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ABSTRACT

Transformer-based Large Language Models (LLMs) traditionally rely on final-layer loss
for training and final-layer representations for predictions, potentially overlooking the pre-
dictive power embedded in intermediate layers. Surprisingly, we find that focusing training
efforts on these intermediate layers can yield training losses comparable to those of final
layers, with complementary test-time performance. We introduce a novel tuning frame-
work, Mixture-of-Depths (MoD), which trains late layers as ensembles contributing to the
final logits through learned routing weights. With the auxiliary distillation loss and addi-
tional normalization modules, we ensure that the outputs of the late layers adapt to lan-
guage modeling. Our MoD framework, which can be integrated with any existing tuning
method, shows consistent improvement on various language modelling tasks. Further-
more, by replacing traditional trainable modules with MoD, our approach achieves similar
performance with significantly fewer trainable parameters, demonstrating the potential of
leveraging predictive power from intermediate representations during training.

1 INTRODUCTION

Large Language Models (LLMs) are predominantly Transformer-based, processing sequences of input
tokens by representing them as vectors and transforming them through multiple layers of transformers
(Vaswani et al., 2017). Prior research has demonstrated the intermediate hidden states can carry meaningful
information (Li et al., 2024), and leveraging these hidden states during decoding can improve trustworthi-
ness (Chuang et al., 2024) and reasoning capabilities (O’Brien & Lewis, 2023). However, how to effectively
utilize these intermediate layers during training remains unexplored. While each layer transformation cre-
ates new token representations added to the residual stream, only the final layer representations are used to
obtain training loss. Consequently, loss minimization directly optimizes these final representations, leaving
hidden representations optimized only implicitly, thereby obscuring their potential predictive power.

In this work, we investigate the predictive power of the late layers,1 which have proven to be task-aware
in early exiting language models (Schuster et al., 2022; Din et al., 2023). We begin by training models
on late layers by applying the pretrained language model heads to each layer’s output to calculate the loss.
Our initial observations indicate that the training loss curves for the later layers started at higher values but
eventually converged to similar levels, aided by simple distillation losses with respect to the output of the
last layer, even without incorporating the weights of the subsequent layers (Figure 1). Figure 2 demonstrates
that the trained “models” at these layers can even provide complementary evaluation results. These findings
suggest that the late layers possess significant predictive potential. Given the overparameterization typical
in large language models (Gao et al., 2023), the model can adapt effectively to downstream tasks even with
fewer parameters.

1“Late” layers often refer to those closer to the output, e.g., layers 25-32 in a 32-layer LLaMA 7B models in different
literatures (Din et al., 2023; Geva et al., 2023; Meng et al., 2023).
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Figure 1: Tuning loss curves for LLaMA2-7B (Tou-
vron et al., 2023b) on ARC dataset (Clark et al., 2018).
Above shows the loss curve of late layers when opti-
mizing the loss based on the last layer output when
late layers are optimized implicitly; Below shows the
loss curves when optimizing the loss on each late layer
output with the distillation loss Ldistill w.r.t. the last
layer.

Following this observation, we introduce the
Mixture-of-Depths (MoD) framework (§2). Unlike
“mixture-of-experts” paradigm which utilized dif-
ferent trained models as experts for processing dif-
ferent input tokens Jiang et al. (2024), We propose
the “mixture” across layers within a single model,
where each layer output can be treated as a single
model output. This approach allows us to add diver-
sity and additional predictive power without signif-
icantly increasing parameters by training a simple
gating network for the i-th late layer (§2.2).

We focus on tuning large language models. Our
framework can be applied on top of any train-
ing methods as the hidden state dimensions remain
consistent during training. Traditionally, language
model heads in LLMs are trained to unembed hid-
den states from the last transformer layer. Applying
the LM head directly to late layers during tuning
can result in worse initial training performance, as
shown in Figure 1. To ensure LM adaptation during
tuning without interfering with the original model
predictions, we apply an additional model distilla-
tion loss (§2.3) where the last layer output serves
as the teacher. This method does not add any addi-
tional trainable parameters and ensures that the late
layers adapt to the predictions. Experiments (§3)
demonstrate that applying MoD tuning consistently
improves performance on arithmetic and common-
sense reasoning tasks with a minimal increase in
trainable parameters (+0.04%). Furthermore, by re-
placing traditional trainable modules with MoD, we
achieve similar performance with 97% fewer train-
able parameters.

