
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

TUNING LANGUAGE MODELS BY MIXTURE-OF-DEPTHS
ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based Large Language Models (LLMs) traditionally rely on final-layer loss
for training and final-layer representations for predictions, potentially overlooking the pre-
dictive power embedded in intermediate layers. Surprisingly, we find that focusing training
efforts on these intermediate layers can yield training losses comparable to those of final
layers, with complementary test-time performance. We introduce a novel tuning frame-
work, Mixture-of-Depths (MoD), which trains late layers as ensembles contributing to the
final logits through learned routing weights. With the auxiliary distillation loss and addi-
tional normalization modules, we ensure that the outputs of the late layers adapt to lan-
guage modeling. Our MoD framework, which can be integrated with any existing tuning
method, shows consistent improvement on various language modelling tasks. Further-
more, by replacing traditional trainable modules with MoD, our approach achieves similar
performance with significantly fewer trainable parameters, demonstrating the potential of
leveraging predictive power from intermediate representations during training.

1 INTRODUCTION

Large Language Models (LLMs) are predominantly Transformer-based, processing sequences of input
tokens by representing them as vectors and transforming them through multiple layers of transformers
(Vaswani et al., 2017). Prior research has demonstrated the intermediate hidden states can carry meaningful
information (Li et al., 2024), and leveraging these hidden states during decoding can improve trustworthi-
ness (Chuang et al., 2024) and reasoning capabilities (O’Brien & Lewis, 2023). However, how to effectively
utilize these intermediate layers during training remains unexplored. While each layer transformation cre-
ates new token representations added to the residual stream, only the final layer representations are used to
obtain training loss. Consequently, loss minimization directly optimizes these final representations, leaving
hidden representations optimized only implicitly, thereby obscuring their potential predictive power.

In this work, we investigate the predictive power of the late layers,1 which have proven to be task-aware
in early exiting language models (Schuster et al., 2022; Din et al., 2023). We begin by training models
on late layers by applying the pretrained language model heads to each layer’s output to calculate the loss.
Our initial observations indicate that the training loss curves for the later layers started at higher values but
eventually converged to similar levels, aided by simple distillation losses with respect to the output of the
last layer, even without incorporating the weights of the subsequent layers (Figure 1). Figure 2 demonstrates
that the trained “models” at these layers can even provide complementary evaluation results. These findings
suggest that the late layers possess significant predictive potential. Given the overparameterization typical
in large language models (Gao et al., 2023), the model can adapt effectively to downstream tasks even with
fewer parameters.

1“Late” layers often refer to those closer to the output, e.g., layers 25-32 in a 32-layer LLaMA 7B models in different
literatures (Din et al., 2023; Geva et al., 2023; Meng et al., 2023).

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

Figure 1: Tuning loss curves for LLaMA2-7B (Tou-
vron et al., 2023b) on ARC dataset (Clark et al., 2018).
Above shows the loss curve of late layers when opti-
mizing the loss based on the last layer output when
late layers are optimized implicitly; Below shows the
loss curves when optimizing the loss on each late layer
output with the distillation loss Ldistill w.r.t. the last
layer.

Following this observation, we introduce the
Mixture-of-Depths (MoD) framework (§2). Unlike
“mixture-of-experts” paradigm which utilized dif-
ferent trained models as experts for processing dif-
ferent input tokens Jiang et al. (2024), We propose
the “mixture” across layers within a single model,
where each layer output can be treated as a single
model output. This approach allows us to add diver-
sity and additional predictive power without signif-
icantly increasing parameters by training a simple
gating network for the i-th late layer (§2.2).

We focus on tuning large language models. Our
framework can be applied on top of any train-
ing methods as the hidden state dimensions remain
consistent during training. Traditionally, language
model heads in LLMs are trained to unembed hid-
den states from the last transformer layer. Applying
the LM head directly to late layers during tuning
can result in worse initial training performance, as
shown in Figure 1. To ensure LM adaptation during
tuning without interfering with the original model
predictions, we apply an additional model distilla-
tion loss (§2.3) where the last layer output serves
as the teacher. This method does not add any addi-
tional trainable parameters and ensures that the late
layers adapt to the predictions. Experiments (§3)
demonstrate that applying MoD tuning consistently
improves performance on arithmetic and common-
sense reasoning tasks with a minimal increase in
trainable parameters (+0.04%). Furthermore, by re-
placing traditional trainable modules with MoD, we
achieve similar performance with 97% fewer train-
able parameters.

As analysis (§4), we study the learned patterns by MoD routing (§4), evaluate the performance when varying
values of k, and explore the trade-off between performance and efficiency (§4.2, 4.3).

2 MIXTURE-OF-DEPTHS

Recent language models consist of an embedding layer, n stacked transformer layers L, and an affine layer
ϕ(·) for predicting the next-word distribution, often referred to as the language model head (Geva et al.,
2022; Luo & Specia, 2024). We aim to identify a layer range k, where the last k layers carry higher-level
task-aware information and can map hidden states to meaningful predictive logits (Belrose et al., 2023).
For an LLM with n layers, we define the set of the last k layers as K = {Ln−k+1, Ln−k+2, . . . , Ln}. As
shown in Figure 1, late layers exhibit learning loss curves similar to the final layer, indicating their task
informativeness.

