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ABSTRACT

Since Batch Normalization was proposed, it has been commonly located in front
of activation functions, as proposed by the original paper. Swapping the order, i.e.,
using Batch Normalization after activation functions, has also been attempted, but
it is generally not much different from the conventional order when ReLU is used.
However, in the case of bounded activation functions like Tanh, we discovered that
the swapped order achieves considerably better performance on various bench-
marks and architectures than the conventional order. We report this remarkable
phenomenon and closely examine what contributes to this performance improve-
ment in this paper. One noteworthy thing about swapped models is the extreme
saturation of activation values, which is usually considered harmful. Looking at
the output distribution of individual activation functions, we found that many of
them are highly asymmetrically saturated. The experiments inducing a different
degree of asymmetric saturation support the hypothesis that asymmetric satura-
tion helps improve performance. In addition, we found that Batch Normalization
after bounded activation functions has another important effect: it relocates the
asymmetrically saturated output of activation functions near zero. This enables
the swapped model to have higher sparsity, further improving performance. Ex-
tensive experiments with Tanh, LeCun Tanh, and Softsign show that the swapped
models achieve improved performance with a high degree of asymmetric satura-
tion.

1 INTRODUCTION

Batch Normalization (BN) has become a widely used technique in deep learning. It was proposed
to address the internal covariate shift problem by maintaining a stable output distribution among
layers. The characteristics of the output distribution of weighted summation operation, which is a
symmetric, non-sparse, and “more Gaussian” (Hyvärinen & Oja, 2000), Ioffe & Szegedy (2015)
placed the BN between the weight and activation function. Thus, the “weight-BN-activation” order,
which we call “Convention” in this paper, has been widely used to construct one block in many
architectures (Simonyan & Zisserman, 2014; Howard et al., 2017). “Swap” models, swapping the
order of BN and the activation function in a block, have been also attempted but no significant and
consistent difference between the two orders has been observed in the case of ReLU. For instance,
Hasani & Khotanlou (2019) evaluated the effect of position of BN in terms of training speed and
concluded that there is no clear winner and the result depends on the datasets and architecture types.

However, in the case of bounded activation functions, we empirically found that Swap order exhibits
substantial improvements in test accuracy than the Convention order with diverse architectures and
datasets. We investigate the reason for this accuracy difference between the Convention and the
Swap model with bounded activation function based on empirical analysis. For simplicity, our anal-
yses are mainly conducted on Tanh model, but applicable to similar antisymmetric and bounded
activation functions. We presents the results with LeCun Tanh and Softsign at the end of the experi-
mental section.

One key difference between Swap and Convention models is the distribution of activation values,
as shown in Figure 1. In the Swap model, most activation values are near the asymptotic values of
the bounded activation function, that is, highly saturated. This is unanticipated since it is a common
belief that high saturation should be avoided. To investigate this paradox, we took one step further
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Figure 1: The activation distributions of a layer are almost symmetric (left) in both Convention and
Swap models with Tanh. However, the activation distributions of channels in the layer are quite
different. Symmetric distributions similar to that of the layer appeared similar to layer distribution
in channels in the Convention model (right top). On the other hand, the Swap model have a one-
sided distribution of boundary (bottom right). We chose ten consecutive channels from the 8th layer
of the VGG16 model trained on CIFAR-100.

and looked at the output distribution of individual activation functions, not just a whole layer. To our
very surprise, even though the distribution is fairly symmetric at the layer level, the activation values
of each channel are biased toward either one of the asymptotic values, or asymmetrically saturated.
We assume that this asymmetric saturation is a key factor for the performance improvement of the
Swap model since it enables Tanh to behave like a one-sided activation function. In the experiments
we designed to examine whether asymmetric saturation is related to the performance of models
with bounded activation functions, we can observe that the accuracy and the degree of asymmetric
saturation are highly correlated.

