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ABSTRACT

Continual test-time adaptation (CTTA) aims to maintain model accuracy under
non-stationary distribution shifts when source training data are unavailable. Exist-
ing methods using pseudo labels struggle to balance rapid adaptation with knowl-
edge retention, often requiring multiple forward passes, which makes them im-
practical for deployment under strict latency constraints. We present MiDEA
(Masked-image modeling with Dual-EMA Adaptation), a decoder-free frame-
work with one teacher and two student forward passes per batch, combining global
two-view consistency, masked local alignment, and layer-wise dual-rate EMA.
MiDEA maintains a teacher-student architecture that measures distribution gaps
at both global image and local levels. Globally, it aligns clean teacher predic-
tions with strongly augmented student views and locally, it matches teacher patch
representations to student masked embeddings. The teacher updates via dual-rate
EMA: attention layers adapt rapidly while MLP weights drift slowly, reducing
drift during continual updates. On ViT-Base, MiDEA achieves 38.1% ImageNet-
C error, 18 points below frozen models and 5 below previous CTTA state-of-the-
art, while running 3x faster than multi-pass methods and maintaining accuracy at
batch size 1.

1 INTRODUCTION

Real-world deployment of deep neural networks frequently encounters test-time distribution shifts,
which can cause substantial performance degradation. Despite advances in supervised and unsuper-
vised representation learning [Dosovitskiy et al.[(2021); [He et al.| (2022)); |Caron et al.| (2021]), trained
models typically suffer severe accuracy drops when faced with unexpected data variations at infer-
ence time |Hendrycks & Dietterich| (2019). Autonomous vehicles and robotic systems must remain
robust under changing weather, illumination, and environmental context (see examples in Figure[I).

Test-time adaptation (TTA) can help under a single, approximately stationary shift, yet operational
conditions evolve over time as dawn becomes daylight and clear skies turn to rain. This motivates
the more challenging setting of continual test-time adaptation (CTTA) [Wang et al.| (2022).

Figure 1: Real-world environments fre-
quently introduce continuous distribution
shifts (weather changes, lighting, noise,
blur), motivating continual test-time adap-
tation (CTTA).

CTTA introduces two central difficulties: catastrophic forgetting and error accumulation. Meth-
ods based on pseudo labels and teacher—student training, including CoTTA Wang et al.| (2022),
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Continual-MAE [Liu et al| (2024a)), and RMT Doebler et al. (2023)), often require multiple for-
ward passes, auxiliary decoders, or sizable memory buffers, which hinders deployment in resource-
constrained applications. This raises a fundamental question: Can we achieve state-of-the-art con-
tinual robustness without heavy computational overhead?

Our Approach. MiDEA (Masked-image modeling with Dual-EMA Adaptation) is a decoder-
free CTTA method for Vision Transformers that uses a single teacher pass per batch. The pipeline
combines three elements: (i) a standard global two-view consistency term that aligns a clean teacher
view with a strongly augmented student view, (ii) a masked local self-distillation loss that matches
internal patch embeddings on masked regions without any reconstruction decoder, providing spatial
regularization, and (iii) a layer-wise dual-rate EMA update that adapts attention blocks faster than
MLP blocks to balance plasticity and stability.

Empirical Results. On ImageNet-C Hendrycks & Dietterich (2019), MiDEA attains 38.1% error,
improving by 18 points over non-adaptive baselines and by 5 points over prior ViT-B results, while
processing 454 images/s on an RTX 3080, over 3x faster than recent CTTA methods [Wang et al.
(2022); Liu et al.[(2024a)); Doebler et al.|(2023). Similar gains are observed on CIFAR-10-C (17.6
pp) and CIFAR-100-C (11.4 pp). Accuracy remains stable at batch size 1, which supports latency-
constrained deployments.

Contributions. (1) A minimal, source-free CTTA design for ViTs that is single-teacher-pass and
decoder-free. (2) A masked local alignment objective that complements global consistency without
auxiliary decoders. (3) A layer-wise dual-rate EMA update that improves stability over single-rate
baselines. (4) A practical accuracy—throughput profile with stable performance even at batch size 1.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING AND MASKED IMAGE MODELING

Self-supervised learning (SSL) has evolved from simple proxy tasks, such as rotation prediction |Gi-
daris et al.| (2018)) and image colorization |Larsson et al.| (2017, to more advanced contrastive meth-
ods that learn representations by drawing semantically similar samples closer while pushing dissim-
ilar ones apart (Chen et al.[ (2020a); He et al.| (2020); |Chen et al.| (2020c)); (Grill et al.| (2020); |(Caron
et al. (2021));|Chen & He|(2021)); |Chen et al.| (2020b); |Assran et al.[(2023)).

A particularly relevant branch of SSL is masked image modeling (MIM), pioneered by Masked
Autoencoders (MAE) He et al.|(2022). MAE randomly masks 75% of image patches, encodes only
visible patches, and uses a lightweight decoder to reconstruct the complete RGB image. Subsequent
work has shown that reconstructing engineered features, such as Histogram-of-Oriented-Gradients
(HOG)|Wei et al.| (2022)), instead of raw pixels can improve performance. SImMIM Xie et al.| (2022)
simplifies this pipeline by passing both masked and unmasked patches through the encoder, whereas
hybrid approaches, such as iBOT [Zhou et al.| (2022)), combine masked modeling with contrastive
objectives.

The inherent label-free learning signal in SSL methods makes them naturally suited for continual
test-time adaptation. Recent CTTA methods have successfully integrated SSL objectives into the
test-time loop: Contrastive TTA |Chen et al.| (2022) adds InfoNCE-style contrastive loss between
augmented views, while Continual-MAE (ADMA) [Liu et al.| (2024a) adapts MAE’s masking strat-
egy for online adaptation. However, ADMA requires multiple forward passes for patch selection,
increasing computational cost.

