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Introduction

Congenital anomaly is one of the most important reasons for 
infant mortality, and perinatal care or intervention can sig-
nificantly reduce the infant mortality caused by congenital 
anomaly.1 One of the most prevalent congenital defects of 
infant is congenital heart disease, of which the incidence rate 
ranges from 0.8% to 1.1% and is ranked at the top of the list 
of congenital defects.2 Through the application of early scan-
ning and subsequent prenatal intervention, the infant morbid-
ity due to congenital heart disease can be largely alleviated 
after the birth of fetuses.3 Meanwhile, a series of anomalies 
associated with fetal lung are also at risk of becoming irre-
versible chronic lung disease.4 If these congenital anomalies 
of fetuses could be detected before their delivery, early inter-
vention with long-term care for individuals would be used to 
prevent such type of risk.5 Consequently, early scanning of 
fetuses is the key for prognosis of congenital anomaly, and 
provides the basis for selection of intervention to decrease 
the morbidity or mortality caused by congenital anomaly.6

Compared with Computed Tomography (CT) imaging 
and Magnetic Resonance Imaging (MRI), ultrasound imag-
ing is noninvasive and nonradioactive, harmless to both 
pregnant women and fetuses during the scanning process.7 
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Large scale early scanning of fetuses via ultrasound imaging is widely used to alleviate the morbidity or mortality caused 
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Also, the high speediness and low cost also prompt ultra-
sound imaging to be the most common imaging method in 
fetal scanning.8 After the ultrasound scanning, experienced 
physicians can prognose whether there is any congenital 
anomaly via the regions of fetal hearts and lungs in ultra-
sound images.9 Nevertheless, it should be noted that ultra-
sound images contain speckle noises.10 Furthermore, unlike 
CT and MRI, the collection of fetal scanning is non-stan-
dardized and irregular.11 The existence of both speckle noise 
and non-standardization indeed enlarges the difficulty of rec-
ognizing the regions of fetal hearts and lungs from ultra-
sound images.9 For large scale ultrasound scanning of fetal 
anomaly, manually recognizing the regions of fetal hearts 
and lungs requires a great number of costs of labor of expe-
rienced physicians and long period of their time.12 In order to 
reduce the cost, it is a clear need to establish an accurate and 
automatic computer aided diagnosis method for segmenting 
the regions of fetal hearts and lungs from ultrasound images.12

For organ segmentation of medical ultrasound images, a 
noticeable number of methods has emerged during the last 
decade.13 Regarding ultrasound images as monochromes, 
various types of ultrasound image segmentation methods 
have been applied in early approaches, such as threshold-
ing,14 clustering,15 watershed transformation,16 graph-based 
segmentation,17 level set based active contour model,18 and 
Markov random field.19 Despite the success obtained by 
these aforementioned methods, the shortage of semantics of 
organs in segmented regions considerably limits their appli-
cations for segmentations of specific organs.20 Recently, with 
the unprecedented growth of artificial intelligence in recent 
years, deep learning technique has been widely adopted in 
various fields, showing a great advantage of automatic 
extraction of features from images when compared with clas-
sical machine learning methods.21 With the flourishing of 
deep learning technique, to achieve semantic segmentation 
of specific organs from medical images, a series of deep neu-
ral network based methods have been proposed.22

For deep learning of organ-specific semantic segmenta-
tions, fully connected network (FCN) is utilized as the base-
line method, which can obtain a considerable performance in 
applications.23 Based on FCN framework, U-Net is con-
structed in consideration of the encoding-decoding structure, 
where the encoding part is used for contracting the images 
into high-level features and the decoding part is for expand-
ing the features into pixels of segmentation masks.24 To com-
pensate the textural information of high resolution into the 
high-level features with relatively low resolution in expan-
sive network, skip connections are also introduced between 
the contracting and expansive networks.24 To accelerate the 
processing speed during segmentation, E-Net introduced 
convolutions in bottleneck module, including both full con-
volution and dilated convolution.25 Furthermore, for alleviat-
ing gradient vanishing problem, DenseNet connected each 
pair of layers via a feed-forward fashion, strengthening the 
propagation between different layers as feature reuse.26 

Generally, in semantic segmentation, there are noteworthy 
successes achieved by deep learning base approaches.22

It should be noted that, different organs in fetal ultra-
sound images demonstrate various scales.27 For example, 
the scales of textures of different organs vary distinctly, and 
the scales of region sizes of organs also differ from each 
other.27 Moreover, when we observe the ultrasound image of 
a specific organ, we can also note that there are recognizable 
distinctions of shapes, textures, and structures among differ-
ent scales.28 Nevertheless, the aforementioned deep learning 
based methods lack of the module of multi-scale feature 
extraction at a larger range of receptive fields. Accordingly, 
PSP-Net further aggregates contexts of different regions 
through a pyramid scene parsing network to extract global 
context information, which can ensemble multi-scale fea-
ture of images.29 However, in comparison of U-Net and 
DenseNet, the absence of skip connections in PSP-Net leads 
to the incapability of compensation of information of high 
resolution in features for segmentation. In addition to the 
deficiencies above, there is also another issue that the fea-
tures extracted by deep learning methods contain not only 
the features of shapes and textures of the organs to be seg-
ment, but also the features of task-irrelevant organs or back-
ground of the ultrasound images, which dilutes the power of 
segmentation task.30 Consequently, there is a clear need for 
establishing an efficient semantic segmentation method 
with the functions of (1) extracting multi-scale features 
from images, (2) compensating information of high resolu-
tion, and (3) eliminating the task-irrelevant features.

