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ABSTRACT

Recent works integrating Knowledge Graphs (KGs) have led to promising improve-
ments in enhancing the reasoning accuracy of Large Language Models (LLMs).
However, current benchmarks focus mainly on closed-ended tasks, leaving a gap in
the assessment of more complex real-world scenarios. This gap has also obscured
the evaluation of KGs’ potential to mitigate the problem of hallucination in LLMs.
To fill the gap, we introduce OKGQA, a new benchmark specifically designed to
assess LLMs enhanced with KGs under open-ended, real-world question answering
scenarios. OKGQA is designed to closely reflect the complexities of practical
applications using questions from different types, and incorporates specific metrics
to measure both hallucination ratio and the enhancement in reasoning capabilities.
To consider the scenario in which KGs may have varying levels of mistakes, we
propose another benchmark variant OKGQA-P to assess model performance when
the semantics and structure of KGs are deliberately perturbed and contaminated.
OKGQA aims to (1) explore whether KGs can make LLMs more trustworthy in an
open-ended setting, and (2) conduct a comparative analysis to shed light on method
design. We believe that this study can facilitate a more complete performance
comparison and encourage continuous improvement in integrating KGs with LLMs
to reduce hallucination.

1 INTRODUCTION

Contemporary LLMs are prone to producing hallucinations due to gaps in their knowledge (Gekhman
et al., 2024; Lee et al., 2023). These inaccuracies commonly stem from misinformation, biases,
or errors in the training data, and lead to responses that seem plausible but may be irrelevant
or incorrect (Weng, 2024). This issue is particularly concerning in high-stakes contexts such as
healthcare (He et al., 2023) and science (Taylor et al., 2022)1.

To address this limitation, researchers have turned to leveraging external knowledge graphs (KGs) as
a complementary (Pan et al., 2024; Luo et al., 2023a; Hu et al., 2023; Sui et al., 2024). KGs offer
structured and explicit factual information—often domain-specific—and allow each piece of data
to be traced back to its source (Zheng et al., 2023; Agrawal et al., 2023). This traceability not only
enables verification of the model’s reasoning but also brings transparency to the decision-making
process, making KGs a promising method for enhancing the reliability of LLM reasoning. Find more
details of related works in §D.

However, current benchmarks for testing these LLM+KG models are predominantly closed-
ended (Jin et al., 2020; Puerto et al., 2023), restricting the model’s output to a limited set of
entities, relations (Talmor et al., 2019; Mihaylov et al., 2018) or logical forms (Yih et al., 2016;
Talmor & Berant, 2018). While these benchmarks are useful to measure retrieval and basic reasoning,
they do not adequately capture whether a model is hallucinating. In closed-ended settings, errors can
stem from incorrect retrieval or from fabricating (hallucinating) answers, yet conventional metrics
(e.g., accuracy or precision) cannot distinguish between these two issues. This becomes problematic
for more complex, real-world applications that demand nuanced answers (Kantharaj et al., 2022).

1Code and data are released at https://anonymous.4open.science/r/OKGQA-CBB0

1

mailto:yuansui@comp.nus.edu.sg
mailto:yufei.he@comp.nus.edu.sg
mailto:bhooi@comp.nus.edu.sg
mailto:zd320@cam.ac.uk
https://anonymous.4open.science/r/OKGQA-CBB0


Published at Building Trust Workshop at ICLR 2025

Close-ended Q: Who founded Microsoft?
Answer: Bill Gates.

Open-ended Q: Why did Bill Gates and Seregy 
Brin all give up day-to-day control of at 
Microsoft and Google at such young ages?
Answer: Bill Gates Microsoft in 1975 and 
remained its CEO until 2000 when he handed 
over the role to Steve Ballmer. His decision to 
step back was largely influenced by his desire 
to focus on his philanthropic efforts through 
the Bill & Melinda Gates Foundation, a major 
part of his life’s work…

Figure 1: Comparison between Open-ended Question
and Close-ended Question over Knowledge Graph.

In contrast, our work focuses on open-ended
KGQA, where LLMs are prompted to gener-
ate more elaborate answers, include reasoning
paths and supporting facts derived from the KG
(as shown in Figure 1). This broader output
space offers two key advantages: First, it en-
ables direct assessments of hallucination with
metrics like FActScore (Min et al., 2023) or
SAFE (Wei et al., 2024)), which decompose
longer responses into atomic statements for fac-
tual consistency checks with external knowledge
sources like Wikipedia. Second, it increases the likelihood of exposing factual errors which helps
to assess the phenomenon indicated in Qiu et al. (2024): where longer, more complex responses
provide more opportunities for errors to occur. By adopting this open-ended approach, we aim to (1)
explore whether KGs can make LLMs more trustworthy in the open-ended setting, and (2) conduct a
comparative analysis to shed light on methods design and direction for leveraging KGs to reduce
LLMs’ hallucination.

To achieve this, we introduce a new benchmark, Open-ended Knowledge-Graphs Question
Answering (OKGQA), specifically designed to assess LLMs enhanced with KGs in an open-ended
QA setting. OKGQA is designed to closely reflect the complexities of practical applications with
diverse questions types as mentioned in Table 1, ensuring that all the queries cannot be answered
simply by retrieving isolated KG facts. To consider the scenarios for potentially contaminated or
imperfect KGs (i.e., attributes may be mislabeled, relations may not exist, etc.), we also propose a
variant OKGQA-P (§3.2) to assess model performance under conditions where KGs’ semantics and
structure are deliberately perturbed and contaminated. In both settings, we measure the degree of
hallucination and the overall quality of the responses (see §5.1 for details).

Based on our experiments, we find that (1) integrating KG information generally mitigates factual
errors, especially for queries requiring deep reasoning; (2) directly performing reasoning in the
LLM itself (e.g., internal reasoning strategies like Chain-of-thought (Kim et al., 2023) and Self-
Consistency (Wang et al., 2022)) may cause bias and hallucination; (3) subgraph-based methods
often achieve the best performance for simpler query types; and (4) incorporating KGs effectively
reduces hallucinations in LLMs even when the KG is partially contaminated.

2 RELATED WORK

Due to the stochastic decoding process of Large Language Models (LLMs), i.e., sampling the next
token in the sequence, LLMs exhibit probabilistic behaviors: (1) potentially yielding varied outputs
of the same input across different instances (Agrawal et al., 2023); (2) cannot accurately interpret
phrases or terms when the context is vague and resides in a knowledge gap of the model. This will
lead to outputs that may sound plausible but are often irrelevant or incorrect. This will lead to outputs
that may sound plausible but are often irrelevant or incorrect. This “hallucinations” undermines the
reliability of LLMs (Huang et al., 2023). One emerging research trend is enhancing LLMs through
integrating external knowledge graphs (Agrawal et al., 2023). KGs offer structured, explicit, and
up-to-date factual knowledge, including domain-specific knowledge, providing a faithful knowledge
source for reasoning (Zheng et al., 2023; Agrawal et al., 2023; Sui et al., 2022). Moreover, each
piece of information in KGs can be traced back to its source, providing context and provenance.
This traceability not only aids in verifying the reliability of the information but also provides clear
pathways of reasoning, making the interpretation process transparent.

Researchers employ diverse strategies to augment the LLMs by integrating external KGs (Sui et al.,
2024; He et al., 2024b). For example, KAPING (Baek et al., 2023b) matches entities in questions to
retrieve related triples from knowledge graphs for zero-shot question answering. Wu et al. (2023)
finds that converting these triples into textualized statements can further enhance LLM performance.
StructGPT (Jiang et al., 2023b) propose to convert user query into structured formats (e.g., SPARQL)
for information extraction from KGs. Following the succuess of internal reasoning-enhancement
methods like Chain-of-thoughts (CoT) (Wei et al., 2022), Reflexion (Shinn et al., 2024), and Tree-of-
thoughts (ToT), He et al. (2022) propose “rethinking with retrieval” to use decomposed reasoning
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steps from CoT prompting to retrieve external knowledge, leading to more accurate and faithful
explanations. IR-CoT (Trivedi et al., 2022b) interleaves the generation of CoT with knowledge
retrieval from corresponding KGs, iteratively guiding both retrieval and reasoning for multi-step
questions. MindMap (Wen et al., 2023) introduce a plug-and-play approach to evoke graph-of-
thoughts reasoning in LLMs. Similarly, RoG (Luo et al., 2023b) use KGs to create faithful reasoning
paths based on various relations, enabling interpretable reasoning in LLMs.

