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Abstract
Characterizing the remarkable generalization
properties of over-parameterized neural networks
remains an open problem. A growing body of
recent literature shows that the bias of stochastic
gradient descent (SGD) and architecture choice
implicitly leads to better generalization. In this pa-
per, we show on the contrary that, independently
of architecture, SGD can itself be the cause of
poor generalization if one does not ensure good
initialization. Specifically, we prove that any dif-
ferentiably parameterized model, trained under
gradient flow, obeys a weak spectral bias law
which states that sufficiently high frequencies
train arbitrarily slowly. This implies that very
high frequencies present at initialization will re-
main after training, and hamper generalization.
Further, we empirically test the developed the-
oretical insights using practical, deep networks.
Finally, we contrast our framework with that sup-
plied by the flat-minima conjecture and show that
Fourier analysis grants a more reliable framework
for understanding the generalization of neural net-
works.

1. Introduction
Neural networks are often used in the over-parameterized
regime, meaning their loss landscapes admit many global
minima that achieve zero training error. However, finding
such solutions is a non-convex, high-dimensional problem,
which is typically intractable to solve analytically. Further-
more, each of these minima may have unique properties
that can lead to varying generalization performance, making
some solutions more preferred than others. Surprisingly,
however, it is widely established that when neural networks
are trained with gradient-based optimization techniques,
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they not only converge towards a global minimum, but also
are biased towards solutions that exhibit good generaliza-
tion even without explicit regularization. This mysterious
behavior is flagged as the “implicit regularization” of neural
networks and remains an open research problem.

To understand implicit regularization, numerous studies
have considered simplified settings with restrictive assump-
tions such as linear networks (Jacot et al., 2018b; Soudry
et al., 2018; Wei et al., 2019; Yun et al., 2020; Gunasekar
et al., 2018b; Wu et al., 2019), shallow networks (Gunasekar
et al., 2018a; Ji & Telgarsky, 2019; Ali et al., 2020), wide
networks (Jacot et al., 2018a; Mei et al., 2019; Chizat &
Bach, 2020; Oymak & Soltanolkotabi, 2019; Zhang et al.,
2020a), vanishing initialization (Chizat et al., 2019; Gu-
nasekar et al., 2017; Arora et al., 2019), or infinitesimal
learning rates (Ma et al., 2018; Li et al., 2018; Ji & Tel-
garsky, 2018; Moroshko et al., 2020). Despite different
assumptions, most of these works primarily focus on the
effect of optimization procedure over the other factors and,
at a high level, conclude that gradient-based optimizations
guides neural networks toward max-margin solutions for
separable data or minimize a notion of weight-norm in re-
gression. While the aforementioned studies yield powerful
insights, there remains a gap between theory and practice
due to the restrictive assumptions presently necessary to
prove quantitative results.

Our work is an attempt to help bridge this gap. To this
end, we show substantial evidence that although the opti-
mization procedure provides an important bias, initialization
also plays a decisive role in determining the generalization
of a neural network, and that this factor is at play across
all architectures. In particular, we demonstrate that even
with gradient-based optimization and a deep architecture
– networks can converge to solutions with extremely poor
generalization properties. We further demonstrate that this
result depends on the Fourier spectrum at initialization. It
should be noted that our result is not a recapitulation
of the well-known observation that bad initialization
hampers the convergence of neural networks. Rather,
we show that initializing networks such that they have
higher energies for higher frequencies leads to solutions
that achieve perfect training accuracy, yet succumb to in-
ferior test accuracy. We further reveal that this is a generic
property that holds in both classification and regression
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settings across various architectures.

The roots of our analysis extend to the “spectral bias” (also
known as the frequency principle) of neural networks (Xu
et al., 2019b; Rahaman et al., 2019). Spectral bias is the
interesting phenomenon that neural networks tend to learn
low frequencies faster, and consequently, tend to fit train-
ing data with low frequency functions. Significant progress
has been made on understanding and quantifying this phe-
nomenon (Rahaman et al., 2019; Xu, 2018; Xu et al., 2019b;
Luo et al., 2019; 2020; Zhang et al., 2019; 2020a), however
research up until this point has made assumptions on archi-
tecture (such as large width, limited depth, limited choice
of activations, and chain-only architectures) which do not
hold for many practical models. As has been noted in these
previous works, the spectral bias has deep implications for
generalization and its relationship to initialization. We con-
tend that the provision of a more general theoretical and
empirical analysis of spectral bias, one which applies even
to practical models widely in use, will thus be of great value
to the machine learning community..

The central objective of this paper is the provision of such a
general analysis. To this end, we utilize recently popularized
implicit neural networks (Tancik et al., 2020; Ramasinghe
& Lucey, 2021) (also referred to as coordinate-based net-
works) as an initial test-bed. Implicit neural networks are
architecturally modified fully-connected networks – using
non traditional activations such as Gaussians/sinusoids or
positional embedding layers – that can learn high-frequency
functions rapidly. In particular, we first demonstrate that
implicit neural networks do not always converge to smooth
solutions, contradicting mainstream expectations. In resolv-
ing this surprising observation, first, we invoke a compact
data manifold hypothesis to show that a weak form of spec-
tral bias (namely that sufficiently high frequencies train
arbitrarily slowly) is both architecture- and loss-agnostic in
a general sense. The term “sufficiently high" is architecture
dependent; the aim of this work is not to provide precise
quantifications of the spectral bias over a subset of architec-
tures, but is instead to present a more general result. Our
qualitative theorem applies to any differentiably parameter-
ized model, and our experiments suggest that for common
neural networks this spectral decay is present even at quite
low frequencies. With this in hand, we affirm that the poor
generalization of implicit neural networks is linked to the
presence of high frequencies at initialization which, due
to the aforementioned weak spectral bias, tend to remain
unchanged during training. Similarly, we further show that
the implicit regularization of neural networks requires an
initial spectrum that is biased towards lower frequencies.
We postulate that the remarkable generalization properties
of modern neural architectures can be partly attributed to
the employment of non-linearities (such as ReLU) that ex-
hibit such spectra upon random initialization. Extending

the above analysis, we depict that even ReLU networks,
when initialized with higher frequencies, fail to converge to
minima with good generalization properties.

Finally, we investigate the “flat minima conjecture", an infor-
mal hypothesis in the literature that flatness of a minimum
is sufficient (Keskar et al., 2016; Ronny Huang et al., 2020;
Chaudhari et al., 2019) (but not necessary (Dinh, 2017)) con-
dition for good generalisation. We find that the consistency
of the conjecture with experiment is architecture-dependent,
while the predictions made using a spectral bias approach
are consistent across all examined architectures and prob-
lems. Our main contributions are listed below:

• We show that initialization plays a crucial role in gov-
erning the implicit regularization of neural networks.
Our results advocate for a shift of focus towards ini-
tialization in understanding the generalization paradox,
which currently revolves primarily around the opti-
mization procedure.

