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Figure 1: We reveal that the seed number impacts various visual elements in text-to-image generation.

Abstract
Recent text-to-image diffusion models have facilitated creative and photorealistic
image synthesis. By varying the random seed, we can generate many images for a
fixed text prompt. The seed controls the initial noise and, in multi-step diffusion
inference, the noise used for reparameterization at intermediate timesteps in the
reverse diffusion process. However, the impact of the seed on the generated images
remains relatively unexplored. We conduct a scientific study into the influence of
seeds during diffusion inference on interpretable visual dimensions and, moreover,
demonstrate improved image generation. Our analyses highlight the importance of
selecting good seeds and offer practical utility for image generation.

1 Introduction
Text-to-Image (T2I) diffusion models [2, 3, 5, 22, 24, 25, 39] have advanced image synthesis
significantly, enabling the creation of photorealistic, high-resolution images. However, their training
requires substantial computational resources, limiting such research to a few well-equipped labs.
Despite these limitations, many studies have enhanced image generation during inference by feature
re-weighting [30], gradient-based guidance [8, 29, 34], or integration with multimodal LLMs [4, 38].

We propose an inference technique to enhance image generation by exploring ‘secret seeds’ in the
reverse diffusion process. Inspired by research like Torch.manual_seed(3407) [23], which revealed
that well-chosen neural network initialization seeds can outperform poorly chosen ones in image
classification, we investigate whether ‘golden’ or ‘inferior’ seeds similarly impact image quality in
T2I diffusion inference. Using the pretrained T2I model Stable Diffusion (SD) 2.0 [25] across 1,024
seeds, we discovered that the best ‘golden’ seed achieved an FID [12, 27] of 21.60, whereas the worst
‘inferior’ seed only reached an FID of 31.97—a significant difference within the community. This
finding sparked our curiosity to understand several scientific questions: What does the seed control in
T2I diffusion inference? Can seeds be distinguished by the images they generate? Do they control
interpretable image dimensions, and if so, how can this be leveraged to enhance image generation?

2 Understanding Diffusion Seeds
2.1 What do seeds control in the reverse diffusion process?
Random seeds play different roles in deep learning depending on the context. During deep network
training, they often influence the initialization of neural network weights, data scheduling, augmenta-
tion strategies, and stochastic regularization techniques such as dropout [33]. We aim to understand
what the seeds control in the reverse diffusion process and during diffusion inference.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



xT xT-1 xt

ReparameterizeReparameterize

N(0, 1) N(0, 1)

Diffusion
U-Net

Diffusion
U-Net

… …

0 10 0 1 0 1

1 01 01 01

Swap Seed During Reverse Diffusion
Seed control control

control

No swap Early timestep Mid timestep Late timestep

Figure 2: Left: Overview of how the seed controls the initial noise xT and intermediate xt via the
sampled noise in multi-step diffusion inference. Right: We swap the seed number at early, mid, and
late timesteps of the reverse diffusion process, showing an example with seeds 0 and 1. Interestingly,
the seed mostly influences the initial noisy latent, rather than intermediate timesteps.
We focus on latent diffusion models as described by Rombach et al. [25], although the same principles
apply to pixel diffusion models. Theoretically, in the traditional multi-step reverse diffusion process,
both the initial noisy latent variables and the noise used for reparameterization [14] at each timestep
are sampled from a Gaussian distribution, introducing randomness. We visualize this process on the
left side of Figure 2. At the implementation level, we confirmed that random seeds are used as inputs
to compute these variables [36]. In a distilled one-step diffusion model, such as SDXL Turbo [26],
the random seeds only determine the initial noisy latent, as there are no intermediate denoising steps.

In multi-step diffusion inference, seeds determine both the initial latent variables and the reparameter-
ization noise at each timestep. To understand the separate impacts of the initial latent configuration
and the reparameterization step on the generated images, we conducted a simple "seed swap" study
shown on the right side of Figure 2 using the DDIM scheduler [32] with 40 inference steps. In our
study, we first set the seed to i and begin the reverse diffusion process. Then, at an intermediate
timestep, we change the seed to j and complete the image generation process. We explore using
seeds 0 and 1 for both i and j, as well as swapping the seed at early, mid, and late timesteps of the
reverse diffusion process. Despite these variations, we found that the initial noisy latent significantly
controls the generated content, while the random noise introduced at intermediate reparameterization
steps has no visible impact on the generated images, as shown on the right side of Figure 2.

