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Abstract001

Multi-agent collaboration has emerged as a002
pivotal paradigm for addressing complex, dis-003
tributed tasks in large language model (LLM)-004
driven applications. While prior research005
has focused on high-level architectural frame-006
works, the granular mechanisms governing007
agents, critical to performance and scalabil-008
ity, remain underexplored. This study system-009
atically investigates four dimensions of col-010
laboration strategies: (1) agent governance,011
(2) participation control, (3) interaction dy-012
namics, and (4) dialogue history management.013
Through rigorous experimentation under two014
context-dependent scenarios—Distributed Ev-015
idence Integration (DEI) and Structured Evi-016
dence Synthesis (SES)—we quantify the im-017
pact of these strategies on both task accuracy018
and computational efficiency. Our findings re-019
veal that centralized governance, instructor-led020
participation, ordered interaction patterns, and021
instructor-curated context summarization col-022
lectively optimize the trade-off between deci-023
sion quality and resource utilization with the024
support of the proposed Token-Accuracy Ratio025
(TAR). This work establishes a foundation for026
designing adaptive, scalable multi-agent sys-027
tems, shifting the focus from structural novelty028
to strategic interaction mechanics.029

1 Introduction030

The advent of large language models (LLMs) (Tou-031

vron et al., 2023; OpenAI, 2022; Anthropic, 2025;032

Zeng et al., 2023) has catalyzed transformative033

advances in autonomous reasoning and decision-034

making, enabling multi-agent systems (Chan et al.,035

2024; Chen et al., 2024; Zhuge et al., 2024; Du036

et al., 2024b) to tackle tasks that exceed the cogni-037

tive or functional limits of individual agents. Such038

systems are increasingly deployed in domains rang-039

ing from healthcare diagnostics (Kim et al., 2024)040

to scientific discovery (Su et al., 2024), where041

collaborative synthesis of specialized expertise is042

paramount. However, as system complexity scales, 043

a critical gap persists: existing frameworks prior- 044

itize structural architectures and role assignments 045

but neglect the granular mechanics of agent col- 046

laboration: how agents dynamically interact, share 047

context, and reach consensus. 048

Current approaches often assume rigid pipeline 049

workflows, where agents sequentially process sub- 050

tasks. While effective for linear workflows, this 051

paradigm fails to capture the nuanced delibera- 052

tion of human teams, where domain experts iter- 053

atively refine decisions despite individual compe- 054

tence. Key questions remain unanswered, “who 055

speaks, when, to whom, and with what context?”, 056

which includes: (a) How should agents govern their 057

interactions? (b) When and to whom should they 058

communicate? (c) How can contextual depth be 059

balanced against computational costs? 060

In this study, we address these gaps by formaliz- 061

ing four dimensions of multi-agent collaboration: 062

(1) Governance. Centralized systems use an 063

instructor agent to coordinate interactions, ensur- 064

ing decision-making. Decentralized systems allow 065

agents to self-organize, promoting autonomy but 066

risking coordination challenges. 067

(2) Participation in Discussion Rounds. Full 068

participation involves all agents in every round. Se- 069

lective participation engages only relevant agents, 070

optimizing efficiency but limiting perspectives. 071

(3) Interaction Patterns Among Agents. Agents 072

may broadcast to all, target specific peers, or follow 073

specific turns. These patterns influence information 074

clarity, relevance, and the speed of consensus. 075

(4) Context Management in Discussions. Sys- 076

tems either retain full dialogue history for depth or 077

use summarization for efficiency, balancing situa- 078

tional awareness with computational cost. 079

We evaluate these strategies through extensive 080

experiments under two context-dependent scenar- 081

ios: Distributed Evidence Integration (DEI) and 082

Structured Evidence Synthesis (SES). Our results 083
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Figure 1: Illustration of collaboration strategies of multi-agent systems, including (a) Governance, (b) Participation
in Discussion Rounds, (c) Interaction Patterns Among Agents, and (d) Context Management in Discussions.

demonstrate that centralized governance, coupled084

with instructor-led participation and context man-085

agement, reduces token costs by up to 93.0% while086

maintaining even better accuracy. Conversely, de-087

centralized systems exhibit higher variance and088

computational inefficiency, particularly in SES,089

where misaligned agents degrade performance.090

The introduced Token-Accuracy Ratio (TAR) fur-091

ther quantifies the trade-offs, guiding practitioners092

toward resource-efficient configurations. By bridg-093

ing the gap between high-level architectural de-094

sign and low-level interaction mechanics, this work095

advances the development of adaptive, context-096

dependent multi-agent systems. It underscores097

the necessity of strategic collaboration protocols in098

scaling LLM-based applications, offering action-099

able guidelines for future research in dynamic and100

real-world environments.101

2 Related Works102

2.1 Multi-Agent Collaboration103

In real life, structured collectives of human individ-104

uals often demonstrate the ability to perform tasks105

more efficiently and effectively through collabora-106

tion. Drawing on this observation, AI researchers107

explore the potential of multi-agent systems (Stone108

and Veloso, 2000) to improve task performance by109

enabling agents to work together in coordinated110

ways. Recently, prior research has explored struc- 111

tures where agents interact sequentially to refine 112

outputs. Frameworks like Chen et al. (2024) simu- 113

late sequential agent interactions to study emergent 114

behaviors, while Chan et al. (2024) and Du et al. 115

(2024a) employ debate-style sequences to enhance 116

reasoning and factuality. Qian et al. (2025) scales 117

such systems by optimizing turn-taking workflows 118

for distributed tasks, and Zhuge et al. (2024) dy- 119

namically adjusts interaction graphs to balance se- 120

quential and parallel execution. These works high- 121

light the benefits of collaboration but often fix inter- 122

action patterns without analyzing how governance 123

models or participation rules impact efficiency. 124

2.2 Role Specialization in Collaboration 125

Role specialization underpins many multi-agent 126

systems, where agents adopt domain-specific ex- 127

pertise. Kim et al. (2024) assigns medical roles 128

for adaptive decision-making, while Zhang et al. 129

(2024) automates role-specific communication 130

topologies via graph neural networks. Du et al. 131

(2024a) and Li et al. (2024) advocate for role diver- 132

sity in software teams, arguing that “more agents” 133

with distinct responsibilities improve outcomes. 134

Similarly, Su et al. (2024) uses targeted role sub- 135

sets for scientific ideation. However, these works 136

assume static role assignments and overlook par- 137

ticipation dynamics, such as when roles should 138
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Figure 2: Combinations of collaboration strategies for multi-agent systems.