• We conduct experiments in both classification and
regression settings. We show that the developed in-
sights are generic across different architectures, non-
linearities, and initialization schemes. Our experiments
include practical, deep networks, in contrast to many
existing related works.

• We present (empirical) counter-evidence against the
flat minima conjecture and show that 1) SGD is not
always biased towards flat minima and 2) flat minima
do not always correlate with better generalization.

2. Related Works
Implicit regularization Mathematically characterizing
implicit regularization of neural networks is at the heart of
understanding deep learning. This intriguing phenomenon
received increasing attention from the machine learning
community after the seminal work by (Zhang et al., 2016),
in which they showed that deep models, despite having the
capacity to fit even random data, demonstrate remarkable
generalization properties. Since then, an extensive body
of works have tried to characterize implicit regularization
through various lenses including training dynamics (Advani
et al., 2020; Gidel et al., 2019; Lampinen & Ganguli, 2018;
Goldt et al., 2019; Arora et al., 2019), flat minima conjec-
ture (Keskar et al., 2016; Jastrzębski et al., 2017; Wu et al.,
2018; Simsekli et al., 2019; Mulayoff & Michaeli, 2020),
statistical properties of data (Brutzkus & Globerson, 2020),
architectural aspects such as skip connections (He et al.,
2020; Huang et al., 2020), and matrix factorization (Gu-
nasekar et al., 2017; Arora et al., 2019; Razin et al., 2021).
At a high-level, these works show that deep models implic-
itly minimize a form of weight norms, regularize derivatives
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Figure 1. Implicit neural networks are not implicitly regularized. The ReLU network keeps converging to smooth solutions despite
the increasing depth. In contrast, Gaussian and sinusoidal networks converge to increasingly erratic solutions as the depth is increased.
Interestingly, note that the Gaussian and sinusoidal networks add higher frequencies to the spectrum at initialization as the depth is
increased, in contrast to the ReLU network.

of the outputs, or analogously, maximize a notion of margin
between output classes. However, the center of attention
of (almost all) these works is the bias induced by the op-
timization (SGD) methods. In contrast, we show that the
bias of SGD can itself be a source of poor generalization
if initialization is not accounted for. Notably, (Zhang et al.,
2020b) recently showed that in the NTK regime, for any
loss in a general class of functions, the neural networks
finds the same global minima—the one that is nearest to the
initial value in the parameter space. This result is a strong
indication that the generalization of neural networks indeed
depends on initialization. Similarly, (Min et al., 2021) re-
cently discussed the role of initialization in the convergence
and implicit bias of neural networks. They showed that the
rate of convergence of a neural network depends on the level
of imbalance of the initialization. Their setting, however,
only considered single-hidden-layer linear networks under
the square loss. Furthermore, (Zhang et al., 2020a) provide
an analysis of the impact of initialization on generaliza-
tion in the infinite-width chain network setting, and offer
a method of initializing at zero to minimise generalization
error. In contrast, our analysis is more general, and applies
to commonly used, practical networks.

Spectral bias Neural networks tend to learn low frequen-
cies faster. To the best of our knowledge, this peculiar
behavior was first systematically demonstrated on ReLU
networks by (Xu et al., 2019b) and (Rahaman et al., 2019)
in independent studies, and a subsequent theoretical work
showed that shallow networks with Tanh activations (Xu,
2018) also admit the same bias. Several recent works have
also attempted to characterize the spectral bias of neural
networks in different training phases and under various (rel-

atively restrictive) architectural assumptions (Luo et al.,
2019; Zhang et al., 2019; Luo et al., 2020). Perhaps, the
insights developed by (Zhang et al., 2019) and (Luo et al.,
2020) are more closely aligned with some of the conclu-
sions of our work, in which they showed that shallow ReLU
networks with infinite width converge to solutions by min-
imally changing the initial Fourier spectrum. The spectral
bias that we prove is slightly weaker precisely due to its
generality: namely that sufficiently high frequencies train
arbitrarily slowly. However our result applies more gen-
erally and its qualitative predictions are borne out by our
experiments.

Implicit neural networks Implicit neural networks are
a class of fully connected networks that were recently pop-
ularized by the seminal work of (Mildenhall et al., 2020).
Implicit neural networks either use non-traditional activa-
tion functions (Gaussian (Ramasinghe & Lucey, 2021) or
Sinusoid (Sitzmann et al., 2020)) or positional embedding
layers (Tancik et al., 2020; Zheng et al., 2021). The key
difference between implicit neural networks and conven-
tional fully connected networks is that the former can learn
high frequency functions more effectively and, thus, can
encode natural signals with higher fidelity. Owing to this
unique ability, implicit neural networks have penetrated
many tasks in computer vision such as texture generation
(Henzler et al., 2020; Oechsle et al., 2019; Henzler et al.,
2020; Xiang et al., 2021), shape representation (Chen &
Zhang, 2019; Deng et al., 2020; Tiwari et al., 2021; Genova
et al., 2020; Basher et al., 2021; Mu et al., 2021; Park et al.,
2019), and novel view synthesis (Mildenhall et al., 2020;
Niemeyer et al., 2020; Saito et al., 2019; Sitzmann et al.,
2019; Yu et al., 2021; Pumarola et al., 2021; Rebain et al.,
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2021; Martin-Brualla et al., 2021; Wang et al., 2021; Park
et al., 2021).

3. Generalization and Fourier spectrum of
neural networks

Generalization of neural networks Consider a set of
training data {xi,yi}Ni=1 sampled from a distribution D.
Given a new set {x̄, ȳ} ∼ D, where a neural network f
only observes {x̄}, the goal is to learn a function such that
f(x̄) ≈ ȳ. Since D is unknown, the network tries to learn
a function that minimizes an expected cost E[L(f(xi),yi)]
over the training data, where L is a suitable loss func-
tion. After training, if the network acts as a good estimator
f : x̄ → ȳ, we say that f generalizes well. In classifica-
tion, usually, a variant of the cross-entropy loss is chosen
as L, and in regression, ℓ1 or ℓ2 loss is chosen. It should be
noted that generalization is entirely a function of D and thus,
cannot be measured without priors on D. In image clas-
sification, for instance, a held-out set of validation/testing
data is used as a prior on D to measure the generalization
performance. In regression, due to the infinite sampling
precision of both input and output spaces, the use of such
held-out data becomes less meaningful. Thus, a more prac-
tical method of measuring the generalization in a regression
setting, at least in an engineering sense, is to measure the
“smoothness” of interpolation between training data. That
is, we say that a network generalizes well if its output is
smooth while fitting the training data (Appendix A.2).