As analysis (§4), we study the learned patterns by MoD routing (§4), evaluate the performance when varying
values of k, and explore the trade-off between performance and efficiency (§4.2, 4.3).

2 MIXTURE-OF-DEPTHS

Recent language models consist of an embedding layer, n stacked transformer layers L, and an affine layer
ϕ(·) for predicting the next-word distribution, often referred to as the language model head (Geva et al.,
2022; Luo & Specia, 2024). We aim to identify a layer range k, where the last k layers carry higher-level
task-aware information and can map hidden states to meaningful predictive logits (Belrose et al., 2023).
For an LLM with n layers, we define the set of the last k layers as K = {Ln−k+1, Ln−k+2, . . . , Ln}. As
shown in Figure 1, late layers exhibit learning loss curves similar to the final layer, indicating their task
informativeness.

Additionally, metrics extracted from the inference process can dynamically determine this range. For exam-
ple, Chuang et al. (2024) use the Jensen-Shannon Divergence between early and final layers as a distance
measurement to decode in contrastively, ensuring that selected layers include more task-related knowledge.
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Figure 2: Intersection of solved problems by tuning loss layers on the AQuA (Ling et al., 2017), ARC-
Challenge (Clark et al., 2018), and GSM8K (Cobbe et al., 2021b) datasets. The digits in the Venn diagram
illustrate the number of overlapping solved problems and the complementary solved problems for each
method.

However, we apply a simple empirical selection with a single k across all tasks to demonstrate the effective-
ness of the MoD framework, leaving dynamic selection for future research.

2.1 EARLY-EXIT FOR LATE LAYERS

The idea of applying language heads directly to the hidden states of the middle layers, known as early exit
(Teerapittayanon et al., 2016; Elbayad et al., 2020; Schuster et al., 2022), has proven effective even without
a special training process (Kao et al., 2020). The residual connections (He et al., 2016) in transformer
layers allow hidden representations to evolve gradually, enabling the formation of task-aware representations
without abrupt changes.

Given a sequence of tokens {x1, x2, . . . , xt−1}, the embedding layer first converts the tokens into a sequence
of vectors H0 = {h(0)

1 , . . . , h
(0)
t−1}, where h

(0)
t ∈ Rd and d is the hidden state dimension. This sequence H0

is then processed successively by each transformer layer, with the output of the j-th layer denoted as Hj .
The vocabulary head ϕ(·) then outputs the logits ℓt of the next token xt over the vocabulary set V:

ℓ(xt | x<t) = ϕ
(
Np(h

(N)
t ))

)
xt
, xt ∈ V.

Here, Np is the pre-trained normalization module before the vocabulary head. This method is often con-
sidered a form of logit lens (Nostalgebraist, 2020), which uses the vocabulary head to probe into inner
representations. However, the trainable predictive power of these representations remains unexplored. In
§2.2, we show how to combine the train-time predictive power of late layers with final layer logits.

2.2 MOD ROUTING NETWORK

Instead of applying ϕ(·) only on the final layer, we incorporate the predictive power of late layers into
the final prediction. We want to route the most informative representation for training to the final logit
calculation. Motivated by the MoE framework (Fedus et al., 2022; Jiang et al., 2024), the output of the
ensemble logits is given by:

k−1∑
i=0

G(x)i · ℓi(x), G(x) := Softmax(x ·Wg).
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Figure 3: The overall framework of Mixture-of-Depths (MoD), which can be applied on top of any tuning
method like LoRA (Hu et al., 2022). Given a pre-trained LLM and a tuning dataset, MoD applies trainable
normalization Nk and pre-trained language model heads ϕ(·) to the last k layers {Ln−k+1, . . . , Ln}. Each
layer’s output is combined using learned routing weights to produce the final logits. During training, a
auxiliary teacher-enforced distillation loss Ldistill is applied, where the final layer output serves as the
teacher. MoD utilizes the ensemble logits during inference.

