = 25 d = 30

MSM 1.178 ± 0.000 1.123 ± 0.000 1.134 ± 0.000 1.086 ± 0.000 1.120 ± 0.000
G-Net 0.758 ± 0.009 0.696 ± 0.017 0.719 ± 0.026 0.731 ± 0.034 0.796 ± 0.022
RMSN 0.729 ± 0.012 0.650 ± 0.028 0.658 ± 0.019 0.660 ± 0.043 0.686 ± 0.037

RMSN-THLTS(v) 0.695 ± 0.008 0.585 ± 0.009 0.573 ± 0.017 0.543 ± 0.012 0.561 ± 0.016
RMSN-THLTS 0.694 ± 0.007 0.578 ± 0.007 0.557 ± 0.011 0.522 ± 0.018 0.538 ± 0.017

CRN 0.621 ± 0.005 0.529 ± 0.009 0.551 ± 0.017 0.528 ± 0.017 0.586 ± 0.019
CRN-THLTS(v) 0.636 ± 0.011 0.515 ± 0.007 0.495 ± 0.014 0.457 ± 0.015 0.471 ± 0.012

CRN-THLTS 0.617 ± 0.005 0.500 ± 0.010 0.463 ± 0.006 0.423 ± 0.005 0.430 ± 0.010
CT 0.668 ± 0.005 0.548 ± 0.005 0.521 ± 0.005 0.480 ± 0.005 0.480 ± 0.005

CT-THLTS(v) 0.885 ± 0.005 0.758 ± 0.040 0.738 ± 0.014 0.699 ± 0.028 0.707 ± 0.029
CT-THLTS 0.642 ± 0.008 0.520 ± 0.007 0.489 ± 0.005 0.453 ± 0.007 0.459 ± 0.007

As demonstrated in Table 1, MSM underperforms the other methods because it struggle with the
complex variable relationship in the data generation. The models harnessing the power of deep
learning (i.e. G-Net, RMSN, CRN, CT) achieve more precious forecast. When our proposed THLTS
is applied in conjunction with the counterfactual outcome forecast models, their performance has been
significantly enhanced. We find that larger strength of latent factors makes the forecast performance
worse for all the models because the hidden heterogeneity problem is more severe. Under these
scenarios, our method can leads to more remarkable performance enhancement, which shows the
rationality of our method. Though THLTS(v) also offer advantages to these models, the performance
improvement provided by THLTS(v) is inferior to that of THLTS.

We also conduct the experiments with different trajectory horizon d. Table 2 illustrates the experi-
mental results. The advantages of THLTS over baseline methods become progressively larger as the
trajectory horizon d increases. This is because longer histories can facilitate more precise recovery of
latent factors in our method.

We conduct experiments under the setting of time-varying latent factors e(i)t to justify our strategy of
learning time-shared latent factors. We established the underlying latent factor to evolve around a
given centroid. Formally, e(i)t = ē(i) +N (0, σvary), where σvary controls the variation degree of
latent factors across time steps. The results are presented in Figure 3, suggest that the performance
enhancement provided by THLTS is overall more pronounced than that of THLTF(v). This shows
the trade-off between model flexibility and forecast performance. When σvary becomes larger, the
time-varying part of latent factors surpasses the time-shared part, the margin becomes weaker. We
also conduct experiments of time-varying latent factors without given centroid. The results also
validate the effectiveness of our method. Additional experimental results can be found in Section A
of Appendix.

5.3 SEMI-SYNTHETIC EXPERIMENT

Dataset. We used a semi-synthetic pipeline constructed by Melnychuk et al. (2022) using MIMIC-III
(Johnson et al., 2016) to further verify the effectiveness of THLTS. Specifically, we extracted 1,000
patient trajectories with 25 vital covariates (including heart rate, sodium and red blood cell count) and
3 static covariates (gender, age and ethnicity) similarly to (Melnychuk et al., 2022). Partial outcome
is generated by time-varying latent factors through an Gaussian process function, and the strength is
controlled by a constant parameter αg , the details of semi-synthetic experiment is included in Section
B of Appendix.

Results. To note that when the strength αg becomes larger, the influence of latent factors on outcome
generation across time steps also increases. As results shown in Table 3, after integration with our
THLTS component, the counterfactual outcome forecast models achieve better forecast performance

9
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Figure 3: Performance of methods under the setting that the latent factors evolve around a given
centroid across time steps. The x-axis represents different variation degree of latent factors (i.e.
σvary). The rightest sub-figure shows the performance of all the methods. The leftest three sub-
figures respectively shows the effect of THLTS on CRN, RMSN and CT.

