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ABSTRACT

Learning the structure of causal graphs from observational data is a fundamental
but challenging problem. Existing works focus on designing search-based methods
for finding optimal causal graphs. However, search-based methods have proven
low-efficient since they are naturally limited by the burdensome computation of
decision criteria at every step. Consequently, they can hardly scale to larger tasks.
This paper proposes a novel framework called AGCORL to learn reusable causal
discovery policies, which can zero-shot generalize to related tasks with much
larger sizes. Specifically, AGCORL employs an Ordering Learning (OL) agent to
directly infer the order of variables taken from the observational data as input. To
further improve the generalizability of the OL agent, an ADversarial (AD) agent
is employed to actively mine tasks where the OL agent fails to find high-quality
solutions. We theoretically prove that the AD agent significantly reduces the
number of required tasks to achieve generalizability of the OL agent. Extensive
empirical evaluations demonstrate the superiority of our method in both runtime
and solution quality over the state-of-the-art baselines.

1 INTRODUCTION

Discovering and understanding causal relations is a fundamental problem not only in machine learning
but also in a variety of scientific disciplines such as computational biology Friedman et al. (2000);
Sachs et al. (2005), epidemiology Robins et al. (2000); Vandenbroucke et al. (2016) and economics
Pearl (2009); Peters et al. (2017), as well as industrial applications such as recommendations,
marketing and stock Liang et al. (2016); Varian (2016); Zhang et al. (2017). A common task of
interest is causal structure learning also known as causal discovery Pearl (2009); Spirtes et al. (2000);
Peters et al. (2017), which requires to identify the causal relationship of variables in observational
data as a Directed Acyclic Graph (DAG). Score-based methods are a major class of causal discovery
techniques, which aims to find a DAG that optimizes a certain criterion:

argmin
G
S(G), subject to G ∈ DAGs, (1)

where S(·) is a well-defined function scoring a DAG G with observed data, such as Bayesian
Information Criterion (BIC) score Chickering (2002). However, Problem 1 is NP-hard as the space of
DAGs increases super-exponentially with the number of graph nodes Chickering (1996); Chickering
et al. (2004). To search effectively, heuristic approaches like Greedy Equivalence Search (GES) add
or delete edges greedily based on local heuristics which enforce the acyclicity Chickering (2002);
Nandy et al. (2018). Instead of directly searching over the DAG space, Causal Additive Models
(CAM) divide the structure learning into two steps: firstly search the best variable ordering greedily,
and then prune the extra edges from the fully-connected DAG derived from the ordering Bühlmann
et al. (2014). These methods need to compute metrics like BIC at each searching step, which makes
it challenging to scale up to large tasks.

Recent works show that Reinforcement Learning (RL) Sutton & Barto (2018) has excellent potential
in causal discovery tasks. RL-BIC Zhu et al. (2020) is the first RL-based casual discovery algorithm
that learns to explore the DAG search space via a regularized reward function. However, such a DAG
regularizer often makes the algorithms prematurely converge to suboptimal solutions. To address
the issue, CORL Wang et al. (2021) avoids the acyclicity constraints by borrowing the two-stage
scheme from CAM. Specifically, CORL trains an actor to output the ordering of variables in each
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search epoch and tries to find better ordering following the BIC reward. Unfortunately, CORL is still
a search-based method, which can hardly scale up to realistic problems with more than hundreds
of variables due to the computational cost of the BIC reward Jensen & Kong (1999); Conati et al.
(1997); Andreassen et al. (1991).

Inspired by the recent successes of applying RL to combinatorial optimization problems Bello et al.
(2016); Khalil et al. (2017); Kool et al. (2019), we aim to train causal discovery policies that can
directly infer causal structure given the observational data as input. In such a way, a well-trained policy
can be reused in a class of related tasks even with a much larger number of variables. The biggest
challenge of training a reusable policy is the generalizability of the policy to new tasks. To address
this challenge, we propose a novel adversarial reinforcement learning framework, where an Order
learning agent (OL) and an Adversarial agent (AD) are mutually trained to mine adversarial tasks
that the OL agent cannot solve and thus improve the generalizability of the OL agent. Specifically,
our contributions fall into the following four parts.

1. We propose an Adversarially Generalizable Causal discovery with Ordering-based Rein-
forcement Learning framework (AGCORL), under which we can train causal discovery
policies that directly infer the causal structures from the observational data. Different from
existing works where training tasks are sampled from a pre-determined task distribution, we
introduce an AD agent who actively mines the adversarial tasks for the OL agent.

2. We formulate the graph generation problem of the AD agent as a Markov Decision Process
(MDP) and propose a novel Ground Truth Reward (GTR) as a fast surrogate of the com-
putationally demanding BIC score. GTR measures the difference between the discovered
structures and the ground truth structures in the generated tasks.

3. Theoretically, we show the sample complexity of training the OL agent can be improved by
training on adversarial tasks mined by the AD agent. And extensive experimental results on
linear and nonlinear synthetic data show that AGCORL generalizes better than pretrained
baselines, and can scale to much larger tasks than baselines. Furthermore, the superiority of
real-world data shows the potential of our method in practice.