contribute or how context should be shared.139

3 Collaboration Strategies for140

Multi-Agent System141

3.1 Collaboration in Multi-Agent System142

Some previous research have employed a pipeline143

architecture, where agents sequentially process sub-144

tasks, passing outputs to downstream agents until145

the final goal is achieved (Qian et al., 2025; Du146

et al., 2024b). In contrast, our work investigates147

the collaboration among agents, each of which can148

independently solve the task end-to-end, which149

mirrors real-world scenarios where domain ex-150

perts—despite individual competence—collaborate151

to integrate diverse perspectives, refine decisions,152

and mitigate blind spots. Here, agents specialize in153

distinct aspects of the task, and their collaboration154

aims to synthesize these strengths rather than com-155

pensate for individual incapacity, further enabling156

dynamic interaction strategies—governance, partic-157

ipation, interaction patterns, and context manage-158

ment—that reflect human-like teamwork, as shown159

in Figure 2.160

3.2 Governance: Decentralization or161

Centralization162

Governance of a multi-agent collaboration sys-163

tem, which is decentralization and centralization164

(marked as G1 and G2 in Figure 2), serves as the165

foundation for collaboration strategies, directly in-166

fluencing participation, interaction patterns, and167

context management.168

In decentralized governance, agents self-169

organize, autonomously deciding when and how to170

participate, interact, and manage context under spe-171

cific rules on which all agents agree. This fosters172

flexibility and scalability but may lead to coordi-173

nation challenges, such as redundant contributions174

or a fragmented context. Decisions in this frame- 175

work often rely on collective approaches such as 176

majority voting or consensus building. 177

As for centralized governance setting, an in- 178

structor agent oversees the discussion, dictating 179

participation (selecting which agents speak), in- 180

teraction patterns (enforcing turn-taking or tar- 181

geted communication), context management (curat- 182

ing dialogue history for relevance) and controlled 183

decision-making. This ensures structured and ef- 184

ficient collaboration but risks bottlenecks if the 185

instructor becomes a single point of failure. 186

3.3 Participation in Discussion Rounds 187

Governance directly shapes participation strategies, 188

determining which agents contribute and when. 189

Decentralization (G1) Agents determine their 190

own participation, leading to two strategies: 191

(i) Full Participation (G1-P1): All agents con- 192

tribute in every round, ensuring diverse perspec- 193

tives but potentially overwhelming the discussion 194

with redundant or irrelevant inputs. 195

(ii) Selective Participation (G1-P2): Agents 196

decide independently whether to speak and whom 197

to address, based on their assessment of the needs 198

of the discussion in the current discussion. For 199

instance, an agent might choose to contribute only 200

when its expertise is directly relevant or when it 201

identifies a gap in the conversation. While this 202

approach optimizes relevance, it risks overlooking 203

critical inputs if agents misjudge the trajectory of 204

the discussion. 205

Centralization (G2) The instructor agent orches- 206

trates the participation, explicitly deciding which 207

agents speak in each round and in what order (G2- 208

P3). This approach minimizes redundancy, but 209

relies heavily on the ability of the instructor to 210
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identify and sequence the most relevant agents.211

3.4 Interaction Patterns Among Agents212

Interaction patterns define how agents communi-213

cate with other agents during discussion rounds,214

with governance and participation strategies shap-215

ing their design. We identify four key patterns:216

Simultaneous Talk (I1) All agents generate their217

responses simultaneously and independently within218

the same round, broadcasting their outputs to all219

peers. Each agent has access to the complete dis-220

cussion log from previous rounds. This approach221

is suitable for scenarios involving the centraliza-222

tion setting (G2-P3) and full participation in the223

decentralization setting (G1-P1). While it promotes224

diverse perspectives, it also carries the risk of con-225

flicting or redundant output.226

One-by-One (Ordered) (I2) Agents speak in a227

predefined sequence, either human-specified for228

decentralization (G1-P1) or instructor-enforced for229

centralization (G2-P3). Each agent observes previ-230

ous speech within the same round, enabling incre-231

mental refinement.232

One-by-One (Random) (I3) Agents speak in a233

randomized sequence, also observing prior intra-234

round contributions. This pattern, exclusive to de-235

centralized governance with full participation (G1-236

P1), introduces stochasticity to mitigate ordering237

biases, which prevents dominant agents from mo-238

nopolizing discussions.239

Selective Point-to-Point (I4) Agents au-240

tonomously decide whom to address, limiting241

communication to peers they deem relevant.242

This pattern requires decentralized governance243

with selective participation (G1-P2), optimizing244

relevance but risking fragmented context.245

These relationships highlight how governance246

and participation constrain or enable interaction dy-247

namics. For instance, I4 is inherently decentralized,248

while I2 adapts to both governance models depend-249

ing on sequence control, as shown in Figure 2.250

3.5 Context Management in Discussions251

As discussions progress, managing the growing252

dialogue history becomes critical to balance depth253

and computational efficiency. Here, three strategies254

have been categorized including:255

Full Log of the Last Round (C1) Agents retain256

the complete dialogue history from the most recent257

round, enabling comprehensive context awareness, 258

which has been also adopted in Qian et al. (2025). 259

This method is typically adopted in decentralized 260

systems with full participation (G1-P1), where all 261

agents contribute in every round and require full 262

visibility into the prior discussion. While this en- 263

sures rich context, it increases computational over- 264

head and risks information overload. 265

Self-Summarized Context (C2) Each agent iter- 266

atively summarizes the discussion history, combin- 267

ing a condensed version of all prior rounds with the 268

full log of the last round. This approach is suited 269

for decentralized systems (G1), where agents in- 270

dependently manage context to optimize relevance 271

and efficiency. 272

Summary by the Instructor (C3) In centralized 273

systems (G2-P3), the instructor agent summarizes 274

the dialogue history for all participants. This en- 275

sures consistency and relevance but introduces a 276

single point of failure. 277

These strategies highlight the trade-offs between 278

context depth and computational efficiency. For 279

instance, full log maximizes situational aware- 280

ness but scales poorly, while self-summarized and 281

instructor-curated methods optimize efficiency at 282

the cost of potential information loss. 283

3.6 Final Decision Mechanisms 284

The process of terminating multi-agent discussion 285

and making a final decision is tightly coupled with 286

governance models, therefore formalized as: 287

Decentralization Decentralized systems rely 288

on consensus or majority voting. Agents au- 289

tonomously detect agreement based on the gener- 290

ated prediction and terminate discussions once con- 291

sensus emerges. And if consensus is not reached 292

within a predefined maximum round limit, agents 293

trigger majority voting to force a decision. 294

Centralization In centralized systems, the in- 295

structor agent determines when to finalize the dis- 296

cussion. The instructor evaluates the discussion 297

progress against predefined criteria and either con- 298

tinues the discussion if critical disagreements per- 299

sist, or terminates the discussion and selects the 300

final decision. 301

The complete set of possible permutations of the 302

collaboration settings can be found in Appendix A. 303

caption 304
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4 Experiments305