However, current benchmarks for testing the capabilities of these LLM+KG models are predominantly
closed-ended, restricting responses to a limited set of entities/relations or a set of logical forms derived
from specific facts of KG. Hence, they can only test a very limited subset of the LLM’s tendency
to hallucinate, leaving a gap in the assessment of complex, real-world scenarios. Particularly,
standard metrics such as FActScore (Min et al., 2023) and SAFE (Wei et al., 2024) for evaluating the
hallucination rate of LLMs require open-ended settings, i.e., questions are phrased as a statement
which requires a longer answer. Compared with previous works, our proposed OKGQA is tailored
for evaluating LLMs enhanced with KGs under open-ended, real-world question-answering scenarios.
The benchmark extends the assessment of closed-ended question answering to an open-ended setting,
which can further support the assessment of hallucination of LLMs.

3 OKGQA: AN OPEN-ENDED KNOWLEDGE GRAPH QUESTION-ANSWERING
BENCHMARK

OKGQA is a comprehensive benchmark designed to assess how effectively LLMs enhanced with KGs
perform in open-ended, real-world-like question answering scenarios. Unlike existing benchmarks
that focus primarily on closed-ended tasks, OKGQA presents diverse open-ended question types that
mirror the variable nature of practical applications. As illustrated in Figure 1, given a complex query
and its corresponding subgraph in a KG, the system must be capable of understanding the relationships
within the data and performing human-like reasoning over the KG content to compose a paragraph-
long answer. In the following section, we first describe our dataset construction, including query
generation via LLM templates and KG subgraph extraction with PPR pruning. We then introduce
OKGQA-P, a benchmark variant designed to evaluate model robustness under KG perturbations,
detailing our perturbation methods and the metrics used to assess semantic and structural deviations.
Due to the page limitation, we also include some extension of our benchmark in Appendix §C,
including multilingual setup, and more analysis.

Statistics (on average)

Tokens in query 23.97
Total number of queries 850 → 2,050
Number of unique DBPedia entities 816

Before Pruning → After PPR Pruning

Tokens in subgraph 348,715 → 2,452
Number of nodes 7,171 → 48
Number of Edges 8,213 → 152
Avg. Degree 1.15 → 3.17
Clustering Coefficient 0.00 → 0.69
Graph Density 0.00 → 0.07

Query Type Simple Complex

Descriptive 78 11
Explanatory 195 56
Predictive 110 55
Comparative 72 74
Critical 182 17
Total 637 213

(a) Dataset statistics and query types (b) Distribution of sub-query types

Figure 2: (left) Dataset statistics and query types, (right) Sub-query type distribution

3.1 DATASET CONSTRUCTION

Queries. We utilize a template-based approach to generate a diverse range of queries using LLMs,
including categories such as descriptive, explanatory, predictive, comparative, and critical queries.
Details regarding specific templates and example queries can be found in Table 1, while the corre-
sponding prompts are provided in the Appendix E. To ensure that the generated queries represent
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real-world scenarios and complexities, we employ an iterative optimization approach that utilizes
both automated and human evaluation to refine the query generation process (the details are given in
Appendix B.1). Initially, we generate a diverse set of query candidates from a seed instruction. These
candidates undergo automated evaluation using an LLM-based evaluator, which assigns quality scores
sauto on a scale of 1-10, with higher scores indicating better performance across multiple metrics.
Subsequently, human evaluators assess the same queries, producing corresponding normalized scores
shuman within the same range. To refine the dataset, we iteratively optimize the input instructions by
minimizing the discrepancy between shuman and sauto. This optimization process ensures alignment
between automated and human quality assessments. The queries are also categorized by complexity
with detailed statistics in Figure 2.

Type Sub-Type Description / Template Example

Descriptive
Character Description Describe a [person]’s significant contributions

during their career.
Please describe Albert Einstein’s contributions to the
field of physics.

Event Description Provide a detailed description of the background
and course of an [event].

Please provide a detailed description of the background
and course of the French Revolution.

Explanatory
Cause Explanation Why did [person] take [action] at [time]? Why did Nixon choose to resign from the presidency

in 1974?

Relationship Explanation Explain the relationship between [entity A] and
[entity B] and its significance.

Explain the relationship between Alexander the Great
and Aristotle and its significance.

Predictive
Trend Prediction Based on the historical behavior of [entity], what

do you think it might do in the future?
Based on Tesla’s historical behavior, in which fields do
you think it might innovate in the future?

Outcome Prediction Based on the current situation, how do you predict
[event] will develop?

Based on the current international situation, how do you
predict climate change policies will develop?

Comparative
Contrast Analysis Compare and contrast the similarities and differences

between [entity A] and [entity B] in [aspect].
Compare and contrast the leadership styles of Steve Jobs
and Bill Gates.

Historical Comparison Compare the impact of [historical event A] and
[historical event B].

Compare the impact of World War I and World War II
on the global order.

Critical
Evaluation and Reflection How do you evaluate the impact of [person/event]

on [field]? Please explain your viewpoint.
How do you evaluate Martin Luther King’s impact on
the civil rights movement? Please explain your viewpoint.

Application and Practice How do you think [theory/method] can be applied
to [practical issue]?

How do you think machine learning technology can be
applied to medical diagnostics?

Table 1: Query types and examples in OKGQA. Brown is used to highlight the placeholders (e.g., [person],
[event]) in description, while Teal highlights the specific entities to replace the placeholders.

KG Sub-graphs. To reduce the size of KGs while retaining relevant information, we follow
previous work (Yih et al., 2016; Talmor & Berant, 2018) by sampling subgraphs from DBpedia
(Noted that all queries in OKGQA can be answered using DBpedia). We extract all triples contained
within the K-hop neighbors from the entities mentioned in the query. We set K = 2 to balance
graph size and computational feasibility. As increasing beyond 2-hop subgraphs generally leads
to exponential growth in edges and nodes (Jin et al., 2020), which increase excessive noise and
complicating information retrieval2. To further reduce the size of the 2-hop subgraphs, we leverage
Personalized Page-Rank (PPR) (Bahmani et al., 2010) to prune the nodes/edges that are not relevant
to the query (the details of the PPR algorithm are discussed in Appendix B.2). We compare the
statistics of subgraphs before and after PPR pruning in Figure 2a.

3.2 OKGQA-P: BENCHMARK WITH NOISE & PERTURBATIONS IN KGS

KGs are often annotated by humans and can contain errors such as mislabeled attributes or missing
relations. To mimic the real situations where KGs’ quality may not be fully reliable, we propose
OKGQA-P to assess the model performance under deliberately perturbed and contaminated KGs.
We introduce various perturbation scenarios including mislabeled attributes, incorrect relations, and
missing connections to test how well models can handle flawed or incomplete KG data. To quantify
the degree of perturbation, we measure the semantic and structural similarity between the original
and the modified KG as defined below.

Notation. Let Fθ be a KG-augmented model, and KG as G = (V, E , T ), where V is the set of entities
(nodes), E is the set of relation types (edges), and T = {(v1, e, v2)|v1, v2 ∈ V, e ∈ E} is the set of
triplets composed of entities and relations. Let G′ = (V, E ′, T ′) be the KG after perturbing G, where
E ′ ̸= E and T ′ ̸= T . Let f(G,G′) be a function that measures the similarity between G and G′. Let
g(G) be the downstream performance when evaluating Fθ on data samples X and G.