Here, G(·)i denotes the output of the routing network for the i-th expert, and ℓi(·) is the output logits of
the i-th late layer. Here, x = Hn−k, which is the output of the layer before the last k layer. The routing
network G(x)i is implemented by taking the softmax over a linear layer. The final logits are then obtained
by summing the weighted logits from k layers:

ℓ(xt | x<t) =

k−1∑
i=0

G(x)i · ℓi(x)

Additionally, one advantage of the MoD is its potential to improve inference efficiency by avoiding excessive
computation when the routing vector is sparse. Following Shazeer et al. (2017), we achieve this by applying
the softmax over the Top-K logits of the linear layer:

GTopK(x) := Softmax(TopK(x ·Wg)),

where (TopK(ℓ))i := ℓi if ℓi is among the top-K coordinates of logits ℓ ∈ Rk and (TopK(ℓ))i := −∞
otherwise.

In our main experiments (§3), we utilize G(x) to demonstrate the effectiveness of the MoD framework. We
investigate the performance and efficiency trade-offs of using GTopK(x) in §4.2. This exploration allows
us to understand how sparse routing mechanisms can optimize computational resources while maintaining
predictive accuracy.

2.3 LATE LAYERS ADAPTATION BY NORMALIZATION AND DISTILLATION

Directly combining the logits of late layers using the LM head can result in worse training loss at the start of
tuning (Figure 1). Previous works (Belrose et al., 2023) have attempted to learn an affine matrix Aℓ to map
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hidden states of layer ℓ to the input space of the LM head. We aim to investigate more efficient adaptation
methods while minimizing interference with model predictions and avoiding excessive additional trainable
parameters.

Inspired by normalization studies in neural networks and the effectiveness of tuning the normalization mod-
ule for domain adaptation (Zhao et al., 2023), we propose tuning an additional normalization module for
each late layer as a simple yet powerful adaptation method. We set the additional normalization module Nk

to match the architecture of the pretrained Np. For instance, in the LLaMA2 model (Touvron et al., 2023b),
we follow the LayerNorm setting (Ba et al., 2016). The learnable parameters in the normalization, γk and
βk, are trained individually for each k-th late layer to ensure specific adaptation for each layer.

Following our assumption in §2.2, we treat each of the k−1 late layers (excluding the final layer) as smaller
models, with the final layer as the larger model with the most predictive power. We use the final layer as
the teacher model to supervise the output of earlier layers for adaptation. We define a teacher-enforced
distillation loss that measures the difference between the predictions of the intermediate models and the
final layer’s predictions. The distillation loss is computed as the sum of the KL divergence between each
intermediate layer’s output distribution Pi and the final layer’s output distribution Pn:

Ldistill =

k−2∑
i=0

KL(Pi ∥ Pn),

where Pi is the output distribution of layer i, and Pn is the output distribution of the final layer. The final
loss is then the sum of the task loss and the distillation loss:

LMoD = Ltask + λLdistill,

where λ is a hyperparameter that controls the weight of the distillation loss. By tuning with the normalization
modules and distillation loss, we adapt the k − 1 layer representations to be more suitable for the language
modeling task, ensuring their contributions are aligned with the original task loss.

3 EXPERIMENTS

We evaluate the MoD framework on two types of language modeling tasks: arithmetic reasoning and com-
monsense reasoning. The MoD framework minimally increases trainable parameters and can be integrated
with any existing training method, as the hidden state dimensions remain consistent during training. We use
LoRA (Hu et al., 2022) as our base tuning method, which has been shown to reduce the number of tunable
parameters while maintaining performance comparable to full finetuning. We define a single LoRA layer as
LLoRA. We use two baselines:

1. The model tuned with LoRA excluding the last k layers, denoted as LoRA¬K.
2. The model tuned with LoRA on all layers, denoted as LoRAall.

The notation LoRAall represents the model tuned with LoRA applied to all layers, including the last k layers
which is identical to LoRA¬K + LLoRA × |K| specified in the tables.

As shown in Table 1, MoD consistently improves performance when applied on top of LoRAall with min-
imally added parameters. Though MoD is not designed as an additional training architecture, experiments
also demonstrate that it can replace the LoRA module while retaining similar or even better performance
with 97% 2 fewer trainable parameters. We conduct experiments with LLaMA-1 (Touvron et al., 2023a) and
LLaMA-2 (Touvron et al., 2023b) models with 7B parameters. The weight of the distillation loss λ is set to

2The percentage is calculated by the additional parameters introduced by MoD divided by the additional parameters
introduced by LoRAall.
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Table 1: Accuracy comparison of MoD built upon LoRA (Hu et al., 2022) for LLaMA-7B (Touvron et al.,
2023a) and LLaMA2-7B (Touvron et al., 2023b) on seven arithmetic reasoning datasets. We train the models
on a single combined dataset follow Hu et al. (2023) and report averaged performance of three runs with
distinct random seeds. The number in parentheses (%) indicates the percentage of added trainable parameters
relative to the LoRA¬|K| baseline. We report the task-level averaged results in Avg.