4.1 Experimental Design306

Context-Based Collaboration In our experimen-307

tal framework, we seek to evaluate whether LLM-308

based multi-agents can accurately tackle problems309

by leveraging specific contextual information from310

agents. Prior work often defines agent roles implic-311

itly via prompts (e.g. “You are a radiologist”) (Kim312

et al., 2024; Qian et al., 2025), which conflates role313

assignment with specialization but fails to mea-314

sure the proficiency of agents in leveraging domain315

knowledge. To address this, we explicitly equip316

agents with distinct prior knowledge, which is task-317

specific context segments that constrain their inputs318

and outputs, ensuring collaboration arises from319

complementary expertise rather than role labels320

(see more details in Appendix B).321

Evaluation Metrics To comprehensively assess322

the performance of LLM-based multi-agent sys-323

tems, we examine both task accuracy and computa-324

tional cost efficiency. (1) Accuracy, which is mea-325

sured as the rate at which the multi-agent system ar-326

rives at the correct classification. (2) Token Count,327

including the input and output token count, cap-328

tures the mean total number of tokens processed as329

input and output by the agents during all discussion330

rounds as an indicator of the volume of contextual331

information handled by the system. (3) Discussion332

Rounds, which is the number of communication333

rounds required for the agents to converge on a final334

decision, indicating how quickly the multi-agent335

system reaches a consensus. By jointly consider-336

ing both accuracy and these computational cost337

metrics, we aim to provide an evaluation of our338

multi-agent framework, balancing the trade-offs339

between decision quality and resource efficiency.340

As for backbone models, we conduct all experi-341

ments on ChatGPT-4o1.342

4.1.1 Context-Dependent Task Selection343

We adopt two tasks requiring agents to ground de-344

cisions strictly in provided contexts, minimizing345

reliance on the internal knowledge of LLMs. The346

first task, termed “Distributed Evidence Integration347

(DEI)”, challenges agents to collaboratively com-348

bine fragmented pieces of evidence—each drawn349

from distinct context segments—to arrive at a uni-350

fied decision. In contrast, the second task, de-351

fined as “Structured Evidence Synthesis (SES)”,352

1ChatGPT-4o-0806 version

requires agents to critically assess and synthesize 353

pre-labeled pieces of evidence, with each agent as- 354

signed a single element, to verify factual claims. 355

Together, these tasks emphasize context-based 356

decision-making while fostering robust multi-agent 357

collaboration: 358

Distributed Evidence Integration (DEI) For 359

the DEI scenario, we utilize the MIMIC-III 360

dataset (Johnson et al., 2016), a comprehensive, 361

publicly available database of de-identified health- 362

related information including clinical records, vital 363

signs, medications, and diagnoses, primarily from 364

intensive care unit (ICU) patients. The discharge 365

summary notes, in particular, encapsulate key pa- 366

tient details, such as the brief hospital course. 367

In this task, a cohort of agents is each assigned 368

a distinct clinical context segment (i.e., brief hos- 369

pital course, major surgery or invasive procedure, 370

pertinent results, or social history) and is tasked 371

with predicting the patient’s discharge disposition 372

among four possible outcomes: “expired”, “ex- 373

tended care”, “home with service”, and “home” as 374

task of Patient Discharge Disposition Prediction 375

(PDDP) (see Appendix C for more details). No- 376

tably, no explicit evidence label is provided to any 377

individual agent. Instead, the PDDP task requires 378

that all agents collaboratively integrate their partial 379

information to arrive at a final consensus. 380

Structured Evidence Synthesis (SES) For 381

the SES scenario, an evidence-based fact- 382

checking tasks (EBFC) leverages the AMBIFC 383

dataset (Glockner et al., 2024) to evaluate the fact- 384

checking capabilities of multi-agent systems by 385

synthesizing evidence exclusively from the pro- 386

vided contextual data. In this dataset, each claim 387

is accompanied by numerous evidence sentences, 388

yet only a small subset is directly relevant to the 389

claim. Furthermore, each agent is assigned a sin- 390

gle piece of evidence (an example is provided in 391

Appendix D). This setup compels the agents to 392

engage in collaborative negotiation: those who re- 393

ceive evidence directly pertinent to the claim must 394

persuade their peers—who may have been allo- 395

cated less relevant evidence—to converge on an 396

accurate, factually sound assessment. Thus, while 397

the PDDP task emphasizes collective deliberation 398

in the absence of explicit evidence, the EBFC task 399

challenges agents to build consensus by leveraging 400

and disseminating critical evidence held by only a 401

subset of agents. 402
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4.2 Performance on Individual Agent403

Before conducting experiments on multi-agent col-404

laboration, we first evaluate the performance of405

individual agents.406

For the DEI scenario, as Table 1 the agent407

equipped with the brief hospital course context408

(AgentBHC) achieves the best performance, as it409

has access to a comprehensive overview of the pa-410

tient’s trajectory. In contrast, other agents often411

lack essential details, leading to suboptimal perfor-412

mance. Moreover, the Agentall—which aggregates413

information from multiple sources—performed414

slightly worse than AgentBHC due to the interfer-415

ence of misleading details from other agents. This416

misleading effect becomes even more pronounced417

when the final decision is determined through ma-418

jority voting. Consequently, for the DEI scenario, it419

is anticipated that collaboration will be most effec-420

tive when other agents contributing complementary421

information to AgentBHC for a holistic decision.422

Methods Acc↑ #I↓ #O↓ Round↓
AgentBHC 60.8 541 109 1
AgentMSIP 38.7 170 91 1
AgentPR 33.7 492 119 1
AgentDM 39.2 488 125 1
AgentSH 41.2 182 88 1
Agentall 57.8 1,281 129 1

MV 47.2 1,873 661 5

Table 1: Performance of individual agent on the PDDP
task. #I means input token count. #O means output
token count. BHC: Brief Hospital Course. MSIP: Ma-
jor Surgical or Invasive Procedure. PR: Pertinent Re-
sults. DM: Discharge Medications. SH: Social History.
Agentall: inference by an individual agent with all infor-
mation concatenated. MV: major voting of all agents.