Smooth interpolations and the Fourier spectrum In ma-
chine learning and statistics, a “smooth” signal is typically
considered a signal with bounded higher-order derivatives.
This interpretation stems from the fact that, in practice,
noise causes large derivatives and, thus, suppressing higher-
order derivatives is equivalent to suppressing noise in a
signal, leading to better generalization. A widely used ap-
proach to obtain a smooth output signal is regularizing the
second-order derivatives. For instance, in spline regression,
a weighted sum of second-order derivatives and the square
loss is minimized to achieve better generalization (Rein-
sch, 1967; Craven & Wahba, 1978; Kimeldorf & Wahba,
1970). Interestingly, (Heiss et al., 2019), showed that shal-
low ReLU networks, when initialized randomly, implicitly
regularize the second-order derivatives of the output over
a broad class of loss functional, leading to better general-
ization. Next we show that minimizing the second-order
derivatives of a signal is equivalent to minimizing the power
of higher frequencies of that particular signal. Consider an
absolutely integrable function g(x) and its Fourier transform
ĝ(x). Then,

g(x) =

∫ ∞

−∞
ĝ(k)e2πjkxdk (1)

∣∣∣∣d2g(x)dx2

∣∣∣∣ = |4π2

∫ ∞

−∞
k2ĝ(k)e2πjkxdk|

≤ |4π2|
∫ ∞

−∞
|k2ĝ(k)|dk

(2)

Therefore, suppressing the higher frequencies of the Fourier
spectrum ĝ(k) of a signal reduces the upperbound on the
magnitude of the second-order derivatives of that particular
signal.

Fourier spectrum of a neural network To any integrable
function f : Rd → R is associated its Fourier trans-
form, given by the formula F [f ](k) :=

∫
e−ik·xf(x) dx

(Grafakos, 2008). In particular, a scalar-valued neural net-
work defines a function fθ : Rd → R, whose Fourier trans-
form makes sense provided fθ is integrable. We will mollify
(set to zero outside of some set) fθ to take into account
data locality, which guarantees integrability. The Fourier
transform of a vector-valued network is defined by taking
the Fourier transform of each of its component functions.

4. Implicit neural networks do not always
generalize well

In this section, we compare implicit neural networks against
conventional ReLU networks in regression, and show that
the former do not always generalize well. The experiments
are described in detail below.

Experiment 1: We utilize fully-connected networks with
three types of activation functions: 1) ReLU, 2) Gaussian,
and 3) Sinusoidal. We sample 8 sparse points from the
signal 3sin(0.4πx) + 5sin(0.2πx) and regress them using
networks across varying depths. As depicted in Fig. 1, when
more capacity is added to the ReLU network via hidden lay-
ers, the network keeps converging to a smooth solution as
expected. In contrast, Gaussian and Sinusoidal networks
showcase worsening interpolations, contradicting the main-
stream expectations of implicit regularization. Interestingly,
it can be observed that sinusoidal and Gaussian networks
add more energy to higher frequencies at initialization as
more layers are added. In contrast, ReLU networks tend to
have a highly biased spectrum towards lower frequencies
irrespective of the depth. All the networks are randomly ini-
tialized using Xavier initialization (Glorot & Bengio, 2010).
We use SGD to optimize the networks with a learning rate
of 1× 10−4. The networks consist of 256 neurons in each
hidden layer.

Experiment 1 concludes that even with SGD as the opti-
mization algorithm, not all types of networks are implicitly
regularized. Instead, the results hint that the initial Fourier
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spectrum impacts the generalization performance of a neural
network, and the network architecture (activation) plays a
crucial role in determining the spectrum. In the upcoming
sections, we dig deeper into these insights.

5. The universality of weak spectral bias
Sec. 4 showed that networks with higher frequencies at ini-
tialization tend to exhibit poor generalization. However, it is
worth investigating if there is indeed a causal link between
the two. Intuitively, spectral bias allows us to speculate such
a link. That is, one can speculate that the non-smooth inter-
polations are a result of unwanted residual frequencies after
the convergence of lower frequencies. Continuing this line
of thought, we present a general proof of a weaker version of
spectral bias, which we show to be a universal phenomenon
that exists in any parameterized function (which includes
the class of all neural networks), given that they are trained
with gradient-based optimization methods.

Let f : Rp × Rd → R be a parameterized family θ 7→ fθ
of continuous functions Rd → R. We assume that the map
(θ, x) 7→ fθ(x) is differentiable almost everywhere, and
that the restriction of the (almost everywhere-defined) map
x 7→ Dθfθ(x) is bounded over any compact set. This set-
ting includes all presently used neural network architectures,
with activation functions constrained only to be differen-
tiable almost everywhere.

We care only about the behaviour of fθ in a neighbourhood
of the data. We invoke the compact data manifold hypoth-
esis: that the entire data manifold is contained in some
compact neighbourhood1 K. Let gθ be the extension by
zero of fθ outside of K (our result also holds if one molli-
fies by a smooth bump function, as in (Luo et al., 2019)) i.e.

gθ(x) :=

{
fθ(x) if x ∈ K,

0 otherwise
(3)

Thus gθ has compact support2 K and is continuous on K
since fθ is continuous globally. It follows that gθ is in
L1(Rd). It follows from the Riemann-Lebesgue lemma
(Grafakos, 2008) that the Fourier transform F [gθ] of gθ
vanishes at infinity. The next theorem shows that the same is
true of the change d

dt [gθ(t)] during training, hence that high
enough frequencies will be essentially unaffected during
training.

Theorem 5.1 (The (weak) spectral bias of differentiably
parameterized models). Let c : R×R → R be any differen-
tiable cost function, and let {xi}ni=1 be a training set drawn
from the data manifold, with corresponding target values

1A compact neighbourhood is a compact set containing a
nonempty open set.

2The support of a function is the smallest closed set containing
the set on which the function is nonzero

{yi}ni=1. Assume that the parameterized function θ 7→ gθ
is trained according to almost-everywhere-defined gradient
flow:

d

dt
gθ(t)(x) = − 1

n

n∑
i=1

K(θ(t), x, xi)∇c(gθ(t)(xi), yi),

(4)
where

K(θ, x, x′) := Dθgθ(x)Dθgθ(x
′)T (5)

is the tangent kernel (Jacot et al., 2018b) defined by gθ.
Then the Fourier transform F [gθ(t)] evolves according to
the differential equation

d

dt
F [gθ(t)](ξ)

= − 1

n

n∑
i=1

∫
x∈Rd

e−ix·ξK(θ(t), x, xi)∇c(gθ(t)(xi), yi) dx.

(6)

Moreover, d
dtF [gθ(t)] vanishes at infinity: for each ϵ >

0, there exists κ > 0 such that ∥ξ∥ > κ implies∣∣ d
dtF [gθ(t)](ξ)

∣∣ < ϵ.

A Taylor expansion argument can be used to argue for the
same result for discrete-time gradient descent (see Appendix
A1). Two remarks are in order regarding Theorem 5.1.

Remark 5.2. For a given architecture, it is desirable to have
quantitative bounds on the frequency above which training
can be guaranteed to be negligible. Such bounds exist in
the literature (Zhang et al., 2019; Luo et al., 2019; 2020),
but these bounds make strong architectural assumptions
such as limited depth, infinite width or purely chain MLP
architectures. While our theorem is quantitatively limited,
it is qualitatively powerful in that it predicts that for any
learning problem using gradient flow on a parameterized
model, sufficiently high frequencies present at initialization
will tend to remain after training. Our experiments suggest
that for practical neural networks in particular, “sufficiently
high" frequencies are far from out of reach and can cause
poor generalization.