BN after Tanh does not just incur asymmetric saturation but also shifts the biased distribution near
zero, which has the important effect of increasing sparsity. Sparsity is generally considered to be
a desirable property. For instance, Glorot et al. (2011) studied the benefits of ReLU compared to
Tanh in terms of sparsity. One thing to note is that if each channel is symmetrically saturated, BN
will not increase sparsity much since the mean is already close to 0. In contrast, the one-sided
property of asymmetric saturation causes at least half of the sample values after normalization to
be almost zero, allowing the Swap model to have even higher sparsity than the Convention model.
Ramachandran et al. (2017) explored novel activation functions by an automatic search for different
activation functions. The top activation functions found by search are one-sided, and the boundary
value is near zero, similar to ReLU. The penalized Tanh activation (Xu et al., 2016), inserting leaky
ReLU before Tanh, also introduces skewed distribution, and the penalized Tanh achieved the same
level of generalization as ReLU-activated CNN. Analogous to the activation functions found in the
previous studies, asymmetric saturation combined with normalization makes a bounded activation
function behave much like ReLU, achieving comparable performance.

Our findings are as follows:

• The Swap model using Batch Normalization after bounded activation functions performs
better than the Convention model in many architectures and datasets.

• We discover the asymmetric saturation at the channel level and investigate its importance
through carefully-designed experiments.

• We identify the high sparsity induced by Batch Normalization after bounded activation
functions and perform an experiment to examine the impact of sparsity on performance.
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Figure 2: Illustration of Block designs of the Convention order (left) and Swap order (right), and
locations for property measurement.

2 SETTINGS FOR INVESTIGATION AND NOTATION

Models. The main purpose of the investigation is to analyze the benefits of using BN after bounded
activation functions, more specifically, a bounded activation function that is an odd function and
has two boundaries. We examine the VGG-like model trained on CIFAR-100 with replacing the
activation function from ReLU to Tanh. However, because the VGG architecture was proposed
for the ImageNet dataset, the model is overparameterized for the CIFAR dataset. It incurs poor
performance and difficulty to investigate the Swap model. Thus, we cut out the last convolution
layers and select the best model based on the validation accuracy. The model with five cut-out
layers shows the best accuracy as in Appendix A.6. We call this model “VGG16 11” and use this
architecture to investigate Conv and Swap orders. Although a VGG11 model has already been
proposed in Simonyan & Zisserman (2014), the validation accuracy of VGG16 11 is significantly
higher than VGG11 (VGG11: Conv 64.55%, Swap 69.94, VGG16 11: Conv 69.5%, Swap 74.11%
). At inference time, The BN normalizes the input distribution to have zero-mean and unit-variance
by using the running statistics (e.g., µ̂ for running mean and σ̂ for related to running variance), and
then applies the affine transformation, which has a scaling parameter γ and a shifting parameter β.
The Convention model normalizes the outputs of the weighted summation operation conducted in
the weight layer, and then Tanh activates the block outputs. On the other hand, in the Swap model,
Tanh directly activates the weight layer outputs, and then BN is applied to generate block outputs.

Metrics. We consider 3 properties to investigate each order: saturation, asymmetric saturation, and
sparsity. We measure the degree of saturation at the outputs of Tanh in the layer units. To measure
the asymmetric saturation, we collect the outputs of Tanh in channel units. For the sparsity measure,
we collect the outputs of each block in the channel units. Layer structure and measurement locations
are illustrated in Figure 2.