Additionally, metrics extracted from the inference process can dynamically determine this range. For exam-
ple, Chuang et al. (2024) use the Jensen-Shannon Divergence between early and final layers as a distance
measurement to decode in contrastively, ensuring that selected layers include more task-related knowledge.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

Figure 2: Intersection of solved problems by tuning loss layers on the AQuA (Ling et al., 2017), ARC-
Challenge (Clark et al., 2018), and GSM8K (Cobbe et al., 2021b) datasets. The digits in the Venn diagram
illustrate the number of overlapping solved problems and the complementary solved problems for each
method.

However, we apply a simple empirical selection with a single k across all tasks to demonstrate the effective-
ness of the MoD framework, leaving dynamic selection for future research.

2.1 EARLY-EXIT FOR LATE LAYERS

The idea of applying language heads directly to the hidden states of the middle layers, known as early exit
(Teerapittayanon et al., 2016; Elbayad et al., 2020; Schuster et al., 2022), has proven effective even without
a special training process (Kao et al., 2020). The residual connections (He et al., 2016) in transformer
layers allow hidden representations to evolve gradually, enabling the formation of task-aware representations
without abrupt changes.

Given a sequence of tokens {x1, x2, . . . , xt−1}, the embedding layer first converts the tokens into a sequence
of vectors H0 = {h(0)

1 , . . . , h
(0)
t−1}, where h

(0)
t ∈ Rd and d is the hidden state dimension. This sequence H0

is then processed successively by each transformer layer, with the output of the j-th layer denoted as Hj .
The vocabulary head ϕ(·) then outputs the logits ℓt of the next token xt over the vocabulary set V:

ℓ(xt | x<t) = ϕ
(
Np(h

(N)
t))

)
xt
, xt ∈ V.

Here, Np is the pre-trained normalization module before the vocabulary head. This method is often con-
sidered a form of logit lens (Nostalgebraist, 2020), which uses the vocabulary head to probe into inner
representations. However, the trainable predictive power of these representations remains unexplored. In
§2.2, we show how to combine the train-time predictive power of late layers with final layer logits.

2.2 MOD ROUTING NETWORK

Instead of applying ϕ(·) only on the final layer, we incorporate the predictive power of late layers into
the final prediction. We want to route the most informative representation for training to the final logit
calculation. Motivated by the MoE framework (Fedus et al., 2022; Jiang et al., 2024), the output of the
ensemble logits is given by:

k−1∑
i=0

G(x)i · ℓi(x), G(x) := Softmax(x ·Wg).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

Figure 3: The overall framework of Mixture-of-Depths (MoD), which can be applied on top of any tuning
method like LoRA (Hu et al., 2022). Given a pre-trained LLM and a tuning dataset, MoD applies trainable
normalization Nk and pre-trained language model heads ϕ(·) to the last k layers {Ln−k+1, . . . , Ln}. Each
layer’s output is combined using learned routing weights to produce the final logits. During training, a
auxiliary teacher-enforced distillation loss Ldistill is applied, where the final layer output serves as the
teacher. MoD utilizes the ensemble logits during inference.

Here, G(·)i denotes the output of the routing network for the i-th expert, and ℓi(·) is the output logits of
the i-th late layer. Here, x = Hn−k, which is the output of the layer before the last k layer. The routing
network G(x)i is implemented by taking the softmax over a linear layer. The final logits are then obtained
by summing the weighted logits from k layers:

ℓ(xt | x<t) =

k−1∑
i=0

G(x)i · ℓi(x)

Additionally, one advantage of the MoD is its potential to improve inference efficiency by avoiding excessive
computation when the routing vector is sparse. Following Shazeer et al. (2017), we achieve this by applying
the softmax over the Top-K logits of the linear layer:

GTopK(x) := Softmax(TopK(x ·Wg)),

where (TopK(ℓ))i := ℓi if ℓi is among the top-K coordinates of logits ℓ ∈ Rk and (TopK(ℓ))i := −∞
otherwise.

In our main experiments (§3), we utilize G(x) to demonstrate the effectiveness of the MoD framework. We
investigate the performance and efficiency trade-offs of using GTopK(x) in §4.2. This exploration allows
us to understand how sparse routing mechanisms can optimize computational resources while maintaining
predictive accuracy.

2.3 LATE LAYERS ADAPTATION BY NORMALIZATION AND DISTILLATION

Directly combining the logits of late layers using the LM head can result in worse training loss at the start of
tuning (Figure 1). Previous works (Belrose et al., 2023) have attempted to learn an affine matrix Aℓ to map

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

hidden states of layer ℓ to the input space of the LM head. We aim to investigate more efficient adaptation
methods while minimizing interference with model predictions and avoiding excessive additional trainable
parameters.