2This choice is also informed by common practices in other benchmarks, such as WebQSP (Yih et al., 2016) and CWQ (Talmor & Berant,
2018), where 2-hop subgraphs are widely used for similar KGQA tasks.
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High-level Procedure. First, we test Fθ on data samples X and G to get the original performance
g(G). Second, we perturb G to obtain G′. Third, we evaluate Fθ on data samples X and G′ to get the
perturbed performance g(G′). Finally, we measure g(G)− g(G′) and f(G,G′) to assess how robust
Fθ is, i.e., to assess the model performance under conditions where KGs’ semantics and structure are
deliberately perturbed.

To quantify how much the perturbed KG has deviated from the original KG, i.e., f(G,G′), we
leverage metrics from (Raman et al., 2020) for capturing semantics (ATS) and structural (SC2D, SD2)
similarity between KGs. Intuitively, ATS leverages a pre-trained LM for link prediction to measure
the probability of each edge from G′ existing in G, while SC2D and SD2 measure the structural
similarity between two KGs based on local clustering coefficient and degree distribution. For each of
the three metrics, higher value indicates higher similarity. The detailed description can be found in
Appendix B.5, with visualization in Figure 5.

For the perturbation methods, we consider four edge-based perturbation heuristics based on (Raman
et al., 2020) as follows:

• Relation Swapping (RS) randomly chooses two edges from T and swaps their relations.
• Relation Replacement (RR) randomly chooses an edge (v1, e, v2) ∈ T , and replaces the e1 with

another relation e2 = argmine∈ESG(v1, e, v2), where SG(·) is a KG score function adapted from
ATS. This yield “harder negatives” - triplets that are semantically similar but incorrect.

• Edge Rewiring (ER) randomly chooses an edge (v1, e, v2) ∈ T , then replaces v2 with another
entity v3 ∈ E\N1(v1), where N1(v1) represents the 1-hop neighborhood of v1.

• Edge Deletion (ED) randomly chooses an edge (v1, e, v2) ∈ T and deletes it.

We control perturbation level by adjusting the percentage of edges in G that are perturbed. Refer to
Figures 5 and 6 for empirical results.

4 EXPLORING KG-AUGMENTED FRAMEWORK FOR REDUCING
HALLUCINATION

Query: Please describe Albert Einstein’s 
contributions to the field of physics.

G-Eval
FactScore …hallucination?

Graph-guided retrieval

Graph Database & Indexing

Open knowledge 
graphs

Self-constructed 
Graph Data

Graph-indexing Node/Edge 
Emebddings

Graph-guided 
generation

Evaluator

Retrieved 
elements: 

path

Retrieved 
elements: 
Triplets

Retrieved 
elements: 
Subgraphs

Retrieval Forms

Cost allocationPrize 
assignment

Figure 3: Overview of KG-augmented framework.

To explore whether KG-augmented approaches
can mitigate LLMs’ hallucination, we pro-
pose a unified framework as shown in Fig-
ure 3. Our framework follows the paradigm of
retrieval augmented generation (RAG) (Edge
et al., 2024; Baek et al., 2023a), which re-
trieves essential information from the KGs,
and then uses the retrieved knowledge to en-
hance the LLM’s generation (§4.1). It con-
sists of two components, i.e., Graph-guided
retrieval (§4.2) and Graph-guided
generator (§4.3), with a variety of algorith-
mic design choices. We analyze the strategies within each component in §5, aiming to shed light on
the best practices for leveraging KGs for reducing hallucinations in LLMs.

4.1 FORMALIZATION

We formalize the KG-augmented framework for reducing hallucination as follows. Given a user query
q, a pretrained language model generates a paragraph-like answer a by modeling the conditional
probability p(a|q). To explore whether KGs help reduce hallucinations of LLMs, we introduce
retrieved knowledge Z from the KG and define:

p(a|q) =
∑
Z⊆G

pϕ(a|q,Z)pθ(Z|q,G), (1)

where pϕ(a|q,Z) is the likelihood of generating the paragraph-like answer a conditioned on q and Z
(parameterized by ϕ), and pθ(Z|q,G) models the retrieval of knowledge subsets (parameterized by
θ). Because the number of possible subsets Z can be exponentially large relative to the size of G, we
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approximate the sum by selecting the most probable knowledge subset: Z∗ = argmaxZ∈Gpθ(Z|q,G),
yielding:

p(a|q) ≈ pϕ(a|q,Z∗)pθ(Z∗|q,G) (2)

4.2 GRAPH-GUIDED RETRIEVAL (G-RETRIEVAL)

Our goal in G-retrieval is to extract a compact yet informative subset Z∗ from the KG that best
supports answering the user query q. We first encode the query and all KG elements (nodes/edges)
into a unified embedding space using a language model. We then measure the relevance of each
element to q (e.g., via cosine similarity) and identify a set of top-k nodes and edges for the query.

To balance retrieving as many relevant nodes and edges as possible while keeping the Z∗ size
manageable, we adopt a prize-cost trade-off strategy (Balas, 1989) to guide the retrieval process:
(1) Prize assignment: based on the computed similarity scores, we assign prizes to nodes and edges to
quantify their relevance to the query. Specifically, we assign the top-k nodes/edges with descending
prize values from k to 1, while nodes and edges outside the top-k receive a prize of 0. Formally:
pv = max(0, k − rank(v) + 1) and pe = max(0, k − rank(e) + 1). (2) Cost allocation: to manage
the retrieved knowledge size, we assign penalties as cost Ce during the expansion of the retrieved
paths or subgraphs. The final retrieval process aims to maximize the total prize (i.e., relevance) while
minimizing associated costs.

We explore three retrieval variants for G-retrieval design (e.g., triplets, paths and subgraphs) as
demonstrated in Figure 3.

• Triplet-retrieval: retrieves a fixed number of triplets with the highest total prize assigned to their
respective triplets.

• Path-retrieval: starting from a fixed number of k of high-prize nodes, we greedily expand paths
P = {v1, e1, v2, . . . , en−1, vn} to maximize score: S(P) =

∑n
i=1 pvi +

∑n−1
i=1 pei −

∑n−1
i=1 ce.

We use a priority queue to iteratively return paths with top-scores and subject to maximum lengths
and cycles. The details of path-retrieval can be found in Appendix B.3.

• Sub-graph retrieval: building on He et al. (2024a), we use the Prize-Collecting Steiner Tree
(PCST) algorithm to find a connected subgraph S that maximizes S(S) =

∑
n∈VS

pvi +∑
e∈ES

pei −
∑

einES
ce. Unlike in path-retrieval, we only yield one subgraph that maximizes the

total score.

4.3 GRAPH-GUIDED GENERATION (G-GENERATOR)

After retrieving Z∗, the G-Generator use this knowledge to generate the paragraph-like response the
user query. The generation is modeled as a sequential decision-making process: at each time step t,
token at is generated conditioned on q, Z∗, and the previously generated tokens a0:t−1:

p(a|q,Z∗) =

T∏
t=1

pθ(at|q,Z∗, a0:t−1), (3)

where θ denotes the parameters of a neural text generation model. The generation stops when an
end-of-sequence token is produced or when the maximum sequence length T is reached.

5 EXPERIMENTS

In this section, we first introduce the evaluation metrics, and then focus on two main research
questions: RQ1: Can KGs reduce hallucination in LLMs? and RQ2: How are KG-Aware methods
affected by noise/perturbations in KGs?

5.1 EVALUATION METRICS & SETUP

We quantify LLM hallucinations using two public metrics: FActScore (Min et al., 2023) and
SAFE (Wei et al., 2024). FActScore measures factual precision by decomposing a long-form text
into atomic facts and validating each against a reliable knowledge base like Wikipedia. In contrast,
SAFE employs a language model as an investigative agent that iteratively employs Google Search
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queries to assess whether search results support the fact. For both metrics, we report the proportion
of supported atomic facts out of the total atomic facts extracted from LLM responses.