Setups for experiment. For the experiment in Section 4.2, the weight decay on the convolution
layer is fixed, and we vary the weight decay intensity on BN. This experiment’s learning rate and
the convolution layer’s weight decay followed the NWDBN model’s hyperparameters. NWDBN is
the Convention based model, but the affine parameters of BN are zero. Based on these hyperparam-
eters, we increase the intensity of weight decay on β in BN from 0.0 to 0.001 by 0.0001. For the
experiment in Section 5.3, the learning rate and convolution layer’s weight decay followed the Swap
model’s hyperparameters. Then, we change the weight decay intensity on the affine transformation
parameters in BN. The intensity list of weight decay are 0, 1e-6, 5e-6, 1e-5, 5e-5, 1e-4, and 5e-4.
For the experiment in Section 7.1, we train models on 4 benchmarks (CIFAR-10, CIFAR-100, Tiny
ImageNet, and ImageNet), 2 base-architectures (VGG16 11, MobileNet), and 2 activation functions
(ReLU, Tanh). Because Tanh has non-linearity in everyplace except the origin, it can not follow the
design of residual connection proposed in He et al. (2016). Thus, we choose architectures where
a skip connection does not exist. For the experment in Section 7.2, we trained VGG16 11 with
3 activation functions (Tanh, Lucun Tanh, Softsign) on CIFAR-100 dataset. All results except the
ImageNet dataset are conducted on 3 random seeds and averaged over seeds for all the measure
values and accuracy. We use the SGD optimizer, weight decay regularization, and a 2-step learning
rate decaying strategy that decays by 0.1. We conduct a grid search to obtain the best model for
investigation. We explore learning rate and weight decay. The hyperparameters that we use are
demonstrated in Appendix A.1.
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3 OVERLY SATURATED TANH BUT WELL-GENERALIZED MODEL

Saturation refers to a situation where most of the outputs of bounded activation functions are close
to the asymptotic value of the function. When training a neural network with a bounded activation
function whose center is the origin, the output increases due to the weight gradually increasing. The
increased output values map close to the near asymptote in bounded activation functions, as shown
in the experiment in Glorot & Bengio (2010). Thus, saturation is bound to occur. However, exces-
sive saturation results in a gradient vanishing problem. The gradient of points near the asymptotic
values is almost 0. Therefore, the gradients of saturated activations vanished. Various methods were
proposed to prevent excessive saturation. Glorot & Bengio (2010) proposed an initialization scheme,
Rakitianskaia & Engelbrecht (2015a;b) proposed a metric to measure the degree of saturation for
monitoring the training, Bhat et al. (1990) pre-scaled the inputs of the activation function, and Chen
& Chang (1996) proposed adaptable bounded activation.

3.1 SATURATION METRIC

We introduce a saturation metric based on how closely outputs the values to the maximum ab-
solute value of the output range of the function. The target outputs for measuring the saturation
Gl = [gl1, g

l
2...g

l
N ] ∈ RN is the flattened outputs of lth layer in fully-connected block or convolu-

tion block. N is SDl for fully-connected blocks and SClH lW l for convolution blocks, where S
denotes the total number of test samples, Dl denotes the dimension size of layer outputs in lth fully-
connected block, and Cl, H l, W l respectively denotes the number of channels, height, and width
in lth convolution block. We take the absolute value of the input and divide it by the maximum
absolute value to normalize it to [0, 1]. The formulation for normalization of ith element in lth layer
feature map, ĝli, is as follows:

ĝli =
|gli|
g̃l

, (1)

where g̃l ∈ R is the maximum absolute value of Gl. Since the possible output range of the bounded
function is fixed. We use the absolute asymptotic value of the bounded function as a all element of
g̃l for measuring saturation. For instance, we set gld to 1 for the Tanh model. We averaged all the
normalized values in a layer for our saturation metric. The formulation of our saturation metric on
lth layer, tl, is as follows:

tl =
ΣN

i=1ĝ
l
i

N
. (2)

tl has the range of [0, 1]; it approaches 1 if Gl is highly saturated as illustrated in Appendix A.3.
Also, as an implementation issue, the calculation was performed in units of mini-batch, and the
details are described in appendix A.11.