Table 3: Results for semi-synthetic dataset, the average RMSE ± standard deviation is recorded for
10 repeated experiments.

Vary the heterogeneity strength αg

αg αg = 0.5 αg = 1.0 αg = 1.5 αg = 2.0 αg = 2.5

MSM 1.127 ± 0.000 1.027 ± 0.000 1.118 ± 0.000 1.033 ± 0.000 0.762 ± 0.000
G-Net 0.410 ± 0.050 0.392 ± 0.048 0.397 ± 0.046 0.391 ± 0.035 0.396 ± 0.037
RMSN 0.256 ± 0.006 0.270 ± 0.004 0.268 ± 0.006 0.266 ± 0.005 0.271 ± 0.004

RMSN-THLTS(v) 0.252 ± 0.008 0.267 ± 0.005 0.265 ± 0.006 0.263 ± 0.004 0.269 ± 0.004
RMSN-THLTS 0.246 ± 0.008 0.252 ± 0.004 0.253 ± 0.005 0.255 ± 0.005 0.261 ± 0.004

CRN 0.254 ± 0.018 0.268 ± 0.018 0.287 ± 0.015 0.294 ± 0.013 0.300 ± 0.013
CRN-THLTS(v) 0.256 ± 0.024 0.265 ± 0.020 0.284 ± 0.020 0.291 ± 0.020 0.296 ± 0.021

CRN-THLTS 0.221 ± 0.004 0.267 ± 0.005 0.264 ± 0.006 0.276 ± 0.006 0.282 ± 0.006
CT 0.263 ± 0.008 0.267 ± 0.011 0.268 ± 0.009 0.264 ± 0.007 0.263 ± 0.007

CT-THLTS(v) 0.259 ± 0.010 0.261 ± 0.007 0.261 ± 0.005 0.259 ± 0.005 0.257 ± 0.005
CT-THLTS 0.239 ± 0.006 0.240 ± 0.006 0.246 ± 0.005 0.247 ± 0.003 0.247 ± 0.003

than the original model. Compared to the version of capturing the time varying dynamics of latent
factors THLTS(v), our proposed THLTS aims to capture the time-shared part, which acts as a
regularizer constraining the learning of latent factors, and further improve the forecast performance.
In summary, the semi-synthetic experiments on the MIMIC-III datasets confirm the effectiveness of
our method.

6 CONCLUSION

In this paper, we studied the hidden heterogeneity problem of counterfactual outcome forecast
in longitudinal setting. Neglecting the latent factors unobserved in the histories can degrade the
prediction performance of counterfactual outcome forecast model. To tackle this problem, we propose
Time-shared Heterogeneity Learning from Time Series (THLTS) method to uncover the time-shared
part of latent factors and augment the forecast model with the learned latent representation. Owing
to the flexibility of our method, it can be combined with arbitrary model backbones. Extensive
experimental results indicate the effectiveness of our method on improving the performance of
mainstream counterfactual outcome forecast models.
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A ADDITIONAL EXPERIMENTS
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Figure 4: Performance of methods under the setting that the latent factors evolve without a given
centroid. The x-axis represents different variation degree of latent factors (i.e. σvary). The rightest
sub-figure shows the performance of all the methods. The leftest three sub-figures respectively shows
the effect of THLTS on CRN, RMSN and CT.

The performance of THLTS when latent factor evolves without a given centroid: We consider a
different scenario that latent factors evolves based on the value of the previous time step, formally
e
(i)
t = e

(i)
t−1 + N (0, σvary), where σvary is a constant that controls the variation degree of latent

factor across time steps. We set d = 20 and m = 1.5. The results are shown in Figure 4, the trends
are similar to the results in main paper.
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Figure 5: Counterfactual outcome forecast performance at each timestamp t.

The performance of THLTS for each timestamp: We further illustrate the performance of THLTS
to estimate the counterfactual outcome at each time step t. Figure 5 depicts the results, the advantages
of THLTS becomes progressively more prominent when the index of time step t ≥ 5, by the virtue of
more precise recovery of latent factors with longer histories data.
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B EXPERIMENTAL DETAILS

B.1 SEMI-SYNTHETIC EXPERIMENTS

We used the semi-synthetic dataset built from MIMIC-IIIJohnson et al. (2016) followed the pipeline
introduced in Melnychuk et al. (2022); Schulam & Saria (2017). Specifically, we extracted 1,000
patient trajectories with time horizon T (i) = 20. The covariates is composed of 25 time-varying
patient signs (including heart rate, sodium and red blood cell count) and 3 static patients’ information
(gender, age and ethnicity).