2 RELATED WORK

Most methods for structure learning from observational data belong to two classes: independence-
based and score-based methods. Our method, AGCORL, is closely related to the second class.
Score-based methods cast the causal discovery problem as a combinatorial optimization problem
(Problem 1). To search effectively, heuristic approaches like Greedy Equivalence Search (GES) rely
on local heuristics to enforce the acyclicity and add or delete edges greedily Chickering (2002);
Nandy et al. (2018). Instead of directly searching over the DAG space, Causal Additive Models
(CAM) divide the structure learning into two steps: firstly search the best variable ordering greedily,
and then prune the extra edges from the fully-connected DAG derived from the ordering Bühlmann
et al. (2014). RL-BIC Zhu et al. (2020) designed an RL agent to explore the DAG search space guided
by a regularized reward function. CORL innovatively combines RL-BIC with CAM, formulating the
ordering process as a Markov Decision Process (MDP) and employing an RL algorithm to search for
the optimal BIC reward during testing. Inspired by CORL’s formulation, our approach in AGCORL
advances this concept by training a generalizable ordering policy using reinforcement learning. This
trained policy is capable of inferring the order directly in test time, without the need for further
search. AGCORL’s key innovation, bypassing the search process during testing, significantly speeds
up execution compared to CORL’s method of searching for optimal order in each test instance, thus
greatly enhancing efficiency.

The above heuristic and RL methods try to find the causal graph by searching. Another promising
direction of research for scaling up causal discovery is continuous-optimization methods. The key
that converts the discrete optimization problem into the continuous optimization problem is the
differentiable DAG constraint proposed by Zheng et al. (2018) in NOTEARS. NOTEARS searches
over the linear DAGs space using an augmented Lagrangian method. GOLEM Ng et al. (2020) studied
the asymptotic role of the sparsity and DAG constraints in linear cases. DAGMA Bello et al. (2022)
proposed a new DAG constraint via M-matrices and a log-determinant acyclicity characterization,
which has better-behaved gradients and an-order-of-magnitude-faster runtime. In order to extend
NOTEARS to nonlinear settings, DAG-GNN Yu et al. (2019), a graph neural network architecture
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(GNN) was proposed, which can be used to learn DAGs via the maximization of evidence lower
bound. By design, a DAG-GNN uses parameter sharing, which is not well suited for most DAG
learning tasks. GraN-DAG Lachapelle et al. (2020) also uses NN to model the nonlinear relationship
between variables but applies the acyclicity constraint at the level of neural network paths, which
achieves better performance than NOTEARS and DAG-GNN.

3 PRELIMINARY

Causal Graphical Models (CGM). A CGM is defined by a joint distribution PX over d-
dimensional random variable X = (X1, . . . , Xd) and an underlying DAG G = (d, V,E), where
V = {X1, . . . , Xd} is the set of nodes, and E = {(Xi, Xj)|i, j = 1, . . . , d} is the set of directed
edges from Xi to Xj . The graph structure implies a canonical factorization of the joint distribution,
which is referred to as causal factorization:

P (X1, . . . , Xd) =

d∏
j=1

P (Xj | Pa(Xj)) , (2)

where Pa(Xj) represents the parents of node Xj in the DAG G, i.e., Pa(Xj) := {Xk|(k, j) ∈ E}.
We assume that the observational data xj is generated by the Structural Causal Model (SCM) Pearl
(2009) with additive noises:

Xj := fj(Pa(Xj)) + ϵj , j = 1, . . . , d (3)
where fj represents the functional relationship between Xj and its parents, and ϵ1, . . . , ϵd denote
mutually independent noises associated to each node. The SCM could be of various types, including
the Linear Non-Gaussian Additive noise Model Shimizu et al. (2006) and the Post Nonlinear Model
Zhang & Hyvärinen (2009), based on reasonable assumptions regarding to different scenarios.

Causal Discovery Task & BIC Score. A causal discovery task is a tuple with two elements:
M = (W,D) ∈ M. W ∈ {0, 1}d×d is the adjacency matrix of the underlying causal graph where
Wij = 1 denotes edge (i, j) ∈ E , and D = [x1, . . . ,xd] ∈ Rm×d is the dataset of the nodes where
m is the number of samples. Given the dataset D, the goal of causal structure learning is to find the
adjacency matrix W by solving Problem 1. In previous works, they usually consider BIC which is
one of the most popular criterion defined as

SBIC(G) =
d∑
j=1

[
m∑
k=1

log p
(
xkj | Pa

(
xkj

)
; θj

)
− |θj |

2
logm

]
(4)

where θj represents the parameters of the likelihood function, which can be linear or a neural network
according to fj . The computational cost of the BIC score heavily depends on the size of θj .

Ordering-based Causal Discovery. The problem of finding a DAG can be cast as finding the
order of variables Wang et al. (2021) and then prune the fully-connected DAG generated from the
inferred order. Formally, let Ω be an ordered set of variables. We denote by Ω≺Xj

the set of
variables preceding Xj in Ω. CAM Bühlmann et al. (2014) searches the order greedily and CORL
Wang et al. (2021) formulate the ordering process as an MDP: at step t, CORL agent takes a action
to pick a variable Xj as the t-th element in Ω. At the end of one episode, we have Ω≺Xj for all
j ∈ [d], so we can easily establish a unique fully-connected DAG GΩ whose canonical factorization is
P (X1, . . . , Xd) =

∏d
j=1 P

(
Xj | Ω≺Xj

)
. Then, the BIC reward can be calculated by Equation 4 to

guild the searching of CORL. After all searching episodes, variable selection algorithms (Bühlmann
et al. (2014); Lachapelle et al. (2020); Wang et al. (2021)) will be applied to prune the optimal GΩ∗

to get the final DAG.