To achieve the feature extraction of multi-scales at a 
larger range of receptive fields, the compensation of high 
resolution information, and the elimination of irrelevant fea-
tures in fetal heart and lung segmentation from ultrasound 
images, in this paper we propose a deep learning based 
multi-scale model with skip connection framework and fea-
ture attention integrated. To achieve the integration of both 
multi-scale feature extractions and high resolution informa-
tion compensation, we exploit the U-Net framework with 
skip connections between contracting and expansive net-
works, and introduce the scheme of network in network.31  
by inserting multi-scale feature extractor modules into the 
framework.32 In order to eliminate the task-irrelevant fea-
tures for segmentation, we also incorporate attention mecha-
nism into our integrated framework via assigning higher 
weights on segmentation relevant features.33 When we  
evaluate the performance of our proposed multi-scale model 
integrated with attention mechanism, we observe a clear 
advantage of our method over the existing methods in the 
fetal heart and lung segmentation of ultrasound images. 
Moreover, our method also shows competitive performance 
stability in semantic segmentation task. In summary, our pro-
posed method demonstrates a remarkable capability in 
semantic segmentations of fetal hearts and lungs from ultra-
sound images, showing a promising potential for applica-
tions of early scanning of congenital anomaly.
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Methods

Fetal Ultrasound Image Collections

The fetal ultrasound image data used in this study are  
collected from Center for Medical Ultrasound, Nanjing 
Medical University Affiliated Suzhou Hospital, Suzhou, 
China. These ultrasound images are fetal ultrasound scan-
ning from pregnant women at 37 weeks of gestation, for the 
observation of heart and lungs of the fetuses. Ethical 
approval was obtained from the Ethics Committee of 
Nanjing Medical University Affiliated Suzhou Hospital 
(approval No. K2016038) and informed consent require-
ments were waived. Since the collection procedure may 
suffer unavoidable disruption that leads to the low quality 
problems of the related images, we also eliminate the low 
quality images from the collected data for quality control. 
For example, in a fraction of images, the gray scales of 
organs between fetus and pregnant woman are undistin-
guished, or the whole picture are purely black in a few of 
them.

Specifically, All the images were acquired in the same 
hospital, and they were collected from an ultrasound equip-
ment WS80A with Elite (Samsung Medison, Seoul, Korea) 
equipped with a curved array ultrasound probe (CA1-7A), 
where all images were acquired with the same scanner, by 
the same operator, and with the same acquisition settings. 
There are more than 350 pregnant women involved in the 
image collections, and 312 images from these women are 
selected as qualified images of fetal hearts and lungs. After 
quality control, we finally obtain a dataset containing totally 
312 qualified images of fetal hearts and lungs.

Data Preprocessing and Augmentation

The original format of the collected images is Digital 
Imaging and Communications in Medicine (DICOM), 
which is the most widely used standard of medical images. 
Considering that DICOM does not fit the input format for 
segmentation model, we firstly use a python package called 
PyDicom to convert the DICOM files into bitmap (BMP) 
files. Next, through an open source annotation tool called 
LabelMe, the contours of regions of fetal hearts and lungs 
are manually delineated by a professional sonographer phy-
sician with ≥ 10 years of experience, which are then used as 
the ground truth masks of the two fetal organs. Then, we 
also cut the raw images with size of 1280 × 872 into patches 
with size of 384 × 384, where the selections of 384 × 384 
regions are annotated by a sonographer physician, and the 
regions of the patches are regarded as Region Of Interest 
(details in Supplemental Information). In this size, the view 
is just almost filled by the fetal hearts or lungs, leading to 
the preservation of computational cost during the segmenta-
tion task. Finally, due to the requirement of data amount of 
deep learning framework, the images utilized as training 

data of our method are further augmented through rotating 
and flipping,34 resulting in an augmented dataset whose 
amount is eight times greater than that of the collected 
dataset.

The Proposed Integrated Segmentation Model

Segmentation framework of U-Net.  In image segmentation 
task, the aimed output is a mask containing subsets of pixels 
with locations, and each set is assigned to a specific type to 
be predicted. With the unprecedented opportunity offered 
by the development of deep learning technique, convolu-
tional neural network based framework has become the de 
facto standard for most image analysis task including images  
segmentation of course.23 Specifically, fully convolutional 
network (FCN) is constructed by convolutional layers pro-
gressively, which can separate pixels with different seman-
tics through high dimensional image representations of local 
information that are extracted layer by layer.23 Although the 
sequential process of FCN yields noticeable achievements 
in image segmentation, the power of the basic version of 
FCN is still limited by parameter efficiency.24 For example, 
while low-level features in former layers tend to preserve 
more textural information of high resolution, the detailed 
information vanishes in a certain extent in high-level fea-
tures in later layers,35 diluting the resolution of the output 
segmentation masks.