Based on the extracted patient trajectories, there are three binary treatment and two continuous
outcome simulated at each time step. The treatment assignment probability pAl

t
is confounded by the

patient covariates and previous outcome as follows:

pAl
t
= σ(γlAĀTl

(Ȳt−1 + γlXf
l
Y (Xt) + bl)), (11)

where γlX , γ
l
A are constant parameters that control the confounding strength of treatment Al, σ(·)

is a sigmoid function, bl is the constant bias for each treatment, then each binary treatment At is
sample from Bernoulli Distribution with parameter Al

t. The untreated outcome is then generated by
the combination of endogenous and exogenous parts:

Y
(i),j
untreated,t = αj

SB-Spline(t) + αj
gg

j,(i)(t)︸ ︷︷ ︸
endogenous

+αj
ff

j
Z(X

(i)
t )︸ ︷︷ ︸

exogenous

+ϵt, (12)

where αj
S , α

j
g, α

j
f are constant parameter and ϵt is sampled from N (0, 0.0052). Here we focus on

gj,(i)(t), which is generated by independently for each patient from Gaussian process with Matérn
Kernel, which is equivalent to the time-varying latent factors discussed in this paper. αj

g is a constant
parameter controls the contribution of it.

We then generate treated outcome as following:

Y
(i),j
treated,t = Y

(i),j
untreated,t +

t∑
i=t−ws

minl=0,1,21[A
l
i = 1]pAl

i
βl,j

(wl − i)0.5
· αj

gg
j,(i), (13)

where the individual latent factors also impact the patients’ response of a given treatment.

B.2 COMPUTATION RESOURCE

We conduct our experiments on a Linux server, where the operation system is 18.04.1-Ubuntu. There
are 8 NVIDIA GeForce RTX 3090 GPUS on this server. However, we only use one GPU. The internal
memory is 504GB. Each run of our experiments cost around 10 minutes.

C PROOF

Proposition C.1. (Restated) Assuming the function of prediction model g is β-Lipschitz on e, formally
|g(ϕ(H), e,a)− g(ϕ(H), e′,a)| ≤ β · ||e− e′||2, then the total increased error across time induced
by substitute time-varying et with constant ē can be characterized as following:

T (i)∑
t=1

(g(ϕ(Ht), ē,a
c
t)−Yt(a

c
t))

2 ≤ 2

T (i)∑
t=1

(g(ϕ(Ht), et,a
c
t)−Yt(a

c
t))

2+2β2 ·
T (i)∑
t=1

||et− ē||22 (14)

Proof. For arbitrary time step t ∈ {1, 2, 3, ..., T (i)}, we have

(g(ϕ(Ht), ē,a
c
t)−Yt(a

c
t))

2 = (g(ϕ(Ht), ē,a
c
t)− g(ϕ(Ht), et,a

c
t) + g(ϕ(Ht), et,a

c
t)−Yt(a

c
t))

2

≤ 2 · (g(ϕ(Ht), ē,a
c
t)− g(ϕ(Ht), et,a

c
t))

2

+ 2 · (g(ϕ(Ht), et,a
c
t)−Yt(a

c
t))

2

= 2 · (g(ϕ(Ht), ē,a
c
t)− g(ϕ(Ht), et,a

c
t))

2 + 2 · (β||et − ē||2)2
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By taking the sum of inequality for t ∈ {1, 2, 3, ..., T (i)}, we obtain

T (i)∑
t=1

(g(ϕ(Ht), ē,a
c
t)−Yt(a

c
t))

2 ≤ 2

T (i)∑
t=1

(g(ϕ(Ht), et,a
c
t)−Yt(a

c
t))

2 + 2β2 ·
T (i)∑
t=1

||et − ē||22

Proposition C.2. (Restated) We assume the following conditions are satisfied:

1. The latent factors are generated by et = ē+ ηt, where ηt ∼ p(η) is a noise term with zero
mean.

2. The outcome distribution p(yt|Ht,a, ē) =
∫
η
p(yt|Ht,a, e = ē + η) · p(η)dη is in the

function family of decoder pρ(yt|Ht,a, ē).