2.2 TEST-TIME ADAPTATION

Test-time adaptation (TTA) addresses the challenge of adapting pre-trained models to new, station-
ary target domains using only unlabeled test data. Early approaches like AdaBN |Li et al.| (2016)
recompute batch normalization statistics, while Tent|Wang et al.[(2021) performs entropy minimiza-
tion by updating only BatchNorm parameters.
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Figure 2: MiDEA’s holistic update loop. The student processes the original view once with a
random patch mask (local branch) and the augmented view without masking (global branch). (1)
Global two-view loss: a symmetric cross-entropy aligns the full-image prediction vectors of teacher
and student across the two views. (2) Local same-view loss: a decoder-free cross-entropy matches
teacher and student patch embeddings only on the tokens that were masked, supplying fine-grained
spatial guidance. A single backpropagation step updates the student, after which (3) Dual-rate
EMA moves the teacher towards the new student weights, using a fast EMA for attention layers,
and a slow one for Conv/MLP. This helps prevent drifting during continual updates without requiring
extra passes. Thus, MiDEA couples global+local self-distillation with a layer-aware EMA in one
decoder-free pass per view.

More sophisticated methods include SHOT |Liang et al.| (2020), which requires specialized source
training with label smoothing, and TTT Sun et al.|(2020), which incorporates rotation prediction as
an auxiliary task. Recent TTA methods have explored entropy-based self-training [Niu et al.| (2022),
contrastive objectives (2022), and parameter-efficient approaches like visual prompt-
ing (2022), and lightweight meta-network adaptation [Song et al| (2023). While effec-

tive for static distribution shifts, these methods struggle when test distributions evolve continuously,
motivating the development of continual test-time adaptation.

2.3 CONTINUAL TEST-TIME ADAPTATION

Continual test-time adaptation (CTTA) extends TTA to handle non-stationary test streams where dis-
tributions shift continuously over time. This setting introduces two critical challenges: catastrophic
forgetting, where models lose previously learned knowledge when adapting to new data, and error
accumulation, where adaptation mistakes compound over successive updates.

Teacher-Student Frameworks. The most recent CTTA methods employ teacher-student archi-
tectures, where the student adapts to new data while a slowly updated exponential moving average
(EMA) teacher provides stability. CoTTA [Wang et al.| (2022) generates stable pseudo-labels by av-
eraging teacher predictions over 32 random augmentations and periodically resets teacher weights
to source values. VIDA introduces LoRA adapter modules that can be updated
online; however, it still requires 10 teacher passes per batch and necessitates source data for adapter
pre-training. Although ADMA does not explicitly use a teacher-student structure,
it replaces the teacher’s stabilization role with masked-image modeling. Still, it incurs overhead due
to multiple forward passes and relies on reconstructing handcrafted features. In contrast, MiDEA
explicitly uses local semantics by directly aligning masked patch embeddings between teacher
and student, eliminating the need for a reconstruction decoder.
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Memory and Sample-Selection Methods. Several other methods explicitly utilize memory banks
or queues, such as RMT |Doebler et al.[(2023), RoTTA |Yuan et al.|(2023), and AR-TTA |Sojka et al.
(2023). Sample-selection approaches focus adaptation efforts on identifying reliable versus unreli-
able test samples, adjusting their update strategies accordingly. Examples include FACTTA |Wu &
Zhuang| (2024), CCoTTA |Shi et al.| (2024)), and Yang et al. |Yang et al.| (2024bja). Such reliability-
based strategies may also be complementary to our method Mounsaveng et al.| (2024). Parameter-
Efficient Approaches. Recent work explores minimal parameter updates through visual prompts.
VDP |Gan et al.| (2023) learns domain-specific and domain-agnostic pixel-level prompts through
teacher-student EMA, whereas DePT Gao et al.[(2022) maintains online memory banks for pseudo-
labeling, which introduces additional memory costs.

Relation to Robust Mean Teacher (RMT). RMT [Doebler et al.| (2023) also uses two-view
teacher—student consistency. MiDEA differs by targeting ViTs with a single teacher pass, no re-
play/ensembling/contrastive memory, and a decoder-free masked local alignment plus dual-rate
EMA. This yields a simpler, deployment-oriented recipe under strict efficiency constraints.

3 METHOD

3.1 PROBLEM SETUP

Let fy, be a classifier with initial parameters 6 trained on labeled source data (Xg, Ys), where Xg
and Yg denote the source domain inputs and labels, respectively. At test time, the model observes
a continuous stream {x; }$2; whose distribution p;(z) drifts continuously and unpredictably. Cru-
cially, source samples are unavailable during adaptation, and each target sample is observed only
once. After making a prediction fy, (x:), the model applies at most one gradient step to obtain
updated parameters 6;1. The objective is to minimize cumulative prediction error while avoiding
catastrophic forgetting of the original source domain knowledge. This challenging setting, known as
continual test-time adaptation (CTTA), requires methods that can rapidly adapt to new conditions
while maintaining knowledge of past distributions.

3.2 MIDEA OVERVIEW

MiDEA addresses CTTA through three synergistic innovations: (1) global image-level consistency
using symmetric cross-entropy between clean and augmented views, (2) local patch-level alignment
via masked self-distillation without reconstruction decoders, and (3) a dual-rate EMA mechanism
that enables attention layers to adapt faster than MLP layers, balancing plasticity with stability. Our
method requires two student and one teacher forward passes per batch (three total) (Figure [2)).

3.3 GLOBAL TWO-VIEW CONSISTENCY

To establish robust image-level semantic alignment, we create two global crops from each input
image:

z, (clean, unaugmented), (1)
2y =T (x) (strongly augmented), ()

where 7 (-) represents strong data augmentation, including random affine and color jittering.