To compensate the information of high resolution in the 
later layers in FCN, a more elegant segmentation framework 
called U-Net is proposed.24 The U-Net framework consists of 
a contracting path for high-level features, and an expansive 
path for low-level features.24 In the contracting path, the con-
volutions followed by a Rectified Linear Unit (ReLU) and a 
max pooling operation for down-sampling are repeatedly 
adopted, as a typical architecture of a convolutional network. 
On the contrary, in the expansive path, the max pooling oper-
ation for down-sampling is replaced by an up-convolution 
for up-sampling. At each step, the number of feature chan-
nels is doubled in the contracting path, and is halved in the 
expansive path. Notably, to compensate the vanished infor-
mation of details, when the high-level features closer to the 
outputs are expanded into low-level features by up-sampling, 
information of high resolution in former layers are passed 
through the skip connections. The features from both former 
and later layers are concatenated to accomplish a segmenta-
tion prediction of higher resolution.

To take the advantage of compensation of information of 
high resolution, in our proposed method, we also use the 
framework of contracting and expansive paths with skip con-
nections as U-Net.24 Inspired by the structure of U-Net, in 
our proposed method we incorporate the contracting path to 
extract the high-level features related to different semantics, 
and utilize the expansive path to predict the pixels sharing 
certain semantics from the high-level features. At the same 
time, we also employ skip connections in our proposed 
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method (Figure 1). By concatenating the low-level features 
through the skip connections, we can compensate the infor-
mation of high resolution from the contracting paths to the 
expansive paths. In addition to compensation of information 
of high resolution, our proposed method also involves two 
abilities that are not leveraged in U-Net, that is, feature 
extraction of patterns occurring at multi-scales at a larger 
range of receptive fields, and suppression of the task-irrele-
vant features of images. The details of technical implementa-
tions of the two additional abilities in our methods are 
depicted in the following subsections.

Multi-scale module of Res2Net.  In order to enhance the multi-
scale feature extraction ability of our proposed method at a 
larger range of receptive fields, we further implement the 
state-of-the-art multi-scale module of Res2Net.32 into the 
U-Net framework. Through hierarchical residual-like con-
nections within a single residual block, Res2Net module can 
efficiently extract multi-scale representation orthogonal to the 
classical layer-wise feature aggregation models. In Res2Net 
module, the input feature map X  are evenly separated into s  
subsets of feature maps, where the spatial size of these feature 
subsets are the same with the input feature maps, but the num-
ber of channels is 1/ s  compared with that of the input feature 
maps.32 Here we denote the i -th feature subset as xi , 
i s=1,2, , , where X x x x x= 1 2⊕ ⊕ ⊕ i s  (here ⊕  

represents for concatenation). Next, these input features of 
separated subsets are processed through a 1 1×  convolution 
for dimension reduction, which is equivalent to a linear pro-
jection, that is, x W xi i= in , where Win  is parameter matrix of 
the linear projection for dimension reduction.

For any i  from 1 to s , for xi  from the s  subsets in the 
second layer, a corresponding feature set zi  is also estab-
lished in the second to last layer of the module, which is 
used for restoring the features after the multi-scale extrac-
tion from xi . In particular, for preserving the scale of the 
input features maps, the z1  is set to be the same as x1  
through a direct link between the second layer and the sec-
ond to last layer. For xi  where i ≥ 2 , there are totally s −1  
of 3 3×  convolutional kernels introduced for each subset of 
features xi , denoted as K i ( )⋅ . When 2 < <i s_ , the inputs of 
convolutional kernel K i ( )⋅  is the addition of the subset of 
feature maps xi  and the outputs of the former kernel K i− ⋅1( )
. Consequently, the feature subset zi  in the second to last 
layer of the module can be calculated as:
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According to the formula above, we can notice that, for 
the i -th convolutional kernel K i ( )⋅ , the information of 
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Figure 1.  The schematic plot of our proposed multi-scale model integrated with attention mechanism. The model is built based on 
the architecture of U-Net, where the left parts are contracting networks for feature extraction, and the right parts are expansive 
networks for segmentation mask prediction. In contracting networks, the Res2Net modules are inserted to extract multi-scale features. 
In expansive networks, the additive attention gates are utilized to eliminate task-irrelevant features for mask prediction. A series of skip 
connections are also established from contracting networks to expansive networks, compensating high-resolution information for mask 
prediction. The figure legend is at the left-bottom corner.
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feature subsets from x1  to xi  are all fed into this kernel. 
This design ensures a larger receptive field of the outputs of 
convolution kernel K i ( )⋅  than that of the feature subset xi . 
For the feature subset in the second to last layer zi , the larger 
the index i  becomes, the more information at different scales 
the zi  contains. Consequently, the concatenation of all the s  
subset of feature maps zi  (1< <_ _i s ) in the second to last 
layer, incorporating various numbers of different combina-
tions of receptive field scales, thanks to the combinatorial 
explosion effect. Finally, the feature maps involving the 
information of different scales are fed into the last layer of 
1 1×  convolution for dimension recovery, achieved by linear 
projection z W zi i= out  , where Wout  is parameter matrix of 
the linear projection for dimension recovery. Their concate-
nation Z z z z z= 1 2⊕ ⊕ ⊕ ⊕ ⊕ i s  is the outputs of the 
internal layers of Res2Net module. The procedures of inter-
nal layers of the module can be summarized as a function 
module  with input features { }xi , kernels { }K i , and param-
eter matrices Win  and Wout :
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In addition to the internal layers, the Res2Net also has an 
external composition of skip connection between the inputs 
and the outputs of the module.32 Regarding the output feature 
maps of the module as the element-wise addition of the input 
feature maps and residuals, this skip connection is used to 
compel the outputs of the internal layers Z  to be the residu-
als between the inputs X  and the final outputs Y , that is, 
Z Y X= − . Since the residual maps is easier to be optimized 
than the unreferenced feature maps in most situations, intro-
ducing the skip connection is conducive for addressing gradi-
ent vanishing and exploding problems. Considering that the 
dimensions of inputs and outputs are the same, we directly 
use the identity skip connection without any extra parameter 
burden. Finally, the outputs of the internal layers are added to 
the inputs identically copied from the skip connection, as the 
final outputs Y  in the end of the Res2Net module32:

Y x W W X= { },{ }, , .module in outi iK( ) + 	 (3)

To empower the multi-scale feature extraction capability 
of our proposed method, we insert the Res2Net modules into 
the skip connection framework of U-Net as Network in 
Network (NIN).31 Considering that the contracting paths are 
responsible for feature extraction in U-Net framework,32 we 
replace the traditional convolution of the input layers of each 
contracting path with the multi-scale Res2Net modules, 
which is conducive for the capability of extracting multi-
scale information from the input feature maps. Finally, we 
obtain the contracting paths of extracting high-level feature 
at multi-scales, as shown in the left part of Figure 1.

Feature highlight of attention mechanism.  It should be noted 
that during the procedure of multi-scale feature extraction, 
the contracting paths are likely to capture both the task-spe-
cific features of the regions of interested organs, and the 
irrelevant features of the regions of unconcerned organs or 
backgrounds as well.33 Therefore, in addition to the extrac-
tion of multi-scale features, it is also warranted to eliminate 
the irrelevant features of the fetal ultrasound image segmen-
tation task. In favor of focusing on the task-specific target 
regions of feature maps, the attention mechanism is further 
introduced into our proposed method, which has also been 
commonly employed in various deep learning applica-
tions.36 Here we incorporate a feature map grid based gat-
ing attention via additive attention gate (AAG) model into 
our proposed method, which is used for suppressing the 
activations of irrelevant features and highlighting the task-
specific features.37 Through the attention coefficients from 
high-level features with semantics information, attention 
mechanism can reweight the contributions of features for 
segmentation task.

In the feature map grid based gating attention, the input 
feature maps are firstly partitioned as a series of grids, and 
each grid covers a certain region of the input feature map. 
For the j -th grid, the features related to this region are 
down-sampled by max pooling of a 2 2×  convolution with 
stride of 2. All the elements of features of j -th grid after 
down-sampling are then vectorized as a feature vector v j , 
which is used as the inputs of AAG model for attention. AAG 
is constructed based on probabilistic scoring, known as soft 
attention, leading to the facilitation of employing standard 
back-propagation without extra sampling. The additive 
attention38 in AAG is a simple but efficient way to obtain the 
attention coefficient α j  from the grid feature vector v j  and 
the gating signal g j :

α σ φ φj v j g j g= ( ( ( )) ),T T TReLU W v W g b b+ + + 	 (4)

where the gating signal g j  is also a vectorization of features 
that are collected from the maps of the higher level.33 Here 
we denote the dimensions of v j  and g j  as dv  and dg  
respectively. Also, Wv  and Wg  are d dv t×  and d dg t×  matri-
ces of linear transformations respectively, and the bias term 
of the transformations is a dt ×1  vector, where dt  is the 
dimension of the intermediate variable. The intermediate 
variable is then activated through a ReLU unit, and is further 
converted by a linear transformation with vector φ  and bias 
bφ to calculate the attention coefficient of the j -th grid.

For image segmentation, in order to highlight the task-
specific features and to eliminate the task-irrelevant features, 
we also regard the AAG unit as the concept of NIN,31 and 
insert this module into the framework of our proposed 
method. In contrast to contracting paths, the expansive paths 
in U-Net framework are dominant for generating the pre-
dicted segmentation mask, which are more sensitive to the 
disturbance of task-irrelevant features.24 Consequently, we 
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insert AAG modules into different levels of the expansive 
paths with inputs from both the former layers and the skip 
connections, with the gating signal from the former layer, 
as shown in the right part of Figure 1. Since the inputs of 
AAG are the low-level features containing higher resolu-
tion at multi-scales from skip connections, the AAG mod-
ules in the expansive paths are promotive for focusing on 
the task-specific features of segmentations from the view-
points of both resolutions and scales (Figure 1). Finally, the 
outputs of AAG models are the concatenated with the high-
level features involved with semantics information,33 which 
are prone to increase the predicted resolution of semantic 
segmentation.

Multi-scale model integrated with attention mechanism.  To 
integrate the advantages of high resolutions, multi-scales, 
and attention mechanism, we propose the multi-scale model 
integrated with attention mechanism based on the U-Net 
framework. Specifically, in our proposed method, we set 
totally five levels for both the contracting paths and the 
expansive paths. In the contracting paths, the first level is 
constructed by two cascaded layers of 3 3×  convolutions 
with stride 1 and padding 1 and followed by ReLU activa-
tions. Subsequently, the second to the fifth levels are con-
structed by the same structure consisting of a multi-scale 
Res2Net module followed by a 3 3×  convolution and ReLU 
activation. After the feature extraction in the first to the 
fourth levels, the output feature maps are down-sampled by a 
2 2×  max pooling operation with stride 2 and are then fed 
into the next level. In the five levels of contracting paths, the 
sizes of feature maps are gradually contracted as 384, 192, 
96, 48, and 24, while the channels in the five levels are 64, 
128, 256, 512, and 1024, respectively.