3.2 HIGH SATURATION IN THE SWAP MODEL
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Figure 3: Layer Saturation of Conven-
tion and Swap models

Even if only the layer order was changed from the Con-
vention order to the Swap order, there was a 4.61%p test
accuracy improvement. The results of this model and
other models can be found in Table 1. However, when
we measure the layer saturation in both models, the Swap
model has highly saturated layers. The maximum satura-
tion of the Swap model (0.86) is significantly higher than
the Convention model (0.45). The saturation of the Swap
model shows over 0.7 in almost half of the layers. Even
more, some layers are overly saturated at almost 0.86. On
the other hand, the saturation of the Convention model is
lower than 0.5 over all layers. (Figure 3) This is counter-
intuitive as excessive saturation is considered an undesir-
able situation in the previous works.
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4 ASYMMETRIC SATURATION

Our saturation metric can dismiss the channel properties due to the summarization of channels in the
layer. Thus, we conduct channel inspection. Interestingly, when we examine channel distribution,
the saturation in that layer has biased to one asymptotic value. Asymmetric saturation appears
in most channels on the excessively saturated layer in the Swap model. In contrast, the channel
distribution of the Convention is almost zero centralized.

4.1 ASYMMETRIC SATURATION METRIC

The target outputs for measuring the asymmetry Ql,c = [ql,c1 , ql,c2 ...ql,cM ] ∈ RM is the flattened
activation outputs of lth layer and cth dimension for fully-connected block or cth channel for convo-
lution block. M is S for fully-connected blocks and SH lW l for convolution blocks. To measure the
channel asymmetry more precisely, we introduce skewness, the metric for measuring the asymmetry.
The formulation of the sample skewness for lth layer and cth channel , kl,c, is as follows:

kl,c =

√
M(M − 1)

M − 2

1
MΣM

i=1(q
l,c
i − µc)3

[ 1
MΣM

i=1(q
l,c
i − µc)2]

3
2

, (3)

where µc ∈ R is the mean of lth layer and cth channel’s activation outputs. The skewness value has
directional distribution information, negative for left-skewed and positive for right-skewed. How-
ever, we want to measure asymmetry regardless of direction. Thus we take the absolute value to
remove the directional information. The metric for the layer skewness, kl, is as below:

kl =
1

C
ΣC

i=1|kl,i|. (4)

The layer distributions in both Convention and Swap models are symmetry, but the channel distribu-
tions are quite different. Thus, we measure the asymmetry on channel-wise, not layer-wise, like the
saturation metric. As an implementation issue, the calculation was performed in units of mini-batch,
and the details are described in appendix A.11.
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Figure 4: Layer Skewness in Conven-
tion and Swap models

As shown in Figure 4, All of the layer skewness in the
Convention model measured close to 0. Therefore there
has little asymmetric distribution. However, in the Swap
model, the skewness of layers is relatively higher than in
the Convention model. Furthermore, the skewness values
are high along the high saturation blocks. It, therefore,
implies that saturation occurs with asymmetry. The re-
lationship between our skewness metric and the different
distribution shapes is illustrated in Appendix A.3.

4.2 EFFECT OF ASYMMETRIC
SATURATION ON GENERALIZATION PERFORMANCE

In order to demonstrate the effectiveness of asymmetric
saturation, we introduce a method to control the level of
asymmetry in the Convention model. First, let us organize
the reason why the Convention model cannot make use of asymmetric saturation. We assume that
the Convention model can not generate asymmetric saturation well due to the weight decay effect
on affine transform parameters in BN. In the experiment to verify the mean and variance effects on
skewness, we can confirm that both statistical values, the mean and variance of Tanh input, affect
asymmetry on Tanh output. The skewness value of Tanh’s output on the different input mean and
standard deviation can be found in Appendix A.4. From this perspective, the affine parameters with
weight decay generate the input of Tanh to utilize the center of Tanh by decreasing the mean and
variance of its input. Thus, it could decrease the asymmetry of the Tanh output. Therefore, we
train a model with no weight decay on BN to encourage asymmetric saturation in the Convention
model. As a result, the NWDBN model shows improved accuracy of 72.27% compared to the
Convention model 69.5%. To closely examine the effects of asymmetric saturation on test accuracy,
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Figure 6: Shapes of combined Tanh with normalization functions, and samples related to BN statis-
tics. The functions are plotted as lines, and the samples are plotted as dots. We choose some normal
distributions whose samples generate µ̂ and σ̂ after the Tanh and randomly generate input samples
for Tanh. Note that the µ̂ and σ̂ are the statistics of Tanh output in the Swap order.

we increase the intensity of weight decay on the Beta parameter, which can eliminate the biasing of
the asymmetric saturation in the NWDBN model. As shown in Figure 5, increasing weight decay
intensity decreases the skewness in the NWDBN model. Additionally, the test accuracy decreased
along with the skewness.