For the SES scenario, experimental results in423

Table 2 reveal that the agent receiving relevant424

evidence (Agentconsistent) attains an accuracy of425

88.7%. Notably, the 88.7% accuracy represents426

the theoretical upper bound for the multi-agent427

system’s performance. Interestingly, Agentall428

achieves even higher accuracy than Agentconsistent,429

which can be attributed to the randomness intro-430

duced by aggregating inputs from all agents. In431

contrast, the agent provided with irrelevant evi-432

dence (Agentinconsistent) performs no better than a433

random guess. In this scenario, majority voting434

is suitable, as the majority of agents possess in-435

consequential information. Therefore, for the SES436

scenario, it is expected that Agentconsistent should437

lead the discussion, effectively persuading other438

agents to converge on the correct assessment. 439

Methods Acc↑ #I↓ #O↓ Round↓
Agentconsistent 88.7 177 48 1
Agentinconsistent 19.2 172 56 1

Agentall 90.5 283 55 1
MV N/A N/A N/A N/A

Table 2: Performance of individual agent on the EBFC
task. #I means input token count. #O means output
token count. “consistent”: individual agent infers only
with single evidence with the same label as that of the
claim. “inconsistent”: individual agent infers only with
single evidence with different label from that of the
claim. Agentall: inference by an individual agent with
all evidence concatenated. MV: major voting of all
agents. N/A: not applicable.

Methods Acc↑ #I↓ #O↓ Round↓
Agentall 57.8 1,281 129 1.00

MV 47.2 1,873 661 5.00
G1-P1-I1-C1 50.7 25,663 2,184 3.28
G1-P1-I2-C1 57.8 6,470 854 1.30
G1-P1-I3-C1 45.2 9,531 1,127 1.65
G1-P1-I1-C2 46.2 52,400 15,568 4.43
G1-P1-I2-C2 59.8 15,057 3,046 1.56
G1-P1-I3-C2 46.7 19,673 4,100 1.81
G1-P2-I4-C2 50.8 348,035 58,795 9.91
G2-P3-I1-C3 46.2 13,119 2,412 2.04
G2-P3-I2-C3 58.8 4,867 841 1.03

Table 3: Performance of multi-agent collaboration on
the PDDP task with different collaboration strategies.
#I means input token count. #O means output token
count. Agentall: inference by an individual agent with
all information concatenated. MV: major voting of all
agents. The best and the second best results are in bold
and underlined.

4.3 Performance on Multi-Agent Systems 440

Tables 3 and 4 illustrate the performance of multi- 441

agent collaboration across various strategies for 442

the DEI and SES scenarios. The results highlight 443

that different configurations of collaboration di- 444

mensions significantly influence the performance, 445

leading to an accuracy gap of up to 37.6% (ranging 446

from 49.3% to 86.9%). Despite some strategies 447

achieving similar performance in terms of accu- 448

racy, there is a substantial variation in token cost. 449

For instance, in the EBFC task (SES), the strat- 450

egy “G1-P2-I4-C2” achieves an accuracy of 86.4%, 451

comparable to that of “G2-P3-I1-C3”, but costs 452

11.5 times more output tokens , demonstrating a 453

significant difference in computational cost. 454

For a more in-depth analysis, Figure 3 presents 455

the average accuracy and output token count for 456
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Methods Acc↑ #I↓ #O↓ Round↓
Agentconsistent 88.7 177 48 1.00
G1-P1-I1-C1 49.3 28,099 1,990 6.28
G1-P1-I2-C1 70.4 13,361 1,155 3.35
G1-P1-I3-C1 68.8 15,368 1,284 3.99
G1-P1-I1-C2 81.4 20,074 6,780 3.46
G1-P1-I2-C2 84.4 14,600 3,073 2.00
G1-P1-I3-C2 77.9 13,125 2,901 2.14
G1-P2-I4-C2 86.4 30,085 6,125 2.76
G2-P3-I1-C3 86.9 2,111 490 1.16
G2-P3-I2-C3 85.4 2,859 452 1.10

Table 4: Performance of multi-agent collaboration on
the EBFC task with different collaboration strategies.
#I means input token count. #O means output token
count. Agentconsistent is the theoretical upper bound of
the multi-agent systems. The best and the second best
results are in bold and underlined.

a single dimension of the collaboration settings,457

covering governance, participation, interaction pat-458

terns, and context management in discussion. The459

maximum and minimum values are also annotated460

using error bars, providing further insight into the461

variability across strategies. These visualizations462

reveal both similarities and differences in collabora-463

tion strategies between the DEI and SES scenarios.464

DEI Scenario In the DEI scenario, the final pre-465

diction relies on distributed evidence among agents,466

requiring them to consolidate information. Conse-467

quently, multi-agent systems are expected to out-468

perform individual agents. However, as shown in469

Table 3, only two out of nine multi-agent systems470

achieve this goal, further emphasizing the impor-471

tance of nuanced collaboration strategies.472

SES Scenario For the SES scenario, only a small473

subset of agents hold relevant evidence, which may474

lead to misguidance by agents without useful evi-475

dence. As a result, the accuracy of Agentconsistent476

represents the theoretical upper bound for multi-477

agent systems. Table 4 illustrates that the strategy478

“G2-P3-I1-C3” achieves an accuracy most closely479

aligned with that of Agentconsistent.480

Governance In the PDDP task, Figure 3 demon-481

strates that the governance dimension, whether cen-482

tralized (G1) or decentralized (G2), does not sig-483

nificantly affect the accuracy (mean, max, or min).484

However, G1 tends to have much higher mean and485

maximum output token counts compared to G2, in-486

dicating that centralized governance leads to higher487

token cost in the DEI setting. The lack of sig-488

nificant accuracy differences between G1 and G2489

suggests that DEI does not inherently favor hierar-490
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Figure 3: Performance of multi-agent systems on the
PDDP and EBFC tasks considering individual strategy
dimensions. Error bars here mark the maximum and
minimum values.