Inspired by normalization studies in neural networks and the effectiveness of tuning the normalization mod-
ule for domain adaptation (Zhao et al., 2023), we propose tuning an additional normalization module for
each late layer as a simple yet powerful adaptation method. We set the additional normalization module Nk

to match the architecture of the pretrained Np. For instance, in the LLaMA2 model (Touvron et al., 2023b),
we follow the LayerNorm setting (Ba et al., 2016). The learnable parameters in the normalization, γk and
βk, are trained individually for each k-th late layer to ensure specific adaptation for each layer.

Following our assumption in §2.2, we treat each of the k−1 late layers (excluding the final layer) as smaller
models, with the final layer as the larger model with the most predictive power. We use the final layer as
the teacher model to supervise the output of earlier layers for adaptation. We define a teacher-enforced
distillation loss that measures the difference between the predictions of the intermediate models and the
final layer’s predictions. The distillation loss is computed as the sum of the KL divergence between each
intermediate layer’s output distribution Pi and the final layer’s output distribution Pn:

Ldistill =

k−2∑
i=0

KL(Pi ∥ Pn),

where Pi is the output distribution of layer i, and Pn is the output distribution of the final layer. The final
loss is then the sum of the task loss and the distillation loss:

LMoD = Ltask + λLdistill,

where λ is a hyperparameter that controls the weight of the distillation loss. By tuning with the normalization
modules and distillation loss, we adapt the k − 1 layer representations to be more suitable for the language
modeling task, ensuring their contributions are aligned with the original task loss.

3 EXPERIMENTS

We evaluate the MoD framework on two types of language modeling tasks: arithmetic reasoning and com-
monsense reasoning. The MoD framework minimally increases trainable parameters and can be integrated
with any existing training method, as the hidden state dimensions remain consistent during training. We use
LoRA (Hu et al., 2022) as our base tuning method, which has been shown to reduce the number of tunable
parameters while maintaining performance comparable to full finetuning. We define a single LoRA layer as
LLoRA. We use two baselines:

1. The model tuned with LoRA excluding the last k layers, denoted as LoRA¬K.
2. The model tuned with LoRA on all layers, denoted as LoRAall.

The notation LoRAall represents the model tuned with LoRA applied to all layers, including the last k layers
which is identical to LoRA¬K + LLoRA × |K| specified in the tables.

As shown in Table 1, MoD consistently improves performance when applied on top of LoRAall with min-
imally added parameters. Though MoD is not designed as an additional training architecture, experiments
also demonstrate that it can replace the LoRA module while retaining similar or even better performance
with 97% 2 fewer trainable parameters. We conduct experiments with LLaMA-1 (Touvron et al., 2023a) and
LLaMA-2 (Touvron et al., 2023b) models with 7B parameters. The weight of the distillation loss λ is set to

2The percentage is calculated by the additional parameters introduced by MoD divided by the additional parameters
introduced by LoRAall.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison of MoD built upon LoRA (Hu et al., 2022) for LLaMA-7B (Touvron et al.,
2023a) and LLaMA2-7B (Touvron et al., 2023b) on seven arithmetic reasoning datasets. We train the models
on a single combined dataset follow Hu et al. (2023) and report averaged performance of three runs with
distinct random seeds. The number in parentheses (%) indicates the percentage of added trainable parameters
relative to the LoRA¬|K| baseline. We report the task-level averaged results in Avg.

METHOD ADDSUB AQUA GSM8K MAWPS MULTIARITH SINGLEEQ SWAMP AVG.

LLaMA-7B

LORAALL (+10.3%) 41.3 15.4 38.5 58.0 81.0 62.9 44.2 48.8
LORA¬K 38.7 13.4 37.3 56.3 78.2 59.8 42.3 46.6
+ LLORA × |K| + MoDK (+10.4%) 42.0 15.8 39.1 58.5 81.3 62.9 44.9 49.2
+ MoDK (+0.04%) 41.5 16.1 38.2 58.4 80.7 62.3 43.8 48.7

LLaMA2-7B

LORAALL (+10.3%) 51.1 24.4 43.6 62.6 84.2 66.9 47.7 54.5
LORA¬K 46.3 20.5 39.7 60.6 81.4 62.0 43.2 50.5
+ LLORA × |K| + MoDK (+10.4%) 51.2 25.5 43.9 63.1 84.3 67.3 48.0 54.8
+ MoDK (+0.04%) 50.1 24.3 43.4 63.7 82.2 66.8 47.5 54.0

0.0001 for all datasets and models, and the routing network is Gaussian initialized with a standard deviation
of 0.02 and a mean of 0. All experiments are run on NVIDIA A6000 GPUs. Detailed experimental settings
are provided in Appendix B.