5 SPARSITY

5.1 ASYMMETRIC SATURATION WITH BATCH NORMALIZATION CAN INDUCE HIGH
SPARSITY
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Figure 5: Relation between accuracy
and averaged skewness over layers. The
”Avg.Skewness” averaged all the layer-
wise skewness in each model with dif-
ferent weight decay intensity. The
NWDBN model is denoted as 0.0 inten-
sity in the graph.

Sparsity is a desirable property in deep learning. One of
the successes of the method that introduces a sparsity is
the Relu. ReLU achieves a high generalization perfor-
mance by utilizing the strengths of sparsity (Glorot et al.,
2011). The sparsity of ReLU is due to the one bound-
ary placed at 0. Thus ReLU activates all negative inputs
to 0. The other work that shows the advantage of hav-
ing one asymptote at 0 is Ramachandran et al. (2017).
They conducted an automatic search strategy to look up
various activation functions used. The top prominent ac-
tivation functions identified through search are one-sided
with a boundary value close to zero, like ReLU. Also, Xu
et al. (2016) introduced penalized Tanh activation, which
places leaky ReLU before Tanh to enhance the perfor-
mance of Tanh, which perform as well as ReLU and in-
troduce asymmetry in Tanh.

We found that the Swap model also can increase the spar-
sity by shifting the majority of the values to 0 when asym-
metric saturation occurs. The normalization in BN makes
the distribution to be zero mean. When the asymmetric saturation occured on precede Tanh, the
majority of activations are saturated on one side of Tanh output. Thus, the normalization applied
on this distribution the majority of values are shifted to near zero which incurs a increasement of
sparsity.

5.2 SPARSITY COMPARISON

The NWDBN model shows better performance than the Convention model by inspiring the asym-
metry, but it underperforms the Swap model. We found that the rise of asymmetric saturation in the
NWDBN model gives a benefit in terms of asymmetry but decreases the sparsity. In other words,

6



Under review as a conference paper at ICLR 2023

increased asymmetry of activations in the Convention model generates more activation values close
to -1 or 1, which incurs less sparse block output. Based on this intuition, we hypothesize that the
Swap model has strength on sparsity. To compare the models, we introduce our sparsity metric to
verify the sparsity on each model.

We leverage our saturation metric and modify it for the sparsity metric. Our saturation metric mea-
sures the degree to which many values are saturated with the maximum value. On the other hand,
sparsity is measured by how a small number of coefficients contain a large proportion of the energy.
The more saturated the distribution, the more coefficients divide the total energy. In short, higher
saturation decreases sparsity. Therefore, the sparsity metric can be regarded as the reverse of the
saturation metric. However, there is differences to the saturation metric. Whereas the saturation is
measured on the output of Tanh, sparsity is measured on the output of the blocks, i.e., the sparsity
of the Conv model is measured on the Tanh output, and the sparsity of the Swap model is measured
on the BN output. Thus, for the measuring the sparsity, we modify g̃l in Equation 1 to the vector of
maximum absolute output in unit-wise, ḡl ∈ RDl

for fully connected block and RCl

for convolution
block. Then, we normalize |gli| by the corresponding unit value in ḡl. The formulation of modified
normalized element , ġli, is |gli|/ḡld, where d is the corresponding dimension or channel index of
ith output. Consequently, the modified saturation metric, t̄l, is ΣN

i=1ġ
l
i/N and our sparsity metric

for lth layer, sl, is 1 − t̄l. Also, we investigated how our sparsity metric satisfies the conditions
of the sparsity metric. We demonstrate our sparsity metric based on the 6 desired heuristic criteria
of sparsity measures described in Hurley & Rickard (2009). Our sparsity metric satisfies 5 criteria
among 6 criteria. The proof can be found in Appendix A.10.