METHOD ADDSUB AQUA GSM8K MAWPS MULTIARITH SINGLEEQ SWAMP AVG.

LLaMA-7B

LORAALL (+10.3%) 41.3 15.4 38.5 58.0 81.0 62.9 44.2 48.8
LORA¬K 38.7 13.4 37.3 56.3 78.2 59.8 42.3 46.6
+ LLORA × |K| + MoDK (+10.4%) 42.0 15.8 39.1 58.5 81.3 62.9 44.9 49.2
+ MoDK (+0.04%) 41.5 16.1 38.2 58.4 80.7 62.3 43.8 48.7

LLaMA2-7B

LORAALL (+10.3%) 51.1 24.4 43.6 62.6 84.2 66.9 47.7 54.5
LORA¬K 46.3 20.5 39.7 60.6 81.4 62.0 43.2 50.5
+ LLORA × |K| + MoDK (+10.4%) 51.2 25.5 43.9 63.1 84.3 67.3 48.0 54.8
+ MoDK (+0.04%) 50.1 24.3 43.4 63.7 82.2 66.8 47.5 54.0

0.0001 for all datasets and models, and the routing network is Gaussian initialized with a standard deviation
of 0.02 and a mean of 0. All experiments are run on NVIDIA A6000 GPUs. Detailed experimental settings
are provided in Appendix B.

3.1 ARITHMETIC REASONING

Arithmetic reasoning includes seven datasets for math word problems: AddSub (Hosseini et al., 2014),
AQuA (Ling et al., 2017), GSM8K (Cobbe et al., 2021a), MAWPS (Koncel-Kedziorski et al., 2016), Sin-
gleEq (Koncel-Kedziorski et al., 2015), and SVAMP (Patel et al., 2021). Models need to generate chain-
of-thought (Wei et al., 2022) reasoning steps before the final answer. We replicate the experimental setup
from Hu et al. (2023) on a combined dataset of these seven arithmetic reasoning tasks with LM-generated
chain-of-thought steps (MATH7K) and report scores on all test sets. We only evaluate the correctness of the
final numeric or multiple-choice answer. Details of the dataset are provided in Appendix A.1. For MATH7K,
we set k to 3 for both LLaMA-1 and LLaMA-2 models across all datasets. Note that different models and
datasets might benefit from a different value of k, or we could dynamically select k during training, which
we leave for future research.

The results in Table 1 show that the MoD framework consistently improves performance on arithmetic
reasoning tasks when applied on top of LoRA¬K. Furthermore, MoD alone, even with only 0.19% added
parameters, provides competitive performance with LoRAall. These results validate our approach of utilizing
late layer during training to enhance model performance in complex reasoning tasks.

3.2 COMMONSENSE REASONING AND GENERAL LANGUAGE MODELLING

Commonsense reasoning is evaluated using four datasets: the Challenge Set and Easy Set of ARC (Clark
et al., 2018), BoolQ (Clark et al., 2019), and OBQA (Mihaylov et al., 2018a). These tasks are formulated
as multiple-choice problems. We follow the setup from Hu et al. (2023), but train each dataset separately
to assess the effectiveness of our MoD framework on individual datasets. To evaluate general language
modeling capability, we select 20% of the TruthfulQA dataset and report the True*Informative score. We
also report the performance on the STEM subtasks of the MMLU benchmark, following the setup of Brown
et al. (2020). Dataset details are provided in Appendix A.2. We maintain the same settings as described in
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Table 2: Comparison of MoD on seven commonsense reasoning datasets and two general language mod-
elling datasets. We train the models on each dataset and report the averaged performance of three runs with
distinct random seeds. The number in parentheses (%) indicates the percentage of added trainable parame-
ters relative to the LoRA¬|K| baseline. We report the task-level averaged results in Avg.

METHOD ARC-E ARC-C BOOLQ OBQA HELLASWAG TRUTHFULQA MMLU AVG.