At the same time, in the expansive paths of our pro-
posed method, the fourth to the first levels are constructed 
by the same structure consisting of three parts: an AAG 
unit, a concatenation operator, and a traditional convolu-
tion layer. Here the AAG unit is used to reweight the fea-
ture maps from skip connections of contracting paths at 
the same level, where the feature maps of former level are 
regarded as the gating signal for attention. After the fea-
ture maps with attentions are obtained from AAG unit at 
the current level, these maps are further concatenated with 
the up-sampled feature maps from the former level.33 Here 
the up-sampling process is achieved by a 2 2×  up-convo-
lution with stride 1 as suggested in the traditional U-Net.24 
Through the concatenation operation, the channels of fea-
tures from both the high resolution maps at the current 
level and the semantic maps at the former level are dou-
bled. The doubled features are fed into a layer of 3 3×  
convolution with stride 1 followed by ReLU activation. 
Specially, at the end of the first level in expansive paths, 
the last layer of our proposed model is a 1 1×  convolution 
to project the features in all the channels to the scores of 
the three classes (fetal heart region, fetal lung region, and 

background region respectively) of pixels in output seg-
mentation map (3-value map).

Based on the aforementioned architecture of our proposed 
method, we utilize the cross entropy between the pixels of 
the ground truth masks and of the predicted segmentation 
map,24 as the loss function to be minimized at model training. 
We also introduce the L2-norm regularization term on the 
parameters, where the value of the corresponding tuning 
parameter is set to 0.001 empirically. By strictly following 
the previous study of original U-Net, we choose 5 as the 
number of layers of different levels for the U-Net skip con-
nections.24 According to previously published researches, the 
choice of layer number is important for the network, since a 
small layer number might lead to the undermining of high-
level features, while a larger layer number is very likely to 
cause over-compression of high-level features and the degen-
eration of the model.39

The parameters of our proposed method are trained with 
stochastic gradient descent optimizer, where the gradient 
information is calculated by back-propagation. The initial 
value of learning rate during the training process is set to be 
0.001, and the learning rate is decayed by multiplicative fac-
tor of 0.1 at epochs of multistep. The batch sizes during train-
ing is set to 8, and the maximum number of iterations is set 
to 400. Our proposed method is implemented through the 
open source machine learning framework PyTorch, which is 
established in Python environment. In summary, our method 
integrates the skip connections from U-Net framework for 
preserving the high resolution information, the Res2Net 
module for extracting features at multi-scale, and the AAG 
unit for highlighting the task-specific features of segmenta-
tions, showing a strong potential for organ segmentations of 
fetal ultrasound images.

Evaluation Metrics

To quantitatively evaluate the segmentation performance of 
fetal hearts and lungs from ultrasound images, we employ 
two widely used measurements to calculate the similarity 
between ground truth masks and segmentation results. For 
the sake of convenience, we denote that Spred  is the set of 
pixels predicted as the regions of the target organs, while 
Struth  is the set of pixels of the ground truth masks. The first 
measurement is Dice coefficient, defined as the faction of 
two times the area of overlap between the prediction regions 
and the ground truth regions in the sum of the areas of the 
two regions, of which the formula is given as below,

Dice truth pred truth pred= 2 | | /(| | | |).S S S S∩ + 	 (5)

The second measurement is Intersection over Union 
(IoU), defined as the fraction of the area of overlap 
between the prediction regions and the ground truth 
regions in the area of union between the two regions, 
which is calculated as
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IoU truth pred truth pred= ( ) / ( ).S S S S∩ ∪ 	 (6)

According to the formulas of the two measurements, we 
can observe that if there is no intersection between the set of 
predicted mask Spred  and the set of ground truth Struth , then 
both the Dice coefficients and the IoU equal to zero. On the 
contrary, if the two sets are identical, then both the two mea-
surements equal one. In intermediate situations between the 
two extreme situations above, the values of both the two 
measurements are range from zero to one.

McNemar’s Exact Test

To further evaluate the significance of the differences 
between the results of the proposed method and other com-
peting methods, we have also adopted McNemar’s exact 
test. McNemar’s exact test is a well-known statistical test to 
analyze statistical significance of the differences in classi-
fier performances. McNemar’s exact test is a non-paramet-
ric test, and is applicable with any sample size. Here we use 
McNemar’s exact test to test whether there is a significant 
difference between the results of two methods through the 
contingency table of (1) foreground overlap for both meth-
ods, (2) background overlap for both methods, (3) the over-
lap of foreground for method 1 and background for method 
2, and (4) the overlap of foreground for method 2 and back-
ground for method 1. In the McNemar’s exact test for both 
the proposed method and the competing methods, we com-
pare their segmentations regions of predicted masks, rather 
than their Dice coefficients or IoUs. Therefore, a low 
p-value from McNemar’s exact test indicates a significant 
difference in their segmentation regions, but not their per-
formance measurements.