4 ADVERSARIAL RL FRAMEWORK FOR CAUSAL DISCOVERY

The existing search-based methods fail to scale up because they have to compute the BIC score at
each iteration with a computational cost of O

(
d3
)
, where d is the number of variables. Search-based
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Figure 1: The overview of the AGCORL training framework

methods can hardly scale up to causal discovery tasks with a large number of variables. In this work,
we aim to train a policy to directly infer the order of variables from the observational data without
searching. This new approach to the causal discovery tasks has significant advantages in terms of
both generalizability and scalability. Unfortunately, training such a policy is challenging because it
could require massive number of training tasks. Thus, the quality of the training tasks also plays an
important role. In fact, compared to easy counterparts, the tasks where the current policy fails to find
high-quality solutions are more valuable. To this end, we propose Adversarially Generalizable Causal
Discovery with Ordering-based Reinforcement Learning (AGCORL) framework. In the AGCORL
framework, Order Learning (OL) agent and ADversarial (AD) agent are trained adversarially. OL
agent is trained on a set of tasksMtrain = {M1, . . . ,Mn} to directly infer the order of variables
given the data D of a causal discovery task M . Moreover, instead of training the policy with the
tasks sampled from some pre-determined distributions, we train the other AD agent which actively
mines the adversarial tasksMadv on which the current OL agent performs poorly and adds them to
the training tasks poolMtrain.

4.1 INFERRING ORDER OF VARIABLES BY OL AGENT

As is introduced in Section 3, the causal discovery task can be reduced to inferring the order of
variables Bühlmann et al. (2014); Wang et al. (2021). Thus, we formulate the order search problem
as an d-step MDP, where d represents the number of variables. The basic elements of the MDP are
illustrated as follows.

Action. The action at at each timestep is to select a variable from the candidate variable set
V = {X1, . . . , Xd}. Once a variable is selected, it will be removed from the candidate variable set.
Then, at the end of an episode, the actions will make up an ordered set Ω consisting of all variables.

State and Transition. A state describes the current relationship between variables (nodes in the
DAG). At the beginning of each episode, we will sample a batch of N samples [x1, . . . ,xd] ∈ RN×d

from dataset D. Each variable Xi ∈ V can be represented by an embedding si = Φ(xi) , where Φ
is a standard Transformer encoder. The overall state St can be represented by a tuple < St+,S

t
− >,

where St+ is the set of embeddings of variables that have not been selected, and St− is the set of
embeddings of variables that have been selected. Obviously, at the initial state S0

+ = {si|i = [d]}
contains all node embeddings and S0

− = ∅. At the end of episode, ST+ = ∅ and ST− = {si|i = [d]}.
Fig. 5 in Appendix illustrates how the policy network maps a state St to an action at.

Reward. As aforementioned, the computational cost of the BIC score prohibits the existing methods
from scaling up to large problems. In fact, the computation requires performing linear regression,
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(a) (b)

Figure 2: An example of the computation of GTR. (a) The ground truth DAG with order Ω∗ =
(X3, X4, X2, X1), (b) The fully-connected DAG generated from Ω = (X1, X2, X3, X4), the red
arrows are reversed edges compare with (a). The final reward for Ω is −3/4, where 3 is the number
of reversed edges and 4 is the total number of edges in (a). Note that reward will be 0 when Ω∗ = Ω.

neural network training, or Gaussian process regression in every training step. On the other hand, since
the training tasks are generated by the AD agent in our scenario, we have access to the corresponding
ground truth DAGs during training. Therefore, we propose a fast Ground Truth Reward (GTR) to
evaluate the discrepancy between the resulting DAG and the ground truth DAG. The goal of the OL
agent is to minimize such a discrepancy by maximizing the GTR.

Ground Truth Reward. The reward aims to evaluate the order Ω by comparing its corresponding
DAG GΩ with the ground truth DAG G∗. However, many orders could correspond to the same
DAG since exchanging two irrelevant variables in an order does not affect the resulting DAG. In
other words, GΩ only inherits a partial order from the full ordered set Ω. Therefore, the principle of
designing reward should capture the differences of partial orders between GΩ and G∗.

Suppose two nodes in Ω satisfy partial order Xi ≺ Xj . Then, at least one path from Xj to Xi must
be in the corresponding DAG GΩ. If we reverse the partial order of the two nodes to Xj ≺ Xi,
at least one edge must be reversed in GΩ. Based on this observation, we design the ground truth
reward function by punishing the reversed edges comparing GΩ with G∗. We denote by erevΩ the
number of reversed edges comparing GΩ with G∗. In addition, since we will train multiple tasks with
different numbers of variables, it is necessary to balance the rewards of different tasks. Finally, we
define the episodic Ground Truth Reward of task M asROL(M,Ω) = −erevΩ /h, where Ω is the final
order outputted by the policy and h is the total number of edges in G∗. The negative sign indicates
the punishment, as the goal of the OL agent is to maximize the reward. Fig. 2 shows an example
of computing the GTR. Note that the computation of GTR requires only counting the edges and,
therefore much more efficient than the computation of the BIC score.