The teacher processes the clean image x,, through a single forward pass to produce class predictions
¢ € RY. Simultaneously, the student processes the augmented view x,, to generate corresponding
predictions p,,. We enforce consistency between these predictions using a symmetric cross-entropy
(CE) loss:

1 N "
Lecons = B [CE(%,pv) + CE(pq,, Qu)] . 3)

The clean teacher view provides a stable semantic reference, while the student must match pre-
dictions under strong augmentation; symmetric cross-entropy mitigates pseudo-label noise Doebler
et al.| (2023)), which is crucial in continual adaptation. This formulation is conceptually related to the
two-view consistency in Robust Mean Teacher (RMT) Doebler et al.| (2023), though MiDEA does
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not adopt RMT’s replay buffers, contrastive objectives, or ensembling, focusing instead on a mini-
mal, single-teacher-pass design for ViTs. Unlike previous methods that require multiple augmented
views and repeated teacher inferences, our approach achieves effective global alignment with one
teacher and two student forward passes per batch.

3.4 LOCAL MASKED SELF-DISTILLATION

While global consistency captures image-level semantics, it ignores spatial structure and fine-
grained details. To address this limitation, we introduce a complementary local loss that operates
on patch embeddings, leveraging the network’s internal representations rather than reconstructing
pixels or handcrafted features.

We apply a binary mask to the patch tokens of the clean image z,,, where NV is the total number of
patches and m C {1,..., N} denotes the set of masked patch indices with masking ratio » = 0.5.
The student re-encodes this masked image to produce patch embeddings z,, ; for each spatial location
1. In parallel, the teacher processes the complete unmasked image to generate reference embeddings

*

Since both networks operate on the same spatial grid, we can directly compare embeddings at cor-
responding locations. We apply supervision only on the masked patches, where the student lacks
direct visual information:

Lonim = — Y _ 25 -1ogzui = > CE(z};, 2u). 4)

i€Em iem

This masked self-distillation encourages the student to learn fine-grained spatial structure precisely
where it lacks information, turning local alignment into a non-trivial prediction task that builds
context-aware features rather than copying visible tokens. Our ablation analysis demonstrates that
this decoder-free token-to-token alignment contributes approximately 2.3 percentage points in accu-
racy improvement.

Evaluation protocol. Unless otherwise specified, all reported results are obtained from the EMA
teacher model applied to the clean, unaugmented view at test time.

3.5 LAYER-WISE DUAL-RATE EMA

Standard EMA methods apply the same update rate to all network parameters, which creates a one-
size-fits-all plasticity level. This can lead to two issues: either the network forgets information
too quickly or it adapts too slowly. Different components of the network have specific functions;
for instance, attention layers are designed to capture contextual relationships and may benefit from
adapting more quickly to new visual patterns. In contrast, MLP layers encode fundamental repre-
sentations that should change more conservatively.

We address this challenge by maintaining separate EMA rates for different layer types. Let Gét)

denote the student parameters for layer ¢ at time ¢, and Gz(t) denote the corresponding teacher pa-
rameters. The teacher’s update rule is:
;Y 0,0, + (1 — )oY,
o — Qiweight  if £ is MLP/conv layer, ®)
= Qlattn if ¢ is attention/projection layer,

where qiin < Qryeight, allowing attention layers to update more rapidly.

This dual-rate schedule enables fast-adapting attention mechanisms to specialize to new domains
while slow-updating MLP and convolutional layers preserve long-term semantic knowledge. The
result is a single set of parameters that maintains both recent adaptations and historical knowledge.
Our ablation studies show this approach recovers approximately 2 percentage points over the best
single-rate baseline, suggesting that explicitly separating plastic and stable components can be more
effective than tuning a single global EMA rate. This separation improves stability by keeping atten-
tion layers responsive and MLP/conv layers conservative, reducing drift during continual updates.
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3.6 COMBINED OBJECTIVE AND UPDATE PROCEDURE

The final loss function combines our global and local consistency terms:
L= )\mim'cmim + £con37 (6)

where A\nim controls the relative importance of local patch-level alignment. Unless otherwise noted,
we use a fixed configuration per dataset (learning rate, EMA rates, Ayim, masking ratio). Section
details both tuned settings and a universal configuration shared across datasets.

Algorithm 1 MiDEA Single-Batch Update

Input: Clean batch z,,, mask ratio r

Ju—

2: x, + StrongAugment(z,,) > Create augmented view
3: m + RandomMask(r) > Generate spatial mask
4: g + Teacher(z,,) > Clean teacher prediction
5: py < Student(z,,,m) > Masked student encoding
6: p, < Student(z,) > Augmented student prediction
7 L4+ Amimﬁmim(pm Qs m) + Leons (pm QZ)

8: 0« 0—nVyL > Single gradient step
9: 6* «+ DualRateEMA(6*, 6) > Update teacher

Algorithm[T|summarizes our complete update procedure. The method requires exactly three forward
passes (one teacher, two students) and one backward pass per batch. This computational efficiency,
combined with the synergy between global semantic alignment, local spatial adaptation, and layer-
wise EMA control, creates a minimal yet highly effective CTTA approach. The contribution of each
component is quantified in our ablation studies (Table [3).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We follow the continual test-time adaptation protocol established by [Wang et al.| (2022), where a
source-trained network adapts online to a stream of fifteen corruption types at maximum severity
without access to source data or ground-truth labels. Our evaluation spans ImageNet-C, CIFAR-10-
C, and CIFAR-100-C benchmarks/Hendrycks & Dietterich|(2019)), with experiments initialized from
ViT-B/16 weights pre-trained on the corresponding source domains, following [Liu et al.|(2024aib).

For consistency with recent work Liu et al.|(2024aib), we resize images to 224 x 224 for ImageNet-C
and 384 x 384 for both CIFAR datasets. All experiments utilize fixed hyperparameters Apyim = 6 and
a masking ratio of 7 = 0.5, employing identical augmentation strategies for generating the student
View T,,.

Dataset-specific tuning. We optimize using SGD with our dual-rate EMA where (g, Qweight) are
(0.9, 0.99) for ImageNet-C and CIFAR-10-C, and (0.999, 0.9999) for CIFAR-100-C. Learning rates
are 7 = 1x107° for ImageNet-C and 7 = 5x 107> for CIFAR datasets.