Implementation

Our proposed method is implemented on GPU of NVIDIA 
TITAN V 24G in a high performance server. The code of our 
method is implemented in Python 3.6.9 using deep learning 
framework of PyTorch 1.0.1, in the operating system envi-
ronment of Ubuntu 16.04 LTS. The dataset used in the imple-
mentation of our method is 312 fetal ultrasound images as 
mentioned in section 2.1, along with their corresponding 
masks of fetal hearts and lungs manually delineated by a pro-
fessional sonographer physician. Here the sizes of both the 
fetal ultrasound images and their corresponding masks of 
labels are 384 by 384 pixels. For each mask, the regions of 
fetal hearts and fetal lungs are labeled as red and green pixels 
respectively, while the regions of background are labeled as 
black pixels. For evaluation of our method, the fetal ultra-
sound dataset is evenly split into eight subsets, and each sub-
set is used as testing data alternately and the seven remaining 
subsets are employed as the training data, known as eight 
fold cross validation.

Experiment Setting

To evaluate the advantage of our proposed method, we assess 
the performances of our method in contrast to those of the 
previously published convolutional segmentation approaches. 
The comparison approaches include standard FCN,23 stan-
dard U-Net,24 E-Net,25 PSP-Net,29 and DenseNet.26 The FCNs 
used in the comparison study are the popular FCN-8s, FCN-
16s, and FCN-32s, defined in previous studies.23 Meanwhile, 
we also adopt ablation study to evaluate whether and how 
much the Res2Net modules contribute to the performance of 
our method. In the experiments of ablation study, we remove 
the Res2Net modules from our method and compare its 
results with those of the full version. In all the experiments, 
the learning rate of these comparison methods are also set to 
be decayed at epochs of multistep as that of our method, 
where the multiplicative factor is set to 0.1 and the initial 
value is 0.001. Furthermore, the maximum numbers of itera-
tions of these comparison methods are also set to 400, and 
the batch sizes during training is set to 8. Similar to our pro-
posed method, these comparison methods are also imple-
mented on GPU of NVIDIA TITAN V 24G in the same high 
performance server with the operating system environment 
of Ubuntu 16.04 LTS. For the training data and testing data 
of the comparison approaches, we also employ the evenly 
separated subsets of the fetal ultrasound dataset that are the 
same as those of our proposed method.

Results

Comparison Performance

When we assess of the predicted masks of these comparison 
approaches and our proposed method, we can observe that 
for the measurements of both Dice coefficient and IoU, our 
method yields the biggest overlaps of the ground truth 
regions of both fetal hearts and fetal lungs (Figure 2). Taking 
fetal heart segmentation as an example, for all the folds of 
testing data in cross validation, the average Dice coefficients 
achieved by FCN-8s, FCN-16s, and FCN-32s are 0.892, 
0.890, and 0.887, respectively. As for U-Net that is revised 
based on FCN with skip connections, its corresponding aver-
age Dice coefficient is 0.891, showing a slight improvement 
over those of FCNs. For the results of the state-of-the-art 
methods E-Net and PSP-Net, their related average Dice coef-
ficients are 0.895 and 0.896, respectively. In comparison, 
comparable with the results of DenseNet, our proposed 
method obtains an average Dice coefficient of 0.902, demon-
strating better performance than those of the other methods 
(Figure 2(A)). For the measurement of IoU for fetal heart 
segmentation, our method yields an average IoU of 0.822 
(Figure 2(C)), which is also comparable or higher than those 
of the comparison methods.

At the same time, the evaluation results of fetal lung seg-
mentation also display similar phenomenon that our proposed 
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method outperforms the other comparison methods. For 
example, among the all subsets of cross validation, the aver-
age Dice coefficient of FCN-8s, FCN-16s, and FCN-32s are 
0.863, 0.849, and 0.848, respectively. Meanwhile, U-Net, 
E-Net, and PSP-Net achieve comparable results of average 
Dice coefficients, ranging from 0.860 to 0.864. DenseNet 
yields an average Dice coefficient of 0.862. In comparison, 
the average Dice coefficient of the results of our proposed 
method is 0.870 (Figure 2(B)), which is the highest among 
those of the evaluated methods. As for IoU of fetal lung seg-
mentations, the values of segmentation results of the com-
parison methods vary from 0.736 to 0.761, and the value of 
IoU of results of our method achieve 0.770 (Figure 2(D)), 
indicating a superior performance than those of all the inves-
tigated methods. Overall, we can observe the advantages of 
our method on the segmentation for both fetal hearts and 
lungs from fetal ultrasound images.

Furthermore, we also adopt McNemar’s exact tests on 
the results of both our method and the competing methods 
to validate whether there are significant difference between 
these methods. Through the McNemar’s exact tests, the 
p-values demonstrate that, although the values of Dice 
coefficients and IoUs of these methods are close to each 
other, the differences between the results of the proposed 
method and the other competing methods are significant 
(details in Supplemental Table S1 and Supplemental 
Information). Specifically, although the Dice coefficients 
and IoUs for the fetal heart achieved by the proposed 
method and DenseNet approximately equal to each other, 
since the McNemar’s exact test is not relate to the Dice 
coefficients and IoUs, the p-value from McNemar’s exact 
test between the two methods is <1.00 10 15× − . This result 
indicates that the segmentation regions of their predicted 
masks are distinct from each other, even though the two 
methods yield similar performances.