OL agent policy and training. Since the policy of the OL agent sequentially selects variables at
each time step, we choose the Pointer Net Vinyals et al. (2015) as the backbone of our policy network
πϕ. Fig. 5 in Appendix shows the details of the network architecture. We adopt the actor-critic
method Konda & Tsitsiklis (1999) to train the OL agent, where an additional critic network Vψ is
introduced to estimate the baseline value of states.

To improve the generalizability of the OL agent, we will iteratively train it over a set of tasksMtrain.
For each task M ∼Mtrain, the policy gradient for the actor is shown in Equation 5. Note that the
reward ROL(M,Ω) can only be computed at the end of an episode when all variables have been
selected, therefore our critic Vψ is only used to estimate the value of the initial state.

∇J(ϕ) = ES0∼DM

[(
ROL(M,Ω)− Vψ(S0)

) T∑
t=0

∇ϕ log πϕ
(
at | St

)]
(5)

The critic Vψ will be episodically updated by minimizing the following Mean Square Error (MSE).

L(ψ) = ES0∼DM

[
MSE(ROL(M,Ω), Vψ(S

0))
]
. (6)
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Figure 3: An example of adversarial DAG generation: the blue nodes are the nodes generated in the
previous timesteps and the green node is the newly generated node. At each timestep t, the AD agent
output atadv to determine the parents of the green node. For example, a3adv = {0, 1, 0}means onlyX2

is the parent of X4. Then we will generate data of X4 following Equation 3: Xj := f4((X2)) + ϵ4,
where f4 and ϵ4 are sampled from the SCM distribution and noise distribution.

4.2 GRAPH GENERATION WITH ADVERSARIAL AGENT

To improve the generalizability of the OL agent, we need to actively mine causal discovery tasks
where the OL agent fails. We also formulate this causal discovery task generation process as an
MDP. To generate a causal discovery task, one needs to determine its graph size, graph structure, type
of Structural Causal Model (SCM) and the observational data. In real-world scenarios, the ground
truth of SCM type is usually unknown, the SCM type used to model causal relationship is usually
determined under some reasonable assumptions, such as Linear Non-Gaussian Additive noise Model
(LiNGAM) and Post Nonlinear Model (PNL)Shimizu et al. (2006); Zhang & Hyvärinen (2009). In
addition, the policy trained on small tasks can generalize to large ones, we keep the sizes of the
generated tasks the same with that in the original datasets. Hence, the graph generation problem of
our AD agent is reduced to specifying the DAG structure and the observational data associated with
the nodes in the DAG. In order to reduce the action space at each step, our AD agent is designed
to generate nodes one by one. We formulate the sequential decision-making process as an MDP as
follows.

State. The state of the AD agent describes the set of variables generated so far. We denote by
Stadv = {s0, . . . , st} the state of the AD agent at time t, where st = Φadv(xt) is the embedding of
the variable Xt and xt ∈ RN is the batch of data associated with Xt generated at time t.

Action and Transition. An action atadv is a length-t binary vector sampled from a t-dimensional
Bernoulli distribution, whose parameters are determined by the policy of the AD agent. The action
specifies how a newly generated node Xt is added to the current adversarial DAG Gtadv . Fig. 3 shows
an example of constructing the adversarial DAG. Once the SCM of Equation 3 is specified, we will
have a function F that maps the data generated so far {x0, ...,xt} and the current Gtadv to xt+1. At
the end of the episode, we will have an adversarial task Madv = {GTadv, {x0, . . . ,xT }}.

Reward. The AD agent aims to find tasks that the OL agent fails to solve, so the reward for the AD
agent is based on the performance of the OL agent on the generated taskMadv . Therefore, we define
the reward for the AD agent asRAD(Madv,Ω) = −ROL(Madv,Ω), where Ω is the ordered set of
variables inferred by the OL agent.

AD agent policy and training. The policy of the AD agent maps the current state to the parameters
of the Bernoulli distribution used at the next time step. Fig. 6 in Appendix shows the architecture of
the policy network of the AD agent. We also adopt the actor-critic framework Konda & Tsitsiklis
(1999) to train the AD agent and reuse the critic Vψ of OL agent. As the input of Vψ should be the
embedding of the full set of nodes, so here the baseline value Vψ(STadv) is estimated by the terminal
state STadv . The policy gradient for the AD agent actor πθ is written as follows.

∇J(θ) = ES0
adv

[
(Vψ(S

T
adv)−ROL(Madv,Ω))

T∑
t=0

∇θ log πθ
(
atadv | Stadv

)]
(7)
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4.3 ADVERSARIAL TRAINING AND DEPLOYMENT

In this section, we introduce how to jointly train the OL agent and AD agent in our proposed
adversarial training framework. All training tasks Madv mined by the AD agent will be stored in
a set Mtrain. The adversarial training framework can be viewed as a zero-sum game. In each
training epoch, the OL agent and the AD agent are trained in turn to maximize their own rewards and
minimize opponents’ rewards. In each adversarial training epoch, the OL agent samples tasks from
the tasks pool and learns to infer the correct order guided by GTR; then the AD agent is trained to
find the tasks where the OL agent performs unsatisfactorily by minimize the performance of the OL
agent on its generating tasks measured by GTR; finally the generated tasks will be added to task pool
which will be learned by the OL agent in the following epochs. Please also refer to Algorithm 3 in
Appendix C for details

Deployment. After adversarial training, the OL agent is supposed to zero-shot transfer to target
tasks. However, the agent cannot take all data as input because of the data-sampling state space
design. To get better performance from the probabilistic policy, we sample a batch of initial states in
parallel and get a batch of ordered sets. Then we rank them by their BIC scores and select the best
actions. Finally, we prune the fully-connected graph generated from the best order to obtain the final
DAG. Alg. 4 in Appendix shows the details.