Universal configuration (MiDEA-U). To demonstrate robustness, we also evaluate a single hyper-
parameter configuration across all datasets: 7 = 1x107°, aue = 0.9, and Otyeight = 0.99, while
maintaining the same Apij, = 6 and » = 0.5.

4.2 MAIN RESULTS

Performance across corruption benchmarks. MiDEA achieves substantial improvements over
both non-adaptive baselines and state-of-the-art CTTA methods across all evaluated datasets. On
ImageNet-C, MiDEA attains 38.1% error rate, surpassing the frozen source model by 18 percentage
points and outperforming the previous best method (Continual-MAE) by 5 percentage points (Ta-
ble[T). Notably, MiDEA achieves the lowest error on 9 out of 15 corruption types, compared to only
4 for the runner-up method.
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Table 1: ImageNet-C tuned version, error (%) — lower is better. Columns show individual
corruption types from ImageNet-C benchmark. Best results are indicated in bold.

S & 5 $ $ $ § & & & § $ & § s
Method REF < F Avg
Source ICLR2021 | 53.0 518 521 685 788 585 633 499 542 577 264 914 575 380 362 | 558
Pseudo-label ICML2013 | 452 404 416 513 539 456 477 404 457 938 985 999 999 989 996 | 66.8
TENT-continual | ICLR2021 | 522 489 492 658 730 545 584 440 477 503 239 728 557 344 339 | 510
CoTTA CVPR2022 | 529 516 514 683 781 571 620 482 527 553 259 900 564 364 352 | 548
VDP AAAI2023 | 527 516 501 S81 702 561  S8.1 421 46.1 458 236 704 549 345 361 | 500
VIDA CVPR2024 | 477 425 429 522 569 455 489 389 427 407 243 528 491 335 331 | 434
Cont-MAE AAAI2023 | 463 419 425 514 549 433 407 342 358 643 234 603 375 292 314 | 425
MiDEA Proposed 451 392 406 468 462 405 392 346 360 356 250 421 377 304 322 | 381

Accuracy vs Throughput

64.0

62.0 MIDEA Figure 3: Accuracy-throughput trade-
o a0 ContMAE off on ImageNet-C (ViT-B/16, batch 8,
g 560 VDR single RTX 3080). MiDEA achieves 62%
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:2:3 o corTA (Continual-MAE, VIDA).
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Similar trends emerge on CIFAR benchmarks. On CIFAR-10-C, MiDEA demonstrates a 17.6 per-
centage point improvement over the baseline and maintains a 2.5 percentage point margin over
Continual-MAE, achieving best performance on 14 out of 15 corruptions. On the more challeng-
ing CIFAR-100-C dataset with its larger label space, MiDEA still delivers an 11.4 percentage point
gain over the baseline and surpasses Continual-MAE by 2 percentage points, ranking first on 9 cor-
ruptions and second on only 3 (see Appendix D] for detailed per-corruption results). Results on
ImageNet-C and CIFAR-100-C are averaged over 5 random seeds (std. j0.2); see Appendix

Table 2: Universal (uni.) vs. per—dataset (tuned) hyper—parameters. Lower error,|; higher
Avg—Gain,T. While Versatile achieves 8.9% error on CIFAR-10-C, our method remains
competitive across CIFAR-10/100 and surpasses it on ImageNet-C.

Method | REF | Config | IN| Cl10, Cl100{ | Avgl Gain?t
Source ICLR2021 - 558  28.1 354 39.8 0.0
TENT-continual | ICLR2021 tuned | 51.0 235 32.1 35.5 4.3
CoTTA CVPR2022 | tuned | 54.8 24.6 348 38.0 1.8
VDP AAAI2023 uni. 50.0 241 32.0 354 4.4
VIDA ICLR2024 tuned | 434 207 273 30.5 9.3
Continual-MAE | CVPR2024 | tuned | 42.5 12.6 26.4 272 12.6
Versatile CVPR2024 | tuned | 42.7 8.9 24.0 25.2 14.6
MiDEA-U Proposed uni. 402 115 27.0 26.2 13.8
MiDEA Proposed tuned | 38.1 10.3 24.7 244 15.7

Universal hyperparameter robustness. The universal configuration (MiDEA-U) demonstrates re-
markable generalization, achieving error rates of 40.2%, 11.5%, and 27.0% on ImageNet-C, CIFAR-
10-C, and CIFAR-100-C, respectively (Table [2). This single hyperparameter set not only maintains
state-of-the-art performance but also exceeds the best individually tuned baselines by 1 percentage
point on average. Across all datasets, MiDEA-U achieves a mean improvement of 13.8 percentage
points compared to 12.6 for Continual-MAE and 9.3 for VIDA.

Versatile|Yang et al.[(2024a)) reports strong CTTA results of 42.7% on ImageNet-C, 8.9% on CIFAR-
10-C, and 24.0% on CIFAR-100-C. Relative to these numbers, MiDEA shows a clear advantage on
ImageNet-C (38.1% vs. 42.7%). On CIFAR-100-C the methods are effectively tied: MiDEA reports
24.7% vs. 24.0%, and our source baseline is 0.6 points weaker, making the relative gains nearly
identical. Versatile holds a small edge on CIFAR-10-C (8.9% vs. 10.3%) by 1.4 points.

Methodologically, Versatile derives its reliability and diversity signals from batch-level means and
calibrates low-confidence samples using source-feature KNN within the current stage. In contrast,
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MiDEA is decoder-free and single-teacher-pass, employs masked local self-distillation with ViT
patch embeddings, and remains effective at batch size 1, yielding higher throughput in memory- and
latency-limited settings.

Table 3: Ingredient analysis with the universal configuration (n = 1072, ay = 0.99, aiin = 0.9). IN
= ImageNet-C, C10 = CIFAR-10-C, C100 = CIFAR-100-C. v' = component present.