Remark 5.3. Our use of the tangent kernel in characterising
the dynamics of gradient flow are inspired by the seminal
work of (Jacot et al., 2018b), which is well-known for hy-
pothesising infinite width for several of its results. In fact,
the tangent kernel governs gradient flow dynamics indepen-
dently of any architectural assumptions (beyond the stated
differentiability assumption), and in particular, Theorem 5.1
does not require an assumption of infinite width in order
to use the tangent kernel. The infinite width hypothesis is
invoked in (Jacot et al., 2018b) specifically to give a simple
proof of evolution towards a global minimum. We do not
attempt any such proof and so do not require the infinite
width hypothesis.
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Figure 2. Spectral bias applies to different network types and initialization schemes. We measure the convergence of each frequency
index as the training progresses. The colors indicate the difference between the ground truth and the predicted frequencies at each index.
Xavier and Sitzmann are the initialization schemes proposed by (Glorot & Bengio, 2010) and (Sitzmann et al., 2020), respectively. Note
that the convergence-decay rates of frequencies varies across network types and initialization schemes.

Experiement 2: The goal of this experiment is to (par-
tially) empirically validate the above theoretical conclu-
sions. To this end, we use 4-layer deep ReLU, Gaussian,
and sinusoid networks where each layer contains 256 neu-
rons. We train the networks on densely sampled points from
g(x) =

∑6
n=1 sin(10πnx). While training, we visualize

the convergence of frequency indices of all the networks
(Fig. 2). As Theorem 5.1 predicted, all three types of net-
works exhibit spectral bias. Note that the convergence-decay
rates differ across network-types and initialization schemes,
which also has an impact on generalization (see Appendix).

In the next section, we show that the initialization plays a
key role in generalization and the widely-observed good
generalization properties of ReLU networks are merely a
consequence of them having biased initial spectra (towards
lower frequencies), upon random initialization

6. ReLU networks do not always generalize
well

In this section, we show that the initial Fourier spectrum
plays a decisive role in governing the implicit regularization
of a neural network. Notably, we show that even ReLU
networks (which are commonly expected to generalize well)
do not always converge to smooth solutions despite training
with SGD. We use 4-layer networks where each layer’s
width is 256 neurons

Experiment 3a: We investigate and analyze the effect of
the initial Fourier spectrum on generalization. First, we
sample a signal sin(πx) with a step size of 1. Thus, the
lowest frequency signal that can fit this set of training points
is sin(πx) (Nyquist-Shannon sampling theorem). Then, we
randomly initialize a ReLU network using Xavier initial-
ization, so that its initial Fourier spectrum does not contain
significant energies above the frequency index k = 0.5
(which corresponds to the lowest frequency solution). After
training the network over the training points, the network
converges to the lowest frequency solution, i.e., sin(πx).

Experiment 3b: We utilize the same training points used
in Experiment 4a. However, in this instance, we pre-train
the ReLU network on a signal sin(10πx). Note that at this
instance, the Fourier spectrum of the network has a spike at
k = 5, which is above k = 0.5. Then, starting from these
pre-trained weights, we train the network on the training
points.

Experiment 3c: We initialize a Gaussian network with
Xavier initialization, so that it contains frequencies above
k = 0.5. Then, starting from these weights, we train the
model on the above training points.

Experiment 3d: We initialize a Gaussian network with
a random weight distribution N (0, 0.03) such that it does
not contain frequencies above k = 0.5. Then, starting from
these weights, we train the model on the training points used
in the above experiments.

Fig. 3 visualizes the results. As illustrated, when the spec-
trum of the ReLU network does not contain frequencies
higher than k = 0.5, the final spectrum of the network
matches with the lowest frequency solution. In contrast,
when the initial spectrum of the ReLU network contains fre-
quencies higher than k = 0.5, the network adds a spike at
k = 0.5, but leaves the high-frequency spike untouched as
the network has already reached zero train error. This results
in a non-smooth (poorly generalized) solution. Interestingly,
observe that Gaussian networks also can generalize well if
the initial spectrum does not contain higher frequencies. It
is vital to note that, however, the convergence-decay rates
of frequencies also play an important role. For instance, if
the convergence-decay rate is low, higher frequencies begin
to get affected before the lower frequencies are converged,
which can lead to non-smooth solutions (see Appendix). In
the next section, we investigate the effect of having high
bandwidth spectra at initialization in classification, using
popular deep networks.
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Figure 3. Left block shows sparsely sampled training points from sin(πx) and the corresponding lowest frequency solution that fits the
training data. Right block compares generalization corresponding to different networks and initializations. Top row: The ReLU network
tries to converge to a solution by changing low frequencies at a faster rate due to spectral bias. Consequently, when initialized with no high
frequencies, the network ends up converging to the lowest frequency (hence smooth) solution for the training points. Second row: ReLU
networks do not always generalize well. If higher frequencies (than the lowest frequency solution) exist at initialization, ReLU networks
reach a solution manipulating only the lower frequencies, resulting in bad interpolations. Third row: Same behavior is demonstrated with
a Gaussian network. Fourth row: Gaussian networks can generalize well if initialized properly. Since the network does not contain
high frequencies at initialization, it is possible for the network to converge to the lowest frequency solution.

CIFAR10 CIFAR100 Tiny ImageNet

Model Random Init High B/W init Random Init High B/W init Random Init High B/W init

VGG11 (Simonyan & Zisserman, 2014) 84.33 ± 0.49% 71.94 ± 0.71% 54.03 ± 0.71% 41.88 ± 0.94% 38.87 ± 0.41% 27.99 ± 0.73%
VGG16 (Simonyan & Zisserman, 2014) 88.24 ± 0.12% 71.55 ± 0.79% 56.86 ± 0.68% 36.27 ± 1.92% 40.95 ± 0.61% 21.77 ± 0.85%

AlexNet (Krizhevsky, 2014) 80.11 ± 1.13% 51.31 ± 0.61% 53.12 ± 1.01% 41.44 ± 1.21% 35.56 ± 0.55% 21.94 ± 1.66%
EfficientNet (Tan & Le, 2019) 76.78 ± 0.57% 61.38 ± 0.46% 43.15 ± 0.58% 26.83 ± 0.89% 33.39 ± 0.42% 18.19 ± 0.92%
DenseNet (Huang et al., 2017) 86.69 ± 0.02% 80.86 ± 0.01% 57.76 ± 0.24% 46.56 ± 0.41% 48.86 ± 0.35% 28.23 ± 0.27%

ResNet-18 (He et al., 2016) 82.44 ± 0.15% 68.99 ± 0.62% 52.14 ± 0.61% 41.98 ± 0.59% 43.58 ± 1.21% 26.73 ± 0.63%
ResNet-50 (He et al., 2016) 87.18 ± 0.21% 62.72 ± 0.47% 54.42 ± 0.78% 30.56 ± 0.58% 43.33 ± 1.43% 28.08 ± 0.61%

SENet (Hu et al., 2018) 86.31 ± 0.30% 71.20 ± 0.35% 58.64 ± 0.25% 51.56 ± 0.77% 28.27 ± 1.33% 24.03 ± 0.29%
ConvMixer (Trockman & Kolter, 2022) 86.72 ± 0.97% 49.33 ± 0.78% 61.20 ± 0.24% 26.35 ± 0.99% 45.38 ± 0.88% 27.77 ± 0.28%

Table 1. Generalization of deep networks in classification (accuracy ± std.). All values reported here are test accuracies where the
same model achieved 100% accuracy during training. When the models are initialized with higher bandwidths (pre-trained on random
labels), the test accuracy drops. This pattern is consistent across various architectures and datasets. We do not use data augmentation in
these experiments and each model is run for five times in each setting.