5 EXPERIMENT

In this section, we conduct experiments to verify the generalizability of our methods to tasks with
different sizes, noise types, and function types and compare our method with baselines in terms of
performance and scalability on synthetic linear and nonlinear tasks as well as real data sets.

Baselines. The baselines include random policy, the heuristic ordering-based searching approaches
CAM Bühlmann et al. (2014) and CORL Wang et al. (2021), the gradient-based methods NOTEARS
Zheng et al. (2018), DAG-GNN Yu et al. (2019) and GraN-DAG Lachapelle et al. (2020), and CORL-
P which is CORL pretrained with presampled tasks. We use the code from the causal discovery
toolbox Zhang et al. (2021).

Data generation. We generate testing synthetic data sets which vary along five dimensions: level
of edge sparsity, graph type, number of nodes, causal functions, and sample size. We sample 10 data
sets with 500 samples for each task: a ground truth DAG G is firstly drawn randomly from either the
Erdős–Rényi (ER) or scale-free (SF) graph model(5 from the ER graph model and the other 5 from
the SF graph model) and the data are then generated according to different given Structural Equation
Models (SEMs) model Xj := fj(Pa(Xj)) + ϵj , j = 1, . . . , d.

Metrics. We consider two common metrics to evaluate the performance: True Positive Rate (TPR)
and Structural Hamming Distance (SHD). The former indicates the probability of finding the right
edges, which is the higher, the better. The latter counts the total number of missing, false positive, or
reversed edges, which is the smaller, the better.

Pruning. We adopt the same variable selection methods for edge pruning as CORL. For linear tasks,
we apply linear regression to the obtained fully-connected DAG and then use a threshold to prune
edges with small weights, as similarly used by Zheng et al. (2018). For the non-linear tasks, we adopt
the CAM pruning Bühlmann et al. (2014) used by Lachapelle et al. (2020). For each variable Xj ,
one can fit a generalized additive model against the current parents of Xj and then apply significance
testing of covariates, declaring significance if the reported p-values are no greater than 0.001. Other
variable selection methods can also be considered, such as sparse candidate Teyssier & Koller (2005)
and group Lasso Schmidt et al. (2007).

5.1 LINEAR MODELS WITH GAUSSIAN NOISE

We further evaluate the proposed methods on linear-Gaussian (LG) tasks with equal variance Gaussian
noise. We set h ∈ {2, 5} and d ∈ {50, 100, 150, 200} to obtain the ER and SF graphs with different
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Table 1: Empirical results for DAGs of 50 and 100 nodes with LG data
Method Random NOTEARS CORL CORL-P AGCORL

50-node

2-edge TPR 0.37±0.03 0.91±0.07 0.92±0.04 0.92±0.03 0.94±0.03

SHD 161.1±21.6 21.1±18.9 21.4±7.4 33.6±11.6 16.1±6.5

5-edge TPR 0.42±0.02 0.70±0.17 0.89±0.09 0.87±0.12 0.95±0.04

SHD 351.1±24.3 130.8±42.5 101.1±17.3 172.3±33.5 80.9±15.7

t - 12m 0.8h 4.7s 4.8s

100-node

2-edge TPR 0.39±0.04 0.83±0.01 0.91±0.01 0.90±0.02 0.93±0.01

SHD 394.6±27.8 85.3±50.0 87.9±14.6 118.2±21.6 79.3±11.3

5-edge TPR 0.41±0.04 0.64±0.20 0.90±0.02 0.88±0.02 0.94±0.02

SHD 940.0±28.5 303.5±128.6 437.3±68.5 504.3±89.2 360±37.4

t - 1h 12h 19.8s 19.2s

levels of edge sparsity and different numbers of nodes. Then we generate 500 samples for each
task following the linear SEM: X =WTX+ ϵ, where W ∈ Rd×d denotes the weighted adjacency
matrix obtained by assigning edge weights independently sampled from a uniform distribution
Unif([−2,−0.5] ∪ [0.5, 2]). Here we present the evaluation result of the proposed method and
baselines on LG tasks with 50- and 100-node tasks in Table 1.

In this experiment, CORL is trained from scratch in each task for 2000 episodes. AGCORL is trained
on 20-node tasks for 10 epochs. At the end of each epoch, the AD agent generates 10 adversarial
tasks, which will be added to the training task pool. So the total number of training tasks is 100.
CORL-P is trained for the same total of 40000 iterations as AGCORL on 200 uniformly sampled
20-node tasks. Across all settings, AGCORL is the best-performing method in terms of both TPR
and SHD. For scalability, the running time of CORL is the longest due to its interactive search by
training manner. AGCORL, which is trained on 100 actively mined tasks, is better than CORL-P,
which is trained on 200 pre-sampled tasks, which shows the importance of adversarial training. We
also present AGCORL’s performance on larger tasks in Fig. 7 in the Appendix, the SHD increases as
the number of edges increases, but the TPR only decreases a little even on 200-node tasks, which
shows that our method can generalize to very large tasks.