In addition to the hallucination metrics, we propose four metrics using LLM-as-evaluator (Li et al.,
2024) to quantify the quality of generated responses from LLM (Edge et al., 2024; Wang et al.,
2023). In specific, we use G-Eval (Liu et al., 2023) framework for the evaluation and provide relevant
Wikipedia pages of each query as context to enhance G-Eval’s robustness and stability. The four
metrics are defined as follows: Context Relevance: measures how well the generated response aligns
with the provided context. Comprehensiveness: assesses how thoroughly the answer addresses all
aspects and details of the question. Correctness: measures the clarity and specificity of the generated
answer to the question. Empowerment: evaluates how well the generated answer helps the reader
understand the topic and make informed decisions. The detailed prompt can be found in Appendix E.

We use gpt-4o-mini (from November 2024 to January 2025) as LLM backbone for all the eval-
uation metrics. As using LLM-as-evaluator frameworks may raise concern regarding potential
self-enhancement or bias from the selection of the models (Gu et al., 2024; Li et al., 2024), we
conduct additional validation in Appendix B.4 (including human evaluation alignment and cross-
validation across different LLM backbones), and find that the choice of LLM in the LLM-as-evaluator
framework has little impact on the overall evaluation and demonstrate high correlation with the
human evaluation, supporting the reliability of our testing.

For other testing LLM backbones mentioned in this section, we consider a range of widely used
LLMs of different scales, including GPT-4o, GPT-4o-mini (from November 2024 to January 2025),
Llama-3.1-8B-instruct (Dubey et al., 2024), Mistral-7B-instruct-v0.3 (Jiang et al., 2023a), and
Gemma-2-9B-it (Team et al., 2024). Considering the trade-off between cost and performance, we use
text-embedding-3-small model from OpenAI (from November 2024 to January 2025) as embedding
model for G-retrieval process.

5.2 RQ1: MAIN RESULTS - CAN KGS REDUCE HALLUCINATION IN LLMS?

To explore whether KGs can help reduce hallucination in LLMs, we benchmark the LLMs in different
settings. We use zero-shot and few-shot prompting as baselines without injecting external knowledge.
In addition, we consider leveraging LLMs’ internal knowledge to do Chain-of-thought (Kim et al.,
2023), or self-consistency (Wang et al., 2022), and more general RAG systems like IRCoT (Trivedi
et al., 2022a) which retrieves paragraphs from Wikipedia to augment CoT generation. For LLMs
augmented with KGs, we consider three KG retrieval variants: triplets, paths, and subgraphs to study
the impact of G-retrieval for reducing LLMs’ hallucinations. The results are shown in Table 2 and
Figure 4. We obtain some intriguing findings:

Figure 4: Comparison results of different forms of
information over different queries.

Retrieving KG information can indeed miti-
gate factual errors in the responses. Methods
integrating knowledge extracted from KGs show
clear improvements in factual accuracy and com-
prehension scores compared to the baselines.
For example, under Var-2 (triplet retrieval), GPT-
4o achieves a FActScore of 72.55% ± 0.85%,
which is a significant increase over the base-
line score of 55.35% ±0.95%. Moreover, these
methods can be combined with strategies like
CoT+SC, enhancing response quality with min-
imal increase in hallucination ratio. The radar
chart in Figure 4 further emphasizes that in most
query types, integrating knowledge retrieved
from KGs mitigates the hallucination issue com-
pared to baselines, particularly in query types
such as “Evaluation and Reflection,” “Outcome
Prediction,” and “Cause Explanation,” which require more reasoning and analysis rather than merely
listing information. The findings also apply to open-source models like mistral-7B-Instruct-v0.3 and
Llama-3.1-8B-instruct, illustrating the consistency of the finding. In addition, compared with RAG
method IRCoT (Trivedi et al., 2022b), leveraging Wikipedia documents, improves performance over
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zero-shot and 4-shot prompting by providing broad contextual support, it struggles with correctness
and hallucination control due to the potential introduction of irrelevant or conflicting information.
Our KG-based methods consistently outperform IRCoT, particularly in correctness, SAFE, and
FActScore.

Models
G-Eval Hallucination

Context Relevance Comprehensiveness Correctness Empowerment SAFE FActScore

Baseline: Without External Knowledge (Zero-shot prompting)
GPT-4o 68.12%± 0.88% 65.41%± 0.79% 60.41%± 0.38% 62.41%± 0.84% 82.47%± 0.62% 55.34%± 0.93%
GPT-4o-mini 63.21%± 0.49% 60.11%± 0.47% 55.43%± 0.63% 58.72%± 0.62% 80.14%± 0.89% 50.23%± 1.01%
llama-3.1-8b-instruct 57.12%± 0.91% 54.74%± 1.20% 49.01%± 0.61% 52.21%± 0.71% 79.33%± 0.91% 45.14%± 0.32%
mistral-7B-Instruct-v0.3 55.71%± 1.21% 52.00%± 1.31% 47.03%± 0.94% 50.13%± 1.04% 78.27%± 0.83% 44.37%± 1.23%
gemma-2-9b-it 53.63%± 1.33% 50.00%± 1.33% 45.72%± 0.71% 48.15%± 0.93% 77.11%± 0.78% 40.94%± 0.83%

Baseline: Without External Knowledge (4-shot prompting)
GPT-4o 70.61%± 0.62% 67.43%± 0.81% 62.33%± 0.37% 64.51%± 0.12% 83.39%± 0.53% 57.45%± 0.78%
GPT-4o-mini 65.53%± 0.94% 62.33%± 1.03% 57.23%± 0.68% 60.47%± 0.83% 81.62%± 0.69% 52.34%± 0.76%
llama-3.1-8b-instruct 59.43%± 0.32% 56.31%± 0.78% 51.27%± 0.32% 54.33%± 0.41% 80.27%± 0.78% 47.24%± 1.03%
mistral-7B-Instruct-v0.3 57.34%± 1.04% 54.13%± 1.31% 49.27%± 0.84% 52.46%± 0.94% 79.12%± 0.87% 45.13%± 1.42%
gemma-2-9b-it 55.24%± 1.49% 52.27%± 1.21% 47.14%± 0.36% 50.36%± 0.51% 78.00%± 0.77% 44.32%± 1.58%

Baseline: With Wikipedia documents
GPT-4o - IRCoT 73.12%± 0.32% 69.23%± 0.42% 66.33%± 0.34% 65.51%± 0.11% 87.39%± 0.68% 69.45%± 0.34%
GPT-4o-mini - IRCoT 70.31%± 0.32% 64.42%± 1.31% 61.37%± 0.48% 63.89%± 0.72% 84.72%± 0.48% 65.72%± 1.03%

Var-1: With CoT Prompting
GPT-4o - CoT 72.76%± 0.92% 69.56%± 0.74% 64.48%± 0.63% 66.69%± 0.69% 80.07%± 0.83% 54.30%± 0.87%
GPT-4o - CoT+SC 75.81%± 0.65% 71.62%± 0.74% 66.55%± 0.75% 68.74%± 0.15% 79.03%± 0.48% 53.23%± 0.78%
llama-3.1-8b-instruct - CoT+SC 63.69%± 0.32% 60.44%± 0.59% 55.46%± 0.52% 58.53%± 1.11% 76.00%± 0.63% 45.05%± 0.97%
mistral-7B-Instruct-v0.3 - CoT+SC 61.35%± 0.93% 58.33%± 1.02% 53.42%± 0.79% 56.47%± 0.85% 74.30%± 0.21% 42.00%± 0.29%
gemma-2-9b-it - CoT+SC 59.42%± 0.27% 56.27%± 0.84% 51.34%± 1.42% 54.34%± 1.31% 71.09%± 0.43% 39.85%± 1.03%