We first measured saturation on each model’s block output to measure the sparsity and subtracted
the saturation value from 1. Then, averaged the sparsity over layers. The sparsity of each model
is as follow: Convention (0.717951), NWDBN (0.287974), Swap (0.848927). The Swap model
shows the largest sparsity. The result also shows that the Convention model can generate sparse
distribution. Because of the weight decay on BN, a zero-centered distribution insert to the Tanh in
Convention model. Lastly, as we expect, the NWDBN model shows the lowest sparsity. However,
Since the NWDBN model has a higher asymmetry than the Convention model, the NWDBN model
can outperform the Convention model.

5.3 EFFECT OF SPARSITY ON GENERALIZATION PERFORMANCE
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Figure 7: Influence of sparsity on accuracy. we
measure the averaged saturation over layers in the
Swap model trained with each random seed and
calculate the sparsity by our sparsity metric.

In this section, we encourage the sparsity in
the Swap model and investigate its effects on
test accuracy. As mentioned in Section 5.1,
the Swap order can enhance the sparsity when
asymmetric saturation occurs. This sparsity can
be promoted in training by affine parameters
in BN. Decaying on affine parameters gathers
the most values to 0 during the training phase.
Note that the normalization operation shifts the
majority near zero, and affine transformation
imposes the majority of distribution more cen-
tered to 0. To enhance the sparsity of the Swap
model, we increase the weight decay of affine
transformation parameters. The larger weight
decay may further increase the sparsity of BN
output. As shown in Figure 7, the increase in
the model’s sparsity and accuracy are highly correlated.

6 SUMMARY OF THE MAIN ANALYSIS

We trained 3 types (Convention, NWDBN, Swap) of models in the above analysis experiments.
Each model creates a different output distribution of layers due to differences in structure and reg-
ularization effects. Output distributions of these models are described in Figure 8. The Convention
model, which is illustrated in Figure 8 (top), normalizes extracted features from the convolution
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Figure 8: The distribution of VGG16’s 5th block’s output on randomly chosen 3 channels. We chose
a block where all 3 models were considerably saturated. All test samples in the CIFAR-100 dataset
are used to construct the distribution.

Table 1: Test accuracy with different activation functions and layer orders for VGG16 and Mo-
bileNet.

Dataset VGG16 Tanh MobileNet Tanh VGG16 Relu MobileNet Relu
Convention Swap Convention Swap Convention Swap Convention Swap

CIFAR-10 91.75 92.90 91.54 92.48 93.69 93.04 92.2 91.93
CIFAR-100 64.84 72.17 64.47 70.63 73.68 71.79 70.06 69.49

Tiny ImageNet 49.29 57.05 50.85 51.79 61.54 59.045 59.79 59.1
ImageNet 60.85 67.04 64.26 72.07 73.83 72.95 70.48 71.1

layer. After that, affine parameters are applied to the normalized features. These affine parameters
generate zero centralized activation caused by the effect of weight decay. The NWDBN order also
normalizes the extracted feature from convolution layer. Still, Unlike the Convention model, there
are no downscaling effects on affine transform parameters. For this reason, the input distribution to
Tanh can generate a distribution away from zero and produce a relatively high asymmetry distribu-
tion than the Convention model. We can observe that asymmetric saturation is generated through
Tanh in Figure 8 (middle). However, the asymmetric saturation in the NWDBN model leads to low
sparsity, which negates the benefits of sparsity. Far from the above models, the Swap model applied
Tanh to the extracted features from convolution layer, and BatchNorm is followed. Therefore, if
Tanh generates asymmetric saturation, then it could be a significant number of activations will be
moved near zero, helping to increase sparsity. The layer output distribution can be found in Figure 8
(bottom).