To further illustrate the effect of adversarial training, we present the joint training curve of AGCORL
on LG tasks in Fig. 4. The periodical downward spikes illustrate the adversarial training. As the
amplitude of the spikes becomes smaller, the generalizability of the OL agent becomes better, and
thus the testing performance becomes better too.
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Figure 4: The left figure is training curve of AGCORL on 20-node LG tasks for 10 epochs and the
right figure is the evaluation on 30-node-5-edge tasks at each epoch.
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Table 2: Empirical results for DAGs of 10 and 30 nodes with GP data
Method CAM GraN-DAG CORL CORL-P AGCORL

10-node

1-edge TPR 0.75±0.06 0.59±0.12 0.74±0.03 0.64±0.08 0.74±0.04

SHD 2.3±1.1 5.2±3.3 2.5±1.1 3.3±1.4 2.5±1.2

4-edge TPR 0.40±0.05 0.64±0.11 0.32±0.12 0.32±0.14 0.36±0.07

SHD 18.2±3.7 25.3±4.8 20.0±3.4 21.4±3.8 13.6±2.9

t 63s 17m 11m 49s 51s

30-node

1-edge TPR 0.73±0.08 0.35±0.04 0.51±0.09 0.57±0.15 0.72±0.06

SHD 11.1±2.9 20.1±5.7 16.2±4.1 13.8±3.7 11.8±2.6

4-edge TPR 0.24±0.04 0.31±0.03 0.19±0.04 0.20±0.05 0.21±0.04

SHD 87.0±19.8 97.4±11.5 90.1±20.3 85.2±16.5 81.0±10.7

t 53m 30m 12h 11m 11m

5.2 NON-LINEAR MODEL WITH GAUSSIAN PROCESS

In this set of experiments, we consider a causal relationship with fi being a function sampled from
the Gaussian Process (GP) with radial basis function kernel of bandwidth one. The additive noise
follows standard Gaussian distribution. The GP data sets with h ∈ {1, 4} and d ∈ {10, 30, 80, 100}
are generated following Xj = fj ( Pa (Xj))+ ϵj , where the function fj is a function sampled from a
GP with radial basis function kernel of bandwidth one and ϵj follows standard Gaussian distribution.

Presented in Table 2, AGCORL performs as well as CAM, but the deployment time of AGCORL is
much less than CAM when the task is large. GraN-DAG gets the highest TPR in denser tasks, but
the SHD is poor because it produces more edges than other methods. Besides, CORL is better than
CORL-P on small tasks, but CORL-P performs better than CORL on 30-node tasks because CORL
cannot converge in 2000 episodes on 30-node tasks. Like the result in LG tasks, the deployment time
of CORL-P is close to AGCORL, but the performance is poor because of a lack of generalizability.
Fig. 8 in Appendix shows the performance on large GP tasks, which is much more difficult than the
linear case.

5.3 REAL-WORLD DATA

We test our agent trained in Section 5.2 on a real-world data sets: Sachs et al. (2005) with 11-node
and 17-edge true graph, which is widely used for research on graphical models. The expression
levels of protein and phospholipid in the data set can be used to discover the implicit protein signal
network. The observational data set has m = 853 samples and is used to discover the causal structure.
In this experiment, AGCORL and CORL achieve the best SHD 11, which shows our AGCORL can
successfully generalize to real-world data. CAM, GraN-DAG, DAG-GNN and NOTEARS achieve
SHDs 12, 13, 16, and 19 respectively. However, the running times of AGCORL and CORL are 56s
and 12m, which shows the superiority of AGCORL in scalability.

6 CONCLUSION

In this paper, we propose AGCORL, an adversarial training framework for training generalizable and
scalable causal discovery policies. Compared to existing search-based methods, our causal discovery
policies directly infer the causal graphs from the observational data, thus significantly reducing the
computational cost. AGCORL employs an OL agent to infer the causal graph from data, and an
AD agent to actively mine adversarial tasks where the OL fails. To further accelerate training, we
design an efficient GTR function to evaluate the quality of inferred causal graphs, which provides
reward signals for both agents. Our experiments show the advantages of the AGCORL framework, in
terms of both solution quality and scalability. We believe that our method is particularly suitable for
handling specific domains with a large number of similar causal discovery tasks. For future works,
we plan to design more efficient representations of nodes on the DAG, in order to further reduce the
number of tasks during training and improve data efficiency.
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A THEORY

A.1 GENERALIZABLE RL AND ADVERSARIAL ROBUSTNESS

As discussed earlier, learning generalizable RL-based causal discovery policies can eliminate the need
for online learning, which is the key to scaling up. However, the question of ’given the noise level of
the AD agent, how many tasks/samples does one need to achieve sufficiently good performance?’
should be answered. The key is to measure the performance of value function of OL agent under
noise influence on AD agent. Theorem 1 gives a lower bound on the number of generated tasks
required to achieve generalizability.