2.2 Data Generation
To conduct a large-scale seed analysis, we gather prompts for text-to-image generation that capture a
broad spectrum of natural visual content. We sample 20,000 images from the MS-COCO 2017 train
set [19] and generate dense captions using LLaVA 1.5 [20]. For each prompt, we sample 1,024 seeds
ranging from 0 to 1,023 and generate images using two models: SD 2.0 [25] and SDXL Turbo [26].

2.3 How discriminative are seeds based on their generated images?
Seed 0 Seed 4

“… a table 
with a variety 
of decorative 

items …”

Seed 1 Seed 2 Seed 3

“… close-up of 
an orange 

tabby cat …”

“… a sandwich 
with banana 

slices …”

Figure 3: Grad-CAM [11, 28] of our classifier
trained to predict the seed used to create an image.

We train a 1,024-way classifier to predict the
seed number used to produce a given image,
employing 9,000 training, 1,000 validation, and
1,000 test images per seed. Remarkably, seeds
are highly differentiable based on their images.
After only six epochs, our classifier trained on
images from SD 2.0 [25] achieved a test accu-
racy of 99.99%, and the classifier trained on
images from SDXL Turbo [26] reached a test
accuracy of 99.96%. However, it is unclear what makes seeds discernible, as the Grad-CAM [11, 28]
visualization in Figure 3 is not easily interpretable. These findings suggest that seeds may encode
unique visual features, prompting us to explore their impact across several interpretable dimensions.

2.4 Impact of Seeds on Interpretable Visual Dimensions
Image Quality. To assess the image quality related to each of 1,024 seeds, we chose 10,000 prompts
and their corresponding generated images, and then computed the FID score [12, 27] against 10,000
real MS-COCO images [19]. Surprisingly, we observed a major difference in FID between the best
and worst seeds. The ‘golden’ seed 469 for SD 2.0 achieved a low FID of 21.60, while the ‘inferior’
seed 696 scored 31.97—a disparity considered significant within the community.

Next, we determine whether the seed rankings are generalizable across prompts. In Figure 4, we plot
the ranked seeds for FID using images from SD 2.0 and SDXL Turbo generated by distinct sets of
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10,000 prompts, and we reveal a high degree of overlap between the seed patterns. This consistency
underpins our proposed enhancements to inference strategies detailed in Sections 3.1 and 3.2.

Figure 4: We sort seeds by FID [12] using 10,000 images in Prompt Set 1, and then display the FID
for the same seeds using another 10,000 images in Prompt Set 2. Lower FID indicates better quality.

Image Style. We study whether specific seeds produce unique style patterns across prompts. Drawing
on established methods in image texture and style transfer [9, 10], we compute style representations
by extracting the Gram matrix — which measures pairwise cosine similarity across channels — from
a pretrained deep network [31] at multiple layers. After reshaping the Gram matrix and reducing
its dimensionality [1, 35], we have a compact 2D vector for each image that captures its style. For
N = 1024 seeds and P prompts, this results in a feature dimension of N × (2 × P ), combining
the style representation across the generated images for each seed. We further reduce [1, 35] this
aggregated style representation per seed from N × (2× P ) to N × 2. Finally, a subset of seeds are
visualized in Figure 5, providing a clear visual representation of style clustering at the seed level.

… a group of elephants … … two people playing frisbee … … people having dinner …

Grayscale Grayscale Grayscale 

… a man playing baseball … … an elephant across the street … … building with clock …

Sky Sky Sky

Figure 5: Style embedding clustering across various prompts, with each position corresponding to a
unique seed. Certain seeds tend to generate grayscale images for SD 2.0 (top), while others frequently
produce images with ‘white sky’ regions for SDXL Turbo (bottom). Please zoom-in to check.

In Figure 5, certain seed groups consistently generate grayscale images irrespective of the prompt,
and some seeds tend to produce images with prominent sky regions. Furthermore, in Figure 6, a select
group of seeds often generates images with a ‘border’ near the edges. These findings demonstrate
that individual seeds exhibit distinct tendencies in style generation across prompts.

Seed 0 Seed 1 Seed 4 Seed 16 Seed 50 Seed 154 Seed 156

“… close-up 
view of a 

green apple …”

“… two zebras 
standing on 
a lush green 
hillside …”

Figure 6: We observe that certain seeds produce a "border" around the image for SD 2.0.
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“… a blue city bus 
driving down a street, 
with a tall building 

in the background …”

Random Seeds Particle Guidance Ours

“a sleek sheep”

Figure 7: We show that simply generating images using "diverse" seeds can promote style variation.

