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Abstract

In contexts where data samples represent a physi-
cally stable state, it is often assumed that the data
points represent the local minima of an energy
landscape. In control theory, it is well-known
that energy can serve as an effective Lyapunov
function. Despite this, connections between con-
trol theory and generative models in the literature
are sparse, even though there are several machine
learning applications with physically stable data
points. In this paper, we focus on such data and
a recent class of deep generative models called
flow matching. We apply tools of stochastic sta-
bility to flow matching models. In doing so, we
formally characterize a space of flow matching
models that are amenable to this treatment, as
well as draw connections to other control theory
principles. We demonstrate our theoretical results
on a toy example.

1. Introduction
Generative modeling is a fundamental problem in machine
learning, where the goal is usually to learn a model that
can generate samples from a target distribution. In recent
years, deep generative models based on continuous-time
dynamics (Song et al., 2020; Lipman et al., 2022) have
shown exceptional capabilities in a variety of tasks ranging
from image generation (Rombach et al., 2021) to complex
structural biology applications (Corso et al., 2023; Ketata
et al., 2023).

In contexts where samples from the target distribution rep-
resent a physically stable configuration, e.g. molecular con-
formations (Parr et al., 1979) or robotic formations (Sun
et al., 2017), it is natural to posit that incorporating their
physical characteristics into the generative model will bol-
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Figure 1. Flows of the Stable-FM model (top) and OT-FM model
(bottom) from the standard normal distribution to the moons distri-
bution. Note that the flow of OT-FM model does not stabilize to the
distribution at t = 1, while the Stable-FM model remains stable
to the distribution as t → ∞. See Figure 2 for the corresponding
vector field.

ster performance. Indeed, a variety of works have attempted
to do so through force-field analogies (Shi et al., 2021; Feng
et al., 2023; Luo et al., 2021; Zaidi et al., 2022), which rely
on the idea that such samples represent local minima on a
free-energy landscape (Dill, 1985).

In control theory, it is well-known that an energy function
can serve as an effective Lyapunov function and help to
endow a dynamical system with stability (Khalil, 2002).
Despite this, connections in the literature between stability
theory and generative models for physically stable data are
sparse, even though there are existing works on applying
Lyapunov stability to machine learning (Kang et al., 2021;
Rodriguez et al., 2022; Zhang et al., 2022a; Kolter & Manek,
2019; Zhang et al., 2022b; Lawrence et al., 2020).

To bridge this gap, we apply a stochastic version of La
Salle’s invariance principle (La Salle, 1966; Mao, 1999)
to flow matching (FM) models (Lipman et al., 2022), a
recent alternative to diffusion models based on continuous
normalizing flows (CNFs) (Chen et al., 2018). The main
contribution of our work is equiping the dynamics of the FM
model with stability to the support of the data distribution,
with the goal to reflect the physical stability of its samples.
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2. Related work
In recent years, continuous-time dynamics-based deep gen-
erative models (Chen et al., 2018; Song et al., 2020; Lipman
et al., 2022) have come to the forefront of the field of deep
generative modeling.

Notably, diffusion models (Song et al., 2020) were shown
to be state-of-the-art in image generation tasks (Dhariwal
& Nichol, 2021), and have since garnered multiple appli-
cations ranging from structural biology tasks (Corso et al.,
2023; Yim et al., 2023b; Ketata et al., 2023) to video gener-
ation (Ho et al., 2022; Blattmann et al., 2023; Esser et al.,
2023), with several extensions such as latent representations
(Vahdat et al., 2021; Blattmann et al., 2023) and geometric
priors (Bortoli et al., 2022; Dockhorn et al., 2021). Diffu-
sion models are based on the SDEs (e.g. (Särkkä & Solin,
2019)) and score matching (Hyvärinen, 2005; Song et al.,
2019), where one learns a time-dependent vector-valued
score function ∇xxx log(p(xxx, t)) over diffused data samples
and then plugs it into the well-known time-reversed SDE
(Anderson, 1982; Haussmann & Pardoux, 1986; Lindquist
& Picci, 1979).

FM models (Lipman et al., 2022) were proposed as an alter-
native to diffusion models (Song et al., 2020) that enjoy fast
training and sampling, while maintaining competitive per-
formance. They rely on CNFs (Chen et al., 2018) and can
be seen as a generalization of diffusion models, as demon-
strated by the existence of the probability flow ordinary
differential equation (ODE) that induces the same marginal
PDF as the SDE of diffusion models (Maoutsa et al., 2020;
Song et al., 2020). Several applications of FM models have
been made, ranging from structural biology (Yim et al.,
2023a; Bose et al., 2023) to media (Le et al., 2023; Liu et al.,
2023), as well as fundamental extensions (Tong et al., 2023;
Pooladian et al., 2023; Shaul et al., 2023; Chen & Lipman,
2023b; Klein et al., 2023).

In the context of data that describes physically stable states,
e.g. molecular conformations, several works (Zaidi et al.,
2022; Feng et al., 2023; Shi et al., 2021; Luo et al., 2021)
have learned force fields by leveraging the connection be-
tween the score function and Boltzmann distributions, i.e.
∇xxx log(p(xxx, t)) = −∇xxxH(xxx, t) where H is a scalar energy
function. In (Zaidi et al., 2022), an equivalence between
denoising score matching (Vincent, 2011) and force-field
learning is pointed out. This idea was extended in (Feng
et al., 2023) to incorporate off-equilibrium data and NN
gradient fields. In (Shi et al., 2021; Luo et al., 2021), a
NN gradient field is learned to model a psuedo-force field,
which is then used to sample energy-minimizing molecular
conformations via annealed Langevin dynamics (Song &
Ermon, 2019).

Along the same lines, Poisson Flow Generative Models (Xu

et al., 2023; 2022), use the solution of Poisson’s equation to
define a force field as the gradient of the Poisson potential.
Similar to our work, they augment the spatial state with an
auxiliary state that acts as an interpolant and replaces time.
However, the gradient field of their spatial state is linked to
that of their auxiliary variable. In contrast, our work deals
with quadratic potentials that yield independent dynamics
for the spatial and auxiliary states.

In control theory, physical stability is often analyzed through
Lyapunov stability (Khalil, 2002). As a result, there
are numerous works on applying Lyapunov stability to
ODEs/SDEs in the context of dynamics learning (Kang
et al., 2021; Rodriguez et al., 2022; Zhang et al., 2022a;
Kolter & Manek, 2019; Zhang et al., 2022b; Lawrence et al.,
2020). Despite this, virtually none of the aforementioned
works consider stochastic stability to support of the target
distribution. In our work, we apply a stochastic invariance
principle (Theorem 3.5) to construct stable CNFs in the
context of FM.

3. Preliminaries
In this paper, we assume that we have a dataset D ⊂ X ,
existing in an ambient space X ⊆ Rn that we assume to be
described by a latent PDF q ∈ P(X ) s.t. D ⊂ supp(q). We
want to generate new samples from the latent PDF q.