3.1 ARITHMETIC REASONING

Arithmetic reasoning includes seven datasets for math word problems: AddSub (Hosseini et al., 2014),
AQuA (Ling et al., 2017), GSM8K (Cobbe et al., 2021a), MAWPS (Koncel-Kedziorski et al., 2016), Sin-
gleEq (Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021). Models need to generate chain-
of-thought (Wei et al., 2022) reasoning steps before the final answer. We replicate the experimental setup
from Hu et al. (2023) on a combined dataset of these seven arithmetic reasoning tasks with LM-generated
chain-of-thought steps (MATH7K) and report scores on all test sets. We only evaluate the correctness of the
final numeric or multiple-choice answer. Details of the dataset are provided in Appendix A.1. For MATH7K,
we set k to 3 for both LLaMA-1 and LLaMA-2 models across all datasets. Note that different models and
datasets might benefit from a different value of k, or we could dynamically select k during training, which
we leave for future research.

The results in Table 1 show that the MoD framework consistently improves performance on arithmetic
reasoning tasks when applied on top of LoRA¬K. Furthermore, MoD alone, even with only 0.19% added
parameters, provides competitive performance with LoRAall. These results validate our approach of utilizing
late layer during training to enhance model performance in complex reasoning tasks.

3.2 COMMONSENSE REASONING AND GENERAL LANGUAGE MODELLING

Commonsense reasoning is evaluated using four datasets: the Challenge Set and Easy Set of ARC (Clark
et al., 2018), BoolQ (Clark et al., 2019), and OBQA (Mihaylov et al., 2018a). These tasks are formulated
as multiple-choice problems. We follow the setup from Hu et al. (2023), but train each dataset separately
to assess the effectiveness of our MoD framework on individual datasets. To evaluate general language
modeling capability, we select 20% of the TruthfulQA dataset and report the True*Informative score. We
also report the performance on the STEM subtasks of the MMLU benchmark, following the setup of Brown
et al. (2020). Dataset details are provided in Appendix A.2. We maintain the same settings as described in

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

Table 2: Comparison of MoD on seven commonsense reasoning datasets and two general language mod-
elling datasets. We train the models on each dataset and report the averaged performance of three runs with
distinct random seeds. The number in parentheses (%) indicates the percentage of added trainable parame-
ters relative to the LoRA¬|K| baseline. We report the task-level averaged results in Avg.

METHOD ARC-E ARC-C BOOLQ OBQA HELLASWAG TRUTHFULQA MMLU AVG.

LLaMA-7B

LORAALL (+10.3%) 79.6 42.0 68.2 79.8 79.2 36.3 28.3 59.1
LORA¬K 75.3 39.0 65.1 78.4 76.1 35.7 25.9 56.5
+ LLORA × |K| + MoDK (+10.4%) 79.6 47.2 69.8 80.1 80.3 36.2 29.1 60.3
+ MoDK (+0.04%) 78.1 43.1 69.2 79.6 79.7 36.0 28.2 59.1

LLaMA2-7B

LORAALL (+10.3%) 81.8 53.8 70.9 82.0 82.5 49.6 37.3 65.4
LORA¬K 75.9 48.0 70.5 80.4 79.9 46.5 35.8 62.4
+ LLORA × |K| + MoDK (+10.4%) 82.2 56.4 71.4 83.4 84.0 49.3 37.1 66.2
+ MoDK (+0.04%) 82.9 53.4 71.5 82.1 83.5 48.9 36.9 65.6

§3.1. As shown in Table 2, the integration of MoD with LoRA leads to consistent performance improvements
with only a minimal increase in trainable parameters, reinforcing the practicality of our approach.

3.3 INSTRUCTION FOLLOWING

Table 3: Average scores on MT-Bench assigned by
GPT-4 to the answers generated by tuned LLaMA-
7B/LLaMA2-7B models.

MODEL METHOD +PARAMS (%) SCORE

LLAMA-7B

LORA¬K - 3.61
+ LLORA × |K| 10.3 4.35
+ LLORA × |K| + MoDK 10.4 4.35
+ MoDK 0.04 4.16

LLAMA2-7B

LORA¬K - 4.92
+ LLORA × |K| 10.3 5.47
+ LLORA × |K| + MODK 10.4 5.29
+ MoDK 0.04 5.23

We evaluate the effectiveness of MoD across
LLaMA-7B and LLaMA2-7B for instruction tuning
using a 10K subset of the cleaned Alpaca dataset
(Taori et al., 2023). The fine-tuned models are
then assessed on the MT-Bench benchmark (Zheng
et al., 2023) by generating responses to a predefined
set of 80 multi-turn questions. These responses are
subsequently evaluated by GPT-4 (OpenAI, 2023),
which reviews each answer and assigns a numerical
score out of 10.

Our findings indicate that the performance of MoD
is comparable to the LoRA baseline, though no sig-

nificant performance gains were observed. We hypothesize that this could be due to the nature of instruction-
following tasks, which may require more processing in the later layers to appropriately format instructed
responses. MoD, by contrast, bypasses these processes while maintaining similar performance. Future
work may explore how the MoD framework can be adapted to enhance instruction-following capabilities in
language modeling by learning more robust instruction-tuning mechanisms.