2V EMA: MIM | IN} CI0) CI100) | Avgl Gaint

v - - 441 179 29.2 30.4 9.6
v v - 409 133 30.1 28.1 11.9
v v v 402 115 27.0 26.2 13.8

Computational efficiency. Beyond accuracy gains, MiDEA offers significant computational advan-
tages. Processing 454 images per second at batch size 8, MiDEA runs three times faster than CoTTA,
Continual-MAE, and VIDA without sacrificing accuracy (Figure[3). The advantage increases to 6x
when VIDA and Continual-MAE use stochastic restoration (see Appendix [B|for details). Even under
strict latency constraints with batch size 1, MiDEA maintains effectiveness with only 0.1 percentage
point degradation (38.2% error), confirming the robustness of our batch-normalization-free update
mechanism.

4.3 ABLATION ANALYSIS

We systematically validate each component of MiDEA using the universal hyperparameter configu-
ration to ensure fair comparison across design choices.

Component contribution analysis. Table [3]reveals that each of MiDEA’s three components pro-
vides distinct, complementary benefits. The global two-view consistency loss alone (2V) reduces
error by 9.6 percentage points compared to the frozen source model, already surpassing VIDA’s
overall gain across datasets. This confirms that our teacher-student framework with augmented
views provides a strong semantic adaptation signal.

Adding the dual-rate EMA mechanism (2V + EMA;) contributes an additional 2.3 percentage points
improvement by enabling attention layers to adapt quickly while stabilizing convolutional and MLP
weights against catastrophic forgetting. Crucially, this benefit comes at zero computational over-
head.

Finally, incorporating the local masked-token distillation loss (2V + EMA, + MIM) yields an addi-
tional 1.9 percentage point gain, completing the full MiDEA performance with a total improvement
of 13.8 percentage points.

Note that our 2V baseline is conceptually related to the two-view loss in RMT Doebler et al.[(2023)).
However, MiDEA does not attempt to reproduce the full RMT pipeline, which couples replay
buffers, ensembling, and contrastive losses. Our work instead focuses on ViT-based CTTA, where
we design and tune a holistic recipe, comprising augmentation placement, loss weighting, and dual-
rate EMA scheduling, validated consistently across three datasets. This makes the approach distinct
from prior work despite sharing the high-level idea of two-view consistency.

Dual-rate EMA necessity. To verify whether a single well-tuned EMA rate could match our dual-
rate approach, we conduct a comprehensive sweep over single decay values (Table Bb). Results
show that no single rate within a matched budget matches the dual-rate performance, with the best
single configuration still lagging by an average of 1.8 points. Rates that are too conservative or too
aggressive both lead to degradation and forgetting, supporting our hypothesis that heterogeneous
EMA time scales are beneficial.

Design choices validation. Additional ablations confirm the robustness of our design decisions.
Our choice of 50% random masking proves near-optimal on ImageNet-C (Table§a)), outperforming
both sparse (30%) and heavy (70%) masking strategies by 2—3 percentage points. Likewise, our loss
weighting scheme, A\pim = 6 for local masked-patch alignment and for global consistency, yields the
best performance (Table[dc). The batch size robustness experiment demonstrates that our approach
generalizes beyond the training configuration, maintaining effectiveness even under strict inference
constraints.
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Table 4: Ablation study on MiDEA hyperparameters on ImageNet-C (severity 5). (a) Mask ratio,
(b) EMA schedule (dual vs. single rate), and (c) MIM loss weight. IN = ImageNet-C, C10 = CIFAR-
10-C, C100 = CIFAR-100-C.

(a) Mask ratio r (b) EMA scheme (c) MIM weight Amim
r mCE| Scheme | INL C10{ C100) | Avgl Amim mCE]
0.30 409 Single 0.999 445 163 28.9 29.9 0 38.9
0.50 38.1 Single 0.997 434 140 33.0 30.1 3 40.7
0.70 39.2 Single 0.995 428 132 35.8 30.6 6 38.1
- Single 0.993 429 126 38.2 31.2 9 40.2
Single 0.990 424 118 43.8 32.7

Dual (0.99,0.999) | 40.9 13.3 30.1 28.1

5 DISCUSSION

MiDEA demonstrates that a minimal teacher—student recipe, carefully tuned for ViTs, can achieve
state-of-the-art CTTA performance under strict efficiency constraints. Here, we reflect on its design
choices, its relation to prior work, and its limitations.

Dual-rate EMA. CTTA demands both rapid adaptation and stability. Our dual-rate EMA updates
attention layers faster while keeping MLP weights conservative; ablations show no single global rate
recovers this balance.

Global and local self-distillation. Global two-view consistency complements masked local align-
ment: masking prevents trivial patch matching, forces context inference, and reduces overfitting to
noisy pseudo-labels.

Relation to Robust Mean Teacher (RMT). Our two-view baseline is conceptually related to
RMT Doebler et al.| (2023), which also employs teacher—student consistency. However, RMT cou-
ples this loss with replay buffers, contrastive objectives, and teacher—student ensembling on CNNs.
MiDEA instead focuses on ViT-based CTTA with a decoder-free design, and our gains stem from
combining the two-view baseline with dual-rate EMA and masked local alignment. This positions
MiDEA as a distinct, lightweight recipe rather than a reproduction of RMT.

Efficiency and deployment. With only one teacher and two student passes per batch, MiDEA
runs 3x faster than multi-pass methods such as Continual-MAE and VIDA, while uniquely retaining
accuracy down to batch size 1. This makes MiDEA practical for real-time, resource-constrained use.

Limitations and future work. Our design remains empirically motivated; a formal theory for
why masked local alignment and dual-rate EMA reduce forgetting is still lacking. MiDEA is also
currently evaluated on ViTs for classification. Extending the framework to dense prediction and
exploring dynamic EMA schedules are promising next steps.