Var-2: With Triplets Extracted from KGs Provided
GPT-4o 74.62%± 0.65% 70.44%± 0.79% 65.37%± 0.72% 67.12%± 0.71% 89.20%± 1.42% 72.53%± 0.83%
GPT-4o-mini 69.50%± 0.81% 65.03%± 0.92% 60.21%± 0.65% 63.43%± 1.01% 87.52%± 0.34% 67.73%± 0.95%
llama-3.1-8b-instruct 63.45%± 1.13% 59.33%± 1.05% 54.23%± 0.75% 57.33%± 0.12% 85.37%± 0.72% 62.37%± 0.82%
mistral-7B-Instruct-v0.3 61.34%± 0.31% 57.21%± 0.89% 52.29%± 0.32% 55.12%± 0.43% 84.21%± 0.84% 60.28%± 1.05%
gemma-2-9b-it 59.25%± 1.06% 55.29%± 0.44% 50.15%± 0.85% 53.73%± 0.95% 83.18%± 0.43% 58.13%± 0.91%
GPT-4o - CoT+SC 76.71%± 0.53% 72.34%± 0.21% 67.33%± 1.31% 69.64%± 0.33% 88.11%± 0.57% 71.45%± 0.53%

Var-3: With Paths Extracted from KGs Provided
GPT-4o 78.71%± 0.53% 74.53%± 0.31% 69.42%± 0.23% 71.63%± 0.61% 90.20%± 0.59% 75.61% ± 0.51%
GPT-4o-mini 73.64%± 0.93% 69.41%± 0.22% 64.35%± 0.72% 67.52%± 0.82% 88.22%± 0.34% 70.53%± 0.24%
llama-3.1-8b-instruct 67.51%± 0.46% 63.62%± 1.39% 58.41%± 0.93% 61.57%± 0.94% 86.33%± 0.94% 65.42%± 0.95%
mistral-7B-Instruct-v0.3 65.48%± 0.94% 61.37%± 1.01% 56.34%± 0.23% 59.45%± 0.43% 85.26%± 0.85% 63.31%± 1.33%
gemma-2-9b-it 63.35%± 1.37% 59.23%± 0.91% 54.31%± 0.91% 57.41%± 0.27% 84.13%± 0.21% 61.23%± 1.04%
GPT-4o - CoT+SC 80.87%± 0.42% 76.60%± 0.65% 71.54%± 0.53% 73.79%± 1.21% 89.11%± 0.63% 74.53%± 0.24%

Var-4: With Subgraphs Extracted from KGs Provided
GPT-4o 80.81%± 0.43% 76.63%± 0.65% 71.57%± 0.51% 73.70%± 0.62% 90.83% ± 0.63% 75.33%± 0.29%
GPT-4o-mini 75.70%± 0.44% 71.51%± 0.83% 66.43%± 0.76% 69.60%± 0.65% 88.71%± 0.72% 70.12%± 0.87%
llama-3.1-8b-instruct 69.61%± 0.84% 65.45%± 0.93% 60.41%± 0.65% 63.42%± 0.45% 86.12%± 0.35% 65.44%± 0.87%
mistral-7B-Instruct-v0.3 67.55%± 0.87% 63.35%± 0.43% 58.37%± 0.71% 61.45%± 0.32% 85.21%± 0.81% 63.12%± 0.94%
gemma-2-9b-it 65.45%± 0.95% 61.23%± 1.0% 56.31%± 0.35% 59.40%± 0.85% 84.51%± 0.99% 63.74%± 0.49%
GPT-4o - CoT+SC 82.90% ± 0.57% 78.72% ± 0.61% 73.64% ± 0.43% 75.80% ± 0.75% 89.12%± 0.94% 75.42%± 1.31%

Table 2: Comparison results of various forms of information extracted from the KGs.

Directly performing reasoning in the LLM itself does not mitigate hallucinations. We benchmark
the hallucination ratio of LLMs using internal reasoning strategies like CoT and Self-consistency, as
shown in Var-1 in Table 2. It shows that these methods can improve response quality (i.e., G-Eval)
compared to baselines, but do not consistently improve factuality, and sometimes even diminish.
This shows that relying solely on internal reasoning is inadequate for mitigating hallucinations,
highlighting the necessity for external knowledge to address this issue effectively.

Subgraph retrieval generally achieves best performance across different query types, especially
for simpler queries. We demonstrate the performance of different retrieval methods across different
query types in Figure 4, showing that subgraphs achieve the best performance. Especially for simpler
queries (“Character Description” and “Event Description” which do not require intensive reasoning).
Even for queries like “Relationship Explanation” and “Cause Explanation” which require stepwise
reasoning, subgraph methods still demonstrate promising performance. This suggests that while
different forms of retrieved knowledge offer unique benefits for specific types of queries, subgraphs
provide consistently good performance.

5.3 RQ2: HOW ARE KG-AWARE METHODS AFFECTED BY NOISE / PERTURBATIONS IN KGS?

We benchmark different KG-augmented LLMs on our OKGQA-P setting, where we deliberately
perturb and contaminate the semantics and structure of KGs to simulate the real-world situation where
KGs may not have high quality. Specifically, we consider different perturbation methods discussed
in §3.2 and control the perturbation level based on the percentage of KG edges being perturbed.
We first illustrate how much the perturbed KG has been deviated from the original KG with the
increase of perturbation level, shown in Figure 5. It shows that the perturbation methods like edge
deletion, rewiring and swapping have relatively weak influence on ATS (which intuitively measures
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semantic similarity), even as the perturbation level increases. For the edge deletion methods, only if
the perturbation level reaches 1.0, the ATS goes to 0, otherwise, the ATS remains higher compared to
other settings.

(a) Edge Deletion (b) Edge Rewiring (c) Relation Replacement (d) Relation Swapping

Figure 5: Performance Metrics (ATS, SC2D, SD2) vs. Perturbation Level for Different Perturbation Methods.

(a) Edge Deletion (b) Edge Rewiring (c) Relation Replacement (d) Relation Swapping

Figure 6: Performance Metric (FActScore) vs. Perturbation Level for Different Perturbation Methods and
Different Retrieval Methods. FS-T refers to FActScore metric using triplets, FS-P refers to using paths, and
FS-SG refers to using sub-graphs.

Figure 6 illustrates the hallucination ratio using different methods on the perturbed KGs. We
observe that (1) FS-SG consistently outperforms FS-T and FS-P even at higher perturbation levels,
demonstrating its robustness by maintaining higher scores as perturbations increase. (2) FS-T and
FS-P exhibit similar trends, each showing a significant performance drop as perturbation levels
increase. Particularly, performance of FS-T and FS-P deteriorate when the perturbation level reaches
50%, i.e., becoming worse than the baseline using CoT. (3) On the setting using Relation Replacement
which severely harms the semantics of the KGs, FS-T and FS-P decline more sharply than FS-SG.
However, it still outperforms the baseline when the perturbation level is smaller than 40%. In
summary, we find that effectiveness of KG-derived information diminishes with a perturbation level
at 50%, surpassing this level leads to a further decrease in performance. We think that before this
perturbation level at 50%, incorporating external knowledge from KGs can mitigate hallucinations in
LLMs compared to baseline using CoT. Considering practical scenarios, platforms like Wikidata are
less likely to have perturbations as severe as 50% due to their ongoing updates and community-based
quality control. This ensures the relevance and applicability of our findings in real-world settings.

6 CONCLUSION

In this paper, we propose OKGQA and variant OKGQA-P, to assess LLMs enhanced with KGs
under open-ended, real-world question answering scenarios. Unlike existing benchmarks that focus
primarily on closed ended tasks, OKGQA presents diverse open-ended question types that mirror
the unpredictable nature of practical applications. We conduct a series of experiments and analyze
the effectiveness of various retrieval methods and LLMs of different magnitudes, providing insights
for further research. Our results underscore the significance of integrating KGs with LLMs to help
reduce hallucination of LLMs, even in circumstances where the KGs are contaminated.
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A APPENDIX

B IMPLEMENTATION DETAILS

B.1 QUERY CONSTRUCTION

In this section, we discuss the details of the query construction of OKGQA. We first introduce
the human-in-the-loop process to optimize the instruction for generating the queries, as shown in
§B.1.1. We then present the metrics for quantify the generated queries in §B.1.2. Subsequently, we
provide experiments results of human-in-the-loop process and demonstrate the Pearson correlation
coefficients between human and LLM scores across rounds of optimization, and verify the inter-rater
reliability across our evaluators in §B.1.3.