chical control. However, G1’s higher token costs 491

reflect the merits of instructor-mediated coordina- 492

tion, which enables agents to self-organize around 493

distributed clinical data (e.g. lab results, surgical 494

history), reducing redundancy. 495

In contrast, for the EBFC task, G1 and G2 show 496

similar maximum accuracy, but the accuracy fluc- 497

tuation in G2 is notably smaller because the in- 498

structor is more readily persuaded by the relevant 499

evidence. Token costs also follow a similar pattern 500

to the PDDP task, with G2 demonstrating greater 501

efficiency in terms of output token usage. 502

Participation For the PDDP task, Table 3 reveals 503

that P1 (Full Participation) and P3 (Participation de- 504
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cided by the instructor) exhibit higher accuracy ceil-505

ings than P2 (Selective Participation), with a gap506

of up to 9.0% because discharge disposition predic-507

tion requires synthesizing all contextual facets. P2508

may risk omitting critical inputs, such as vital signs509

due to misjudged relevance, while P3 mitigates this510

risk by leveraging global attention to key indicators.511

Nonetheless, the performance of these strategies512

fluctuates significantly depending on other factors513

in the collaboration setup.514

For the EBFC task, P2 and P3 not only perform515

better but also with less fluctuation and P2’s su-516

perior performance reflects the task s demand for517

targeted expertise. In terms of token cost, P2 con-518

sistently requires more tokens compared to P1 and519

P3, with P1 costing the highest maximum output520

token count in the EBFC task. P3, however, consis-521

tently costs the least token cost in both tasks, which522

further highlights the instructor’s role in suppress-523

ing redundant contributions .524

Interaction In the PDDP task, I2 (Ordered One-525

by-one) outperforms all other interaction settings,526

delivering superior accuracy and output token effi-527

ciency, suggesting that it may be the optimal inter-528

action strategy. I1 probably introduces conflicting529

evidences at the same time which leads to noise530

conclusion, while I4 may fragment essential con-531

texts from other agents unconsciously.532

For the EBFC task, differences in mean accuracy533

across interaction settings are minimal, suggesting534

SES scenario tolerates flexible interaction strate-535

gies. However, in terms of output token count,536

I2 and I3 (Random One-by-one) perform simi-537

larly, both showing substantial improvements over538

I1 (Simultaneous-talk) and I4 (Selective Point-to-539

Point), stemming from organized evidence recon-540

ciliation and possible force redundant backtracking541

in the dialog rounds.542

Context For the PDDP task, context manage-543

ment strategies do not show a significant difference544

in terms of accuracy, though C1 (Full Log of the545

Last Round) and C3 (Summary by the Instructor)546

outperform C2 (Self-Summarized Context) with547

token count, indicating that DEI benefits both from548

comprehensive context (C1) and distilled insights549

(C3). However, self-summarized context lags due550

to inconsistent truncation of critical details.551

In the EBFC task, C2 and C3 achieve over 16.0%552

higher accuracy than C1, and C3 shows more stable553

performance, arising from the instructor’s ability554

to highlight salient evidence. However, C2, which555

overemphasizes an agent’s preferred evidence type, 556

costs much higher token costs compared to both 557

C1 and C3, making C3 the optimal setting for the 558

SES scenario. 559

Token-Accuracy-Ratio (TAR) To comprehen- 560

sively evaluate the performance of these collabora- 561

tion strategies, we introduce the Token-Accuracy 562

Ratio (TAR), which accounts for the computational 563

efficiency in terms of accuracy along with both 564

input and output tokens. The formula for TAR is: 565

TAR =
Accuracy

α ·#I + β ·#O
(1) 566

where α and β are coefficients for the relative com- 567

putational cost of input and output tokens, respec- 568

tively. Based on the pricing of ChatGPT 4o, where 569

the cost for output tokens is four times that of input 570

tokens2, we set α = 1 and β = 4. The detailed 571

results are provided in Appendix E. 572

From Table 7 and 8, the strategy “G2-P3-C3” 573

achieves the optimal TAR across both scenarios, 574

indicating that multi-agent collaboration with an 575

instructor overseeing participation, context, and the 576

final decision tends to yield optimal performance 577

under both the DEI and SES settings. 578

4.4 Summary 579

Our analysis across various strategies reveals sig- 580

nificant trade-offs between accuracy and computa- 581

tional cost. Notably, the introduction of the Token- 582

Accuracy Ratio (TAR) highlights that configura- 583

tions such as “G2-P3-C3” offer an optimal balance, 584

underscoring the importance of nuanced design 585

choices in enhancing both decision quality and effi- 586

ciency in multi-agent systems. 587

5 Conclusion 588

In this study, we systematically investigate the un- 589

derstudied the fine-grained mechanics of collabo- 590

ration in multi-agent systems, focusing on gov- 591

ernance, participation, interaction patterns, and 592

context management. Through experiments on 593

two tasks under two scenarios correspondingly, we 594

demonstrate that centralized governance, guided 595

by an instructor agent, consistently balances ac- 596

curacy and computational efficiency. By shifting 597

focus from structural novelty to strategic collabora- 598

tion, this work provides a foundation for designing 599

efficient, scalable, and context-aware multi-agent 600

systems. 601

2https://openai.com/api/pricing/
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Limitations602

This study has several limitations. First, the per-603

formance of the multi-agent system depends on604

the quality and completeness of the contextual data605

provided to each agent. Incomplete or ambiguous606

data can affect decision-making accuracy. Second,607

scalability issues may arise as the number of agents608

increases, with potential challenges in coordina-609

tion and computational efficiency. Additionally,610

our framework assumes agents can independently611

interpret context, which may be influenced by bi-612

ases or lack of domain-specific knowledge. The613

generalization of our approach across different do-614

mains remains uncertain, as the tasks used are spe-615

cific to certain contexts. Moreover, our system616

does not integrate external knowledge, which could617

limit performance in dynamic or evolving scenar-618

ios. Lastly, the interpretability of multi-agent deci-619

sions remains a challenge, as the rationale behind620

agent interactions can be difficult to trace. Despite621

these limitations, the study lays a foundation for622

further strategy design of multi-agent collaboration623

in decision-making tasks.624

Ethical Considerations625

This study uses the MIMIC-III dataset, which con-626

tains de-identified ICU patient data. We ensure all627

data usage complies with ethical guidelines and pri-628

vacy standards, as no personally identifiable infor-629

mation is included. Additionally, while our multi-630

agent systems are designed to assist in decision-631

making, they should not replace human judgment632

in critical healthcare contexts. We emphasize the633

importance of transparency and accountability in634

the deployment of AI systems in healthcare.635
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A Collaboration Strategies719