Notation Denote the space of continuous functions from
X to Y as C(X ,Y). Denote the space of continuous
function-valued functions s.t. if f ∈ C(X , C(Y,Z)) then
f(· | xxx) ∈ C(Y,Z) and f(yyy | xxx) ∈ Z . Denote the
space of non-negative reals as R≥0 and positive reals as
R>0. Denote the space of positive definite matrices as
Rn×n

>0 and positive semi-definite matrices as Rn×n
≥0 . De-

note the space of probability density functions (PDFs) as
P(X ) = {f ∈ C(X ,R≥0) |

∫
X f(xxx)dxxx = 1} and PDF

paths as P(X × R≥0) = {f ∈ C(X × R≥0,R≥0) |∫
X f(xxx, t)dxxx = 1}. Denote the support of a PDF f ∈ P(X )

as supp(f) = {xxx ∈ X | f(xxx) ̸= 0}. Denote the Dirac delta
PDF centered at xxx1 ∈ X as δ(xxx− xxx1).

3.1. Flow Matching

Explicitly modeling the latent PDF q comes with the bur-
den of constraining the model to be a proper PDF with a
suitable normalizing constant, which is often intractable.
Continuity-based generative models (Song et al., 2020; Lip-
man et al., 2022), on the other hand, circumvent this burden
by modeling vector fields (VFs) that transport samples from
a tractable PDF (e.g. Gaussian) to the latent PDF via the
well-known continuity equation. These models are often
called continuous normalizing flows (CNFs).

In flow matching (FM) (Lipman et al., 2022), we assume
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that there exists a latent marginal PDF path p ∈ P(X ×Rn)
that transports N (000, III) = p(xxx, 0) to q(xxx) = p(xxx, T ) at
T = 1. The continuity equation then tells us that there exists
a conservative VF vvv ∈ C(X × R≥0,Rn) that generates
this PDF path (Villani et al., 2009; Ambrosio et al., 2005).
Therefore, we define the space of CNFs as ordered pairs of
a PDF path, VF, and flow map in Definition 3.1.

Definition 3.1 (CNF Space). A subset

F ⊂ P(X ×R≥0)×C(X ×R≥0,Rn)×C(X ×R≥0,X )
(1)

s.t. for all CNFs (p,vvv,ϕϕϕ) ∈ F:

∂p(xxx, t)

∂t
=−∇xxx · (p(xxx, t)vvv(xxx, t)) (2)

dϕϕϕ(xxx, t)

dt
=vvv (ϕϕϕ(xxx, t), t) . (3)

Since we do not have access to the latent CNF, we assume
that we can approximate it via a mixture of conditional
CNFs, conditioned on data samplesxxx1 ∈ supp(q), as shown
in Definition 3.2.

Definition 3.2 (CNF Pair Space). A subset

FFM ⊂ F× C(X ,F) s.t. ∃q ∈ P(X ) (4)

and for all CNF pairs ((p,vvv, ·), (p1, vvv1, ·)) ∈ FFM:

p(xxx, t) =

∫
X
p1(xxx, t | xxx1)q(xxx1)dxxx1, (5)

vvv(xxx, t) =
1

p(xxx, t)

∫
X
vvv1(xxx, t | xxx1)p1(xxx, t | xxx1)q(xxx1)dxxx1

s.t. there exists T ∈ R≥0 ∪ {∞} s.t. for all xxx1 ∈ supp(q)
there exists ΣΣΣ1 ∈ Rn×n

≥0 s.t. p1(xxx, T | xxx1) = N (xxx1,ΣΣΣ1).

The importance of Definition 3.2 is that it allows us to
regress the conditional CNF’s VF vvv1 instead of the unknown
latent CNF’s VF vvv, as shown in Theorem 3.3.

Theorem 3.3 (FM Loss). For all vvvθ ∈ C(X ×R≥0,X ) and
((p,vvv, ·), (p1, vvv1, ·)) ∈ FFM:

LFM(θ) = E
t∼U [0,T ]
xxx1∼q(xxx1)

xxx∼p1(xxx,t|xxx1)

∥vvvθ(xxx, t)− vvv1(xxx, t | xxx1)∥22 (6)

= E
t∼U [0,T ]
xxx∼p(xxx,t)

∥vvvθ(xxx, t)− vvv(xxx, t)∥22 + Const. (7)

Proof. See (Lipman et al., 2022).

3.2. Stochastic Stability

In this paper, we will analyze FM from the perspective of
stochastic differential equations (SDEs). A key link between
FM (Lipman et al., 2022) and SDE-based generative models

(Song et al., 2020) is the probability flow ODE, whose
solutions induce the same PDF path as its corresponding
SDE, see Theorem 3.4.

Theorem 3.4 (Probability Flow). An SDE

dxxx = fff(xxx, t)dt+ ggg(xxx, t)dwww. (8)

with drift fff ∈ C(X ,Rn) and diffusion ggg ∈ C(X ,Rn×n)
induces the same PDF path as the ODE

dxxx

dt
= fff(xxx, t)− 1

2
∇xxx · ggg(xxx, t)2 − 1

2
ggg(xxx, t)2∇xxx ln(p(xxx, t))

(9)
where ggg(xxx, t)2 = ggg(xxx, t)ggg(xxx, t)⊤, and ∇xxx· is the divergence
operator.

Proof. See (Song et al., 2020; Maoutsa et al., 2020).

We are interested in modeling a CNF such that its PDF path
is stable to the latent PDF q.

In ODEs, stability is a well-studied topic (Khalil, 2002;
Meiss, 2007; Chossat & Lauterbach, 2000), where one typ-
ically seeks to characterize stability to a point xxx1 ∈ X s.t.
ϕϕϕ(xxx0,∞) = xxx1 for all starting states xxx0 ∈ B0 ⊃ {xxx1}.
To do this, one typically applies Lyapunov’s direct method,
where if one can find a scalar function V ∈ C(X ,R≥0)
whose gradient along the VF resembles a funnel centered
at xxx1, then xxx1 is an asymptotically stable point. Similarly,
one can also characterize stability to a set B1 ⊂ X , s.t.
ϕϕϕ(xxx0,∞) ∈ B1 for all starting states xxx0 ∈ B0 ⊃ B1. In this
case, one can apply La Salle’s invariance principle (La Salle,
1966), which employs a Lyapunov-like function to locate
invariant such stable sets.

In SDEs, notions of the aforementioned methods have been
developed in (Kushner, 1965; Khasminskii, 1980; Mao,
1999). As the latent PDF q may characterize a set of stable
states, we are interested in applying the stochastic version
(Mao, 1999) of La Salle’s invariance principle. We adapt
the principle to this setting in Theorem 3.5.

Theorem 3.5 (Stochastic Invariance). For an SDE, an oper-
ator L acting on a scalar function V ∈ C(X ,R>0)

LV (xxx) := ∇xxxV (xxx)⊤fff(xxx) +
1

2
tr
(
∇2

xxxV (xxx)ggg(xxx)2
)
, (10)

where ∇2
xxx is the Hessian operator and tr is the trace opera-

tor, and two sets B0 ⊃ B1

B0 := {xxx ∈ X | LV (xxx) ≤ 0} , (11)
B1 := {xxx ∈ X | LV (xxx) = 0} , (12)

if xxx0 ∈ B0 then ϕϕϕ(xxx0,∞) ∈ B1 almost surely.

Proof. See Corollary 4.1 in (Mao, 1999).
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Figure 2. Stream plots of the vector fields of Stable-FM (top) and OT-FM (bottom) corresponding to Figure 1. Note that beyond t = 1,
the OT-FM vector field diverges, while the Stable-FM VF stabilizes. Lighter colors indicate larger vector magnitudes and vice versa.