B.1.1 HUMAN-IN-THE-LOOP FOR INSTRUCTION OPTIMIZATION

To ensure that the generated queries accurately represent real-world scenarios and complexities, we
propose a human-in-the-loop process to optimize the instruction used for generation, as shown in
Figure 7. To ensure clarity, we summarize this optimization process here:

• Step 1: Generate a set of queries from an initial instruction.

• Step 2: Collect automatic evaluation scores sauto by LLMs and human-label scores shuman by
human annotators for these queries (normalized to the same range).

• Step 3: Identify patterns of discrepancies between these scores.

• Step 4: Let the LLM analysis the identified patterns to generate new instructions,

The step 3 and 4 are conducted by prompting LLM with prompt specified in §E.3, and steps 1 to 4
are running iteratively to reducing sauto and shuman discrepancies. This process quite mimics the
way of reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022) and inherits the
benefit that labeling the reward of the LLMs’ output is much easier than labeling the output directly.

LLM Evaluator
(e.g., Naturalness, 

Relevance, Specificality)

Compare 𝑆!"#$
and 𝑆%"&!'
(explore errors)

Human Evaluation

Adapt
(Refine best instruction)

𝑆!"#$

𝑆%"&!'

new instruction

𝑆!"#$

Intial Instruction

Figure 7: Human-in-the-loop of query construction.

B.1.2 METRICS FOR GENERATED QUERIES

We consider five metrics to measure the quality of the generated queries: (1) Naturalness: assessing
how fluid and human-like the query sounds; (2) Relevance: measuring whether the query pertains
directly to the entity and the context provided; (3) Specificity: determining the level of detail and
granularity included in the query, ensuring it is not too broad or vague; (4) Novelty: evaluating the
uniqueness of the query, ensuring it is not just a repetitive or common question; (5) Actionability:
gauging whether the query prompts clear, definite answers or actions that are feasible within the
given context. Each of these angles contributes to a holistic evaluation of the query’s effectiveness
and relevance in real-world applications.
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B.1.3 VERIFYING HUMAN-IN-THE-LOOP

For the human-label scores shuman collection, we have three evaluators participating in the manual
assessment of query quality. All of the evaluators are computer science majors with fluent English
skills. As the evaluation centers on various linguistic metrics such as naturalness, relevance, specificity,
novelty, and actionability, we only require the evaluators to possess a fundamental understanding of
English without restricting their majors. We calculate the Pearson correlation coefficients between
human and LLM scores as shown in Table 3. It shows that as the rounds progress, agreement between
humans and LLMs increases, suggesting that iterative feedback improves alignment between human
annotation and LLM responses.

Metric Round 1 Round 2 Round 3 Round 4
Naturalness 0.60 0.65 0.69 0.74
Relevance 0.55 0.59 0.64 0.70
Specificity 0.46 0.54 0.60 0.65
Novelty 0.49 0.57 0.63 0.67
Actionability 0.33 0.41 0.48 0.53

Table 3: Pearson correlation coefficients between human and LLM scores across rounds.

In addition, we also consider verifying the inter-rater reliability across three evaluators as shown in
Table 4. We report the Cohen’s Kappa coefficient for each pair of evaluators as follows. Using the
(Landis & Koch, 1977) interpretation guidelines, the Cohen’s Kappa coefficients for Naturalness and
Relevance (ranging from 0.79 to 0.85) fall within the “Substantial” to “Almost Perfect” categories,
indicating strong inter-rater reliability for these metrics. This reflects a shared understanding of the
evaluation criteria, resulting in consistent ratings among evaluators. For Specificity, Novelty, and
Actionability, the coefficients range from 0.58 to 0.68, placing them primarily in the “Moderate”
to “Substantial” categories. These results suggest moderate reliability for these metrics, likely
due to subjective interpretation and less clearly defined evaluation guidelines. Novelty, with lower
coefficients around 0.61 to 0.63, highlights variability in ratings, suggesting that evaluators may
have differing perspectives on what qualifies as novel (but the inter-rater reliability is still considered
“Substantial”). Meanwhile, Actionability performs slightly better, nearing the “Substantial” range,
indicating moderately consistent criteria.

Metric Evaluator 1 & 2 Evaluator 1 & 3 Evaluator 2 & 3
Naturalness 0.85 0.83 0.84
Relevance 0.81 0.79 0.80
Specificity 0.65 0.63 0.66
Novelty 0.60 0.58 0.61
Actionability 0.67 0.65 0.68

Table 4: Cohen’s Kappa coefficient for various metrics.

B.2 PERSONALIZED PAGERANK (PPR)

In this section, we discuss the details of the PPR algorithm used in §3.1 to prune the graph from
DBPedia and concentrate on nodes most pertinent to the central nodes of interest. The PPR is
calculated using the iterative formula:

p = αA⊤p+ (1− α)s, (4)
where p ∈ Rn is the PPR vector representing the relevance scores of n nodes in the graph. α is
the damping factor controlling the probability of continuing the random walk versus restarting from
the personalization vector. A⊤ is the transpose of the column-normalized adjacency matrix A of
the graph, representing transition probabilities between nodes. s ∈ Rn is the personalization vector,
where we assign a value of 1 to the central nodes and 0 to all other nodes to emphasize their importance.
To ensure convergence and computational efficiency, we set a tolerance parameter tol = 1× 10−6

and a maximum iteration limit max_iter = 100. After computing the PPR vector p, we apply a
threshold of 1× 10−5 to prune the graph. Nodes with PPR scores below this threshold are considered
insignificant with respect to the central nodes and are thus removed. This process effectively filters
out less relevant nodes, resulting in a pruned graph that highlights the most significant relationships
and structures pertinent to our analysis.
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Setting Context Relevance Comprehensiveness Correctness Empowerment SAFE FActScore
OKGQA (subgraphs) 75.70%± 0.44% 71.51%± 0.83% 66.43%± 0.76% 69.60%± 0.65% 88.71%± 0.72% 70.12%± 0.87%
+ Multi-lingual context 75.14%± 0.33% 72.32%± 0.19% 66.72%± 0.74% 70.32%± 0.57% 90.32%± 0.48% 72.83%± 0.93%

Table 5: Comparison of GPT-4o-mini Performance Using Monolingual and Multilingual Subgraphs

B.3 PRIZE-COST-BASED PATH RETRIEVAL

In this section, we detail the path-retrieval method used in §4.2. It is designed to construct and
evaluate paths in a graph based on predefined prize assignments and cost allocations. The objective is
to form sequences of nodes and edges, represented as P = {v1, e1, v2, . . . , en−1, vn}, that maximize
the overall score and minimize the costs. To efficiently manage the exploration of potential paths,
we utilize a priority queue, a data structure that allows paths to be organized based on their scores,
ensuring that the highest-scoring paths are processed first. The method starts by picking a number
of starting nodes with high prizes. We then expand these starting points by exploring neighboring
nodes. For each neighbor, the method calculates a new score. This score is the sum of the neighbor’s
prize and the edge’s prize minus the edge’s cost. If this neighbor hasn’t been visited before, which
helps avoid looping, the algorithm adds this neighbor to the path. This new path is then added to
the priority queue. This expansion keeps going until the path reaches a maximum length or can’t be
extended further. The algorithm keeps track of paths already explored to avoid repetition and ensure
paths don’t loop back on themselves. When no more paths can be added or the priority queue is
empty, the algorithm sorts the paths by their scores from highest to lowest.