4 ANALYSIS

Using the training setup from §3, we conducted several analyses on our MoD framework. We examined the
sparsity curve of the routing network at the route level across training tokens (§4.1), explored the advantages
and trade-offs of sparse routing (§4.2), and performed ablation studies on the different components in MoD
(§4.3).

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Figure 4: Sparsity scores for MoD (left) and MoD trained with k LoRA layers (right). The curve is smoothed
using moving average smoothing.

4.1 LEARNED ROUTING PATTERN ACROSS TOKENS

In this section, we analyze the routing patterns learned with MoD for the K ensemble layers during training.
With a Gaussian-initialized routing network, we measure the sparsity of the weights across the training
tokens, i.e., how many weights are close to zero. We calculate the proportion of weights below a threshold,
ϵ, which we set to 1 × 10−5. A lower level of sparsity often implies that the model is selectively using
current routes while ignoring others, leading to the discussion in §4.2. We also record the mean and variance
to measure the tendency and dispersion for each k route, as detailed in Appendix C.1. We evaluate MoD
trained on top of LoRA and MoD trained without k LoRA layers using the LLaMA 7B model on the ARC
easy subset. According to Figure 4, we notice an interesting learned pattern discrepancy between MoD
trained with or without LoRA layers. When trained without k LoRA layers, the sparsity score for the last
layer remains low, while the sparsity level of layer 30 is high initially and then decreases, and the sparsity
level of layer 29 increases through training. This suggests that the model generally learns to rely more on
the last two layers’ outputs, especially the last layer for the ensemble. However, when trained with k LoRA
layers in the ensemble, the sparsity level of the last layer is much higher, while the levels for the other
two layers remain low. This indicates that the additional trainable modules inside MoD help the late layers
contribute more to the ensembles and become more task-informative, aligning with our assumption in §2.3.
Notably, both methods yield better performance than the baseline according to Table 3.2, suggesting that
there is still significant predictive potential through different weight combinations for the ensembles.

4.2 MOD SPARSE ROUTING

Table 4: Acceleration ratios for different Top-K val-
ues when k = 6 compared to the LoRA baseline. The
results represent the overall speedup across 1000 iter-
ations for each dataset.

Dataset Top-2 Top-3 Top-4 Top-5

ARC-e 1.4× 1.5× 1.4× 1.1×
ARC-c 1.6× 1.4× 1.3× 1.0×

As shown in §4.1, the sparsity level of the MoD
routing output can be high, suggesting the poten-
tial for sparse routing vectors during inference. In
this section, we investigate whether we can train
the MoD with the GTopK variant introduced in §2.2.
Ideally, if the routing can be sparse without compro-
mising the ensemble effectiveness, we can improve
inference efficiency by enabling early exit when the
Top-K selected routes occur before the last layer.
We introduce MoD Sparse Routing (MoDsparse), which utilizes a routing network activated by GTopK. To
thoroughly examine the effectiveness of sparse routing, we select a larger ensemble layer range to potentially

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Figure 5: Accuracy scores for different k ensemble layer ranges and Top-K sparse routing values. Lighter
colors indicate better performance.

increase opportunities for early exit. We use k = 6 for this section, with results for other datasets provided
in Appendix C.2.

Figure 6: Ablation study results for MoD on four com-
monsense reasoning datasets using the LLaMA2-7B
model.

First, we investigate whether a larger ensemble
range k provides more diverse tuning information to
improve performance or introduces noise that neg-
atively impacts it. In Figure 5, we observe that the
optimal k value often occurs around 3 to 4. For rel-
atively challenging datasets that require extensive
reasoning, such as GSM8K, increasing k does not
provide additional trainable information and can
harm performance, as seen with k = 6 for GSM8K.
Conversely, for relatively easier datasets like ARC-
e, increasing k consistently improves performance.
Second, we examine whether Top-K activation sig-
nificantly interferes with MoD performance. Fig-
ure 5 shows the performance on the ARC-c dataset,
varying different k values and Top-K values up to
6. When k = Top-K, it corresponds to the orig-
inal MoD routing. We observe that the original
MoD routing always provides the best performance.
While Top-K activation slightly decreases MoD’s performance, it still outperforms the baseline when k = 1.
Additionally, Table 4 shows that larger Top-K values result in greater acceleration ratios for generation, sug-
gesting a potential trade-off between utilizing MoD’s additional predictive power and exploiting its sparsity
to improve efficiency. This trade-off encourages further study in future research.