7 EXTENDED EXPERIMENTS

7.1 RESULTS ON VARIOUS DATASETS AND ARCHITECTURES

We mainly investigated VGG16 11 with Tanh model trained on CIFAR-100 dataset. In this section,
we adopt Swap order on varied settings, which are various datasets (CIFAR-10, CIFAR-100, Tiny
ImageNet, ImageNet), architectures (VGG, MobileNet), and activation functions (ReLU, Tanh).

The Swap order and the Convention order of the ReLU model do not show a large difference in
generalization performance than the difference of Tanh model, and this could be ReLU has the
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Table 2: VGG16 11 with bounded activation functions on CIFAR-100, we used averaged skewness
over layers for calculating the difference of skewness.

Activation Order Swap - Convention
Convention Swap ∆Avg.Skewness

Tanh 69.5 74.11 2.38
LeCun Tanh 67.82 74.46 1.90

Softsign 70.01 73.65 1.28

structural ability to produce asymmetric and sparse activations. However, in the case of Tanh, every
model with Swap order outperforms the Convention ordered models with significant generalization
improvement. The Convention order slightly performs better than the Swap order except for the
ImageNet dataset on ReLU model. The Swap MobileNet with Tanh especially performs better than
the Convention Mobilenet with ReLU on CIFAR and ImageNet datasets. The results can be found
in Table 1. Also, all Swap models generate asymmetry on Tanh.
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Figure 9: Asymmetric saturation of the Swap
model on various dataset. There are no BN on
fully connected layer in VGG16 for Tiny Ima-
gaNet and ImageNet dataset, we only measure the
skewness on a convolution layer.

The asymmetric saturation tends to occur from
the front layers. Also, we can find that the range
of the asymmetric saturation existence block is
related to the amount of dataset information and
dataset resolution. For example, when compar-
ing the CIFAR-10 and CIFAR-100, the asym-
metrically saturated layers happen further back.
When comparing the Tiny ImageNet, and Ima-
geNet, the model trained on the ImageNet gen-
erates asymmetric saturation until the last con-
volution layer. These results are shown in Fig-
ure 9.

7.2 RESULTS OF
OTHER BOUNDED ACTIVATION FUNCTIONS

Our main investigations are based on the Tanh
activation function. In this section, we test
whether similar behavior is observed with other
activation functions, such as LeCun Tanh (LeCun et al., 2012) and Softsign (Turian et al., 2009). In
detail, we use the formula of LeCun tanh as follows 1.7159×tanh( 2×input

3 ). They are bounded and
antisymmetric, just like Tanh. Softsign was proposed to prevent vanishing gradients by alleviating
the saturation of neurons. It grows polynomially rather than exponentially, approaching its asymp-
totes much slower (Glorot & Bengio, 2010). LeCun Tanh has a gentle slope and a wider output
range than Tanh. The asymmetric saturation caused by the Swap order occurs not only in Tanh but
also in other activation functions. The shapes of these functions and layer skewness were shown in
Appendix A.5. The Swap with Softsign and LeCun Tanh have improved performance compared to
the Convention. It can be found in Table 2. When swapping, asymmetric saturation happens the least
in Softsign, which makes it challenging to create a saturation state. Furthermore, the Softsign model
shows lower performance than the Tanh model, which could generate more saturation with the most
significant slope in the Swap, even though the Convention model had the highest performance.

8 CONCLUSION

In this work, we report that the Swap models perform better than the Convention models in many
cases and analyze what brings about performance improvement. Asymmetric saturation at the chan-
nel level and sparsity induced by BN are two key factors explaining the better performance of the
Swap models. With asymmetric saturation and normalization by BN, the final distributions gener-
ated by BN layers of the Swap models much resemble those by ReLU. This explains why the Swap
models outperform the Convention models and often show results comparable to the ReLU models.
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Table 3: Training hyperparameters of the VGG16 Tanh models

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 100 200 200 200 100
Learning Rate 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0.01

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 60, 90
Weight Decay 0.0001 0.0005 0.001 0.0001 0.001 0.0005 0.001 0.001