LLaMA-7B

LORAALL (+10.3%) 79.6 42.0 68.2 79.8 79.2 36.3 28.3 59.1
LORA¬K 75.3 39.0 65.1 78.4 76.1 35.7 25.9 56.5
+ LLORA × |K| + MoDK (+10.4%) 79.6 47.2 69.8 80.1 80.3 36.2 29.1 60.3
+ MoDK (+0.04%) 78.1 43.1 69.2 79.6 79.7 36.0 28.2 59.1

LLaMA2-7B

LORAALL (+10.3%) 81.8 53.8 70.9 82.0 82.5 49.6 37.3 65.4
LORA¬K 75.9 48.0 70.5 80.4 79.9 46.5 35.8 62.4
+ LLORA × |K| + MoDK (+10.4%) 82.2 56.4 71.4 83.4 84.0 49.3 37.1 66.2
+ MoDK (+0.04%) 82.9 53.4 71.5 82.1 83.5 48.9 36.9 65.6

§3.1. As shown in Table 2, the integration of MoD with LoRA leads to consistent performance improvements
with only a minimal increase in trainable parameters, reinforcing the practicality of our approach.

3.3 INSTRUCTION FOLLOWING

Table 3: Average scores on MT-Bench assigned by
GPT-4 to the answers generated by tuned LLaMA-
7B/LLaMA2-7B models.

MODEL METHOD +PARAMS (%) SCORE

LLAMA-7B

LORA¬K - 3.61
+ LLORA × |K| 10.3 4.35
+ LLORA × |K| + MoDK 10.4 4.35
+ MoDK 0.04 4.16

LLAMA2-7B

LORA¬K - 4.92
+ LLORA × |K| 10.3 5.47
+ LLORA × |K| + MODK 10.4 5.29
+ MoDK 0.04 5.23

We evaluate the effectiveness of MoD across
LLaMA-7B and LLaMA2-7B for instruction tuning
using a 10K subset of the cleaned Alpaca dataset
(Taori et al., 2023). The fine-tuned models are
then assessed on the MT-Bench benchmark (Zheng
et al., 2023) by generating responses to a predefined
set of 80 multi-turn questions. These responses are
subsequently evaluated by GPT-4 (OpenAI, 2023),
which reviews each answer and assigns a numerical
score out of 10.

Our findings indicate that the performance of MoD
is comparable to the LoRA baseline, though no sig-

nificant performance gains were observed. We hypothesize that this could be due to the nature of instruction-
following tasks, which may require more processing in the later layers to appropriately format instructed
responses. MoD, by contrast, bypasses these processes while maintaining similar performance. Future
work may explore how the MoD framework can be adapted to enhance instruction-following capabilities in
language modeling by learning more robust instruction-tuning mechanisms.

4 ANALYSIS

Using the training setup from §3, we conducted several analyses on our MoD framework. We examined the
sparsity curve of the routing network at the route level across training tokens (§4.1), explored the advantages
and trade-offs of sparse routing (§4.2), and performed ablation studies on the different components in MoD
(§4.3).
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Figure 4: Sparsity scores for MoD (left) and MoD trained with k LoRA layers (right). The curve is smoothed
using moving average smoothing.

4.1 LEARNED ROUTING PATTERN ACROSS TOKENS

In this section, we analyze the routing patterns learned with MoD for the K ensemble layers during training.
With a Gaussian-initialized routing network, we measure the sparsity of the weights across the training
tokens, i.e., how many weights are close to zero. We calculate the proportion of weights below a threshold,
ϵ, which we set to 1 × 10−5. A lower level of sparsity often implies that the model is selectively using
current routes while ignoring others, leading to the discussion in §4.2. We also record the mean and variance
to measure the tendency and dispersion for each k route, as detailed in Appendix C.1. We evaluate MoD
trained on top of LoRA and MoD trained without k LoRA layers using the LLaMA 7B model on the ARC
easy subset. According to Figure 4, we notice an interesting learned pattern discrepancy between MoD
trained with or without LoRA layers. When trained without k LoRA layers, the sparsity score for the last
layer remains low, while the sparsity level of layer 30 is high initially and then decreases, and the sparsity
level of layer 29 increases through training. This suggests that the model generally learns to rely more on
the last two layers’ outputs, especially the last layer for the ensemble. However, when trained with k LoRA
layers in the ensemble, the sparsity level of the last layer is much higher, while the levels for the other
two layers remain low. This indicates that the additional trainable modules inside MoD help the late layers
contribute more to the ensembles and become more task-informative, aligning with our assumption in §2.3.
Notably, both methods yield better performance than the baseline according to Table 3.2, suggesting that
there is still significant predictive potential through different weight combinations for the ensembles.