4. Main Result
4.1. Autonomous CNF Pair Space

We aim to construct CNF pairs that satisfy the invariance
principle of Theorem 3.5; however, the principle only admits
autonomous systems. The marginal VF vvv(xxx, t) in Defini-
tion 3.2 does not admit such a form, even if the conditional
VF vvv1(xxx | xxx1) does, due to its dependence on the con-
structed PDF path p(xxx, t). To alleviate this, we consider
that t in the context of CNFs serves merely as an interpola-
tion parameter between the initial and target PDFs. Thus,
we ask if it would be possible to use other variables in the
state space to perform the same job while also rendering an
autonomous form for the marginal VF vvv(xxx, t).

To explore this line of reasoning, we decompose the state
space into two subspaces X := Y × Z: the data space Y ⊂
Rn−1 and the interpolant space Z ⊂ R. We then suppose
that the interpolant state z ∈ Z evolves deterministically
over time via a dirac-delta PDF path, but is still involved as
arguments to the VFs. We define this new CNF pair space
in Definition 4.1.

Definition 4.1 (Auto CNF Pair Space). A subset

FAuto ⊂ FFM s.t.
X = Y × Z ⊂ Rn−1 × R

q(xxx) = qy(yyy)qz(z)
(13)

and for all (·, (p,vvv,ϕϕϕ)) ∈ FAuto:

p(xxx, t | xxx1) =py(yyy, t | yyy1)pz(z, t | z1) (14)

vvv(xxx, t | xxx1) =

[
vvvy(xxx, t | xxx1),
vz(xxx, t | xxx1)

]
, (15)

and furthermore the flow map ϕz of z is bijective with t s.t.
t = ϕ−1

z (z0, ϕz(z0, t | z1) | z1), and with z1, z0 ∈ Z , s.t.
z0 ̸= z1 we have

pz(z, t | z1) = δ(z − ϕz(z0, t | z1)), qz(z) = δ(z − z1).
(16)

The key part of Definition 4.1 is that the PDF qz is a Dirac
delta PDF centered at z1, and the conditional PDF path pz
is a Dirac delta PDF centered at ϕz(z0, t | z1). Thus, z will
evolve deterministically over time from z0 to z1, and hence
its flow map ϕz forms a bijection with time. We can then
use the inverse of µz to map z to t and put the constructed
CNF in autonomous form, as shown in Theorem 4.2.

Theorem 4.2. For all ((p,vvv, ·), (p1, vvv1,ϕϕϕ1)) ∈ FAuto there
exists p̄ ∈ P(X ) and v̄vv ∈ C(X ,Rn) corresponding to
p(xxx, t) and vvv(xxx, t):

p̄(xxx) =

∫
Y
p̄y(xxx | yyy1)qy(yyy1)dyyy1

v̄vv(xxx) =
1

p̄(xxx)

∫
Y
v̄vv1(xxx | xxx1)p̄y(xxx | yyy1)qy(yyy1)dyyy1

(17)

s.t.
p̄y(xxx | yyy1) =py(yyy, ϕ

−1
z (z0, z | z1) | yyy1)

v̄vv1(xxx | xxx1) =vvv1(xxx, ϕ
−1
z (z0, z | z1) | xxx1).

Proof. See Appendix A.1.

The key takeaway of Theorem 4.2 is that we can now con-
sider modeling a VF in autonomous form.

Since we are interested in stability, we are interested in
conditional CNFs s.t. p(xxx,∞ | xxx1) = N (uuu1,ΣΣΣ1) for some
ΣΣΣ ∈ Rn×n

≥0 . This implies that v̄z(z1 | z1) = 0, which
poses a problem in the denominator of the loss function in
Lemma A.1. Furthermore, we are interested in minimizing
the loss over t ∈ [0,∞] which poses a problem due to the
presence of the 1/T term in the original loss. To circumvent
these problems, we elect to minimize a loss that directly
integrates over z, as shown in Definition 4.3.

Definition 4.3 (Autonomous CNF Loss). For all vvvθ ∈
C(X ,Rn) and (·, (p1, vvv1,ϕϕϕ1)) ∈ FAuto:

LAuto(θ) = E
z∼U [z0,z1]
yyy1∼qy(yyy)

yyy∼p̄y(yyy,z|yyy1)

∥vvvθ(xxx)− v̄vv1(xxx | xxx1)∥2. (18)
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Importantly, the loss function in Definition 4.3 does not
suffer from the ailments of the loss function in Lemma A.1.
The training procedure then becomes: sample the uni-
form PDF z ∼ U [z0, z1], sample a data point yyy1 ∼ qy(yyy)
from the dataset, sample the conditional PDF path yyy ∼
p̄y(yyy, z | yyy1), then minimize ∥vvvθ(yyy, z)−vvv1(yyy, z | yyy1, z1)∥2,
where z0 and z1 are held constant. Assuming that the
initial PDF is p̄y(yyy, z0 | yyy1) = N (yyy | 000n−1, IIIn−1), the
inference procedure is then: sample xxx0 = (yyy0, z0) ∼
N (000n−1, IIIn−1) × δ(z − z0), then integrate vvvθ(zzz, τ) from
xxx0 until xxx1 = (yyy1, z1) ∼ qy × δ(z − z1).

4.2. Stable and Finite CNF Pair Space

With an autonomous form established in Definition 4.1, we
are now ready to apply the invariance principle of Theo-
rem 3.5. The first thing we would like to do is ensure that
the conditional CNFs we use for training inherently satisfy
the invariance principle. To do this, we borrow the idea of
quadratic stability (Boyd et al., 1994) and model the condi-
tional CNF’s VFs as quadratic gradient flows, where there is
a quadratic energy function with a global minimum centered
at the conditioned data point. Rather than the conditional
PDF paths leading to a single data point, we would like them
to lead to a distribution around the data point as in (Lipman
et al., 2022). We also need the corresponding SDE to be
linear so that it gives samples of its PDF path in closed-form.
To do this, we first analyze a linear time-invariant SDE (see
section 6.2 of (Särkkä & Solin, 2019)) of the form

dyyy = −AAA(yyy − yyy1)dt+
√
2AAAΣΣΣ1dwww(t). (19)

Assuming that AAA ∈ Rn×n
>0 is positive definite and commutes

(i.e. is simultaneously diagonalizable) with ΣΣΣ1 ∈ Rn×n
≥0 ,

then the SDE will have an exponentially decaying PDF path
that stabilizes to a stationary PDF given by py(yyy,∞) =
N (yyy1,ΣΣΣ1). However, if AAA ∈ Rn×n

≥0 is positive semidefi-
nite, then it has some zero eigenvalues, which can be used
to enforce some equivariant degrees of freedom. In this
case, the flow will be stationary along the eigenvectors cor-
responding to zero eigenvalues. An equivalent statement is
that the flow will be stationary in the nullspace null(AAA) of
AAA, which is the space spanned by such eigenvectors, a.k.a.
the center subspace (Carr, 1981; Kœnig, 1997). The flow
along other eigenvectors, in the orthogonal complement of
the nullspace, null(AAA)⊥ (a.k.a. stable subspace), will decay
as expected. Thus, in order to ensure that the flow converges
to the desired stationary PDF in the general case, one can
enforce that the nullspace projection of the initial mean and
covariance equals that of the target mean and covariance
(see Definition 4.4). The projection of the initial mean and
covariance in the orthogonal complement of the nullspace
can be left as is.