3 Practical Applications
3.1 High-Fidelity Inference
In Section 2.4, we observed that ‘golden’ seeds tend to generate images with significantly better
quality. This inspires us to think—how much can we improve the image quality compared to random
generations by simply leveraging these ‘golden’ seeds? Specifically, we identified 65 ‘golden’ seeds
for SD 2.0 that excel in image quality and evaluated their performance relative to random seeds by
generating images using SD 2.0 with a different set of 10,000 prompts. Our ‘golden’ seeds achieved
a lower FID score of 19.05 ± 0.06 compared to 19.33 ± 0.21 with random seeds across three trials.

3.2 Controllable Diversity in Style
A typical image generation interface presents the user with four samples per prompt. Moreover, prior
methods encourage the diversity of generated images using primarily gradient-based methods, such
as Particle Guidance [7]. In Section 2.4, our results highlight that the seed has a strong influence on
image style. Thus, can we obtain more diverse images in style by merely sampling ‘diverse’ seeds?

To select C = 4 diverse seeds, we represent each seed by a feature vector f capturing its style, as
discussed in Section 2.4. We then employ farthest point sampling using these features. We randomly
pick the first seed s0 ∼ U{0, 1023} and iteratively select the next three seeds to maximize the
distance in feature space from the already selected seeds, where S is our set of diverse seeds.

si = argmax
s/∈S

min
s′∈S

∥f(s)− f(s′)∥, for i = 1, . . . , C − 1 (1)

To evaluate whether our well-chosen seeds improve diversity over random seeds and Particle Guidance
[7], we calculate the similarity between the C images synthesized from a different set of P = 500
prompts. We measure the pairwise cosine similarity of image features and average the similarity
scores across prompts. Intuitively, a lower pairwise similarity score means higher diversity.

Style Similarity =
1

P

P∑
i=1

 1(
C
2

) C∑
j=1

C∑
k=j+1

cos(fij , fik)

 (2)

In Table 1, we observe that our diverse seeds outperform random seeds and Particle Guidance [7] in
generating images with varying styles. Additionally, we show visual comparisons in Figure 7.

Table 1: We compare the diversity in style of images generated using our diverse seeds, Particle
Guidance [7], and random seeds. Lower style similarity scores indicate more diverse generations. We
display the mean and standard deviation based on three trials.

Style Similarity for SD 2.0 (↓) Style Similarity for SDXL Turbo (↓)
Random Seeds 0.981 ± 0.001 0.993 ± 0.000
Particle Guidance 0.980 ± 0.000 —
Our Diverse Seeds 0.970 ± 0.000 0.984 ± 0.000

4 Conclusion
In this work, we investigated the role of "random" seeds in the reverse diffusion process, exploring
their differentiability based on generated images and their impact on interpretable visual dimensions.
Notably, our 1,024-way classifier trained to predict the seed number for a generated image achieved
over 99.9% test accuracy in just a few epochs. Encouraged by this finding, we identified ‘golden’
seeds that produce images with better visual quality and discovered that certain seeds create ‘grayscale’
images or add borders. Our analyses aid in enhancing image synthesis during inference without
significant computational overhead by merely sampling these special seeds.
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A Data Generation
In Section 2.2, we employed pretrained model checkpoints and implementations from the Hugging
Face diffusers library [36]. We used Stable Diffusion 2.0 ("stabilityai/stable-diffusion-2-base") with a
DDIM scheduler, and SDXL Turbo ("stabilityai/sdxl-turbo"). Furthermore, our 1,024 seeds range
from 0 to 1,023 inclusive, and we use torch.Generator("cuda").manual_seed(seed)
to assign the seed used by the model. Figure 8 showcases our various text prompts.

Additionally, in Section C, we investigate whether seeds influence the image layout, such as the main
subject’s scale, location, and depth. To enable a more controlled scientific study, we create a set of
880 prompts by pairing 40 object categories with 22 modifiers in the format "a [modifier] [object
category]". These modifiers include 21 adjectives and the empty string.