6 CONCLUSION

We introduce MiDEA : Masked-Image Modeling with Dual-EMA Adaptation, an efficient frame-
work for continual test-time adaptation (CTTA) addressing catastrophic forgetting and error accu-
mulation. MiDEA’s innovation lies in three synergistic components: global two-view consistency,
local masked-token distillation (decoder-free patch alignment), and dual-rate EMA balancing
plasticity and stability. This design ensures rapid adaptation while preserving knowledge. Empiri-
cally, MiDEA achieves 38.1% error on ImageNet-C, 18 percentage points better than frozen models
and 5 points above prior SOTA, running 3x faster and stable at batch size 1, proving its practical
value for real-time deployment. Overall, MiDEA provides a lightweight, reproducible recipe for
ViT-based CTTA, setting a new benchmark for efficiency-oriented robustness.
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ETHICS STATEMENT

This work targets maintaining AI model accuracy under real-world distribution shifts. Such robust-
ness could enable expanded surveillance capabilities. Deployments should follow privacy laws and
include independent review.

The main technical risk is over-reliance on adaptation when distribution shifts fall outside the eval-
uated corruptions (weather, noise, blur), which can cause accuracy drift. We recommend guardrails
including confidence monitoring and safe fallback to the fixed source model, especially in safety-
critical settings.

Our experiments use Vision Transformers. Other architectures should be validated before deploy-
ment. This study involved no human subjects or sensitive personal data, and we anticipate no addi-
tional third-party risks beyond those noted above.

REPRODUCIBILITY STATEMENT

We provide code, configuration files, and runnable scripts to reproduce all results. The root
README . md details environment setup, dataset preparation for ImageNet-C/CIFAR-C, and exact
command lines. All hyperparameters match those reported in the paper.
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A ADDITIONAL RESULTS

This supplementary material provides comprehensive experimental details and additional analyses
that complement the main results. We present four key contributions: (1) efficiency analysis clarify-
ing conditions under which MiDEA achieves up to 6x throughput advantage over competing meth-
ods, (2) statistical robustness validation across multiple random seeds, (3) detailed per-corruption
performance breakdowns for all evaluated benchmarks, and (4) complete implementation details
including augmentation specifications and code reproduction instructions.

B EFFICIENCY AND BATCH-SIZE ANALYSIS

B.1 SPEED-ACCURACY TRADE-OFF (BATCH 8)

As established in Section (Main Results), MiDEA achieves a 3x throughput gain over prior
multi-pass CTTA methods at batch size 8. A closer look reveals that the actual speed advantage

is often larger in practice. This is due to the stochastic restore (SR) mechanism used by several
baselines, such as Continual-MAE |Liu et al.| (2024a) (line 157 of continual_mae.py) []_-] and
VIDA [Liu et al.| (2024b) (line 142 of cifar/vida.py) Which is not reflected in their original
papers but is implemented in their released code. When SR is enabled, these methods experience
substantial slowdowns: for example, VIDA drops from 156 to 93 images/s, and Continual-MAE
from 179 to 79 images/s (Table ).

MiDEA does not rely on SR or any auxiliary replay mechanism and thus avoids this bottleneck
entirely. As a result, it consistently achieves up to 6x higher throughput than these baselines,
reaching 455 images/s at batch size 8 with just 4.9 GB of GPU memory on a single RTX 3080,
while maintaining superior accuracy.

Table 5: Efficiency analysis on ImageNet-C (ViT-B/16, RTX 3080): MiDEA achieves 6x higher
throughput and uses less than 5GB memory while maintaining accuracy even at batch size 1. See
text for details.

Method Batch Memory (GB) FPS  Accuracy (%) Configuration
TENT 8 3.0 1136 49.0 Standard
CoTTA 8 5.7 50 45.2 Standard
VIDA (SR disabled) 8 4.6 156 56.6 Single extra pass
VIDA (SR enabled) 8 4.6 93 56.6 With restoration
Cont-MAE (SR disabled) 8 4.0 179 57.5 Single extra pass
Cont-MAE (SR enabled) 8 4.0 79 57.5 With restoration
MiDEA 8 4.9 455 61.9 Dual-rate EMA
MiDEA 1 2.7 185 62.1 Low-latency mode

l1’1ttps ://github.com/RanXu2000/continual-mae/blob/ea25f1c525131aeba253d61f34a4b976ed06c8ffe/
cifar/continual_mae.py#L157

“https://github.com/Yangsengiao/vida/blob/c26b0db2eac6886856aec64eb2032f68654d49f5/
cifar/vida.py#L142
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Table 6: Batch size robustness on ImageNet-C: MiDEA error rates (%). Accuracy remains stable
down to batch size 1, confirming suitability for low-latency deployment.

LR Batch  Gau  Shot Imp Def  Glass Mot Zoom Snow Frost  Fog Brt Cnt Elas Pix JPEG Mean

1><10’§ 1 4542  39.66 40.18 47.04 46.16 39.80 3938 3520 3562 3392 2366 4286 38.64 2924 3128 379
3x107°¢ 2 45.68 3890 39.54 4746 4720 39.86 39.54 35.18 3560 36.06 2406 4248 3990 30.10 31.34 382
6x107° 4 46.60 3876 39.24 4858 4856 4046 4240 36.12 36.06 36.78 24.12 4254 4262 3090 31.80 39.0
1x107° 8 45.10 39.24 40.60 46.76 46.18 4046 3922 34.62 36.04 3560 2498 4210 37.74 3040 3222 381

B.2 STOCHASTIC RESTORE

Stochastic Restore (SR) was introduced by CoTTA Wang et al.| (2022)) as a mechanism to prevent
catastrophic forgetting and error accumulation during continual adaptation. SR periodically resets
a random subset of BatchNorm statistics and selected model weights to their pre-trained values
for every test sample. While this helps maintain stability, it introduces computational overhead by
requiring duplicate parameter storage and conditional copying operations during inference.