The complete set of possible permutations of the720

collaboration settings is in Figure 4.721

B Context-Based Collaboration722

As Figure 5, a context-free agent generates re-723

sponses based on general knowledge without re-724

striction, allowing it to incorporate external back-725

ground information. In contrast, a context-based726

agent strictly adheres to the given context, respond-727

ing only with the provided information, even if it728

lacks sufficient details to answer the query. As729

shown in Figure 5, when asked whether the Tower730

of London has a moat, the context-free agent lever-731

ages historical knowledge to provide an answer,732

whereas the context-based agent, constrained by733

the given excerpt, acknowledges its inability to734

determine the answer. This behavior closely mir-735

rors real-life human reasoning, where individuals736

rely on the information at hand rather than external737

knowledge. More importantly, in the analysis of738

multi-agent collaboration strategies, context-based739

agents enable a clearer investigation of how agents740

interact and share information without interference741

from the internal knowledge embedded in LLMs as742

shown in Figure 5. By eliminating this confounding743

factor, context-based agents provide a more con-744

trolled setting for studying knowledge exchange,745

reasoning dynamics, and the emergence of cooper-746

ative problem-solving in multi-agent systems.747

C Details for Patient Discharge748

Disposition Prediction Task749

C.1 Label Definition750

In the context of the discharge disposition of pa-751

tients in the MIMIC-III dataset, the following terms752

represent various settings in which a patient may 753

be discharged from the hospital, reflecting the type 754

of care they will receive after their discharge: 755

1. Expired: This refers to patients who died dur- 756

ing their hospital stay. The discharge disposi- 757

tion is marked as “expired” when the patient 758

is no longer alive at the time of discharge. 759

2. Extended Care: This refers to patients who are 760

discharged to a facility that provides longer- 761

term care than the acute hospital setting, but 762

not as intensive as inpatient care. These facili- 763

ties often include skilled nursing facilities, re- 764

habilitation centers, or similar establishments 765

that provide continued medical care, physical 766

therapy, or recovery support. 767

3. Home with Service: This indicates that the 768

patient is discharged home but will continue 769

to receive some form of medical care or as- 770

sistance. This could involve home health ser- 771

vices such as nursing care, physical therapy, 772

or other medical support delivered in the pa- 773

tient’s home. 774

4. Home: This refers to patients who are dis- 775

charged directly to their home, without the 776

need for continued medical care or services. 777

These patients typically no longer require hos- 778

pitalization or any ongoing treatment and are 779

considered well enough to return to normal 780

activities. 781

These categories are essential in capturing the out- 782

comes and planning for a patient’s post-discharge 783

care, as they can significantly influence the pa- 784

tient’s recovery trajectory and healthcare planning. 785

C.2 Task Example 786

In Section 4.1.1, distributed evidence integration is 787

referred to the process by which multiple agents, 788

each possessing only a fragment of the overall evi- 789

dence, collaboratively combine their partial infor- 790

mation to reach a comprehensive and accurate de- 791

cision. In the example shown in Table 5, the com- 792

plete set of evidence regarding the patient’s case 793

is distributed across several distinct context seg- 794

ments—such as the Brief Hospital Course, Major 795

Surgical or Invasive Procedure, Pertinent Results, 796

Discharge Medications, and Social History. Each 797

segment represents information held by a different 798
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Figure 4: The complete set of possible permutations of the collaboration settings.

agent. No single agent has access to all the de-799

tails necessary to determine the correct Discharge800

Disposition (in this case, “Extended Care”).801

Through the process of distributed evidence inte-802

gration, the agents must share and synthesize their803

individual pieces of evidence, engaging in discus-804

sion and negotiation to resolve discrepancies and805

fill gaps in the information. This collaborative inte-806

gration ensures that the final decision is informed807

by all available evidence, thereby leveraging the808

strengths of each agent’s specialized knowledge.809

D Details for Evidence-Based810

Fact-Checking Task811

In Section 4.1.1, structured evidence synthesis is re-812

ferred to the systematic process by which agents an-813

alyze and combine pre-labeled pieces of evidence814

to determine the veracity of a given claim. In the815

example shown in Table 6, the claim (“Season 5 the816

last season was of Ray Donovan”) is accompanied817

by multiple evidence sentences. Each evidence818

sentence is annotated with a label—such as “Refut-819

ing” or “Neutral”—that indicates its relevance or820

relation to the claim.821

In this task, each agent is provided with a single822

piece of such structured evidence. The challenge823

lies in the agents’ ability to engage in dialogue824

and collectively synthesize the relevant information 825

from these distributed, labeled pieces of evidence. 826

Agents holding evidence that directly pertains to 827

the claim (e.g. the sentence indicating that the se- 828

ries was canceled after seven seasons) must per- 829

suade other agents—who might have received less 830

directly relevant or neutral evidence—to recognize 831

the overall factual context. Through this collabo- 832

rative synthesis, the agents work together to arrive 833

at a well-supported, final decision regarding the 834

claim. 835

Thus, structured evidence synthesis emphasizes: 836

(1) The use of clearly labeled, structured evidence. 837

(2) The necessity for agents to extract, assess, and 838

combine this evidence. (3) The collaborative nego- 839

tiation required to integrate disparate information 840

into a coherent conclusion. 841

E Details for Token-Accuracy-Ratio 842

To holistically evaluate the performance of multi- 843

agent collaboration strategies, we introduce the 844

Token-Accuracy Ratio (TAR), a metric that bal- 845

ances task accuracy against computational cost. 846

The TAR is defined as mentioned in Section 4.3: 847

TAR =
Accuracy

α ·#I + β ·#O
(2) 848
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Question: Does the tower of London have a moat?

(i) Multi-context-free-agent collaboration

You are a
historian.
Answer
this ……

You are a college student.
Answer this ……

You are an architect.
Answer this ……

You are a
geographer.
Answer
this ……

You are a tourist.
Answer this ……

……

……
……

……
……

(ii) Multi-context-aware-agent collaboration

You are a historian.
Base on this {info
B ……}
Answer this ……

You are a college student.
Base on this {info C ……}
Answer this ……

You are an architect. Base on this
{info A ……} Answer this ……

You are a
geographer.
Base on this {info
E ……}
Answer this ……

You are a tourist. Base
on this {info D ……}
Answer this ……

……

……

……

……

……

Yes, the Tower of London does have a moat, ….…

(b) Context-free agent

Answer this question, does the tower of London have a moat?