4.3 ABLATION STUDY ON ADAPTATION MODULES

Figure 1 shows the loss curve of late layers when optimizing the loss based on the last layer output when
late layers are optimized implicitly and the loss curves when optimizing the loss on each late layer output
with the distillation loss Ldistill w.r.t. the last layer. We find that the introduction of Ldistill makes bringing
the activations to the final logits prediction at the very start of the training more stable within the first 200
steps even model’s pretraining paradigm is not doing so. We also conduct an ablation study to analyze

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

the impact of Ldistill with the adaptation module Nk introduced in §2.3. We name different ablations of
MoD as follows: 1) MoD w.o. Nk: Instead of using a trained normalization for each ensemble layer, we
use the pre-trained normalization before the LM head for all k ensemble layers. 2) MoD w.o. Ldistill:
MoD tuned without the distillation loss Ldistill. The tuning loss is the original task loss, which is cross-
entropy loss for language modeling. We apply the ablation study on four commonsense reasoning datasets
using the LLaMA2-7B model. The results are presented in Figure 6. The findings are as follows: 1)
The introduced normalization components for language modeling adaptation are effective. Removing any of
these components harms performance. 2) The distillation loss is generally more important than the additional
trainable normalization. This may be because the strong task signals provided by the supervision from the
last layer are essential for the ensemble layers to adapt. For the approach of the supervison, there may
be other effective methods such as JS divergence (Chuang et al., 2024) or supervision by Reinforcement
Learning (Wu et al., 2024), which we leave for future study.

5 RELATED WORK

Early Exit in Transformer Layers Early exit strategies in language models are often explored to im-
prove efficiency. Several works focus on enhancing inference efficiency by terminating computation at
dynamically-decided earlier layer outputs (Xin et al., 2020; Schuster et al., 2022). A common approach for
adapting intermediate layer output to language modeling involves training an affine transformation (Belrose
et al., 2023; Din et al., 2023). Early exit strategies have also been explored for interpretability, analyzing
the linearity properties of transformer components (Geva et al., 2023; Hernandez et al., 2023). However, the
utilization of intermediate layer output during training remains largely unexplored. A recent work (Elhoushi
et al., 2024) applies layer dropout and an early exit loss to increase the accuracy of early exits, but its primary
focus is still on inference efficiency. To the best of our knowledge, our work is the first to utilize early exit
logits together with the final layer logits to incorporate task-aware representations from intermediate layers
into the loss calculation.

Logit-Level Arithmetic Operations at the logit level have proven effective in steering the output of LLMs
(Luo & Specia, 2024). From a multi-model perspective, there has been a growing body of work focusing on
“mixturing” the abilities of different trained models in line with the Mixture-of-Experts framework (Shazeer
et al., 2017; Jiang et al., 2024). Liu et al. (2021); Gera et al. (2023) have also shown the effectiveness of
ensembling logits from multiple LMs. From a single model perspective, contrasting logits from different
layers of a model (Chuang et al., 2024; Gera et al., 2023) has shown promising performance improvements
in the trustworthiness of generation and addressing the resource-intensive issues of larger models (Liu et al.,
2024). Our work builds upon logit-level arithmetic and follows the line of ensembling logits, focusing not
on a multi-model perspective but rather on utilizing the late layers’ outputs within a single model for tuning.
This approach has been considered only during inference in previous work.

6 CONCLUSION

In this paper, we explored the predictive power of late layers in LLMs and introduced the Mixture-of-Depths
(MoD) tuning framework. By tuning LLMs using ensembled logits from MoD routing and adaptation com-
ponents, we demonstrated consistent improvements in reasoning tasks with minimal additional parameters.
Additionally, our approach shows the potential to replace traditional training modules with significantly
fewer parameters. Our findings highlight the effectiveness of leveraging intermediate layer representations
during training, offering a lightweight and complementary direction for optimizing LLMs.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

7 LIMITATIONS

Future work could explore dynamic layer selection methods and refine the layer range of the MoD framework
to maximize its potential, rather than relying on empirical selection. Additionally, more effective tuning of
other hyperparameters, such as λ, the weight of the distillation loss, should be investigated. Improving the
effectiveness of MoD on a broader range of tasks, such as instruction following, remains an open question,
as discussed in §3.3. Extending MoD to evaluate its performance on bidirectional LLMs, such as RoBERTa
(Liu et al., 2019), would help determine if it generalizes well across different transformer-based language
models. Due to hardware limitations, our experiments were restricted to LLMs at the 7B scale. Exploring
the impact of MoD on larger models is an important direction for future research.

REFERENCES

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella Biderman,
and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola: Decod-
ing by contrasting layers improves factuality in large language models. In International Conference on
Learning Representations (ICLR), 2024. URL https://arxiv.org/pdf/2309.03883.pdf.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021b.

11

http://arxiv.org/abs/1607.06450
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/2309.03883.pdf
https://aclanthology.org/N19-1300

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to conclusions: Short-cutting
transformers with linear transformations, 2023.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In ICLR
2020-Eighth International Conference on Learning Representations, pp. 1–14, 2020.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and Carole-Jean
Wu. Layerskip: Enabling early exit inference and self-speculative decoding, 2024.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning, 2022.

Ze-Feng Gao, Kun Zhou, Peiyu Liu, Wayne Xin Zhao, and Ji-Rong Wen. Small pre-trained language models
can be fine-tuned as large models via over-parameterization. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3819–3834, Toronto, Canada, July 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.acl-long.212. URL https://aclanthology.org/2023.
acl-long.212.