7. Generalization of deep networks in
classification

Sec. 5 affirmed that the spectral bias holds for any pa-
rameterized model trained using gradient descent. Thus, it
is intriguing to explore whether the practical insights we
developed thus far extrapolate to popular deep networks
that are ubiquitously used. However, for deep networks
with high-dimensional inputs (e.g., images), high-bandwidth
initialization becomes less straightforward. For instance,
consider a network that consumes high dimensional inputs

x = (x1, x2, . . . , xn). Then, one can hope to directly ex-
tend the one dimensional technique we used and train the
network on the supervisory signal sin(wx1)× sin(wx2)×
· · · × sin(wxn). However, it is easy to show that in this
case, as the dimension of the input grows, the target signal
converges to zero.

Let us instead state and justify the following two hypotheses.
First, we hypothesize that pretraining on random labels
will suffice to introduce high frequencies into the resulting
function due to the high frequency nature of random noise:

7
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Figure 4. Flat minima conjecture does not always hold. The left block and the right block correspond to high bandwidth and low
bandwidth initializations, respectively. In each block, from the left column, the interpolations, loss landscapes, and the eigenvalue
distribution of the loss-Hessian are illustrated. The loss landscapes are plotted along with the directions of the two largest eigenvalues. As
depicted, while our results for the ReLU network are consistent with the conjecture, the Gaussian network behaves in the opposite manner.
For more detailed quantitative results, see Table 5.

we empirically justify this using low-dimensional proxy
experiments (Appendix A.2) . Second, we hypothesize that
a high frequency function will generalize poorly in image
classification: we believe this to be justified by the manifold
hypothesis, which asserts that natural images tend to cluster
along smooth manifolds. If these two hypotheses are true,
then pretraining a network on random labels before training
on real labels will cause worse test performance. This is
indeed what we observe as shown next.

Experiment 4 We use 9 popular models for this experi-
ment: VGG16, VGG11, AlexNet, EfficientNet, DenseNet,
ResNet-50, ResNet-18, SENet, and ConvMixer. In the first
setting, we initialize the models with random weights, train
them on the train splits of the datasets, and measure the
test accuracy on the test splits. In the next setting, we first
pre-train the models on the train split with randomly shuf-
fled labels. Then, starting from the pre-trained weights, we
train the models on the train splits of datasets with correct
labels and compute the test accuracy on the test splits. The
results are depicted in Table 1. Recall that the pre-trained
models on random labels yield higher initial bandwidths
compared to randomly initialized models. As evident from
the results, starting from a higher bandwidth hinders good
generalization, validating our previous conclusions. The test
accuracies of some models under random weight initializa-
tion (Table 1) are slightly lower than the benchmark results
reported in the literature. This is because, following (Zhang
et al., 2016), we treat data augmentation as an explicit regu-
larization technique and do not use it. In contrast to (Zhang
et al., 2016), we consider dropout and batch normalization
as architectural aspects and keep them. Nevertheless, it is
important to note that in the above experiments, we cannot
guarantee that no other adversarial effects will be introduced
to the networks other than higher frequencies. We leave pre-
cise investigation into this matter to future works.

Model Random Init High B/W init Swapped Init
ResNet-18 82.44 ± 0.15 68.99 ± 0.62 82.91 ± 0.03
ConvMixer 86.72 ± 0.97 49.33 ± 0.78 85.27 ± 0.13

Table 2. The models are able to achieve on-par results compared
to the random initialisation scenario when pretrained on swapped
labels. This is an indication that the performance drop of the
models are a result of high-bandwidth initialization.

Nevertheless, it is intriguing to investigate whether the drop
in performance is a result of the high-bandwidth initial-
ization, or if the networks are simply struggling to learn
swapped labels. To verify this, we perform an experiment.
First, we swap labels randomly and train the model keeping
the swapped labels fixed. Then, starting from the above
pretrained model, we retrain the model on the correct labels.
The results are depicted in Table 2. As shown, the models
are able to achieve on-par results compared to the random
initialisation scenario.

8. A case against the flat minima conjecture
The “flat minima conjecture" refers to an informal hypothe-
sis present in the literature that convergence of neural net-
work training to a flat minimum is sufficient (Keskar et al.,
2016; Chaudhari et al., 2019; Ronny Huang et al., 2020)
(but not necessary (Dinh, 2017)) for the network to general-
ize well. While a good deal of empirical evidence exists to
support this conjecture for ReLU networks (see especially
(Chaudhari et al., 2019)), we show that the conjecture is not
true for Gaussian-activated networks

Experiment 5 We sample four random variables
w1, w2 ∼ U(0.01, 1), a1, a2 ∼ U(1, 10) and define 20
signals using the sampled variables as a1sin(2πw1x) +
a2sin(2πw2x). Then, we sample 8 equidistant samples
between 0 and 10, and use them as the training points to

8
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train models. We use Gaussian and ReLU networks for this
experiment in two settings. In the first setting, we initial-
ize the ReLU network using Xavier initialization and the
Gaussian networks with N (0, 0.03). In this setting, both the
networks are able to interpolate the points smoothly. In the
other setting, we initialize the ReLU network by pre-training
it on sin(6πx) and the Gaussian network with Xavier ini-
tialization. In this scenario, both networks demonstrate
non-smooth interpolations due to initial high bandwidth.
At convergence, we compute the hessian of the loss with
respect to the parameters and then compute the eigenvalues
and the trace of the hessian. The results are shown in Fig. 4
and Table 5 (Appendix). As evident, the behavior of the
Gaussian network is not consistent with the flat minima
conjecture.

9. Conclusion
We focus on the effect of initialization on the implicit gen-
eralization of neural networks. We reveal that the Fourier
spectrum of the network at initialization has a significant
impact on the generalization gap. Moreover, we offer ev-
idence against the flat minima conjecture and show that
the correlation between the flatness of the minima and the
generalization can be architecture-dependent. We empiri-
cally validate the generality of our insights across diverse,
practical settings.
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Kohler, M., Krzyżak, A., and Schäfer, D. Application
of structural risk minimization to multivariate smooth-
ing spline regression estimates. Bernoulli, pp. 475–489,
2002.