As we will later show, it is desirable to have the dynamics
of the interpolant state z track the PDF of the data state

yyy. To do this, we take inspiration from the conditional
flow construction in Sec. 3.2 of (Chen & Lipman, 2023a),
where a premetric is defined. For our interpolant flow,
we define a probabilistic metric space (P(Y), d), where
d : P(Y)×P(Y) → R≥0 is a chosen metric (e.g. Wasser-
stein distance), satisfying the usual axioms. Since we are
working with linear SDEs with Gaussian PDFs, such a met-
ric can be expressed in a tractable form in terms of the mean
and covariance. As previously explained, the flows of our
data state yyy will converge to a stationary PDF, thus it is
convenient to track the distance of the data PDF from its
stationary PDF N (yyy1,ΣΣΣ1). Intuitively, this relative distance
will decay to zero, and hence can be used to define a flow
for the interpolant state.

Since both the data PDF and interpolant PDF will converge
to a stationary PDF, they satisfy the invariance principle
Theorem 3.5. We define the space of CNFs that produce
these flows in Definition 4.4.

Definition 4.4 (Stable CNF Pair Space). A subset

FStable ⊂ FAuto (20)

s.t. for all (·, (p, ·, ·)) ∈ FStable the following holds.

py(yyy, t | yyy1) = N (yyy | µµµy(t),ΣΣΣy(t)) (21)

s.t.
µµµy(t) =yyy1 + e−AAAt (yyy0 − yyy1)

ΣΣΣy(t) =ΣΣΣ1 + e−2AAAt (ΣΣΣ0 −ΣΣΣ1)

where AAA,ΣΣΣ0,ΣΣΣ1 ∈ Rn×n
≥0 are positive semidefinite and

simultaneously diagonalizable by orthogonal eigenvectors
PPP = [PPPC ,PPPH ] ∈ Rn×n s.t. span(PPPC) = null(AAA) is the
nullspace ofAAA and span(PPPH) = null(AAA)⊥ is its orthogonal
complement, and furthermore µµµ0 = PPP 2

Cxxx1 + PPP 2
Hµµµ′

0 for
some µµµ′

0 ∈ X and ΣΣΣ0 = PPP 2
CΣΣΣ1PPP

2
C +PPP 2

HΣΣΣ′
0PPP

2
H for some

ΣΣΣ′
0 ∈ Rn×n

≥0 , where PPP 2 = PPPPPP⊤.

pz(z, t | z1) = δ(z − µz(t)) (22)

s.t. µz(t) =z1 +

(
d(µµµy(t),ΣΣΣy(t))

d(µµµy(0),ΣΣΣy(0))

)κ

(z0 − z1)

where κ ∈ R>0 is a scalar and d : P(Y) × P(Y) → R≥0

is a metric abbreviated as the distance between the current
and stationary Guassian PDFs

d(µµµy(t),ΣΣΣy(t)) = d(py(yyy, t | yyy1), py(yyy,∞ | yyy1)). (23)

The equations for the mean and covariance of the data state
in Definition 4.4 correspond to the aforementioned LTI SDE,
thus its corresponding VF is straightforwardly obtained via
the PF-ODE in Theorem 3.4. Since the interpolant state
has deterministic dynamics, its time-derivative gives its VF
directly. Without a declared distance metric, the resulting
VF can be obtained in terms of the mean and covariance

5



Incorporating Stability Into Flow Matching

dynamics (see Eq. 6.18 in (Särkkä & Solin, 2019)) and the
partial derivatives of the distance metric w.r.t. the mean
and covariance of the data state. We establish this result in
Lemma 4.5.

Lemma 4.5. For all (·, (·, vvv, ·)) ∈ FStable:

vvvy(xxx, t | xxx1) =−AAA
(
yyy − yyy1 −ΣΣΣ1ΣΣΣ

−1
y (t) (yyy −µµµy(t))

)
vz(xxx, t | xxx1) =− κ (hµ(t) + hΣ(t))

h(t)
(z − z1)

(24)
where h(t) = d(µµµy(t),ΣΣΣy(t)) and

hµ(t) =

〈
∂d(µµµy(t),ΣΣΣy(t))

∂µµµy(t)
,AAA (µµµy(t)− yyy1)

〉
hΣ(t) =

〈
∂d(µµµy(t),ΣΣΣy(t))

∂ΣΣΣy(t)
, 2AAA (ΣΣΣy(t)−ΣΣΣ1)

〉
F

,

(25)

where ⟨·, ·⟩ and ⟨·, ·⟩F are the Euclidean and Frobenius
inner products respectively. Additionally, vvvy(xxx,∞ | xxx1) =
0 and vz(xxx,∞ | xxx1) = 0 for all κ ∈ [1,∞).

Proof. See Appendix A.3.

Remark 4.6 (Choosing AAA). The form of FStable in Defini-
tion 4.4 grants one freedom to design conditional CNFs by
manipulatingAAA. In contexts where data describes physically
stable states, AAA could be used to incorporate local dynamics
information. It is well-known that linearizing a VF about a
hyperbolic equilibrium point yields a locally topologically
conjugate approximation to the nonlinear dynamics (see e.g.
Section 5 of (Ozaki, 1993; Meiss, 2007)). Thus, we could
choose model AAA as the Jacobian of a VF or the Hessian of
a potential function. However, it is well-known that these
quantities will have zero eigenvalues when the VF is equiv-
ariant or the potential is invariant to some group action, see
(Carr, 1981; Kœnig, 1997; Chossat & Lauterbach, 2000).
Using a non-scalar form of AAA to incorporate local informa-
tion in generative models has been suggested in (Yu et al.,
2024; Singhal et al., 2024).

The conditional CNFs defined so far satisfy the invariance
principle; however, since they stabilize to the stationary
PDF at t = ∞, it is unclear what the time window should
be for computing the likelihood of data samples under the
model (see App. C of (Lipman et al., 2022)). One approach
is to enforce the decay rate of the flow (via the eigenval-
ues) to guarantee convergence to yyy1 within some epsilon
distance and some consistent time window. A more exact
way is to define a transformation of the VF that describes
the dynamics of the data state w.r.t. the interpolant state. We
can do this by inverting the distance metric, i.e. instead of
thinking of the data mean being y1 when t = ∞, we can
think of it when the interpolant mean is z1. We identify this
transformation in Theorem 4.7.

Theorem 4.7. There exists a subset

FFinite ⊂ FAuto (26)

s.t. for all (·, (p,vvv, ·)) ∈ FStable there exists a transformation
(·, (r,www, ·)) ∈ FFinite s.t.

r(xxx, t | xxx1) = p(xxx, τ(t) | xxx1) (27)

s.t. τ(t) =h−1

(
h(0)

(
t− z1
z0 − z1

))
(28)

where r(xxx, z1 | xxx1) = p(xxx,∞ | xxx1) and furthermore

wwwy(xxx, t | xxx1) =
vvvy(xxx, τ(t) | xxx1)

vz(xxx, τ(t) | xxx1)
, wz(xxx, t | xxx1) = 1.

Proof. See Appendix A.4.