B.4 LLM EVALUATION CLARITY

To address the concern regarding potential self-enhancement bias in LLM-as-evaluator frameworks,
we have conducted extensive validation of our evaluation approach. In specific, we randomly sample
100 questions and evaluated them using three different LLMs (gpt-4o-mini, llama-3.1-8b-instruct,
and gemma-2-9b-it). We measured inter-model agreement using Cohen’s Kappa as shown in Table 6,
which showed substantial to almost perfect consistency. This indicates that the evaluation results are
consistent across different LLMs, even when the model generating the responses is not the same as the
one evaluating them (e.g., using gpt-4o-mini for generation and llama-3.1-8b-instruct for evaluation).
These findings confirm that the evaluation is robust and independent of the specific LLM used as the
evaluator.

Metric LLM 1 & 2 LLM 1 & 3 LLM 2 & 3

G-Eval 0.84 0.81 0.82
FactScore 0.78 0.74 0.78
SAFE 0.74 0.70 0.72

Table 6: Cohen’s Kappa coefficient for different LLM pair comparisons. For the G-Eval, we use the average
score of four sub-metrics for better readability. LLM 1: gpt-4o-mini; LLM 2: llama-3.1-8b-instruct; LLM 3:
gemma-2-9b-it)

In addition, we also collect human evaluations for these 100 samples. Three experts annotators rate
each anonymized response on context relevance, comprehensiveness, correctness and empowerment
using a 1-5 Likert scale. The average human ratings are computed and compared with automated
scores using G-Eval. The Pearson’s correlation yields a score of 0.78, indicating strong alignment be-
tween human judgment and LLM-based evaluation. Combined with the inter-model agreement shown
in Table 6, these results confirm that our evaluation is robust, consistent, and largely independent of
the specific LLM used as the evaluator.

B.5 KG SIMILARITY METRICS

In this section, we introduce the metrics used in §3 to measure the deviation of the perturbed KGs
from the original KG. These metrics are adapted from (Raman et al., 2020) as presented below. ATS
is mainly used to measure the semantic similarity between two KGs, while SC2D and SD2 are used
to measure the structural similarity.
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Aggregated Triple Score (ATS): ATS measures semantic similarity between two KGs. Let sG
be an edge (triple) scoring function, such that sG(e1, r, e2) measures how likely edge (e1, r, e2) is to
exist in G. Also, assume sG has been pre-trained on G for link prediction. Then, ATS is defined
as fATS(G,G

′
) = 1

|T ′ |

∑
(e1,r,e2)∈T ′ sG(e1, r, e2) ∈ [0, 1], which denotes the mean sG score across all

edges in G′. Intuitively, if a high percentage of edges in G′ are also likely to exist in G (i.e., high ATS),
then we say that G′ and G have high semantic similarity. sG is task-specific, as KGs from different
tasks may differ greatly in semantics. We use the sG from (Li et al., 2016); while ATS captures
semantic KG differences, it is not sensitive to KG connectivity structure. Note that fATS(G,G) may
not equal 1, since sG may not perfectly generalize to KGs beyond those it was trained on.

Similarity in Clustering Coefficient Distribution (SC2D): SC2D measures structural similarity
between two KGs and is derived from the local clustering coefficient (Saramäki et al., 2007; Onnela
et al., 2005; Fagiolo, 2007). For a given entity in G (treated here as undirected), the local clustering
coefficient is the fraction of possible triangles through the entity that exist (i.e., how tightly the
entity’s neighbors cluster around it). For entity ei ∈ E , the local clustering coefficient is defined as
ci = 2Tri(ei)/(deg(ei)(deg(ei)− 1)), where Tri(ei) is the number of triangles through ei, and deg(ei)
is the degree of ei. For each relation r ∈ R, let Gr be the subgraph of G consisting of all edges in T
with r . That is, Gr = (E , r, T

′
), where T

′
= {(e, r, e′) | e, e′∈E}. Let cr denote the |E|-dimensional

clustering coefficient vector for Gr, where the ith element of cr is ci. Then, the mean clustering
coefficient vectors for G and G′ are co = 1

|R|
∑

r∈R cr and cp = 1
|R′|

∑
r∈R′ c

r, respectively. SC2D is
defined as fSC2D(G,G

′
) = 1− ∥co−cp∥2

∥co−cp∥2+1
∈ [0, 1], with higher value indicating higher similarity.

Similarity in Degree Distribution (SD2): SD2 also measures structural similarity between two
KGs, while addressing SC2D’s ineffectiveness when the KGs’ entities have tiny local clustering
coefficients (e.g., the item KG used by recommender systems is roughly bipartite). In such cases,
SC2D is always close to one regardless of the perturbation method, thus rendering SC2D useless. Let
dr denote the |E|-dimensional degree vector for Gr, where the ith element of dr is deg(ei). Then, the
mean degree vectors for G and G′ are do = 1

|R|
∑

r∈R dr and dp = 1
|R′|

∑
r∈R′ d

r, respectively. SD2
is defined as fSD2(G,G

′
) = 1− ∥do−dp∥2

∥do−dp∥2+1
∈ [0, 1], with higher value indicating higher similarity.

C EXTENSION OF OKGQA

In this section, we extend our benchmark by incorporating multilingual context and validating our
query generation against DBpedia’s structure. We first introduce the multilingual setup of our dataset
anc compare the performance of multilingual subgraphs with the monolingual subgraphs (§C.1). We
then analyze the relationship between generated queries and DBpedia by examining query generation,
entity/relation coverage, and subgraph alignment (§C.2). We also compare OKGQA with the existing
widely used benchmarks in Table 7.

C.1 MULTILINGUAL SETUP OF OKGQA

KGs typically include entities and relations in multiple languages, providing a richer context that can
benefit our OKGQA setting. In this experiment, we investigate whether incorporating multilingual
context improves overall performance. Specifically, we randomly sample 300 queries from our
dataset and generate subgraphs that include multilingual entities and relations from DBpedia. We then
apply PPR consistent with our original method in §3.1 to reduce the KG size. For this multilingual
setting, we consider five languages—Greek, Polish, Portuguese, Spanish, and English—which cover
the majority of entities in DBpedia. We compare the performance of GPT-4o-mini using the new
multilingual subgraphs against the original monolingual subgraphs, as shown in Table 5. Our findings
indicate that including multilingual context generally leads to better performance across multiple
metrics. Intuitively, this additional multi-lingual context may provides more knowledge from different
perspectives (which could provide more context, but also may requires more techniques for handle
challenges like duplicates across languages) and also provide another way to validate the factuality of
the resources stored in the KGs (which can provide more authenticity through cross validation from
different languages).
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Dataset # Questions Question Type Focus Areas Source of Questions Knowledge Base Hallucination Detection Unreliable KG
OKGQA 850 / 2,050 Open-ended Evaluating hallucination and reasoning capabilities in LLMs

when augmented with Knowledge Graphs; diverse queries re-
quiring complex reasoning

Curated DBPedia ✓ ✓

WebQuestions 5,810 Factoid Questions derived from Google Suggest queries, focusing on
simple factual information

User queries Freebase ✗ ✗

ComplexWebQuestions 34,689 Multi-hop Factoid Extends WebQuestions with more complex, multi-hop questions
requiring compositional reasoning

User queries Freebase ✗ ✗

GrailQA 64,331 Varied Factoid Evaluates generalization in KBQA with questions requiring dif-
ferent levels of reasoning

Crowdsourced Freebase ✗ ✗

Table 7: Comparison of OKGQA with existing benchmarks along with their question types, focus areas, and
additional properties.

C.2 GENERATED QUERY-DBPEDIA ALIGNMENT

We analyze the alignment between our generated queries and DBpedia along three dimensions: query
generation, entity/relation coverage, and subgraph alignment as follows:

Query Generation: Each query is directly generated from DBpedia entities and their relationships.
For example, when asking about Microsoft’s founder, we first confirm that both “Microsoft” and
“Bill Gates” exist in DBpedia and are connected by the founded_by relation, ensuring that our
queries are firmly grounded in the knowledge graph.