Krizhevsky, A. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Lampinen, A. K. and Ganguli, S. An analytic theory of
generalization dynamics and transfer learning in deep
linear networks. arXiv preprint arXiv:1809.10374, 2018.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, Y., Ma, T., and Zhang, H. Algorithmic regularization in
over-parameterized matrix sensing and neural networks
with quadratic activations. In Conference On Learning
Theory, pp. 2–47. PMLR, 2018.

Luo, T., Ma, Z., Xu, Z.-Q. J., and Zhang, Y. Theory of
the frequency principle for general deep neural networks.
arXiv preprint arXiv:1906.09235, 2019.

10



How Much does Initialization Affect Generalization?

Luo, T., Ma, Z., Xu, Z.-Q. J., and Zhang, Y. On the ex-
act computation of linear frequency principle dynamics
and its generalization. arXiv preprint arXiv:2010.08153,
2020.

Ma, C., Wang, K., Chi, Y., and Chen, Y. Implicit regulariza-
tion in nonconvex statistical estimation: Gradient descent
converges linearly for phase retrieval and matrix comple-
tion. In International Conference on Machine Learning,
pp. 3345–3354. PMLR, 2018.

Martin-Brualla, R., Radwan, N., Sajjadi, M. S., Barron,
J. T., Dosovitskiy, A., and Duckworth, D. Nerf in the
wild: Neural radiance fields for unconstrained photo col-
lections. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7210–
7219, 2021.

Mei, S., Misiakiewicz, T., and Montanari, A. Mean-field
theory of two-layers neural networks: dimension-free
bounds and kernel limit. In Conference on Learning
Theory, pp. 2388–2464. PMLR, 2019.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In European
Conference on Computer Vision, pp. 405–421. Springer,
2020.

Min, H., Tarmoun, S., Vidal, R., and Mallada, E. On the ex-
plicit role of initialization on the convergence and implicit
bias of overparametrized linear networks. In Interna-
tional Conference on Machine Learning, pp. 7760–7768.
PMLR, 2021.

Moroshko, E., Woodworth, B. E., Gunasekar, S., Lee, J. D.,
Srebro, N., and Soudry, D. Implicit bias in deep linear
classification: Initialization scale vs training accuracy.
Advances in neural information processing systems, 33:
22182–22193, 2020.

Mu, J., Qiu, W., Kortylewski, A., Yuille, A., Vasconcelos,
N., and Wang, X. A-sdf: Learning disentangled signed
distance functions for articulated shape representation.
arXiv preprint arXiv:2104.07645, 2021.

Mulayoff, R. and Michaeli, T. Unique properties of flat
minima in deep networks. In International Conference
on Machine Learning, pp. 7108–7118. PMLR, 2020.

Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A.
Differentiable volumetric rendering: Learning implicit 3d
representations without 3d supervision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3504–3515, 2020.

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and
Geiger, A. Texture fields: Learning texture representa-
tions in function space. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4531–
4540, 2019.

Oymak, S. and Soltanolkotabi, M. Overparameterized non-
linear learning: Gradient descent takes the shortest path?
In International Conference on Machine Learning, pp.
4951–4960. PMLR, 2019.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. Deepsdf: Learning continuous signed distance
functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 165–174, 2019.

Park, K., Sinha, U., Barron, J. T., Bouaziz, S., Goldman,
D. B., Seitz, S. M., and Martin-Brualla, R. Nerfies: De-
formable neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 5865–5874, 2021.

Pumarola, A., Corona, E., Pons-Moll, G., and Moreno-
Noguer, F. D-nerf: Neural radiance fields for dynamic
scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10318–
10327, 2021.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Ramasinghe, S. and Lucey, S. Beyond periodicity: Towards
a unifying framework for activations in coordinate-mlps.
arXiv preprint arXiv:2111.15135, 2021.

Rangamani, A., Nguyen, N. H., Kumar, A., Phan, D.,
Chin, S. H., and Tran, T. D. A scale invariant flat-
ness measure for deep network minima. arXiv preprint
arXiv:1902.02434, 2019.

Razin, N., Maman, A., and Cohen, N. Implicit regulariza-
tion in tensor factorization. In International Conference
on Machine Learning, pp. 8913–8924. PMLR, 2021.

Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K. M., and
Tagliasacchi, A. Derf: Decomposed radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14153–14161, 2021.

Reinsch, C. H. Smoothing by spline functions. Numerische
mathematik, 10(3):177–183, 1967.

Ronny Huang, W., Emam, Z., Goldblum, M., Fowl, L.,
Terry, J. K., Huang, F., and Goldstein, T. Understanding
generalization through visualizations. NeurIPS Workshop,
2020.

11



How Much does Initialization Affect Generalization?

Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa,
A., and Li, H. Pifu: Pixel-aligned implicit function for
high-resolution clothed human digitization. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 2304–2314, 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Simsekli, U., Sagun, L., and Gurbuzbalaban, M. A tail-index
analysis of stochastic gradient noise in deep neural net-
works. In International Conference on Machine Learning,
pp. 5827–5837. PMLR, 2019.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene
representation networks: Continuous 3d-structure-
aware neural scene representations. arXiv preprint
arXiv:1906.01618, 2019.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and
Srebro, N. The implicit bias of gradient descent on sepa-
rable data. The Journal of Machine Learning Research,
19(1):2822–2878, 2018.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,
J. T., and Ng, R. Fourier features let networks learn high
frequency functions in low dimensional domains. arXiv
preprint arXiv:2006.10739, 2020.

Tiwari, G., Sarafianos, N., Tung, T., and Pons-Moll, G.
Neural-gif: Neural generalized implicit functions for
animating people in clothing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 11708–11718, 2021.

Trockman, A. and Kolter, J. Z. Patches are all you need?
arXiv preprint arXiv:2201.09792, 2022.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Normalized flat
minima: Exploring scale invariant definition of flat min-
ima for neural networks using pac-bayesian analysis. In
International Conference on Machine Learning, pp. 9636–
9647. PMLR, 2020.

Wang, Z., Wu, S., Xie, W., Chen, M., and Prisacariu, V. A.
Nerf–: Neural radiance fields without known camera
parameters. arXiv preprint arXiv:2102.07064, 2021.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets
vs their induced kernel. Advances in Neural Information
Processing Systems, 32, 2019.

Wu, L., Ma, C., et al. How sgd selects the global minima
in over-parameterized learning: A dynamical stability
perspective. Advances in Neural Information Processing
Systems, 31, 2018.

Wu, X., Dobriban, E., Ren, T., Wu, S., Li, Z., Gunasekar,
S., Ward, R., and Liu, Q. Implicit regularization of nor-
malization methods. arXiv preprint arXiv:1911.07956,
2019.

Xiang, F., Xu, Z., Hasan, M., Hold-Geoffroy, Y., Sunkavalli,
K., and Su, H. Neutex: Neural texture mapping for volu-
metric neural rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7119–7128, 2021.