• Adjectives: big, small, red, blue, pale, dark, transparent, shiny, dull, rustic, smooth, rough,
bright, muted, round, simple, elegant, antique, monochrome, intricate, sleek

• Object categories: bicycle, car, motorcycle, airplane, bus, truck, boat, fire hydrant, bench,
bird, cat, dog, horse, sheep, cow, elephant, zebra, giraffe, backpack, umbrella, suitcase,
sports ball, skateboard, surfboard, tennis racket, fork, knife, spoon, bowl, apple, pizza, donut,
cake, chair, couch, laptop, cell phone, clock, vase, teddy bear

Lastly, going beyond text-to-image applications, our studies on image inpainting in Section D reveal
that some seeds consistently generate ‘text artifacts’ instead of completing pixels, indicating that one
could improve inpainting quality by using seeds that minimize these artifacts. We curated 500 pairs
of images and masks for object removal and object completion applications, where the mask typically
covers an object in the original image. In particular, for the object removal use case, we employed
images and annotations from the Open Images dataset [15, 16], and we used "clear background"
as the text prompt. To create the inpainting mask, we dilated the instance segmentation mask to
ensure coverage of the object. Additionally, for the object completion use case, we sampled images
from the MS-COCO dataset [19] and used InstaOrder [17] to determine occlusion relationships to
create inpainting masks. We used the category of the object to complete as the text prompt. For these
inpainting cases, we used the SD 2.0 inpainting model ("stabilityai/stable-diffusion-2-inpainting").

• The image depicts a group of people gathered around a 
dining table, enjoying a meal together. The table is 
filled with various food items, including a plate of 
pastries, a bowl of doughnuts, and a bowl of fruit. 
There are also several cups and a bottle on the table, 
indicating that the guests are drinking beverages. In 
addition to the food and drinks, there are a couple of 
spoons placed on the table, possibly for serving the 
dishes. The people are seated on chairs surrounding the 
table, engaged in conversation and enjoying the 
company of one another.

• …

• air
• fire
• a fire hydrant
• a wooden posta photograph of a squirrel holding an arrow 

above its head and holding a longbow in its left hand
• An empty fireplace with a television above it. The TV shows a 

lion hugging a giraffe.
• an invisible man wearing horn-rimmed glasses and a pearl 

bead necklase while looking at his phone
• Portrait of a gecko wearing a train conductor’s hat and 

holding a flag that has a yin-yang symbol on it. Woodcut.
• …

• A red truck
• A wooden truck
• A rough truck
• A shiny truck
• …
• A dark bench
• A round bench
• A wooden bench
• A intricate bench
• ….

LLaVA Dense Caption on MS-COCO Images PartiBenchmark Synthetic Prompt

Figure 8: A visualization of three different types of text prompts used in our study.

B Classifier for Predicting Seed Number
We trained a lightweight transformer, EfficientFormer-L3 [18], to predict the seed used to generate an
image. For our 1,024-way classification task, we utilized 9,000 training, 1,000 validation, and 1,000
test images per seed as mentioned in Section 2.3. The prompts for these images are dense captions by
LLaVA 1.5 [20]. Moreover, we set a batch size of 128 and train for six epochs, which obtains a model
checkpoint with over 99.9% validation and test accuracy. Our classifier uses the AdamW optimizer
[21] with learning rate 0.0002 and weight decay 0.05. We apply data augmentations during training,
which include resizing each image to have a shorter edge of size 224 using bicubic interpolation,
center cropping the image to size 224 × 224, and randomly flipping the image horizontally with
probability 0.5. During validation and testing, we only resize and center crop the images.

C Image Composition
Moving beyond style, we examine whether seeds create distinctive image compositions, such as
consistent object locations and sizes. We generate images using 880 synthetic prompts consisting
of 40 object categories paired with 22 modifiers, which includes adjectives and the empty string.
For each image, we segment [6] the object and compute an image composition feature vector that
contains the object’s centroid (x, y) coordinates, size, and depth [37] relative to the image. On the
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left side of Figure 9, we visualize the distribution of the object mask’s centroid for the category
"horse." Remarkably, the object’s position stays relatively the same despite slight prompt alterations.
On the right side of Figure 9, we observe an analogous pattern in the object’s size and depth for the
category "bowl." Overall, we observe that the location, size, and depth of generated objects are largely
dependent on the specific seed used, consistent across the same object categories and irrespective of
the text modifiers in the prompts.

Seed 147

pale round simple

Seed 60

big small elegant

Seed 19

pale round simple

Seed 403

big small elegant

Seed 213

pale round simple

Seed 326

big small elegant

Seed 502

big small elegant

Seed 485

pale round simple

Figure 9: We observe that seeds produce images with unique and consistent compositions for a given
object category. Each data point represents a seed. For each seed, we combine image composition
features from 22 prompts with slight variations like "a pale bowl" and "a round bowl." Then, we
apply dimensionality reduction [1, 35] for visualization. Left: Distribution of object centroid (x, y)
coordinates. Right: Distribution of object depth and size relative to the image.