Entity and Relation Coverage: Our analysis indicates that:

• 92% entities mentioned in the queries can be detected from DBpedia entities.
• 87% queries have complete relation paths connecting the relevant entities from DBPedia.
• Entities/relations mentioned in queries cover 72% of DBpedia’s most common entities/predicates

and span diverse entity types (e.g., Person, Organization, and Event).

Subgraph Alignment: We evaluate the structure of the sampled subgraphs for each query and find
that:

• 75% of the queries retrieve subgraphs within 3–4 hops, which aligns with the typical depth for
DBpedia reasoning tasks.

• On average, each subgraph contains 48 nodes and 152 edges, with an average node degree of 3.17
and a clustering coefficient of 0.69, which also aligns with the property of DBPedia.

These statistics support that our dataset accurately reflects DBpedia’s structure, ensuring both authen-
ticity and complexity in the generated queries.

D RELATED WORK

Due to the stochastic decoding process of Large Language Models (LLMs), i.e., sampling the next
token in the sequence, LLMs exhibit probabilistic behaviors: (1) potentially yielding varied outputs
of the same input across different instances (Agrawal et al., 2023); (2) cannot accurately interpret
phrases or terms when the context is vague and resides in a knowledge gap of the model. This will
lead to outputs that may sound plausible but are often irrelevant or incorrect. This will lead to outputs
that may sound plausible but are often irrelevant or incorrect. This “hallucinations” undermines the
reliability of LLMs (Huang et al., 2023). One emerging research trend is enhancing LLMs through
integrating external knowledge graphs (Agrawal et al., 2023). KGs offer structured, explicit, and
up-to-date factual knowledge, including domain-specific knowledge, providing a faithful knowledge
source for reasoning (Zheng et al., 2023; Agrawal et al., 2023; Sui et al., 2022). Moreover, each
piece of information in KGs can be traced back to its source, providing context and provenance.
This traceability not only aids in verifying the reliability of the information but also provides clear
pathways of reasoning, making the interpretation process transparent.

Researchers employ diverse strategies to augment the LLMs by integrating external KGs (Sui et al.,
2024; He et al., 2024b). For example, KAPING (Baek et al., 2023b) matches entities in questions to
retrieve related triples from knowledge graphs for zero-shot question answering. Wu et al. (2023)
finds that converting these triples into textualized statements can further enhance LLM performance.
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StructGPT (Jiang et al., 2023b) propose to convert user query into structured formats (e.g., SPARQL)
for information extraction from KGs. Following the succuess of internal reasoning-enhancement
methods like Chain-of-thoughts (CoT) (Wei et al., 2022), Reflexion (Shinn et al., 2024), and Tree-of-
thoughts (ToT), He et al. (2022) propose “rethinking with retrieval” to use decomposed reasoning
steps from CoT prompting to retrieve external knowledge, leading to more accurate and faithful
explanations. IR-CoT (Trivedi et al., 2022b) interleaves the generation of CoT with knowledge
retrieval from corresponding KGs, iteratively guiding both retrieval and reasoning for multi-step
questions. MindMap (Wen et al., 2023) introduce a plug-and-play approach to evoke graph-of-
thoughts reasoning in LLMs. Similarly, RoG (Luo et al., 2023b) use KGs to create faithful reasoning
paths based on various relations, enabling interpretable reasoning in LLMs.

However, current benchmarks for testing the capabilities of these LLM+KG models are predominantly
closed-ended, restricting responses to a limited set of entities/relations or a set of logical forms derived
from specific facts of KG. Hence, they can only test a very limited subset of the LLM’s tendency
to hallucinate, leaving a gap in the assessment of complex, real-world scenarios. Particularly,
standard metrics such as FActScore (Min et al., 2023) and SAFE (Wei et al., 2024) for evaluating the
hallucination rate of LLMs require open-ended settings, i.e., questions are phrased as a statement
which requires a longer answer. Compared with previous works, our proposed OKGQA is tailored
for evaluating LLMs enhanced with KGs under open-ended, real-world question-answering scenarios.
The benchmark extends the assessment of closed-ended question answering to an open-ended setting,
which can further support the assessment of hallucination of LLMs.

E PROMPT LIST

In this section, we present all the prompts required for the main experiments. To enhance clarity,
we provide only one example in the prompt labeled as Example 1; the other few-shot examples
utilized are labeled as Other In-Context Few-shots within the prompt.

E.1 KNOWLEDGE-AUGMENTED GENERATION

System Instruction: “You are a helpful assistant designed to answer the users’ open-ended questions.
Your task is to provide accurate, concise, and useful information to foster understanding and solve
problems. Whether the questions relate to complex scientific concepts, historical events, practical
advice, or everyday life, your goal is to assist by offering thoughtful and informative responses.”

In-Context Few-shots

Question: {Question}

Below are the facts that might be relevant to answer the question: {Retrieved-knowledge}

Answer:

E.2 OKGQA QUERY GENERATION PROMPTING

System Instruction: “Generate open-ended questions about different types: character description,
event description, cause explanation, relationship explanation, trend prediction, outcome prediction,
contrast analysis, historical comparison, evaluation and reflection, and application and practice. Please
provide specific suggestions. Generate the questions, the type of the questions, the placeholders, the
naturalness of your generated questions (choose from high, medium, and unnatural), the difficulty
of the generated questions (choose from hard, medium and easy) and DBPedia_entities (link the
placeholders to DBPedia entities) in JSON format.”

Example 1: as shown in Figure 8.

Other In-Context Few-shots

Generation:
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Figure 8: Example 1 Demonstration.

E.3 PROMPTS FOR INSTRUCTION TUNER

Act as an “Instruction Tuner” for the LLM, you will be given the inputs: (1) the {Current Instruction}
used to guide the LLMs’s evaluation, including specific examples with ground truth labels; (2)
{Current Errors} that emerged with this instruction are applied to the dataset.

The current errors are presented in the following format: (1) INPUT: {input text} (2) PREDICTED
OUTPUT: {predicted label}, (3) EXPECTED OUTPUT: {ground truth label}. Carefully analyze
these errors and craft a revised concise instruction for the LLM to fit the expected outputs. Include
2-3 examples at the end of your response to demonstrate how the new instruction would be applied.

E.4 METRICS PROMPT FOR G-EVAL

System Instruction: “You are a helpful assistant designed to evaluate the quality of the response to a
query. Your task is to rate the response on one metric defined as below:”

Empowerment Criteria: Evaluate whether the “Actual Output” can help the reader understand
the topic and make informed decisions regarding the “Input”. A response with high empowerment
provides accurate information and explanations that enhance the reader’s understanding. When
evaluating empowerment, consider the relevance of the information provided in the “Actual Output”
to the “Input” and the “Retrieval Context”.

Comprehensiveness Criteria: Evaluate the extent to which the “Actual Output” covers all
aspects and details of the question “Input”. A comprehensive answer should thoroughly address every
part of the question, leaving no important points unaddressed. When evaluating comprehensiveness,
consider the relevance of the information provided in the “Actual Output” to the “Input” and the
“Retrieval Context”.

Correctness Criteria: Measure how clearly and specifically the “Actual output” responds to
the question “input”. A highly direct response stays focused on the question, providing clear and
unambiguous information. When evaluating correctness, consider the relevance of the information
provided in the “Actual Output” to the “Input” and the “Retrieval Context”.

Context Relevance Criteria: Evaluate the extent to which the “Actual output” incorpo-
rates relevant information from the “Retrieval Context”. This includes assessing whether the output
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adheres to the thematic, factual, and situational specifics presented in the “Retrieval Context”. Rele-
vant responses not only address the direct query but also align closely with the contextual elements
provided, ensuring a seamless and coherent transition between the “Retrieval Context” and the “Actual
Output”. The most contextually relevant responses demonstrate an understanding and appropriate
reflection of the given circumstances, historical facts, or conceptual background, thereby contributing
to the overall accuracy and utility of the information provided.

Response: [Respond with metric and the corresponding score.]
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