Ariel Gera, Roni Friedman, Ofir Arviv, Chulaka Gunasekara, Benjamin Sznajder, Noam Slonim, and Eyal
Shnarch. The benefits of bad advice: Autocontrastive decoding across model layers. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
10406–10420, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.580. URL https://aclanthology.org/2023.acl-long.580.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. arXiv preprint arXiv:2203.14680, 2022.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual associations
in auto-regressive language models. In Empirical Methods in Natural Language Processing (EMNLP),
2023. URL https://arxiv.org/abs/2304.14767.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.org/abs/
2009.03300.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas, Yonatan
Belinkov, and David Bau. Linearity of relation decoding in transformer language models. 2023.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to solve
arithmetic word problems with verb categorization. In EMNLP, pp. 523–533, 2014.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria, and
Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large language models.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 2023.

12

https://aclanthology.org/2023.acl-long.212
https://aclanthology.org/2023.acl-long.212
https://aclanthology.org/2023.acl-long.580
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre
Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024.

Wei-Tsung Kao, Tsung-Han Wu, Po-Han Chi, Chun-Cheng Hsieh, and Hung-Yi Lee. Bert’s output layer
recognizes all hidden layers? some intriguing phenomena and a simple way to boost bert. arXiv preprint
arXiv:2001.09309, 2020.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
Parsing algebraic word problems into equations. Transactions of the Association for Computational
Linguistics, 3:585–597, 2015.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS: A
math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1152–1157, San Diego, California, June 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/N16-1136. URL https://aclanthology.org/N16-1136.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time inter-
vention: Eliciting truthful answers from a language model. Advances in Neural Information Processing
Systems, 36, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167, 2017.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A. Smith, and
Yejin Choi. DExperts: Decoding-time controlled text generation with experts and anti-experts. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 6691–6706, Online, August 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.acl-long.522. URL https://aclanthology.org/
2021.acl-long.522.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A. Smith. Tuning
language models by proxy, 2024. URL https://arxiv.org/abs/2401.08565.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Haoyan Luo and Lucia Specia. From understanding to utilization: A survey on explainability for large
language models, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations
in gpt, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In EMNLP, 2018a.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a
new dataset for open book question answering. In Conference on Empirical Methods in Natural Language
Processing, 2018b. URL https://api.semanticscholar.org/CorpusID:52183757.

13

https://aclanthology.org/N16-1136
https://aclanthology.org/2021.acl-long.522
https://aclanthology.org/2021.acl-long.522
https://arxiv.org/abs/2401.08565
https://api.semanticscholar.org/CorpusID:52183757

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Nostalgebraist. Interpreting gpt: the logit lens. LessWrong, 2020. URL https://www.lesswrong.com/
posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

Sean O’Brien and Mike Lewis. Contrastive decoding improves reasoning in large language models. arXiv
preprint arXiv:2309.09117, 2023.

OpenAI. Gpt-4 technical report. 2023. URL https://cdn.openai.com/papers/gpt-4.pdf.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math word
problems? In Proceedings of NAACL, pp. 2080–2094, 2021. URL https://aclanthology.org/2021.
naacl-main.168.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint arXiv:1608.01413,
2016.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=uLYc4L3C81A.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model. Stanford Center for
Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html, 2023.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In 2016 23rd International Conference on Pattern Recognition (ICPR),
pp. 2464–2469. IEEE, 2016.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subra-
manian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

14

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://cdn.openai.com/papers/gpt-4.pdf
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168
https://openreview.net/forum?id=uLYc4L3C81A
https://openreview.net/forum?id=uLYc4L3C81A

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

Minghao Wu, Thuy-Trang Vu, Lizhen Qu, and Gholamreza Haffari. Mixture-of-skills: Learning to optimize
data usage for fine-tuning large language models, 2024.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting for
accelerating BERT inference. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2246–
2251, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.
204. URL https://aclanthology.org/2020.acl-main.204.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in attention: Towards
efficient multi-modal llm finetuning, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging LLM-as-a-
judge with MT-bench and chatbot arena. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

A DATASETS

Table 5: Details of 11 datasets being evaluated according to Hu et al. (2023) and Hendrycks et al. (2021).
Math: arithmetic reasoning. CS: commonsense reasoning.

DATASET DOMAIN # TRAIN # TEST ANSWER

MULTIARITH MATH - 600 NUMBER
ADDSUB MATH - 395 NUMBER
GSM8K MATH 8.8K 1,319 NUMBER
AQUA MATH 100K 254 OPTION
SINGLEEQ MATH - 508 NUMBER
SVAMP MATH - 1,000 NUMBER
MAWPS MATH - 238 NUMBER
BOOLQ CS 9.4K 3,270 YES/NO
ARC-E CS 2.3K 2,376 OPTION
ARC-C CS 1.1K 1,172 OPTION
OBQA CS 5.0K 500 OPTION
HELLASWAG CS 39.9K 10042 OPTION
MMLU - 99.8K 14042 OPTION

Dataset Statistics and Examples Dataset statistics and simplified training examples from each dataset are
provided in Table 5. The original training dataset of Math10K accidentally includes testing examples from
AddSub, MultiArith, and SingleEq tasks, as these tasks are part of the MAWPS training dataset, causing a
data leak. To address this, we replicate the experimental setup suggested by Hu et al. (2023) on a combined
training dataset (MATH7K). For the commonsense reasoning dataset, we trained individual datasets with a
newly designed prompt format to address various issues reported with the LLaMA tokenizer in the original
prompt format.