Let g :M→ {0, 1} be a function distinguishing whether a task M can be correctly ordered by the
OL agent, whereM is the set of all tasks andMtrain,Madv ⊂M. g(M) = 1 if the OL agent can
correctly order variables in M , otherwise g(M) = 0. After the OL training in each epoch, the OL
agent is trained to succeed inMtrain. Let supp(g) be the support of g.1 ThusMtrain is a subset
of supp(g), i.e.Mtrain ⊂ supp(g). Suppose that the AD agent generates task M ∈ supp(g) with
the probability 1− ζ and generates wrong tasks (i.e., Madv ̸∈ supp(g)) with probability ζ, where
ζ ∈ {0, 0.5} is the noise level of AD agent. If ζ = 0, the AD agent will always generate the true
tasks. The generate is fully random when ζ = 0.5, in this case, the sample from AD agent can not
provide sufficient information to OL agent.

Theorem 1 (Imperfection of generation) Suppose that ϵ, δ ∈ (0, 1), m is the number of samples

from each task, then we need to have 2 log
2|Ψ|
δ

2mϵ2(1−2ζ)2 tasks on nodes pair Xi, Xj to ensure that the
estimation error of target agent is lower than ϵ with the confidence of 1− δ.

Theorem 1 shows that when adversarial agent uniformly generates random tasks, i.e., when ζ is close
to 1

2 , an infinite number of graph samples are needed for training a better OL agent. The theorem
implies that we cannot expect a better performance from the target agent if the adversarial agent is
completely random.

A.2 PROOF OF THEOREM 1

Inspired by the proof process in Yang et al. (2021). For a hypothesis, ψ ∈ Ψ on target agent, suppose
the prediction error of value function is ϵ. We have four cases: (1) the adversarial agent generates an
in-distribution graph, and the target agent predicts the right relationship. We have (1 − ϵ)(1 − ζ),
(2) the adversarial agent generates an in-distribution graph. The target agent predicts the wrong
relationship, we have ϵ(1− ζ), (3) the adversarial agent generates an out-of-distribution graph. The
target agent predicts the right relationship, we have (1− ϵ)ζ and (4) the adversarial agent produces an
out-of-distribution graph, and the target agent predicts the right relationship ϵζ. From the four cases,
we know that the actual mismatching from observation data (in-distribution) and target prediction can
be concluded as cases (2) and (3). Therefore the mismatching probability equals (1− ϵ)ζ + ϵ(1− ζ).
Supposing that the prediction error is larger than ϵ. We have the empirical loss of the f larger than
that of the optimal f∗ if both of the following two statements hold: (i) the empirical loss of the f is
smaller than ζ+ ϵ(1−2ζ)

2 and (ii) the empirical loss of the f∗ is larger than ζ+ ϵ(1−2ζ)
2 . The definition

of uniform convergence Shalev-Shwartz & Ben-David (2014) demonstrates below helps us to prove
the theorem

Lemma 1 Let Ψ be a hypothesis class, then for any ϵ ∈ (0, 1) and ψ ∈ Ψ, if the number of training
samples is Nm, where N is the number of tasks, the following formula holds:

P(|L(ψ)− L̂(ψ)| > ϵ) < 2|Ψ| exp
(
−2Nmϵ2

)
Where L̂(ψ) is the empirical risk over all the tasks and their samples.

we focus on the graph (task) size N in each graph from the above lemma. For statement (i), since
the prediction error of the target agent is larger than ϵ; the expected loss is larger than ζ + ϵ(1− 2ζ).

1The support of g is defined as the smallest closed set containing all points not mapped to zero.
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Then, if the empirical loss L(ψ) is smaller than ζ + ϵ(1−2ζ)
2 , then |L(ψ)− L̂(ψ)| in above lemma is

larger than ϵ(1−2ζ)
2 , when the graph (task) size is larger than

2 log( 2|Ψ|
δ )

mϵ2(1−2ζ)2 , we have

P(|L(ψ)− L̂(ψ)| > ϵ(1− 2ζ)

2
) < δ

For statement (ii), we suppose the expectation loss of ψ∗ is ζ (i.e. L(ψ∗) = ζ ) and the empirical
loss L̂(ψ∗) is larger than ζ + ϵ(1−2ζ)

2 , then |L(ψ∗)− L̂(ψ∗)| in above lemma should be larger than
ϵ(1−2ζ)

2 . According to the above lemma, when the graph size is larger than
2 log( 2|Ψ|

δ )
mϵ2(1−2ζ)2 , we have

P(|L(ψ∗)− L̂(ψ∗)| > ϵ(1− 2ζ)

2
) < δ.

As a result, both of the above statements hold with a probability smaller than δ. The proof of the
theorem is completed.