We will now consider the simple case of the above CNFs
when the chosen metric is the the Euclidean distance be-
tween the mean and the stationary mean. Note that the
stable VF in Lemma 4.5 requires the distance metric to be
invertible. To satisfy this, we use the bound (Kågström,
1977; Van Loan, 1977; Moler & Van Loan, 1978)

h(t) =∥µµµy(t)−µµµy(∞)∥2 = ∥e−AAAt(yyy0 − yyy1)∥2
≤∥e−AAAt∥2∥yyy0 − yyy1∥2 ≤ e−αmint∥yyy0 − yyy1∥2,

(29)

to characterize the worst-case distance, and define such a
CNF in Definition 4.8.
Definition 4.8 (µ-Stable CNF Pair Space). A subset

Fµ-Stable ⊂ FStable s.t. h(t) = e−αmint∥yyy0 − yyy1∥2 (30)

s.t. αmin ∈ R>0 is the minimum non-zero eigenvalue of AAA.

With a stable CNF based on this mean distance bound, we
can apply the transformation in Theorem 4.7, and then get
the autonomous forms from Theorem 4.2 for both the stable
and finite versions, see Lemma 4.9.
Lemma 4.9. For all (·, (p,vvv, ·)) ∈ Fµ-Stable:

v̄vvy(xxx | xxx1) = −AAA
(
yyy − yyy1 −ΣΣΣ1Σ̄ΣΣ

−1
y (z)

(
yyy − µ̄µµy(z)

))
v̄z(xxx | xxx1) = −καmin (z − z1) ,

(31)
and there exists a subset Fµ-Finite ⊂ FFinite s.t. for all corre-
sponding transformations (·, (r,www, ·)) ∈ Fµ-Finite:

w̄wwy(xxx | xxx1) =
AAA
(
yyy − yyy1 −ΣΣΣ1Σ̄ΣΣ

−1
y (z)

(
yyy − µ̄µµy(z)

))
καmin (z − z1)

w̄z(xxx | xxx1) = 1
(32)

where p̄y(xxx | yyy1) = r̄y(xxx | yyy1) are equivalently given by

µ̄µµy(z) =yyy1 +

(
z − z1
z0 − z1

) AAA
καmin

(yyy0 − yyy1)

Σ̄ΣΣy(z) =ΣΣΣ1 +

(
z − z1
z0 − z1

) 2AAA
καmin

(ΣΣΣ0 −ΣΣΣ1)

(33)
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Lipschitz constants Note that the autonomous form of
Fµ-Finite can be simply obtained by dividing the VF of
Fµ-Stable by its own interpolant state’s VF. Thus, one could
learn with Fµ-Stable and straightforwardly attain the attributes
of Fµ-Finite; however the converse is not true. Aside from sta-
bility, learning with Fµ-Stable may present some advantages
in terms of its VF’s Lipschitz constant (LC). The LC of the
drift of the SDE for Fµ-Stable yields max {αmax, καmin},
while for Fµ-Stable the LC depends on yyy1. Since the
marginal VF is a convex combination of conditional VFs
(see Lemma 4.10), the LC for the marginal VF will be the
greatest LC of all the conditional VFs. Thus, for Fµ-Finite,
its marginal VF’s LC depends on the scale of the dataset,
while for Fµ-Stable it does not, unless AAA is chosen based on
yyy1 (see Remark 4.6).

Lemma 4.10 (Differential Inclusion). For all
((p,vvv,ϕϕϕ), (p1, vvv1,ϕϕϕ1)) ∈ FFM:

vvv(xxx, t) ∈ co {vvv1(xxx, t | xxx1) | xxx1 ∈ supp(q)} , (34)

where co is the convex hull operator.

Proof. The statement is evident from the fact that∫
X

p1(xxx, t | xxx1)q(xxx1)dxxx1

p(xxx, t)
= 1. (35)

Remark 4.11. Differential inclusions (Filippov, 1960) oc-
cur frequently in the hybrid dynamical systems literature
(Goebel et al., 2009; Sanfelice, 2021). E.g. in switched
systems (Liberzon & Morse, 1999), it represents arbitrary
switching between different VFs. In discontinuous dynam-
ical systems (Cortes, 2008; Sprague & Ögren, 2021), it
represents sliding dynamics between VFs. Stability results
for differential inclusions have been explored in (Boyd et al.,
1994; Molchanov & Pyatnitskiy, 1989), and in (Hafez &
Broucke, 2022; Veer & Poulakakis, 2019; Alpcan & Basar,
2010) when multiple equilibria are present. These results
are highly relevant as the marignal VF is a convex combi-
nation of linear VFs (see Lemma 4.10). At present, these
ideas have only appeared in (Zhu & Lin, 2024).

We will now make a direct comparison to OT FM of (Lip-
man et al., 2022). We start by defining an adaptation of OT
FM in Definition 4.12.

Definition 4.12 (OT CNF Pair Space). A subset

FOT ⊂ FAuto (36)

s.t. for all (·, (p,vvv, ·)) ∈ FOT we have µz(t) = t and

µµµy(t) = tyyy1, ΣΣΣy(t) = (1− (1− σmin)t)
2
III (37)

and furthermore:

vvvy(xxx, t | xxx1) =
yyy1 − (1− σmin)yyy

1− (1− σmin)t
, vz(xxx, t | xxx1) = 1

(38)

In Lemma 4.13 we show that the mean of the autonomous
conditional PDF path (see Theorem 4.2) of Fµ-Finite is the
same as for FOT, while the covariances differ slightly but
are the same at the endpoints z0, z1.

Lemma 4.13 (Optimal Transport FM Comparison). For all
(·, (p, ·, ·)) ∈ Fµ-Finite s.t.

AAA = αIII, κ = 1, yyy0 = 000, ΣΣΣ0 = III, (39)

ΣΣΣ1 = σ2
minIII, z0 = 0, z1 = 1 (40)

with p̄y given by µ̄µµy(z) and Σ̄ΣΣy(z) and for all (·, (r, ·, ·)) ∈
FOT with r̄y given by µ̄µµ′

y(z) and Σ̄ΣΣ
′
y(z), we have that

µ̄µµy(z) = µ̄µµ′
y(z), Σ̄ΣΣy(0) = Σ̄ΣΣ

′
y(0), Σ̄ΣΣy(1) = Σ̄ΣΣ

′
y(1),

(41)
and furthermore

max
z∈[0,1]

∥∥∥Σ̄ΣΣy(z)− Σ̄ΣΣ
′
y(z)

∥∥∥
2
=

σmin|σmin − 1|
2

(42)

at z = 1/2.

Note that a Guassian PDF path can be described by a linear
time-varying SDE (see Sec. 6.1 of (Särkkä & Solin, 2019)).
Thus, it may be possible to identify a different diffusion
coefficient in the SDE in Equation (19) by matching Eq. 6.2
in (Särkkä & Solin, 2019) with the time-derivative of the
mean and covariance of FOT.

4.3. Experiments and Discussion

Conditional Flows In this work, we first consider stable
CNF flow with the mean distance metric (referred to as
Stable-FM), Fµ-Stable from Equation (31) in Lemma 4.9 with
AAA = αIII , α = 4, yyy0 = 000, ΣΣΣ0 = III , ΣΣΣ1 = (10−5)2III , z0 = 0,
z1 = 1. Note that α = 4 is chosen so that ∥µy(1) −
yyy1∥2 ≤ 10−4 to converge at roughly the same time as the
OT flow. We consider OT FM FOT flow (referred to as
OT-FM) from Definition 4.12 with σmin = 10−5, meaning
ΣΣΣ1 = (10−5)2III , as in (Lipman et al., 2022).