4.2 MOD SPARSE ROUTING

Table 4: Acceleration ratios for different Top-K val-
ues when k = 6 compared to the LoRA baseline. The
results represent the overall speedup across 1000 iter-
ations for each dataset.

Dataset Top-2 Top-3 Top-4 Top-5

ARC-e 1.4× 1.5× 1.4× 1.1×
ARC-c 1.6× 1.4× 1.3× 1.0×

As shown in §4.1, the sparsity level of the MoD
routing output can be high, suggesting the poten-
tial for sparse routing vectors during inference. In
this section, we investigate whether we can train
the MoD with the GTopK variant introduced in §2.2.
Ideally, if the routing can be sparse without compro-
mising the ensemble effectiveness, we can improve
inference efficiency by enabling early exit when the
Top-K selected routes occur before the last layer.
We introduce MoD Sparse Routing (MoDsparse), which utilizes a routing network activated by GTopK. To
thoroughly examine the effectiveness of sparse routing, we select a larger ensemble layer range to potentially

8
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Figure 5: Accuracy scores for different k ensemble layer ranges and Top-K sparse routing values. Lighter
colors indicate better performance.

increase opportunities for early exit. We use k = 6 for this section, with results for other datasets provided
in Appendix C.2.

Figure 6: Ablation study results for MoD on four com-
monsense reasoning datasets using the LLaMA2-7B
model.

First, we investigate whether a larger ensemble
range k provides more diverse tuning information to
improve performance or introduces noise that neg-
atively impacts it. In Figure 5, we observe that the
optimal k value often occurs around 3 to 4. For rel-
atively challenging datasets that require extensive
reasoning, such as GSM8K, increasing k does not
provide additional trainable information and can
harm performance, as seen with k = 6 for GSM8K.
Conversely, for relatively easier datasets like ARC-
e, increasing k consistently improves performance.
Second, we examine whether Top-K activation sig-
nificantly interferes with MoD performance. Fig-
ure 5 shows the performance on the ARC-c dataset,
varying different k values and Top-K values up to
6. When k = Top-K, it corresponds to the orig-
inal MoD routing. We observe that the original
MoD routing always provides the best performance.
While Top-K activation slightly decreases MoD’s performance, it still outperforms the baseline when k = 1.
Additionally, Table 4 shows that larger Top-K values result in greater acceleration ratios for generation, sug-
gesting a potential trade-off between utilizing MoD’s additional predictive power and exploiting its sparsity
to improve efficiency. This trade-off encourages further study in future research.

4.3 ABLATION STUDY ON ADAPTATION MODULES

Figure 1 shows the loss curve of late layers when optimizing the loss based on the last layer output when
late layers are optimized implicitly and the loss curves when optimizing the loss on each late layer output
with the distillation loss Ldistill w.r.t. the last layer. We find that the introduction of Ldistill makes bringing
the activations to the final logits prediction at the very start of the training more stable within the first 200
steps even model’s pretraining paradigm is not doing so. We also conduct an ablation study to analyze

9
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the impact of Ldistill with the adaptation module Nk introduced in §2.3. We name different ablations of
MoD as follows: 1) MoD w.o. Nk: Instead of using a trained normalization for each ensemble layer, we
use the pre-trained normalization before the LM head for all k ensemble layers. 2) MoD w.o. Ldistill:
MoD tuned without the distillation loss Ldistill. The tuning loss is the original task loss, which is cross-
entropy loss for language modeling. We apply the ablation study on four commonsense reasoning datasets
using the LLaMA2-7B model. The results are presented in Figure 6. The findings are as follows: 1)
The introduced normalization components for language modeling adaptation are effective. Removing any of
these components harms performance. 2) The distillation loss is generally more important than the additional
trainable normalization. This may be because the strong task signals provided by the supervision from the
last layer are essential for the ensemble layers to adapt. For the approach of the supervison, there may
be other effective methods such as JS divergence (Chuang et al., 2024) or supervision by Reinforcement
Learning (Wu et al., 2024), which we leave for future study.