3. The posterior distribution p(ē|Ht,at,yt) is in the function family of encoder
qφ(ē|Ht,at,yt).

Then there is an optimal solution for maximizing the evidence lower bound (ELBO) of variational
autoencoders, which characterizes the underlying data generation process:

qφ(ē|Ht,at,yt) = p(ē|Ht,at,yt), pρ(y|Ht,a, ē) = p(y|Ht,a, ē), pρ(ē|Ht) = p(ē|Ht),

where the ELBO is defined as:

n∑
i=1

T (i)∑
j=1

(
E
ē∼qφ(ē|H(i)

j ,a
(i)
j ,y

(i)
j )

[
log pρ(y

(i)
j |H

(i)
j ,a

(i)
j , ē)

]
+DKL(pρ(ē|H(i)

j )|qφ(ē|H(i)
j ,a

(i)
j ,y

(i)
j ))

)
Proof. We can decompose the joint distribution of outcome sequence as

log pρ(Y1:t|X1:t,A1:t) =

t∑
i=1

log pρ(yi|X1:i,A1:i,Y1:i−1) =

t∑
i=1

log pρ(yi|Hi,ai)

Specifically,

log pρ(yi|Hi,ai)

= Eē∼qφ(ē|Hi,ai,yi)[log pρ(yi|Hi,a1:i)]

= Eē∼qφ(ē|Hi,ai,yi)

[
log

pρ(ē,Y1:t|X1:t,A1:t)

pρ(ē|X1:t,A1:t,Y1:t)

]
(15)

= Eē∼qφ(ē|Hi,ai,yi)

[
log

pρ(ē,yi|Hi,ai)

qφ(ē|Hi,ai,yi)
· qφ(ē|Hi,ai,yi)

pρ(ē|Hi,ai,yi)

]
(16)

= Eē∼qφ(ē|Hi,ai,yi)

[
log

pρ(ē,yi|Hi,ai)

qφ(ē|Hi,ai,yi)

]
(17)

+ DKL(qφ(ē|Hi,ai,yi)|pρ(ē|Hi,ai,yi)) (18)

= Eē∼qφ(ē|Hi,ai,yi)

[
log

pρ(yi|Hi,ai, ē)

qφ(ē|Hi,ai,yi)
+ log pρ(ē|Hi,ai)

]
(19)

+ DKL(qφ(ē|Hi,ai,yi)|pρ(ē|Hi,ai,yi)). (20)

Since the time-shared latent factors ē is independently of a given the histories H, we have
pρ(ē|Hi,ai) = pρ(ē|Hi). Then we have

log pρ(yi|Hi,ai)

= Eē∼qφ(ē|Hi,ai,yi) [log pρ(yi|Hi,ai, ē)]

+ DKL(pρ(ē|Hi)|qφ(ē|Hi,ai,yi)) (21)
+ DKL(qφ(ē|Hi,ai,yi)|pρ(ē|Hi,ai,yi))
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We take the sum of equations above for all the training samples and time steps, and obtain
n∑

i=1

log pρ(Y
(i)

1:T (i) |X
(i)

1:T (i) ,A
(i)

1:T (i))

−
n∑

i=1

T (i)∑
j=1

DKL(qφ(ē|H(i)
j ,a

(i)
j ,y

(i)
j )|pρ(ē|H(i)

j ,a
(i)
j ,y

(i)
j ))

=

n∑
i=1

T (i)∑
j=1

E
ē∼qφ(ē|H(i)

j ,a
(i)
j ,y

(i)
j )

[
log pρ(y

(i)
j |H

(i)
j ,a

(i)
j , ē)

]

+

n∑
i=1

T (i)∑
j=1

DKL(pρ(ē|H(i)
j )|qφ(ē|H(i)

j ,a
(i)
j ,y

(i)
j )) (22)

From the equations above, we can observe that when the following conditions are satisfied,

qφ(ē|Ht,at,yt) = p(ē|Ht,at,yt), pρ(y|Ht,a, ē) = p(y|Ht,a, ē), pρ(ē|Ht) = p(ē|Ht).

We have

pρ(ē|Ht,at,yt) = p(ē|Ht,at,yt) = qφ(ē|Ht,at,yt)

n∑
i=1

T (i)∑
j=1

DKL(qφ(ē|H(i)
j ,a

(i)
j ,y

(i)
j )|pρ(ē|H(i)

j ,a
(i)
j ,y

(i)
j )) = 0

Therefore, the r.h.s of Equation 22, which is the ELBO of our variational autoencoders, becomes∑n
i=1 log p(Y

(i)

1:T (i) |X
(i)

1:T (i) ,A
(i)

1:T (i)) and reaches the maximal value.

D LIMITATIONS

In this paper, we only theoretically analyze the setting where the latent factors are generated by a
specific process et = ē + ηt, though the data generation process violating this assumption is also
examined in the experiments. We leave the analysis of more complex scenarios to future works.