Marginal Flows With the autonomous form in Theo-
rem 4.2, we model the marginal VF vvvθ : X → Rn as both
an arbitrary function with a feed-forward architecture (re-
ferred to as simple) and a gradient field vvvθ(xxx) = −∇xxxHθ(xxx)
where Hθ : X → R≥0 is an energy function (using H
in spirit of the Hamiltonian). Note that the gradient field
model is curl-free, and thus is unique in the context of the
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continuity equation (does not add any redundant divergence-
free components). Also note that the gradient field model
straightforwardly satisfies the invariance principle in Theo-
rem 3.5 with

B0 = X , B1 = {xxx ∈ X |∇xxxH(xxx) = 0} , (43)

where ϕϕϕ(xxx0,∞) ∈ B1 for all xxx0 ∈ B0. The simple model
does not possess these guarantees, although it is easier to
train.

Experiments We test the combinations of the aforemen-
tioned conditional and marginal flow models on generating
data from the moons distribution. As can be seen in Fig-
ure 1 and Figure 2 the invariance principle of Theorem 3.5
is strongly reflected: after t = 1 the OT-FM flow diverges,
while the Stable-FM remains stable. We also plot the max-
imum mean discrepancy (MMD) between inference flows
and the dataset over time in Figure 3. As can be seen, the
MMD of both Stable-FM and OT-FM approach zero; how-
ever, OT-FM only does so momentarily, while Stable-FM
approaches zero MMD asymptotically. One can also see
that the MMD curves are similar for both marginal flow
models (simple and gradient field), however the invariance
guarantees of the gradient field still stand.

Note on invariance If we modeled the marginal VF as
a non-autonomous gradient field vθ(xxx, t) = −∇xxxHθ(xxx, t)
we would need to establish conditions on ∂Hθ(xxx, t)/∂t
to satisfy the invariance principles (see Sec. 2 of (Mao,
1999)). To ensure non-positivity of ∂Hθ(xxx, t)/∂t we ini-
tially explored using partially input-convex neural networks
(ICNNs) (Amos et al., 2017), but did not have success.

Note on energy Recall from Remark 4.6 that AAA could be
defined based on each data sample yyy1 However, if AAA is held
constant for every yyy1, then the VF for the interpolant state v̄z
will be constant for all data samples. In this case, one may
consider simply setting −∇zH(yyy, z) = −αmin(z − z1);
however, this would imply separability of the form

Hθ(yyy, z) = Hy(yyy) +
αmin

2
(z − z1)

2 (44)

which would imply the inability to correlate yyy and zzz.

Note on idempotence Due to the invariance principle, the
flow map of the conditional flows queried at t = ∞ always
yields the same result, i.e. ϕϕϕ(xxx0,∞ | xxx1) ∈ B1 for all
xxx0 ∈ B0 almost surely (see Theorem 3.5), where B1 ⊇ {xxx1}
is an ellipsoid centered at xxx1 described by the stationary
distribution N (xxx1,ΣΣΣ1) and the eigenvectors of AAA. Thus the
flow map may be seen as stochastically indempotent w.r.t.
the starting set B0: ϕϕϕ∞(ϕϕϕ∞(xxx0)) ∈ B1 for all xxx0 ∈ B0,
where ϕϕϕ∞(xxx) = ϕϕϕ(xxx,∞ | xxx1). This result is relevant to
Idempotent Generative Networks (Shocher et al., 2023) and
Consistency Models (Song et al., 2023).

Figure 3. Maximum mean discrepancy (MMD) between the gen-
erated samples and the moons dataset over time. The models were
trained with 500 data points. The MMD was computed for 200
time steps between t = 0 and t = 3 with 1000 generated sam-
ples and 10000 dataset samples. ”Simple” refers to an arbitrary
architecture as described above. ”Gradient field” refers to when
the architecture is the gradient of a scalar function. Here, the time
input to OT-FM is clipped at t = 1.

5. Conclusion
In this paper we applied a stochastic version of La Salle’s
invariance principle (La Salle, 1966; Mao, 1999) to FM
(Lipman et al., 2022) to enforce stability of the model’s
flows to the support of the target distribution, a desirable
property when the data represents a physically stable state.
In doing so, we showed how to render CNFs autonomous
by introducing an extra state variable z and performing in-
terpolation over it instead of time. Additionally, we showed
how to construct stable CNFs and we showed how they and
their PDF trajectories compare to the OT CNF from (Lip-
man et al., 2022). Lastly, we have made several connections
from control theory to generative modeling. Overall, we
demonstrated that our approach is effective with theoretical
and experimental results.

Acknowledgments
We thank Ricky Chen, Ruibo Tu, Henrik Sandberg, and
Dimos Dimarogonas for insightful discussions. This work
was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

8



Incorporating Stability Into Flow Matching

References
Alpcan, T. and Basar, T. A stability result for switched sys-

tems with multiple equilibria. Dynamics of Continuous,
Discrete and Impulsive Systems Series A: Mathematical
Analysis, 17(4):949–958, 2010.

Ambrosio, L., Gigli, N., and Savaré, G. Gradient flows: in
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Klein, L., Krämer, A., and Noe, F. Equivariant flow match-
ing. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Kœnig, M. Linearization of vector fields on the orbit space
of the action of a compact lie group. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume
121, pp. 401–424. Cambridge University Press, 1997.

Kolter, J. Z. and Manek, G. Learning stable deep dynam-
ics models. Advances in neural information processing
systems, 32, 2019.

Kushner, H. J. On the stability of stochastic dynamical sys-
tems. Proceedings of the National Academy of Sciences
of the United States of America, 53 1:8–12, 1965.

La Salle, J. P. An invariance principle in the theory of
stability. Technical report, 1966.

Lawrence, N., Loewen, P., Forbes, M., Backstrom, J., and
Gopaluni, B. Almost surely stable deep dynamics. Ad-
vances in Neural Information Processing Systems, 33:
18942–18953, 2020.

Le, M., Vyas, A., Shi, B., Karrer, B., Sari, L., Moritz,
R., Williamson, M., Manohar, V., Adi, Y., Mahadeokar,
J., et al. Voicebox: Text-guided multilingual universal
speech generation at scale. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Liberzon, D. and Morse, A. S. Basic problems in stability
and design of switched systems. IEEE control systems
magazine, 19(5):59–70, 1999.

Lindquist, A. and Picci, G. On the stochastic realization
problem. Siam Journal on Control and Optimization, 17:
365–389, 1979.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. ArXiv,
abs/2210.02747, 2022.

Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E. A.,
Nie, W., and Anandkumar, A. I2sb: Image-to-image
schrödinger bridge. In International Conference on Ma-
chine Learning, 2023.

Luo, S., Shi, C., Xu, M., and Tang, J. Predicting molecu-
lar conformation via dynamic graph score matching. In
Neural Information Processing Systems, 2021.

Mao, X. Stochastic versions of the lasalle theorem. Journal
of differential equations, 153(1):175–195, 1999.

Maoutsa, D., Reich, S., and Opper, M. Interacting parti-
cle solutions of fokker–planck equations through gradi-
ent–log–density estimation. Entropy, 22, 2020.

Meiss, J. D. Differential dynamical systems. SIAM, 2007.