To intuitively demonstrate the prediction masks of our 
method on fetal hearts and lungs, we further display an 

example of the predicted segmentation masks of these inves-
tigated methods along with the ground truth mask. As shown 
in Figure 3 (details in Supplemental Figures S6–S14 and 
Supplemental Information), we can find that for all the eval-
uated methods, most regions of the ground truth masks are 
covered by their predicted segmentation masks, for both fetal 
hearts and lungs. Specifically, we can observe that the pre-
dicted masks of FCNs-8s, FCN-16s, and FCN-32s show 
similar regions, where the predicted regions of fetal hearts 
are consistently left biased in comparison to the ground truth 
regions. For the regions of fetal lungs predicted by U-Net 
and PSP-Net, we can notice the discontinuity at the contours 
of the regions, and parts of the regions are even isolated from 
the rest parts. Despite the high values of numerical evalua-
tion measurements achieved by DenseNet, in some cases, 
the predicted regions of the two organs are diffused into the 
regions of each other (here specific to the representative 
examples in Figure 3). Moreover, we can note that E-Net 
yields considerable recovery of both fetal hearts and lungs, 
but the gap between the predicted regions of two organs is 
slightly larger than that in the ground truth regions. In com-
parison, although the predicted regions of fetal lung is slight 
bulging, the regions obtained by our proposed method show 
satisfactory coincidence and continuity of contours, and the 
width of the gap between the two predicted regions also fits 
the ground truth regions.

Ablation Study

To illustrate to which extent the Res2Net module contributes 
the segmentation performance, we have also provided the 
results without Res2Net, but still including the attention 
gates in U-net. Specifically, we conduct an ablation study 
to analyze the performances of our proposed method,  
our proposed method without Res2Net, and original U-Net 
(Supplemental Figure S3–S5). As demonstrated in 
Supplemental Figure S3(A), our proposed method without 

Figure 2.  The semantic segmentation performances of our proposed method against the competing methods as bar plot. (A) Dice 
coefficients for fetal heart. (B) Dice coefficients for fetal lung. (C) IoU for fetal heart. (D) IoU for fetal lung.
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Res2Net yields a Dice coefficient of 0.896 for fetal heart seg-
mentation, contributing 45.5% of the performance increment 
from original U-Net to our method with Res2Net. This 
observation indicates that removing Res2Net modules might 
cause 54.5% performance loss, and thus this fraction can also 
reflect to which the extent Res2Net contributes to the perfor-
mance. From Supplemental Figure S3(B), we can observe 
that Res2Net contributes half of the performance increment 
of for fetal lung segmentation. Similar phenomena for IoU of 
the two organs are also illustrated in Supplemental Figure 
S3(C) and (D) that the performance increments of our method 
include the contribution of Res2Net modules.

Iterative Performance

To evaluate the iterative performance of our proposed 
method, we also demonstrate the performance among the 
iteration steps. After the first 100 iterations where the perfor-
mances of all competing methods increase intensively, the 
performances of all the investigated methods vary in narrow 
ranges (Figure 4(A) and (C), Supplemental Figure S2 for 
scale zoomed in on the y-axis). Taking fetal heart segmenta-
tion as an example (Figure 4(A)), for FCN-8s, FCN-16s, and 
FCN-32s, their Dice coefficients oscillate in the range of 
0.817 to 0.893 when the iteration steps are from 100 to 400. 
Meanwhile, the Dice coefficients yielded by U-Net, PSP-
Net, E-Net, and DenseNet at steps of 100 to 400, fluctuate in 
the ranges of 0.824 to 0.894, 0.826 to 0.901, 0.892 to 0.904, 
and 0.830 to 0.907, respectively. In comparison, for the 
results in iteration of 100 to 400, the Dice coefficients of fetal 
heart segmentation obtained by our proposed method vary in 

the range of 0.878 to 0.904, which is comparable or smaller 
than those of the other competing methods, indicating the 
performance stability of our proposed method. Indeed, in the 
iteration performance analysis, many other methods also 
show stable performance when the number of iterations 
grows. Therefore, the result can only prove that, the range 
that the performance varies of our method is comparable or 
narrower than those of some comparison methods, and at the 
same time shows comparable stability with those of the other 
comparison methods.

As for the iterative performances for fetal lung segmenta-
tion, we can also observe that our method demonstrates a 
better performance stability than those of the other investi-
gated methods (Figure 4(C)). Specifically, in iteration step in 
100 to 400, the Dice coefficients of fetal lung for FCN-8s, 
FCN-16s, and FCN-32s fluctuate in the range of 0.784 to 
0.872. At the same time, the value of Dice coefficients 
obtained by U-Net vibrate from 0.778 to 0.863 in iteration of 
100 to 400. Furthermore, PSP-Net, E-Net, and DenseNet 
achieve Dice coefficients ranged from 0.791 to 0.872, 0.852 
to 0.872, and 0.790 to 0.868, respectively. In contrast, in 
iteration from 100 to 400, the Dice coefficients of our pro-
posed method for fetal lung vary in the range of 0.840 to 
0.873. The widths of the intervals between the minimum and 
maximum values of Dice coefficients obtained by these com-
parison methods, indicate a similar phenomenon that when 
compared with the others, our proposed method shows an 
advantage of performance stability.