5 RELATED WORK

Early Exit in Transformer Layers Early exit strategies in language models are often explored to im-
prove efficiency. Several works focus on enhancing inference efficiency by terminating computation at
dynamically-decided earlier layer outputs (Xin et al., 2020; Schuster et al., 2022). A common approach for
adapting intermediate layer output to language modeling involves training an affine transformation (Belrose
et al., 2023; Din et al., 2023). Early exit strategies have also been explored for interpretability, analyzing
the linearity properties of transformer components (Geva et al., 2023; Hernandez et al., 2023). However, the
utilization of intermediate layer output during training remains largely unexplored. A recent work (Elhoushi
et al., 2024) applies layer dropout and an early exit loss to increase the accuracy of early exits, but its primary
focus is still on inference efficiency. To the best of our knowledge, our work is the first to utilize early exit
logits together with the final layer logits to incorporate task-aware representations from intermediate layers
into the loss calculation.

Logit-Level Arithmetic Operations at the logit level have proven effective in steering the output of LLMs
(Luo & Specia, 2024). From a multi-model perspective, there has been a growing body of work focusing on
“mixturing” the abilities of different trained models in line with the Mixture-of-Experts framework (Shazeer
et al., 2017; Jiang et al., 2024). Liu et al. (2021); Gera et al. (2023) have also shown the effectiveness of
ensembling logits from multiple LMs. From a single model perspective, contrasting logits from different
layers of a model (Chuang et al., 2024; Gera et al., 2023) has shown promising performance improvements
in the trustworthiness of generation and addressing the resource-intensive issues of larger models (Liu et al.,
2024). Our work builds upon logit-level arithmetic and follows the line of ensembling logits, focusing not
on a multi-model perspective but rather on utilizing the late layers’ outputs within a single model for tuning.
This approach has been considered only during inference in previous work.

6 CONCLUSION

In this paper, we explored the predictive power of late layers in LLMs and introduced the Mixture-of-Depths
(MoD) tuning framework. By tuning LLMs using ensembled logits from MoD routing and adaptation com-
ponents, we demonstrated consistent improvements in reasoning tasks with minimal additional parameters.
Additionally, our approach shows the potential to replace traditional training modules with significantly
fewer parameters. Our findings highlight the effectiveness of leveraging intermediate layer representations
during training, offering a lightweight and complementary direction for optimizing LLMs.
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7 LIMITATIONS

Future work could explore dynamic layer selection methods and refine the layer range of the MoD framework
to maximize its potential, rather than relying on empirical selection. Additionally, more effective tuning of
other hyperparameters, such as λ, the weight of the distillation loss, should be investigated. Improving the
effectiveness of MoD on a broader range of tasks, such as instruction following, remains an open question,
as discussed in §3.3. Extending MoD to evaluate its performance on bidirectional LLMs, such as RoBERTa
(Liu et al., 2019), would help determine if it generalizes well across different transformer-based language
models. Due to hardware limitations, our experiments were restricted to LLMs at the 7B scale. Exploring
the impact of MoD on larger models is an important direction for future research.
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A DATASETS

Table 5: Details of 11 datasets being evaluated according to Hu et al. (2023) and Hendrycks et al. (2021).
Math: arithmetic reasoning. CS: commonsense reasoning.

DATASET DOMAIN # TRAIN # TEST ANSWER

MULTIARITH MATH - 600 NUMBER
ADDSUB MATH - 395 NUMBER
GSM8K MATH 8.8K 1,319 NUMBER
AQUA MATH 100K 254 OPTION
SINGLEEQ MATH - 508 NUMBER
SVAMP MATH - 1,000 NUMBER
MAWPS MATH - 238 NUMBER
BOOLQ CS 9.4K 3,270 YES/NO
ARC-E CS 2.3K 2,376 OPTION
ARC-C CS 1.1K 1,172 OPTION
OBQA CS 5.0K 500 OPTION
HELLASWAG CS 39.9K 10042 OPTION
MMLU - 99.8K 14042 OPTION

Dataset Statistics and Examples Dataset statistics and simplified training examples from each dataset are
provided in Table 5. The original training dataset of Math10K accidentally includes testing examples from
AddSub, MultiArith, and SingleEq tasks, as these tasks are part of the MAWPS training dataset, causing a
data leak. To address this, we replicate the experimental setup suggested by Hu et al. (2023) on a combined
training dataset (MATH7K). For the commonsense reasoning dataset, we trained individual datasets with a
newly designed prompt format to address various issues reported with the LLaMA tokenizer in the original
prompt format.