Molchanov, A. P. and Pyatnitskiy, Y. S. Criteria of asymp-
totic stability of differential and difference inclusions
encountered in control theory. Systems & Control Letters,
13(1):59–64, 1989.

Moler, C. and Van Loan, C. Nineteen dubious ways to
compute the exponential of a matrix. SIAM review, 20(4):
801–836, 1978.

Ozaki, T. A local linearization approach to nonlinear fil-
tering. International Journal of Control, 57(1):75–96,
1993.

Parr, R. G., Gadre, S. R., and Bartolotti, L. J. Local density
functional theory of atoms and molecules. Proceedings
of the National Academy of Sciences, 76(6):2522–2526,
1979.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. Q. Multisample
flow matching: Straightening flows with minibatch cou-
plings. In International Conference on Machine Learning,
2023.

Rodriguez, I. D. J., Ames, A., and Yue, Y. Lyanet: A
lyapunov framework for training neural odes. In Interna-
tional Conference on Machine Learning, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with la-
tent diffusion models. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
10674–10685, 2021.

Sanfelice, R. G. Hybrid feedback control. Princeton Univer-
sity Press, 2021.
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A. Proofs
A.1. Proof of Theorem 4.2

We start with the definition of the marginal PDF trajectory from Definition 3.2:

p(xxx, t) =

∫
X
p(xxx, t | xxx1)q(xxx1)dxxx1. (45)

With Definition 4.1 and recalling xxx = [yyy⊤, z] and xxx1 = [yyy⊤1 , z1] we can write

p(xxx, t) =

∫
Y

∫
Z
py(yyy, t | yyy1)pz(z, t | z1)q(yyy1)q(z1)dyyy1dz1 (46)

=

∫
Y
py(yyy, t | yyy1)q(yyy1)dyyy1

∫
Z
pz(z, t | z1)q(z1)dz1 (47)

=

∫
Y
py(yyy, t | yyy1)q(yyy1)dyyy1δ(z − ϕz(z0, t | z1)) (48)

where the data state’s marginal PDF path and the interpolant state’s marginal PDF path are independent. Since the mean of
the interpolant state’s marginal PDF path is bijective in time t = ϕ−1

z (z0, ϕz(z0, t | z1) | z1), we can write

p̄(xxx) =p(xxx, ϕ−1
z (z0, z | z1)) (49)

=

∫
Y
py(yyy, ϕ

−1
z (z0, z | z1) | yyy1)q(yyy1)dyyy1 (50)

=

∫
Y
p̄y(xxx | yyy1)q(yyy1)dyyy1. (51)

We continue with the definition of the marginal VF from Definition 3.2:

vvv(xxx, t) =
1

p(xxx, t)

∫
X
vvv1(xxx, t | xxx1)p1(xxx, t | xxx1)q(xxx1)dxxx1. (52)

With Definition 4.1 we can write

vvv(xxx, t) =
1

p(xxx, t)

∫
Y

∫
Z
vvv1(xxx, t | xxx1)py(yyy, t | yyy1)pz(z, t | z1)q(yyy1)q(z1)dyyy1dz1 (53)

=
1

p(xxx, t)

∫
Y
vvv1(xxx, t | xxx1)py(yyy, t | yyy1)q(yyy1)dyyy1δ(z − ϕz(z0, t | z1)) (54)

where the data state’s marginal VF and the interpolant state’s marginal VF are decoupled. Using the bijectivity of the mean
of the interpolant state’s marginal PDF path, we can write

v̄vv(xxx) =vvv(xxx, ϕ−1
z (z0, z | z1)) (55)

=
1

p̄(xxx)

∫
Y
vvv1(xxx, ϕ

−1
z (z0, z | z1) | xxx1)py(yyy, ϕ

−1
z (z0, z | z1) | yyy1)q(yyy1)dyyy1 (56)

=
1

p̄(xxx)

∫
Y
v̄vv1(xxx | xxx1)p̄y(xxx | yyy1)q(yyy1)dyyy1, (57)

where p̄(xxx) is given above.

A.2. Lemma A.1

Lemma A.1 (Transformed CNF Loss). For all vvvθ ∈ C(X ,Rn) and (·, (p1, vvv1,ϕϕϕ1)) ∈ FAuto:

LFM(θ) = E
z∼U [z0,z1]
yyy1∼q(xxx1)

yyy∼p̄y(yyy|yyy1)

∥v̄vvθ(xxx)− v̄vv1(xxx | xxx1)∥2

v̄z(z | z1)
(58)

s.t
v̄vvθ(xxx) = vvvθ(xxx, ϕ

−1
z (z0, z | z1))

z0 = ϕz(z0, 0 | z1) z1 = ϕz(z0, T | z1).
(59)
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Proof. We start with the loss function in Theorem 3.3:

LFM(θ) = E
t∼U [0,T ]
xxx1∼q(xxx1)

xxx∼p1(xxx,t|xxx1)

∥vvvθ(xxx, t)− vvv1(xxx, t | xxx1)∥2 (60)

=
1

T

∫ T

0

∫
X

∫
X
∥vvvθ(xxx, t)− vvv1(xxx, t | xxx1)∥2p1(xxx, t | xxx1)q(xxx1)dxxxdxxx1dt. (61)

With Definition 4.1 we can write

LFM(θ) =
1

T

∫ T

0

∫
Y

∫
Z

∫
Y

∫
Z
∥vvvθ(xxx, t)− vvv1(xxx, t | xxx1)∥2py(yyy, t | yyy1)pz(z, t | z1)q(yyy1)q(z1)dyyydzdyyy1dz1dt (62)

=
1

T

∫ T

0

∫
Y

∫
Z

∫
Y
∥vvvθ(xxx, t)− vvv1(xxx, t | xxx1)∥2py(yyy, t | yyy1)q(yyy1)δ(z − ϕz(z0, t | z1))dyyydzdyyy1dt (63)

=
1

z1 − z0

∫ z1

z0

∫
Y

∫
Y

∥v̄vvθ(xxx)− v̄vv1(xxx | xxx1)∥2p̄y(yyy | yyy1)q(yyy1)
v̄z(z | z1)

dyyydyyy1dz. (64)

In expectation form, we can write

LFM(θ) = E
z∼U [z0,z1]
yyy1∼q(xxx1)

yyy∼p̄y(yyy|yyy1)

∥v̄vvθ(xxx)− v̄vv1(xxx | xxx1)∥2

v̄z(z | z1)
. (65)

A.3. Proof of Lemma 4.5

Proof. We start by verifying

vvvy(xxx, t | xxx1) = −AAA
(
yyy − yyy1 −ΣΣΣ1ΣΣΣ

−1
y (t) (yyy −µµµy(t))

)
. (66)

Consider a linear time-invariant SDE given by

dyyy = −AAA(yyy − yyy1)dt+
√
2AAAΣΣΣ1dwww(t). (67)

Section 6.2 of (Särkkä & Solin, 2019) (Eq. 6.19-6.20) gives us the closed-form solution to the PDF path of this SDE as
py(yyy, t | yyy1) = N (yyy | µµµy(t),ΣΣΣy(t)), where the mean is given as

µµµy(t) = yyy1 + e−AAAt(yyy0 − yyy1). (68)

and, assuming AAA, ΣΣΣ0, ΣΣΣ1 commute with each other (i.e. simultaneously diagonalizable) and BBB =
√
2AAAΣΣΣ1, the covariance is

given as

ΣΣΣy(t) = e−AAAtΣΣΣ0e
−AAAt⊤ +

∫ t

0

e−AAA(t−s)BBB2e−AAA⊤(t−s)ds (69)

= ΣΣΣ0e
−2AAAt +BBB2

∫ t

0

e−2AAA(t−s)ds (70)

= ΣΣΣ0e
−2AAAt − BBB2AAA−1

2

(
e−2AAAt − III

)
(71)

= ΣΣΣ0e
−2AAAt −ΣΣΣ1

(
e−2AAAt − III

)
(72)

= ΣΣΣ1 + e−2AAAt (ΣΣΣ0 −ΣΣΣ1) (73)

The score of a Gaussian PDF path is (see e.g. Section 3.1 of (Hyvärinen, 2005))

∂ ln(py(yyy, t | yyy1))
∂yyy

= −ΣΣΣ−1
y (t) (yyy −µµµy(t)) , (74)
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and hence the probability flow ODE (Maoutsa et al., 2020; Song et al., 2020) verifies the result.