You are a professional historian. Answer this question, does
the tower of London have a moat?

Yes, the Tower of London does have a moat, although 
it‘s not as prominent today as it once was. Historically, 
the Tower of London, built in the 11th century by 
William the Conqueror, ……

(c) Context-aware agent

You are a professional historian. You should answer the
following question with and only with this information: {The 
White Tower is a keep (also known as a donjon), which was 
often the strongest structure in a medieval castle, and 
contained lodgings suitable for the lord 2013 in this case, 
the king or his representative} , does the tower of London 
have a moat?

I don’t know. The provided information does not
involve whether the tower of London have a moat ……

(a) Base agent

Figure 5: Illustration for multi-context-based agent collaboration.

To facilitate cross-task comparisons, we also de-849

fine the Normalized TAR (NTAR), which scales the850

TAR values relative to the maximum TAR observed851

for each task. This normalization ensures that the852

results are comparable across tasks with different853

accuracy and token cost ranges. The Normalized854

TAR is calculated as:855

Normalized TAR =
TAR

Max TAR for the task
856

E.1 PDDP Task (Distributed Evidence857

Integration)858

In the PDDP task, agents collaborate to predict pa-859

tient discharge outcomes by integrating fragmented860

clinical data. The results highlight the trade-offs861

between accuracy and computational cost:862

Optimal Strategy The strategy “G2-P3-I2-C3”863

(centralized governance, instructor-led participa-864

tion, ordered interaction, and instructor-curated865

context summarization) achieves the highest Nor-866

malized TAR of 1.0, with an accuracy of 58.8% and867

the lowest token counts (#Input Token 4,867 and868

#Output Token 841). This configuration demon-869

strates the efficiency of centralized control in re-870

ducing redundancy and optimizing resource usage.871

Decentralized Strategies Decentralized configu-872

rations, such as “G1-P1-I2-C1” and “G1-P1-I2-C2”873

achieve competitive accuracy (57.8% and 59.8%, 874

respectively) but cost significantly higher token 875

costs. For example, “G1-P1-I2-C2” achieves the 876

highest accuracy (59.8%) but requires 15,057 in- 877

put tokens and 3,046 output tokens, resulting in a 878

Normalized TAR of 0.31. 879

Worst-Performing Strategy The strategy “G1- 880

P2-I4-C2” (decentralized governance, selective par- 881

ticipation, selective point-to-point interaction, and 882

self-summarized context) performs poorly, with a 883

Normalized TAR of 0.01. Despite achieving 50.8% 884

accuracy, it incurs exorbitant token costs (#Input 885

Token 348,035 and #Output Token 58,795), high- 886

lighting the inefficiency of decentralized systems 887

with fragmented communication. 888

E.2 EBFC Task (Structured Evidence 889

Synthesis) 890

In the EBFC task, agents must verify factual claims 891

by synthesizing pre-labeled evidence, requiring per- 892

suasion of peers with irrelevant inputs. The results 893

reveal the following insights: 894

Optimal Strategy The strategy “G2-P3-I1-C3” 895

(centralized governance, instructor-led participa- 896

tion, simultaneous interaction, and instructor- 897

curated context summarization) achieves the high- 898

est Normalized TAR of 1.0, with an accuracy 899

of 86.9% and low token counts (#Input Token 900

12



2,111 and #Output Token 490). This configuration901

closely matches the theoretical upper bound set by902

the best-performing individual agent (88.7% accu-903

racy) while maintaining computational efficiency.904

Decentralized Strategies Decentralized configu-905

rations, such as “G1-P1-I2-C2” and “G1-P2-I4-C2,”906

achieve high accuracy (84.4% and 86.4%, respec-907

tively) but at significantly higher token costs. For908

example, “G1-P2-I4-C2” achieves 86.4% accuracy909

but requires 30,085 input tokens and 6,125 output910

tokens, r esulting in a Normalized TAR of 0.07.911

Worst-Performing Strategy The strategy “G1-912

P1-I1-C1” (decentralized governance, full partic-913

ipation, simultaneous interaction, and full log re-914

tention) performs poorly, with a Normalized TAR915

of 0.06. It achieves only 49.3% accuracy while916

consuming high token costs (#Input Token 28,099917

and #Output Token 1,990), underscoring the inef-918

ficiency of decentralized systems with redundant919

communication.920

E.3 Summary921

1. Centralized Governance Dominates: Central-922

ized strategies consistently achieve higher923

Normalized TAR values across both tasks,924

demonstrating their ability to balance accu-925

racy and computational efficiency.926

2. Ordered Interaction Patterns: Ordered one-by-927

one interaction (I2) outperforms simultaneous-928

talk (I1) and selective point-to-point (I4) pat-929

terns, particularly in the PDDP task, where it930

reduces redundancy and improves token effi-931

ciency.932

3. Context Summarization: Summary by the In-933

structor (C3) significantly reduces token costs934

compared to full log of the last round (C1) or935

self-summarized context (C2), especially in936

the EBFC task.937

4. Task-Specific Dynamics: In the PDDP task,938

decentralized systems can achieve competitive939

accuracy but at high computational costs. In940

contrast, the EBFC task benefits more from941

centralized control due to the need to filter out942

irrelevant evidence.943

By introducing the TAR and Normalized TAR,944

we provide a quantitative framework for evaluat-945

ing multi-agent collaboration strategies, enabling946

practitioners to optimize both decision quality and947

resource utilization. The results underscore the 948

importance of strategic design choices in scaling 949

LLM-based multi-agent systems for real-world ap- 950

plications. 951
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Brief
Hospital
Course

Ms. was admitted to on for treatment of right brain tumor. She was plegic on the left
side and was taken to the OR on by Dr. . Post-op CT scan was stable. Decadron 4mg
every 6 hours was continued, and on she was cleared to transfer to the floor. On her MRI
showed some residual tumor but decreased midline shift. She regained some strength in
the LLE. The sterroid was subsequently tapered to 2 mg . PT and OT were consulted and
recommended rehab. Radiation Oncology was consulted and the patient will follow-up
for radiation treatment after discharge. Neuro-oncology was made aware of Ms. and the
patient has a Brain Clinic appointment with them to discuss chemotherapy after the final
pathology is back. The patient was discharged to rehab on .