B NETWORK ARCHITECTURE
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C ALGORITHMS

Algorithm 1 Inferring the order of variables by OL agent
Input: Observational data D

1: Initialization: Ω = ∅
2: Draw N samples [xt1, . . . ,x

t
d] ∈ RN×d from D

3: S0
+ = {s1, . . . , sd} ← Φ({x1, . . . ,xd}) , S0

− ← ∅
4: ŝ0 ←Mean(S0)
5: for t = 0, . . . , T − 1 do
6: at ← πϕ(S

t)
7: add sat to St−, remove sat in St+
8: append at to Ω

Output: Ω := (a0, . . . , aT−1)

Algorithm 2 DAG Generation by Adversarial Agent
Input: number of variables d

1: Initialization: x1 := ϵ1 ← N (0, 1),Wadv ← 0d×d, T := d
2: for t = 1, . . . , T − 1 do
3: Stadv = {s1, . . . , st} ← Φadv({x1, . . . ,xt})
4: atadv ← πθ(S

t
adv)

5: ϵt+1 ← N (0, 1)
6: generate xt+1 with atadv, {x1, . . . ,xt}, ϵt+1 by Eq. 3
7: W 1:t,t

adv ← atadv
8: Madv := {Wadv, {x1, . . . ,xd}}

Output: the adversarial task Madv

Algorithm 3 Adversarial Training Framework
1: Initialization: encoder Φ and Φadv, OL actor πϕ, AD actor πθ, shared critic Vψ and add pre-

sample tasks to training task pollMtrain

2: for adversarial training epochs do
3: for i in OL agent training iterations do
4: sample a batch of training tasks fromMtrain

5: infer orderings Ω for each graph with Φ and πϕ by Alg. 1
6: evaluate Ω with correspondingROL(M,Ω)
7: update Φ, πϕ by Eq. 5
8: update Vψ by Eq. 6
9: for i in AD agent training iterations do

10: generate tasksMi
adv with Φadv and πθ by Alg. 2

11: evaluate the reward for generated tasks by OL agent and get the rewardsROL(Madv, ϕ)
12: update Φadv, πθ by Eq. 7
13: update Vψ by Eq. 6
14: add generated adversarial tasks in last iterationMadv toMtrain

14
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Algorithm 4 Deployment
Input: observational data from observational dataset D with d variables; hyper-parameter: batch

size b, prune threshold ϵ
1: draw a batch of data samples {[xt1, . . . ,xtd] ∈ RN×d}bj=1 from D with batch size b
2: inference a batch of actions {Ω1, . . . ,Ωb} ← πϕ({[xt1, . . . ,xtd]}bj=1)

3: compute the BIC score of each action {sBIC1 , . . . , sBICb } = SBIC({Ω1, . . . ,Ωb})
4: select the best ordering Ωmax := argmaxi SBIC(Ωi)
5: generate fully-connected DAG Gfull from Ωmax
6: prune Gfull to get the final adjacency matrix W pruned

Output: W pruned

D HYPER-PARAMETERS

Table 3: Model parameters for linear and non-linear models
Linear Model Non-linear Model

batch size 64 32
encoder heads 8 8
encoder blocks 3 3

encoder dropout rate 0.1 0.1
encoder hidden dim 1024 1024

input dim 64 128
embed dim 64 128

OL actor hidden dim 64 128
AD actor hidden dim 64 128

actor lr 10−4 10−4

critic lr 10−3 10−3

E ADDITIONAL EXPERIMENT RESULTS

E.1 GENERALIZABILITY OF AGCORL

We first evaluate the generalizability of our method in sample cases. We train an OL agent on 10-node
Linear Gaussian(LG) tasks and then transfer to larger LG tasks (Table 4) and Linear Non-Gaussian
tasks (Table 5). Table 4 shows that even though the task size slightly affects the transfer performance
in LG cases, the performance is still satisfying (Normalized SHD (NSHD) increases slightly and
TPR drops slightly). Table 5 also shows that the noise type will only slightly affect the transfer
performance.

Table 4: Empirical results for Transfer to Different Size
Task Size Noise SHD TPR NSHD

10 Gaussian 0±0.0 1±0.0 0±0.0

20 Gaussian 1.6±0.7 0.987±0.02 0.8±0.4

30 Gaussian 4.2±1.9 0.987±0.02 1.4±0.6

40 Gaussian 9.1±4.4 0.98±0.03 2.3±1.1

50 Gaussian 13.8±6.8 0.971±0.04 2.7±1.4

To evaluate the transfer performance of AGCORL to tasks with different function types, we train
an agent on GP tasks and transfer to unseen GP, quadratic, and MLP tasks (Table 6). The transfer
performance to different function types is not as good as to the same GP but is better than a random
policy. Therefore, if we do not have enough clue about the function type, we can use several policies
trained on different function types to produce candidate orderings, then select the best based on the
BIC score.
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Table 5: Empirical results for Transfer to Different Noise
Task Size Noise SHD TPR

10 Gaussian 0±0.0 1±0.0

10 Exp 0.5±0.4 0.993±0.01

10 Gumbel 0.5±0.4 0.993±0.01

10 Uniform 0.5±0.4 0.993±0.01

Table 6: Empirical results for Transfer to Different Function

Function
10 nodes

1 edge 4 edges

TPR SHD TPR SHD

GP 0.74±0.04 2.5±3.1 0.36±0.06 13.6±8.7

Quadratic 0.56±0.10 4.4±1.5 0.43±0.16 18.0±5.4

MLP 0.70±0.24 4.2±3.6 0.55±0.16 16.8±5.3

Random 0.45±0.17 5.4±3.2 0.17±0.09 25.3±11.6

E.2 SCALABILITY OF AGCORL
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Figure 7: AGCORL performance on larger LG tasks
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Figure 8: AGCORL performance on larger GP tasks
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