Xu, Z. J. Understanding training and generalization
in deep learning by fourier analysis. arXiv preprint
arXiv:1808.04295, 2018.

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y., and Ma, Z.
Frequency principle: Fourier analysis sheds light on
deep neural networks. arXiv preprint arXiv:1901.06523,
2019a.

Xu, Z.-Q. J., Zhang, Y., and Xiao, Y. Training behavior of
deep neural network in frequency domain. In Interna-
tional Conference on Neural Information Processing, pp.
264–274. Springer, 2019b.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Py-
hessian: Neural networks through the lens of the hessian.
In 2020 IEEE international conference on big data (Big
data), pp. 581–590. IEEE, 2020.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. pixelnerf:
Neural radiance fields from one or few images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 4578–4587, 2021.

Yun, C., Krishnan, S., and Mobahi, H. A unifying view
on implicit bias in training linear neural networks. arXiv
preprint arXiv:2010.02501, 2020.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv e-prints, pp. arXiv–1611, 2016.

Zhang, Y., Xu, Z.-Q. J., Luo, T., and Ma, Z. Explicitizing
an implicit bias of the frequency principle in two-layer
neural networks. arXiv preprint arXiv:1905.10264, 2019.

12



How Much does Initialization Affect Generalization?

Zhang, Y., Xu, Z.-Q. J., Luo, T., and Ma, Z. A type of gen-
eralization error induced by initialization in deep neural
networks. In Proceedings on Machine Learning Research,
pp. 144–164, 2020a.

Zhang, Y., Xu, Z.-Q. J., Luo, T., and Ma, Z. A type of
generalization error induced by initialization in deep neu-
ral networks. In Mathematical and Scientific Machine
Learning, pp. 144–164. PMLR, 2020b.

Zheng, J., Ramasinghe, S., and Lucey, S. Rethinking posi-
tional encoding. arXiv preprint arXiv:2107.02561, 2021.

13



How Much does Initialization Affect Generalization?

A. Appendix
A.1. Proof of Theorem 5.1

Proof. The evolution in parameter space is described by the differential equation

d

dt
θ(t) = − 1

n

n∑
i=1

Dθgθ(t)(xi)
T∇c(gθ(t)(xi), yi).

The evolution of the corresponding function gθ(t) is given by pushing this differential equation forward to function space by
acting on both sides with the derivative Dθgθ(t)(x):

d

dt
gθ(t)(x) = Dθgθ(t)(x)

d

dt
θ(t) =− 1

n

n∑
i=1

Dθgθ(t)(x)Dθgθ(t)(xi)
T∇c(gθ(t)(xi), yi)

=− 1

n

n∑
i=1

K(θ, x, xi)∇c(gθ(t)(xi), yi),

where K the extension of the tangent kernel associated to fθ by zero outside of the compact neighbourhood K of the data
manifold, i.e.

K(θ, x, x′) =

{
Dθfθ(x)Dθfθ(x

′)T , if x, x′ ∈ K

0, otherwise.

The evolution equation for F [gθ(t)] follows easily from the Liebniz integral rule:

d

dt
F [gθ(t)] = F

[
d

dt
gθ(t)

]
.

Now, by our hypothesis on fθ that x 7→ Dθfθ(x) is bounded over compact sets, one has that x 7→ K(θ, x, xi) is L1 for
each i, hence that d

dtgθ(t) is an L1 function. By the Riemann-Lebesgue lemma its Fourier transform vanishes at infinity as
stated.

The same result can be argued for discrete-time gradient descent as follows. At a given time step T , the gradient update is
given by the equation

θT+1 − θT = − η

n

n∑
i=1

DθfθT (xi)
T∇c(fθT (xi)),

where η is the step size. One wishes to show that the difference x 7→ fθT+1
(x)− fθT (x), extended by zero for x outside

of the compact data manifold K, has Fourier transform vanishing at infinity. To first order in η, one can approximate this
difference by

− η

n

n∑
i=1

DθfθT (x)DθfθT (xi)
T∇c(fθT (xi)),

again extended by zero for x outside of K. Spectral bias for gradient descent then follows (at least approximately, for
η << 1) from the same Riemann-Lebesgue argument that we used for gradient flow.

A.2. Smoothness, generalization, and the the empirical risk minimization (ERM)

The ERM framework provides a well-established framework for studying the generalization in learnable models. The
smoothness is a property which stems from the empirical risk minimization framework, and has been used since the earliest
days of ML to quantify generalization (in regression). In summary, given a set of hypotheses (models) that minimizes the
empirical risk (with training data), the ERM framework prefers a solution that minimizes the true risk (with respect to the
actual data distribution) with a higher probability. When extra prior knowledge is unavailable on the true data distribution,
ERM suggests that the best solution would be the one that minimizes the least complex solution that minimizes the empirical
risk (under the realizability assumption). This can be primarily achieved using two regularization techniques: 1) regularizing
the parameters of the model or 2) regularizing the function output itself. Popular regularizations on NNs, Lasso regression,
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Ridge regression etc. fall into the first category, and spline, polynomial regression with regularized derivatives fall into
the second category (Reinsch, 1967; Kimeldorf & Wahba, 1970; Craven & Wahba, 1978; Kohler et al., 2002). A more
recent example is (Heiss et al., 2019). It should be noted that both these techniques lead to smooth solutions with bounded
(higher-order) derivatives.

The intuition for this partially stems from the fact that reducing the bandwidth of a signal can be considered as minimizing
noise, whereas noise corresponds to higher frequencies in natural signals. Almost every spectral-bias-related recent work
also uses low-frequency solutions, hence solutions with bounded second-order derivatives, as a proxy for measuring
generalization (Xu et al., 2019a;b). A few application-specific examples would be recent Neural Radiance Field works
(Fridovich-Keil et al., 2022; Chen et al., 2022), where smooth (tri-linear) interpolation is used to generalize to unseen
coordinates.

A.3. Initializing deep networks with higher bandwidths

Initializing deep classification networks – that consume high dimensional inputs such as images – such that they have higher
bandwidths is not straightforward. Therefore, we explore alternative ways to initialize networks with higher bandwidths in
low-dimensional settings, and extrapolate the learned insights to higher dimensions.

For all the experiments, we consider a fully connected 4-layer ReLU network with 1-dimensional inputs. First, we sample
a set of values from white Gaussian noise, and train the network with these target values using MSE loss. In the second
experiment, we threshold the sampled values to obtain a set of binary labels, and then train the network with binary
cross-entropy loss. For the third experiment, we use a network with four outputs. Then, we separate the sampled values into
four bins, and obtain four labels. Then, we train the network with cross-entropy loss. We compute the Fourier spectra of
each of the trained networks after convergence. The results are shown in Fig.5.

As depicted, we can use mean squared error (MSE) or cross-entropy (CE) loss along with random labels to initialize the
networks with higher bandwidth. However, we observed that, in practice, deep networks take an infeasible amount of time
to converge with the MSE loss. Therefore, we use cross-entropy loss with random labels to initialize the networks in image
classification settings.