B.3 BATCH-SIZE SENSITIVITY

To further assess MiDEA'’s efficiency in latency-constrained scenarios, we analyze its performance
at varying batch sizes. As shown in Table [5] MiDEA maintains high throughput even at batch size
1, processing 185 images/s using only 2.7 GB of GPU memory—making it suitable for real-time
or low-latency deployment settings. Notably, accuracy remains stable in this regime, with a slight
increase from 61.9% to 62.1%, highlighting MiDEA’s robustness to batch-size changes.

Additional sweeps over batch sizes (Table[6) confirm that MiDEA’s performance scales gracefully,
with consistent accuracy and predictable computational cost across a wide range of settings. This
distinguishes MiDEA from existing methods that are tightly coupled to larger batch sizes or incur
significant accuracy drops when operating under limited compute.

C STATISTICAL ROBUSTNESS ACROSS MULTIPLE SEEDS

We validate MiDEA’s performance reliability through five independent random seeds to ensure re-
ported gains are not due to fortuitous initialization. Tables[7]and[§|present comprehensive results for
ImageNet-C and CIFAR-100-C respectively.

MiDEA demonstrates exceptional stability with minimal variance across seeds: ImageNet-C shows
mean error variation of only 0.1 percentage points, while CIFAR-100-C exhibits similarly low vari-
ability. Per-corruption fluctuations remain well within 0.3 percentage points, confirming consistent
performance regardless of random initialization.

This statistical robustness validates the reliability of our reported improvements and demonstrates
MiDEA’s practical deployability.

Experimental Configuration. ImageNet-C experiments use batch size 8, learning rate le-5, and
dual-rate EMA parameters (g, Qweight) = (0.9,0.99). CIFAR-100-C experiments use batch size
4, learning rate Se-5, and dual-rate EMA parameters (taun, Qweight) = (0.999,0.9999).

Table 7: Statistical robustness analysis: MiDEA error rates (%) on ImageNet-C over five inde-
pendent random seeds. The table highlights the method’s reproducibility, reporting per-seed results
across all 15 corruption types. The ”Avg.” column summarizes the mean error for each seed. Lower
error values reflect stronger robustness. The consistently low standard deviation (< 0.1 pp))
across seeds further supports the reliability and stability of MiDEA’s improvements.

Seed Gaussian ~ Shot  Impulse Defocus Glass Motion Zoom Snow Frost  Fog  Bright. Contr. Elastic Pixelate JPEG  Avg.

45.66 40.00  41.50 46.52 46.28  40.56  39.54 3546 3596 3548 2484 4394  38.68 3042 3202 385
45.60 39.62  40.56 46.20 46.38 4074 3944 3464 3578 3562 2502 4460 39.52 30.98 3242 385
46.00 40.24  40.86 46.64 46.24 4044 3950 3504 3596 3550 2486 4490 39.10 30.48 31.94 385
46.30 40.10  40.80 46.76 4642 41.08 3932 3504 36.12 3532 2482 4484 39.18 30.66  32.62 386
45.78 40.12 41.30 46.52 4546 4044 3892 3498 3552 3570 2462 4430 3836 3042 3232 383

Mean 45.87 40.02  41.00 46.53 46.16  40.65  39.34 3503 3587 3552 2483 4452 3897 30.59 3226 3848
Std. 0.26 0.21 0.34 0.19 0.35 0.24 0.22 026 020 0.3 0.13 0.36 0.40 0.21 0.25 0.10
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Table 8: Statistical stability analysis: MiDEA error rates (%) on CIFAR-100-C across five inde-
pendent random seeds. This table demonstrates the reproducibility and robustness of our method
by showing consistent performance across different initializations. Each row represents results from
one random seed, with columns showing error rates for all 15 corruption types. The ”Avg.” col-
umn reports the mean error across all corruption types for each seed. Lower values indicate better
performance. The minimal variance across seeds (standard deviation (< 0.2 pp)) confirms the
statistical reliability of our reported improvements.

Seed Gaussian ~ Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog  Bright. Contr. Elastic Pixelate JPEG  Avg.

47.62 38.56 22.70 24.08 3626 2258 18.82 1858 17.34 20.66  14.48 1576 25.38 23.80 24.74  24.80
48.18 38.94  22.60 23.24 3558 2226 1850 17.78 16.54 20.12  13.36 1502 24.02 2292 2470 2430
47.56 39.30 2334 23.78 3560 2238 1856 1852 1748 20.58 14.18 1598  25.28 23.30 24.66  24.70
47.74 39.48 23.22 23.96 3528 2256 1876 1830 17.28 21.38 14.10 1592 2474 24.70 25.02  24.80
46.82 37.78 23.18 23.48 36.94 2220 1866 18.66 17.98 2048 14.30 1556 25.30 23.12 2422 24.60

Mean 47.58 38.81 23.01 23.71 3593 2240 18.66 1837 17.32 20.64 14.08 1565 2494 23.57 24.67 24.64
Std. 0.44 0.60 0.30 0.31 0.60 0.15 0.12 032 046 041 0.38 0.35 0.51 0.64 0.26 0.19

noR W -

D FuULL PER-CORRUPTION RESULTS

We provide detailed per-corruption breakdowns for both dataset-specific and universal

(hyperparameter-agnostic) configurations discussed in Section 4.2] (Main Results).

The first presents detailed results for CIFAR-10-C using dataset-specific hyperparameter tuning,
where parameters are optimized individually for each dataset following the approach used by prior
methods such as VIDA and Continual-MAE. The second demonstrates the robustness of our uni-
versal configuration (MiDEA-U), which employs a single, fixed set of hyperparameters applied
uniformly across all three datasets (ImageNet-C, CIFAR-10-C, and CIFAR-100-C). This universal
approach contrasts with existing methods that require dataset-specific parameter tuning, highlighting
MiDEA’s ability to achieve strong performance without per-dataset optimization.

Table 9: Detailed per-corruption breakdown: CIFAR-10-C error rates (%) across all 15 corruption
types at severity level 5. This table provides comprehensive results for individual corruption
categories. Each column represents a specific corruption type, allowing for detailed analysis of
MiDEA’s performance across different types of image degradation. Lower error rates indicate
better performance.