We proceed to verify

vz(xxx, t | xxx1) = −κ (hµ(t) + hΣ(t))

h(t)
(z − z1) (75)

where h(t) = d(µµµy(t),ΣΣΣy(t)) and

hµ(t) =

〈
∂d(µµµy(t),ΣΣΣy(t))

∂µµµ(t)
,AAA (µµµy(t)− yyy1)

〉
hΣ(t) =

〈
∂d(µµµy(t),ΣΣΣy(t))

∂ΣΣΣ(t)
, 2AAA (ΣΣΣy(t)−ΣΣΣ1)

〉
F

,

(76)

where ⟨·, ·⟩ and ⟨·, ·⟩F are the Euclidean and Frobenius inner products respectively. Start with

µz(t) =z1 +

(
d(µµµy(t),ΣΣΣy(t))

d(µµµy(0),ΣΣΣy(0))

)κ

(z0 − z1) (77)

=z1 +

(
h(t)

h(0)

)κ

(z0 − z1) (78)

from Definition 4.4. The time derivative of this is

dµz(t)

dt
=
κ(z0 − z1)

h(0)

(
h(t)

h(0)

)κ−1
dh(t)

dt
(79)

=
κ(z0 − z1)

h(0)

(
h(t)

h(0)

)κ−1(〈
∂d(µµµy(t),ΣΣΣy(t))

∂µµµy(t)
,
dµµµy(t)

dt

〉
+

〈
∂d(µµµy(t),ΣΣΣy(t))

∂ΣΣΣy(t)
,
dΣΣΣy(t)

dt

〉
F

)
(80)

where the chain rule is applied. Eq. 6.2 in (Särkkä & Solin, 2019) gives the dynamics of the mean and covariance for the
above SDE, and hence we can write

dµµµy(t)

dt
=−AAA(µµµy(t)− yyy1) (81)

dΣΣΣy(t)

dt
=− 2AAA(ΣΣΣy(t)−ΣΣΣ1). (82)

Thus, we can write

dµz(t)

dt
=− κ(z0 − z1)

h(0)

(
h(t)

h(0)

)κ−1

(hµ(t) + hΣ(t)) (83)

To simplify further, and remove dependence on z0, we solve µz(t) for z0 − z1 = (µz(t)− z1)(h(t)/h(0))
−κ and substitute

it in to get

dµz(t)

dt
=− κ(µz(t)− z1)

h(0)

(
h(t)

h(0)

)−1

(hµ(t) + hΣ(t)) (84)

=− κ (hµ(t) + hΣ(t))

h(t)
(µz(t)− z1) (85)

Note that since h(∞) = 0 (the distance to the stationary distribution goes to zero), having κ ∈ [1, 0) in the expression
before substitution prevents dµz(t)

dt from becoming undefined. Eq. 6.2 in (Särkkä & Solin, 2019) shows that dµz(t)
dt describes

the dynamics of the mean of a linear time-varying SDE without a diffusion coefficient

dz = −κ (hµ(t) + hΣ(t))

h(t)
(z − z1)dt+ 0dw(t) (86)

Hence the probability flow ODE gives the result.
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A.4. Proof of Theorem 4.7

Proof. Consider the expression

µz(t) =z1 +

(
h(t)

h(0)

)κ

(z0 − z1) . (87)

Assuming the h is bijective, we can solve for the inverse mapping of µz(t) as

τ(z) = h−1

(
h(0)

(
z − z1
z0 − z1

)1/κ
)
. (88)

Plugging this into µµµy(t) gives its solution in terms of µz(t):

µµµy(t) = yyy1 + exp (−AAAτ(µz(t)) (yyy0 − yyy1) (89)

which is a solution to
dµµµy(t)

dµz(t)
=

dµµµy(t)

dt

dt

dµz(t)
=

AAA(µµµy(t)− yyy1)

f (τ(µz(t)) (µz(t)− z1)
(90)

where (see Lemma 4.5)

f(t) =
κ (hµ(t) + hΣ(t))

h(t)
. (91)

Similarly, for the covariance ΣΣΣy(t) we have

ΣΣΣy(µz(t)) = ΣΣΣ1 + exp (−2AAAτ(µz(t)) (ΣΣΣ0 −ΣΣΣ1) , (92)

which is a solution to
dΣΣΣy(t)

dµz(t)
=

dΣΣΣy(t)

dt

dt

dµz(t)
=

2AAA(ΣΣΣy(t)−ΣΣΣ1)

f (τ(µz(t)) (µz(t)− z1)
. (93)

Inserting the expression for t into µz(t) yields

µz(τ(µz(t))) = µz(t) (94)

by definition.

Thus, by taking µz(t) as a new time, we obtain a new system

µµµ′
y(t) =yyy1 + exp (−AAAτ(t)) (yyy0 − yyy1) = µµµy(τ(t)) (95)

ΣΣΣ′
y(t) =ΣΣΣ1 + exp (−2AAAτ(t)) (ΣΣΣ0 −ΣΣΣ1) = ΣΣΣy(τ(t)) (96)

µ′
z(t) =z1 +

(
h(τ(t))

h(0)

)
(z0 − z1) = t = µz(τ(t)) (97)

which are solutions to

dµµµ′
y(t)

dt
=

AAA(µµµ′
y(t)− yyy1)

f (τ(t)) (t− z1)
(98)

dΣΣΣ′
y(t)

dt
=
2AAA(ΣΣΣ′

y(t)−ΣΣΣ1)

f (τ(t)) (t− z1)
(99)

dµ′
z(t)

dt
=1. (100)

Now let

GGG(t) =
AAA

f(τ(t))(t− z1)
. (101)
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Then the above dynamics describe a linear time-varying SDE

dy =GGG(t)(yyy − yyy1)dt+
√

2GGG(t)ΣΣΣ1dwww(t) (102)
dz =1dt+ 0dw(t). (103)

Applying the formula for the probability flow ODE then gives us

dyyy

dt
=GGG(t)(yyy − yyy1)−GGG(t)ΣΣΣ1ΣΣΣ

′
y(t)

−1
(
yyy −µµµ′

y(t)
)
=

vvvy(xxx, τ(t) | xxx1)

vvvz(xxx, τ(t) | xxx1)
= wwwy(xxx, t | xxx1). (104)
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