A.1 ARITHMETIC REASONING

We conduct extensive empirical studies on fourteen benchmark datasets, focusing on two categories of
reasoning problems: Arithmetic Reasoning: 1. GSM8K (Cobbe et al., 2021b): A dataset comprising

15

https://aclanthology.org/2020.acl-main.204


705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Figure 7: Mean and variance for MoD (right) and MoD trained with k LoRA layers (left). The curve is
smoothed using moving average smoothing with a window size of 3 and k = 3.

high-quality, linguistically diverse grade school math word problems created by human problem writers. 2.
SVAMP (Patel et al., 2021): A benchmark of one-unknown arithmetic word problems designed for up-to-4th
grade students, created by making simple modifications to problems from an existing dataset. 3. MultiArith
(Roy & Roth, 2016): A dataset featuring math word problems that require multiple reasoning steps and op-
erations. 4. AddSub (Hosseini et al., 2014): A collection of arithmetic word problems focused on addition
and subtraction. 5. AQuA (Ling et al., 2017): A dataset of algebraic word problems accompanied by natu-
ral language rationales. 6. SingleEq (Koncel-Kedziorski et al., 2015): A set of grade-school algebra word
problems that map to single equations of varying lengths.

A.2 COMMONSENSE REASONING

We trained our method on four commonsense reasoning dataset separately. They are: 1. BoolQ (Clark et al.,
2019): A question-answering dataset containing 15,942 naturally occurring yes/no questions generated in
unprompted and unconstrained settings. 2. ARC-c and ARC-e (Clark et al., 2018): The Challenge Set and
Easy Set of the ARC dataset, consisting of genuine grade-school level, multiple-choice science questions.
3. OBQA (Mihaylov et al., 2018b): A dataset containing questions that require multi-step reasoning, use of
additional common and commonsense knowledge, and rich text comprehension.
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B EXPERIMENT SETTINGS

We mainly follow the experimental settings of Hu et al. (2023). We maintain a batch size of 16 and set the
learning rate for all methods to 3e-4. Each method is fine-tuned for two epochs on each dataset.

C ANALYSIS

C.1 MEAN AND VARIANCE FOR ROUTING PATTERN ACROSS TOKENS

In this section, we analyze the routing patterns learned with MoD for the K ensemble layers during training.
We measure the mean and variance of the weights across the training tokens. A higher mean suggests that
the model consistently chooses this route, while a higher variance indicates variability in the routes learned
for different tokens. We evaluate MoD trained on top of LoRA and MoD trained without k LoRA layers
using the LLaMA 7B model on the ARC easy subset.

According to Figure 7, for the mean metric, we observe a reverse trend with respect to the sparsity score in
Table 4. This aligns with our intuition that when the sparsity score of the current route is low, the routing
value will be relatively larger than other routes. For the variance, we notice that when MoD is trained without
k LoRA layers, it maintains a high variance throughout tuning. This suggests that many tokens are trained to
select this route, but they are dynamically changing. When MoD is trained with LoRA, both the variance and
mean levels stay low, indicating that the other two layers primarily contribute to the final ensemble logits.
This suggests that the additional k trainable module within the MoD framework provides more predictive
power to the ensemble layers, aligning with our analysis in §4.1.

C.2 MOD SPARSE ROUTING WITH DIFFERENT TOP-K VALUES

We also select a larger ensemble layer range to increase opportunities for early exit. We use k = 4 for this
section, with results for BoolQ, OBQA, and MAWPS presented in Figure 8

Figure 8: Accuracy scores for different k ensemble layer ranges and Top-K sparse routing values. Lighter
colors indicate better performance. Results evaluated on BoolQ, OBQA, and MAWPS testset.

17


	Introduction
	Mixture-of-Depths
	Early-Exit for Late Layers
	MoD Routing Network
	Late Layers Adaptation by Normalization and Distillation

	Experiments
	Arithmetic Reasoning
	Commonsense Reasoning and General Language Modelling
	Instruction Following

	Analysis
	Learned Routing Pattern Across Tokens
	MoD Sparse Routing
	Ablation Study on Adaptation Modules

	Related Work
	Conclusion
	Limitations
	Datasets
	Arithmetic Reasoning
	Commonsense Reasoning

	Experiment Settings
	Analysis
	Mean and Variance for Routing Pattern Across Tokens
	MoD Sparse Routing with Different Top-K Values