Figure 5. We visualize the spectra of networks after training them with different loss functions and label sampling schemes (the rightmost
three plots). All shown methods are able to obtain higher bandwidths than random initialization (leftmost plot). Note that the scale in the
y−axis is different for each plot. However, in practice, deep classification networks take an infeasible amount of time to converge with
MSE loss. Hence, we chose random labels with cross-entropy loss to initialize the deep classification networks with higher bandwidths.

In order to verify that training with random labels indeed induces higher bandwidths on deep classification networks, we
visualize the histograms of their first order gradients of the averaged outputs w.r.t. the inputs. It is straightforward to show
that (similar to second-order gradients) higher first-order gradients lead to higher bandwidth. For simplicity, consider a
function f : R → R. Then,

f(x) =

∫ ∞

∞
f̂(k)e2πikxdk

It follows that,
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|df(x)
dx

| = |2πi
∫ ∞

∞
kf̂(k)e2πikxdk| (7)

≤ |2π|
∫ ∞

∞
|kf̂(k)|dk. (8)

Therefore,

max
x∈ϵ

|df(x)
dx

| ≤ |2π|
∫ ∞

∞
|kf̂(k)|dk. (9)

This conclusion can be directly extrapolated to higher-dimensional inputs, where the Fourier transform is also high
dimensional. Hence, we feed a batch of images to the networks, and calculate the gradients of the averaged output layer
with respect to the input image pixels. Then, we plot the histograms of the gradients (Fig. 6). As illustrated, training with
random labels induces higher gradients, and thus, higher bandwidth. Table. 3 compares generalization of deep networks on
ImageNet.

Figure 6. The histograms of the first-order gradients of the outputs with respect to the inputs (a batch of training images) are shown. Low
and high bandwidth initializations correspond to Xavier initialization and pre-training with random labels, respectively. Not that the
x−axis scales are different in each plot. As depicted, training with random labels leads to higher gradients, validating that it indeed leads
to higher bandwidths.

ImageNet

Model Random initialization High B/W initialization
Train accuracy Test accuracy Train accuracy Test accuracy

VGG16 100% 68.19% 100% 55.48%
ResNet-18 100% 66.93% 100% 49.17%
ConvMixer 100% 74.19% 100% 45.68%

Table 3. Generalization of deep networks in classification over ImageNet. When the models are initialized with higher bandwidths
(pre-trained on random labels), the test accuracy drops. We do not use data augmentation in these experiments. We only use three models
for this experiment due to the extensive resource usage when training on random labels over ImageNet.
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A.4. Convergence-decay rates of frequencies matter for generalization

Earlier, we showed that although all neural networks admit spectral bias, the convergence-decay rates of frequencies
change across network types and initialization schemes. Below, we show that these decay rates play an essential role in
generalization.

We use a Gaussian network for this experiment. We initialize two instances of the network by 1) using a weight distribution
N (0, 0.03), and 2) pre-training the network on a DC signal. In both instances, the network has low bandwidth. Then,
we train the network on sparse training data sampled from 3sin(0.4πx) + 5sin(0.2πx). The results are shown in Fig. 7.
Observe that although both networks start from low bandwidth, they exhibit different generalization properties. This is
because, having a lower convergence-decay hinders smooth interpolations even in cases where the networks have low
initial bandwidth. This is expected, since then, the optimization will begin to affect the higher frequencies before the lower
frequencies are converged.

Figure 7. The effect of convergence-decay rate of frequencies on generalization. Left block: We pre-train a Gaussian network on a DC
signal to obtain low initial bandwidth. Nevertheless, the network still converges to a non-smooth solution. Right block: The Gaussian
network is initialized using a random Gaussian distribution (N (0, 0.03)). This method also leads to lower bandwidth. However, in this
scenario, the network is able to converge to a smooth solution. At the top, the convergence of frequency components – starting from the
corresponding initialization – is shown when training on a signal g(x) =

∑6
n=1 sin(10πnx). Note that a lower convergence decay rate

leads to bad generalization.

To further verify this, we conduct another experiment; see Fig. 8.

A.5. Analyzing the loss landscapes

The flat minima conjecture has been studied since the early work of (Hochreiter & Schmidhuber, 1994) and (Hochreiter
& Schmidhuber, 1997). More recently, empirical works showed that the generalization of deep networks is related to the
flatness of the minima it is converged to during training (Chaudhari et al., 2019; Keskar et al., 2016). In order to measure the
flatness of loss landscapes, different metrics have been proposed (Tsuzuku et al., 2020; Rangamani et al., 2019; Hochreiter
& Schmidhuber, 1994; 1997). In particular, (Chaudhari et al., 2019) and (Keskar et al., 2016) showed that minima with low
Hessian spectral norm generalize better. In this paper also, we use Hessian-related metrics to measure the flatness. Since
the spectral norm alone is not ideal for analyzing the loss landscape of models with a large number of parameters, we also
compute the trace and the expected eigenvalue of the Hessian. For computing the Hessian, we use the library provided by
(Yao et al., 2020). Fig 9 and Table 4 depict a comparison of loss landscapes in several deep models. Note that our proposed
high B/W initialization scheme provides an ideal platform to compare the loss landscapes with different generalization
properties.

17



How Much does Initialization Affect Generalization?

Figure 8. The top block shows sparsely sampled training points from sin(πx) and the corresponding lowest frequency solution that fits
the training data. The bottom block shows the spectra of a Gaussian network initialized by pre-training on a DC signal. Even though the
network adds a spike at the lowest frequency solution, higher frequencies are also added to the spectrum due to the low convergence-decay
rate. This results in a non-smooth interpolation.

Model Hessian-trace Spectral norm
ResNet-18 (low B/W) 13560.76 2805.47
ResNet-18 (high B/W) 28614.19 4121.36

VGG-16 (low B/W) 10102.51 1112.07
VGG-16 (high B/W) 14483.90 3214.57

ConvMixer (low B/W) 0.3242 0.028
ConvMixer (high B/W) 3.49 0.445

Table 4. Quantitative comparison of the flatness of minima in deep networks. Note that Note that ReLU networks exhibit behaviour
consistent with the flat minima conjecture.

Model Initialization Hessian trace E[ϵ] Spectral norm
ReLU High B/W 134213.36 0.95 257875.23
ReLU Low B/W 31110.73 0.04 49781.58

Gaussian High B/W 40478.82 0.21 12596.89
Gaussian Low B/W 59447.46 0.32 26519.66

Table 5. The trace, expected eigenvalue (E[ϵ)], and the spectral norm of the loss-Hessian are shown (averaged over 20 signals). Higher
values indicate a sharper minimum. As illustrated, while the ReLU network obeys the flat minima conjecture, the Gaussian network
behaves oppositely.
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Figure 9. Loss landscapes of deep networks trained on CIFAR10. The proposed high B/W initialization scheme provides an ideal
platform to compare the flatness of minima with different generalization properties. Note that ReLU networks exhibit behaviour consistent
with the flat minima conjecture.

19