To further demonstrate the superiority of our method dur-
ing the iterations, we also illustrate the occupation fractions 
of all the competing methods as best performance at each 

Figure 3.  An intuitive illustration of predicted segmentation masks of our proposed method and the competing methods. Specifically, 
the left-top panel is the input ultrasound image of fetus, and the left-bottom panel is the ground truth mask.
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iteration step, as shown in Figure 4(B) and (D). Detailly, we 
collect whether a method achieves the best performance 
among all the comparison method for each step in 100 to 
400, and calculate the fraction of the steps of their best per-
formance in all investigated steps. By drawing the pie charts 
of their occupation fractions, we can intuitively observe that 
for both fetal hearts and lungs, the regions of segmentation 
performance as Dice coefficient of our method cover the big-
gest area among those of all methods. For fetal heart segmen-
tation, in iterations from 100 to 400, the Dice coefficients of 
our methods occupy 56.15% of these iterations as best per-
formance among all the investigated methods. For fetal lung 
segmentation, our method covers 83.72% iterations from 
100 to 400 as best result among those of all competing meth-
ods, showing a clear dominance in iteration performance.

Discussion

Infant mortality due to congenital anomaly can be largely 
reduced by fetal anomaly ultrasound scanning and subse-
quent intervention, but the recognition of fetal heart and lung 
regions manually would cost the labor of experienced physi-
cians intensively. Still, for ultrasound image segmentation, 
the existing automatic segmentation approaches confront the 
multi-scale problem at a larger range of receptive fields of 
organs in images, resolution problem of segmentation mask, 

and interference problem of task-irrelevant features, obscur-
ing the attainment of accurate segmentation of fetal hearts 
and lungs. Accordingly, we establish a deep learning based 
method for ultrasound image semantic segmentation of both 
fetal hearts and lungs, in which the multi-scale module, atten-
tion mechanism, and skip connection framework are inte-
grated into one unified model. A systematic evaluation study 
also demonstrates the superiority of our method in the perfor-
mances of fetal heart and lung segmentation when compared 
with previously published deep learning based semantic  
segmentation approaches. Generally, our proposed method 
illustrates a beneficial improvement to the elevation of the 
ultrasound based early scanning of congenital anomaly.

The main perspectives which might be responsible for 
the accomplishment of our proposed method can be sum-
marized in three folds. The first perspective is the ability of 
extracting multi-scale features at a larger range of recep-
tive fields. In our proposed method, the multi-scale mod-
ules play the roles as feature extractor to capture features 
at multi-scales from the input ultrasound images. The sec-
ond perspective is the implementation of attention mecha-
nism. In the task of fetal heart and lung segmentation, we 
incorporate the attention gate unit for highlighting the 
task-specific features and suppress the task-irrelevant fea-
tures at the same time. The third perspective is embracing 
the advantage of skip connections between layers. Through 

Figure 4.  The iterative performances of our proposed method against the competing methods at steps of 100 to 400. (A) Dice 
coefficients of these methods for fetal heart segmentation at each iteration step. (B) Pie chart of occupation fractions of these 
methods as best performance for fetal heart segmentation at each iteration step. (C) Dice coefficients of these methods for fetal 
lung segmentation at each iteration step. (D) Pie chart of occupation fractions of these methods as best performance for fetal lung 
segmentation at each iteration step.
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the skip connections across contracting and expansive net-
works in U-Net architecture, high resolution information 
from the contracting network can be efficiently compen-
sated to the expansive network for output, enhancing the 
resolution of predicted segmentation masks. The integra-
tion of skip connection framework, multi-scale module, 
and attention mechanism together lays the foundation for 
the achievement of our method in fetal heart and lung seg-
mentation from ultrasound images.

In addition to the accomplishment obtained by our pro-
posed method, there are also a bunch of directions that is 
worthwhile for further investigation. One promising direc-
tion is to introduce the multi-task learning technique into the 
fetal heart and lung segmentation of ultrasound images. 
Considering that the segmentation objectives include more 
than one organ, we can certainly regard the semantic seg-
mentation of both fetal hearts and lungs as two simultaneous 
tasks. Furthermore, despite the usage of data augmentation 
on our dataset, we can still enhance the segmentation perfor-
mance of our method by expecting the collection of a larger 
amount of data of ultrasound images of fetuses. Our pro-
posed method also has the potential to be deployed in these 
applications. Moreover, since the networks heavily relied on 
the data collection procedure, our network was trained by 
the data from a single source, and it might face the overfit-
ting problem influenced by the issue of single source data. 
When the network was applied on the data from a different 
medical center, since re-training the network from scratch 
would cause additional data collection of too many images, 
we highly recommended use transfer learning and fine-tun-
ing on our network with data collection of an appropriate 
scale of images. This scheme is a promising strategy to 
expand the application range of our model. In summary,  
we propose a multi-scale model integrated with attention 
mechanism, which can efficiently segment the regions of 
fetal heart and lung from ultrasound images via extracting 
multi-scale features at a larger range of receptive fields, 
compensating high resolution information, and eliminating 
task-irrelevant features, showing a promising contribution 
on ultrasound based prognosis of congenital anomaly, facili-
tating the subsequent early intervention, and alleviating of 
the negative effects caused by congenital anomaly.
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