Due to the intrinsic challenges in evaluating counterfactual prediction, we only conduct experi-
ments on the synthetic datasets and semi-synthetic datasets. Evaluation with expensive real-world
experiments should also be considered.

E SYMBOL SUMMARY

We summarize the symbols and corresponding definitions in Table 4.

F BACKGROUND INFORMATION OF VAE

Generally, variational autoencoder is a framework that assume the observation o is generated from
latent factors z and conditions c (if exists) and learn a variational approximation qφ(z|o, c) to
substitute the true posterior distribution p(z|o, c). The encoder outputting this approximated posterior
is trained with decoder pρ(o|z, c) and conditional prior component pφ(z|c) to maximize a lower
bound of the log-likelihood of the observed data p(o|c). Formally, the evidence lower bound (ELBO)
is defined as:

ED[log p(o|c)] ≥ L(φ, ρ) = ED[Eqφ(z|o,c)[log pρ(o|z, c) + log pφ(z|c)− log qφ(z|o, c)]]
= ED[Eqφ(z|o,c)[log pρ(o|z, c)]−DKL(log qφ(z|o, c)| log pφ(z|c))]

Usually, the outputted distributions of these components are defined as Gaussian distribution with
parameterized expectation and variance. After training the models, we can use reparameterization

17
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Table 4: The symbols used in the paper and corresponding definitions
Symbol Definition

x
(i)
t ∈ X ⊂ Rdx Covariate of the ith sample at the tth time step
a
(i)
t ∈ A Treatment of the ith sample at the tth time step

y
(i)
t ∈ R Outcome of the ith sample at the tth time step

T
(i)
t ∈ N The observed history length of the ith sample
X

(i)
t:t+τ The observed covariate history of the ith sample

A
(i)
t:t+τ The observed treatment history of the ith sample

Y
(i)
t:t+τ The observed outcome history of the ith sample
H

(i)
t The observed history of the ith sample

ϕ(·) The sequence model learning the representation of history
e
(i)
t The latent factors of the ith sample at the tth time step

ē(i) The time-shared latent factors of the ith sample
qφ(·) The encoder outputting the posterior of latent factors
pρ(·) The decoder outputting the distribution of outcomes
gρ(·) The predictive model (also a component in the decoder)
m ∈ N The repeated sampling times for estimating counterfactual outcome

trick to sample latent factors from qφ(z|o, c). Given the sampled latent factors, we can change the
conditions to the target value and decode the desired new observations. Specifically, in this paper, the
observed histories Ht and current treatment at play the role of conditions c, observed outcome yt

act as the observation o, and the time-shared latent factors substitute the latent factors z. Therefore,
the encoder outputs the variational approximation of posterior qφ(ē|Ht,at,yt). We can sample time-
shared latent factors given the histories, observed treatments and outcomes from qφ(ē|Ht,at,yt),
change the treatment (i.e. part of conditions) to be the counterfactual act (i.e. target value of
conditions), and finally obtained the counterfactual outcome from the decoder pρ(y|Ht,a

c, ē).

G PSEUDO-CODE OF OUR METHOD

The working process of our algorithm can be found in Algorithm 1.

18
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Algorithm 1 Time-shared Heterogeneity Learning from Time Series (THLTS)

Input: Observational data {{x(i)
t ,a

(i)
t ,y

(i)
t }T

(i)

t=1 }ni=1, the histories of evaluated sample
{xt,at,yt}Tt=1 and the counterfactual treatment acT+1 at the (T + 1)th time step.

Output: Counterfactual outcome forecast ŷ.
1: Train the backbone model for learning representation of histories ϕ and latent factor model,

including encoder qφ(·) and forecast model gρ(·).
2: Set µ0 ← 0e, σ0 ← 1e.
3: for k = 1, 2, ..., T do
4: Update µk ← fµφ (yk−1,ak−1, ϕ(Hk−1), µ

k−1, σk−1)

5: Update σk ← fσφ (yk−1,ak−1, ϕ(Hk−1), µ
k−1, σk−1).

6: end for
7: Set ŷ ← 0. // Under out-of-sample setting.
8: for k = 1, 2, ...,m do
9: Sample r ∼ N (0, Ie).

10: Compute ē← µT + r ⊙ σT
11: Update ŷ ← ŷ + 1

m · g
ρ(acT+1, ϕ(HT+1), ē).

12: end for
13: return Forecasted outcome ŷ.
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