A.1 ARITHMETIC REASONING

We conduct extensive empirical studies on fourteen benchmark datasets, focusing on two categories of
reasoning problems: Arithmetic Reasoning: 1. GSM8K (Cobbe et al., 2021b): A dataset comprising

15

https://aclanthology.org/2020.acl-main.204

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Figure 7: Mean and variance for MoD (right) and MoD trained with k LoRA layers (left). The curve is
smoothed using moving average smoothing with a window size of 3 and k = 3.

high-quality, linguistically diverse grade school math word problems created by human problem writers. 2.
SVAMP (Patel et al., 2021): A benchmark of one-unknown arithmetic word problems designed for up-to-4th
grade students, created by making simple modifications to problems from an existing dataset. 3. MultiArith
(Roy & Roth, 2016): A dataset featuring math word problems that require multiple reasoning steps and op-
erations. 4. AddSub (Hosseini et al., 2014): A collection of arithmetic word problems focused on addition
and subtraction. 5. AQuA (Ling et al., 2017): A dataset of algebraic word problems accompanied by natu-
ral language rationales. 6. SingleEq (Koncel-Kedziorski et al., 2015): A set of grade-school algebra word
problems that map to single equations of varying lengths.

A.2 COMMONSENSE REASONING

We trained our method on four commonsense reasoning dataset separately. They are: 1. BoolQ (Clark et al.,
2019): A question-answering dataset containing 15,942 naturally occurring yes/no questions generated in
unprompted and unconstrained settings. 2. ARC-c and ARC-e (Clark et al., 2018): The Challenge Set and
Easy Set of the ARC dataset, consisting of genuine grade-school level, multiple-choice science questions.
3. OBQA (Mihaylov et al., 2018b): A dataset containing questions that require multi-step reasoning, use of
additional common and commonsense knowledge, and rich text comprehension.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

B EXPERIMENT SETTINGS

We mainly follow the experimental settings of Hu et al. (2023). We maintain a batch size of 16 and set the
learning rate for all methods to 3e-4. Each method is fine-tuned for two epochs on each dataset.

C ANALYSIS

C.1 MEAN AND VARIANCE FOR ROUTING PATTERN ACROSS TOKENS

In this section, we analyze the routing patterns learned with MoD for the K ensemble layers during training.
We measure the mean and variance of the weights across the training tokens. A higher mean suggests that
the model consistently chooses this route, while a higher variance indicates variability in the routes learned
for different tokens. We evaluate MoD trained on top of LoRA and MoD trained without k LoRA layers
using the LLaMA 7B model on the ARC easy subset.

According to Figure 7, for the mean metric, we observe a reverse trend with respect to the sparsity score in
Table 4. This aligns with our intuition that when the sparsity score of the current route is low, the routing
value will be relatively larger than other routes. For the variance, we notice that when MoD is trained without
k LoRA layers, it maintains a high variance throughout tuning. This suggests that many tokens are trained to
select this route, but they are dynamically changing. When MoD is trained with LoRA, both the variance and
mean levels stay low, indicating that the other two layers primarily contribute to the final ensemble logits.
This suggests that the additional k trainable module within the MoD framework provides more predictive
power to the ensemble layers, aligning with our analysis in §4.1.

C.2 MOD SPARSE ROUTING WITH DIFFERENT TOP-K VALUES

We also select a larger ensemble layer range to increase opportunities for early exit. We use k = 4 for this
section, with results for BoolQ, OBQA, and MAWPS presented in Figure 8

Figure 8: Accuracy scores for different k ensemble layer ranges and Top-K sparse routing values. Lighter
colors indicate better performance. Results evaluated on BoolQ, OBQA, and MAWPS testset.

17

	Introduction
	Mixture-of-Depths
	Early-Exit for Late Layers
	MoD Routing Network
	Late Layers Adaptation by Normalization and Distillation

	Experiments
	Arithmetic Reasoning
	Commonsense Reasoning and General Language Modelling
	Instruction Following

	Analysis
	Learned Routing Pattern Across Tokens
	MoD Sparse Routing
	Ablation Study on Adaptation Modules

	Related Work
	Conclusion
	Limitations
	Datasets
	Arithmetic Reasoning
	Commonsense Reasoning

	Experiment Settings
	Analysis
	Mean and Variance for Routing Pattern Across Tokens
	MoD Sparse Routing with Different Top-K Values