Method REF Gau Shot Imp Def Glass Mot Zoom Snow Frost Fog Brt Cnt Elas Pix JPEG Avg Gain
Source ICLR2021 60.1 532 383 199 355 226 18.6 12.1 127 228 53 497 236 247 231 28.1 0.0
Our Source 594 523 378 193 354 223 183 123 13.0 230 55 494 231 240 232 279 03
Pseudo-label ICML2013 59.8 525 372 198 352 218 17.6 11.6 123 207 50 417 215 252 221 26.9 1.2
TENT-continual ICLR2021  57.7 563 294 162 353 162 124 11.0 11,6 149 47 225 159 291 195 235 46
CoTTA CVPR2022 587 513 330 201 348 200 152 11.1 113 185 40 347 188 190 179 246 36
VDP AAAI2023 575 495 317 213 351 19.6 15.1 10.8 103 181 40 275 184 225 199 241 4.1
VIDA CVPR2024 529 479 194 114 313 133 7.6 7.6 99 125 38 263 144 339 182 207 75
Cont-MAE AAAI2023 306 189 115 104 225 139 9.8 6.6 6.5 88 40 85 127 92 14.4 126 156
MiDEA Proposed 427 154 87 85 127 8.0 6.2 6.2 53 62 38 47 92 171 98 103 17.6

Table 10: Universal configuration robustness: MiDEA-U detailed per-corruption results across all
evaluated benchmarks using identical hyperparameters. This table demonstrates MiDEA’s ability to
achieve strong performance across diverse datasets without dataset-specific tuning, highlighting the
robustness of our universal configuration approach. Results are shown for all 15 corruption types
on ImageNet-C, CIFAR-10-C and CIFAR-100-C (error rates, lower is better)). The consistent
strong performance across different image resolutions (224x224 for ImageNet, 32x32 for CIFAR),
number of classes (1000, 10, 100), and data characteristics using the same hyperparameter set
validates MiDEA’s generalizability and practical deployment advantages. This universal
applicability eliminates the need for costly hyperparameter search when adapting to new domains
or datasets.

Dataset Gau Shot Imp Def  Glass Mot Zoom Snow Frost  Fog Brt Cnt Elas Pix  JPEG Mean

ImageNet-C 46.88 39.88 3990 51.96 5026 42.04 4334 3648 3676 37.70 27.14 4550 4090 31.74 3270 4020
CIFAR-10-C 48.12 2778 1132 790 1560 7.38 5.00 6.18 4.72 5.94 3.04 3.54 8.72 8.48 8.38 11.50
CIFAR-100-C  39.82 3196 2520 26.74 3518 26.66 2294 2358 22.88 2438 1882 2034 29.10 26.68 30.84 27.00
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Baseline Methodology. To ensure fair comparison under identical experimental conditions, we re-
produce baseline results using the same model architecture and pre-trained weights as the original
methods. While these reproduced baselines should theoretically match the originally reported val-
ues, we observe minor differences (less than 0.6,pp) likely due to implementation details, hardware
variations, or software version differences. Therefore, all gain calculations are computed relative to
our reproduced ”Source” baselines rather than originally reported numbers, ensuring coherent and
transparent comparisons under our exact experimental setup.

Experimental Configuration. CIFAR-10-C images are resized to 384x384 following recent
work [Liu et al|(2024aib). MiDEA employs dataset-specific tuning with SGD optimizer, dual-rate
EMA parameters (a, = 0.9, Qtweight = 0.99), and learning rate n = 5 X 1075,

Universal configuration (MiDEA-U). Table reports the complete per-corruption results for
MiDEA evaluated with a single, universal set of hyperparameters applied uniformly across all
datasets. In contrast to approaches that rely on dataset-specific tuning, MiDEA-U achieves strong
generalization and robustness using fixed settings: a learning rate of 7 = 3 x 10~°, dual-rate EMA
parameters (0aetn = 0.9, Queighe = 0.99), a local alignment loss weight of A, = 6, and a
masking ratio of r = 0.5. MiDEA-U therefore outperforms the best dataset-funed baselines by
approximately 1 pp on average while maintaining a 13.8 pp margin over the frozen source.

E IMPLEMENTATION AND AUGMENTATION DETAILS

We provide detailed specifications for MiDEA’s data augmentation pipeline, which plays a crucial
role in the global consistency objective. Our augmentation strategy balances computational effi-
ciency with adaptation effectiveness through asymmetric processing: the teacher network processes
clean input images while the student network receives strongly augmented views.

Augmentation Pipeline. The student network processes strongly augmented inputs to learn robust
feature representations under challenging visual conditions, while the teacher network maintains
stable reference predictions from clean, unaugmented images. This asymmetric processing strategy
drives effective adaptation by encouraging the student to extract invariant semantic features despite
visual perturbations.

Global Consistency Impact. The global consistency loss alone—using only this augmentation
strategy without local masked modeling—achieves a substantial 9.6 percentage point error reduction
over the frozen source baseline. This demonstrates the effectiveness of our augmentation-driven
consistency objective as a core component of MiDEA’s adaptation mechanism.

The complete augmentation specifications and ablation results are detailed in the following table

Table 11: Student augmentation pipeline for global consistency. Teacher inputs are unaugmented.

Augmentation Parameters + note

degrees 0°

translate (1/W -32, 1/H -32)

scale 0.98-1.02, bilinear, fill=0
RandomAffine no rot.; <1/32 shift; £2 % zoom

brightness 0.6-1.4, contrast 0.7-1.3,

saturation 0.5-1.5, hue £0.06,
ColorJitterPro gamma 0.7-1.3

RandomGrayscale p = 0.2

F LLM USAGE DISCLOSURE

We used a large language model (ChatGPT) for minor grammar and phrasing edits only. All ideas,
methods, experiments, and analyses are entirely our own.
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