Major Sur-
gical or In-
vasive Pro-
cedure

Right craniotomy for tumor resection

Pertinent
Results

MRI brain : There is a large heterogeneously rim-enhancing mass in the right frontal lobe
measuring 2.4 x 2.7 cm with enhancement also extending to the right frontal subependy-
mally and to the corpus callosum. An additional focus of enhancing abnormality is seen
in the right temporal lobe.There is edema surrounding the right frontal lobe lesion with
midline shift. MRI brain : Patient is status post resection of right frontal heterogeneously
enhancing mass. There are blood products in the operative bed, which limit evaluation
for residual neoplasm. However, there does appear to be residual enhancing abnormality
in the right frontal lobe and along the inferior margin of the operative cavity extending
into the corpus callosum and the caudate head. There is also nodular enhancement along
the anterior and posterior margins of the operative cavity superiorly. There is a focus
of restricted diffusion in the right frontal lobe along the inferior lateral margin of the
cavity. This may represent cytotoxic edema from surgery. There is a small right hemi-
spheric extra-axial postoperative collection. Right parafalcine extra-axial collection is also
noted.There is slight improvement in the midline shift to the left.

Discharge
Medica-
tions

1. Acetaminophen 325 mg Tablet Sig: 1-2 Tablets PO Q6H (every 6 hours) as needed
for pain/t/HA. 2. Docusate Sodium 100 mg Capsule Sig: One (1) Capsule PO BID (2
times a day). 3. Aripiprazole 10 mg Tablet Sig: Two (2) Tablet PO DAILY (Daily). 4.
Oxcarbazepine 600 mg Tablet Sig: One (1) Tablet PO HS (at bedtime). 5. Clonazepam 1
mg Tablet Sig: One (1) Tablet PO BID (2 times a day). 6. Atorvastatin 20 mg Tablet Sig:
One (1) Tablet PO DAILY (Daily). 7. Insulin Lispro 100 unit/mL Solution Sig: One (1)
Subcutaneous ASDIR (AS DIRECTED). 8. Nicotine 14 mg/24 hr Patch 24 hr Sig: One (1)
Patch 24 hr Transdermal DAILY (Daily). 9. Sertraline 50 mg Tablet Sig: Four (4) Tablet
PO QHS (once a day (at bedtime)). 10. Quetiapine 25 mg Tablet Sig: Two (2) Tablet PO
QAM (once a day (in the morning)). 11. Quetiapine 300 mg Tablet Sustained Release 24
hr Sig: Two (2) Tablet Sustained Release 24 hr PO QHS (once a day (at bedtime)). 12.
Oxycodone-Acetaminophen 5-325 mg Tablet Sig: 1-2 Tablets PO Q4H (every 4 hours) as
needed for Pain. 13. Levetiracetam 500 mg Tablet Sig: Two (2) Tablet PO BID (2 times a
day). 14. Heparin (Porcine) 5,000 unit/mL Solution Sig: One (1) Injection TID (3 times a
day). 15. Dexamethasone 2 mg Tablet Sig: One (1) Tablet PO Q8 hours () for 5 doses. 16.
Dexamethasone 2 mg Tablet Sig: One (1) Tablet PO Q12 hours (): Please start after 2 Q8
hour dose is complete.

Social
History

social ETOH, 15 cigarettes per day. works as dishwasher and typer, lives alone

Discharge
Disposi-
tion

Extended Care

Table 5: An example of PDDP task.
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Type Sentence Label
Claim Season 5 the last season was of ray donovan. Refuting
Evidence 1 On February 4, 2020, Showtime cancelled the series after seven seasons. Refuting
Evidence 2 The twelve-episode first season premiered on June 30, 2013. Neutral
Evidence 3 The pilot episode broke viewership records, becoming the biggest premiere

of all time on Showtime.
Neutral

Evidence 4 The show was cancelled without any advance warning, leaving fans and
showrunner, David Hollander, in shock.

Neutral

Evidence 5 A week later, Liev Schreiber commented on his Instagram that due to fans’
support and activity in media, there will be more Ray Donovan.

Neutral

Evidence 6 The drama is set primarily in Los Angeles, California (during seasons 1–5)
and primarily in New York City, New York (during seasons 6–7).

Neutral

Table 6: An example of EBFC task.

Methods Accuracy↑ #Input Token↓ #Output Token↓ Round↓ Normalized TAR
Agentall 57.8 1,281 129 1.00 N/A

MV 47.2 1,873 661 5.00 N/A
G1-P1-I1-C1 50.7 25,663 2,184 3.28 0.21
G1-P1-I2-C1 57.8 6,470 854 1.30 0.82
G1-P1-I3-C1 45.2 9,531 1,127 1.65 0.45
G1-P1-I1-C2 46.2 52,400 15,568 4.43 0.06
G1-P1-I2-C2 59.8 15,057 3,046 1.56 0.31
G1-P1-I3-C2 46.7 19,673 4,100 1.81 0.18
G1-P2-I4-C2 50.8 348,035 58,795 9.91 0.01
G2-P3-I1-C3 46.2 13,119 2,412 2.04 0.28
G2-P3-I2-C3 58.8 4,867 841 1.03 1

Table 7: Performance of multi-agent collaboration on the PDDP task with different collaboration strategies including
Token-Accuracy Ratio. Agentall: inference by an individual agent with all information concatenated. MV: major
voting of all agents. The best and the second best results are in bold and underlined.

Methods Accuracy↑ #Input Token↓ #Output Token↓ Round↓ Normalized TAR
Agentconsistent 88.7 177 48 1.00 N/A
G1-P1-I1-C1 49.3 28,099 1,990 6.28 0.06
G1-P1-I2-C1 70.4 13,361 1,155 3.35 0.18
G1-P1-I3-C1 68.8 15,368 1,284 3.99 0.16
G1-P1-I1-C2 81.4 20,074 6,780 3.46 0.08
G1-P1-I2-C2 84.4 14,600 3,073 2.00 0.15
G1-P1-I3-C2 77.9 13,125 2,901 2.14 0.15
G1-P2-I4-C2 86.4 30,085 6,125 2.76 0.07
G2-P3-I1-C3 86.9 2,111 490 1.16 1
G2-P3-I2-C3 85.4 2,859 452 1.10 0.86

Table 8: Performance of multi-agent collaboration on the EBFC task with different collaboration strategies including
Token-Accuracy Ratio. Agentconsistent is the theoretical upper bound of the multi-agent systems. The best and the
second best results are in bold and underlined.
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