Controllable Diversity in Composition. Following our approach in Section 3.2, we explore whether
we can generate more diverse images in composition by sampling ‘diverse’ seeds. We employ
P = 440 prompts and C = 4 images per prompt, but it’s important to note that if no objects are
detected in an image, then the image is not used to compute similarity. In Table 2, we observe that our
diverse seeds outperform random seeds and Particle Guidance [7] in generating images with varying
compositions for SD 2.0. Interestingly, our well-chosen seeds aid in diversifying image composition
for SD 2.0 but not for SDXL Turbo. We show visual comparisons in Figure 10.

Table 2: We compare the diversity in composition of images generated using our diverse seeds,
Particle Guidance [7], and random seeds. Lower composition similarity scores indicate more diverse
generations. We display the mean and standard deviation based on three trials.

Composition Similarity for SD 2.0 (↓) Composition Similarity for SDXL Turbo (↓)
Random Seeds 0.971 ± 0.001 0.988 ± 0.000
Particle Guidance 0.972 ± 0.000 —
Our Diverse Seeds 0.961 ± 0.001 0.988 ± 0.000

“… a blue city bus 
driving down a street, 
with a tall building 

in the background …”

Random Seeds Particle Guidance Ours

“a sleek sheep”

Figure 10: We show that simply generating images using "diverse" seeds can promote layout variation.
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Original Seed 493 Seed 34 Seed 645 Seed 797 Seed 646 Seed 996 Seed 595 Seed 857

0.50% 0.69% 0.93% 0.96% 5.82% 5.86% 5.95% 6.06%

Original Seed 900 Seed 742 Seed 762 Seed 661 Seed 135 Seed 996 Seed 479 Seed 272

0.07% 0.14% 0.16% 0.17% 1.78% 1.81% 1.95% 2.02%

Figure 11: We discover that certain seeds tend to insert unwanted text within the inpainting region,
outlined in pink. Top: We aim to remove the object using the prompt "clear background." Bottom:
We attempt to complete the object using a prompt that specifies the object category.

D Improved Text-based Inpainting
In Sections 3.1 and 3.2, we demonstrated that carefully selecting the seed provides a straightforward,
training-free approach to enhance the visual quality, human preference, and diversity of images
generated by text-to-image diffusion models. But, the potential of image generation extends beyond
text-to-image applications. This poses an intriguing question—can we also uncover ‘golden’ seeds
for text-based image inpainting tasks, such as object removal and object completion?

We gathered 500 pairs of images and inpainting masks for the object removal and object completion
applications. We employed the text prompt "clear background" for the removal case, and we used a
prompt corresponding to the original object category for the completion case. We then generated
images using a text-based diffusion inpainting model. We observed that some images contain
unwanted text in the inpainting region that often mimics the prompt. To quantify the presence of text,
we applied optical character recognition [13] and calculated the average proportion of text artifacts
within the inpainting mask across all images from each seed. As illustrated in Figure 11, certain seeds
are prone to inserting text in both removal and completion scenarios.

E Additional Qualitative Results
As illustrated in Figure 12, the top and bottom three seeds according to FID indeed reveal that
the highest-rated seeds produce images that are more visually pleasing. Moreover, we show extra
examples of seeds that often produce a ‘border’ around images in Figure 13, and we provide more
visualizations of the Grad-CAM from our classifier that predicts seed number in Figure 14. Lastly, we
present additional examples of good seeds and seeds that generate "text artifacts" for object removal
and completion applications in Figures 15 and 16, respectively.

“The image features two ducks 
sitting on a wooden fence or 

railing. The ducks are positioned 
close to each other, with one 

duck slightly behind the other …”

“The image features a young girl 
sitting in a pink lawn chair on a 

wooden deck. She is wearing a 
white dress and is positioned 

under a large pink umbrella …”

Seed 469 Seed 709 Seed 309 Seed 154 Seed 325 Seed 696

Figure 12: We compare the top three best and worst seeds for SD 2.0 using FID [12].
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Figure 13: Additional examples of seeds that tend to generate a ‘border’ near the image boundaries.

Figure 14: Additional Grad-CAM [11, 28] visualizations for our classifier trained to predict the seed
number for an image. It is difficult to interpret what makes seeds easily distinguishable by looking at
these visualizations, prompting us to study the impact of seeds across interpretable dimensions.

Figure 15: Additional examples of the four best seeds and four worst seeds in terms of how much
unwanted text artifacts are inserted during object removal.
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Figure 16: Additional examples of the four best seeds and four worst seeds in terms of how much
unwanted text artifacts are inserted during object completion.
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