Batch Size 128 128 128 256 128 128 128 256

Table 4: Training hyperparameters of the VGG16 ReLU models

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 100 200 200 200 100
Learning Rate 0.01 0.01 0.1 0.1 0.01 0.01 0.01 0.01

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 60, 90
Weight Decay 0.001 0.005 0.0001 0.0001 0.001 0.005 0.001 0.0005

Batch Size 128 128 128 256 128 128 128 256

Table 5: Training hyperparameters of the MobileNet Tanh models

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 100 200 200 200 100
Learning Rate 0.1 0.1 0.01 0.1 0.1 0.1 0.1 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 60, 90
Weight Decay 0.0001 0.0005 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001

Batch Size 128 128 128 256 128 128 128 256

Table 6: Training hyperparameters of the MobileNet ReLU models

Convention Swap
CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Training Epochs 200 200 200 100 200 200 200 100
Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1

Learning Rate Drop 100, 150 100, 150 100, 150 30, 60 100, 150 100, 150 100, 150 60, 90
Weight Decay 0.001 0.005 0.005 0.0001 0.001 0.005 0.005 0.0001

Batch Size 128 128 128 256 128 128 128 256

A APPENDIX

A.1 TRAINING HYPERPARAMETER

The hyperparameters used in training are shown in Table 3, 4, 5, 6. We sweep the learning rate and
weight decay hyperparameter. The learning rate was 0.1 and 0.01. For CIFAR and Tiny-ImageNet
datasets, we trained models with a batch size of 128, and the learning rate was reduced by one-tenth
at 100 and 150 of the total 200 epochs, and we swept 4 weight decay of 0.005, 0.001, 0.0005, and
0.0001. For ImageNet datasets, we trained models with a batch size of 256, and the learning rate
was reduced by one-tenth at 30 and 60 of the total 100 epochs, and we swept 3 weight decay of
0.001, 0.0005, and 0.0001. We chose the best averaged-accuracy model for the 3 random seeds
and averaged the values of these three models for all measurements for analysis. Because of the
computation issue, we only use 1 seed for ImageNet dataset with early stopping.

A.2 NO BN

We also compare the saturation and skewness between the Convention model and the model without
BN, we call this “NoBN” model. As shown in Figure 10, asymmetric saturation also occurs in
the model without BN, we call this “NoBN” model. However, the NoBN model can not utilize
the advantages of batch normalization (e.g., high learning rate), it shows low test accuracy than the
Convention model even though asymmetric saturation exists compared to the Convention model.
The accuracy of the Convention model is 64.84% and the accuracy of the NoBN model is 61.06%.
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Figure 10: Layer saturation (left) and skewness (right) of the Convention VGG and the NoBN VGG
model trained on CIFAR-100.

A.3 SATURATION AND SKEWNESS MEASUREMENT VALUES

Our saturation metric becomes 0 when the distribution is gathered to 0, and it increases as the
elements in the distribution close to the maximum expression range. For the uniform distribution,
the degree of saturation was measured at 0.5. The measurement on different distributions can be
found in Figure 11 (left). Skewness is the metric for measuring the asymmetry of the distribution.
Skewness is calculated as 0 when the distribution is symmetric, and it increases as the asymmetry
increase. We calculate the absolute on skewness in our asymmetry metric, thus the increases are
regardless of the direction. The measurement on different distributions can be found in Figure 11
(right).
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Figure 11: The degree of saturation on different distributions (left) and the degree of skewness on
different distributions (right)

A.4 THE EFFECTS OF THE MEAN AND STANDARD DEVIATION OF INPUT DISTRIBUTION ON
TANH

The mean and variance of input distribution on Tanh affect the asymmetry of Tanh output. The
skewness of Tanh output depends on the mean, and standard deviation can be found in Figure 12.
The maximum skewness of varied mean distribution is increased on the increase of mean. However,
the maximum skewness does not align with the input standard deviation increases. The skewness
decreases not only the small input standard deviation but also the large input standard deviation. Ad-
ditionally, in the same mean condition, a decrease in standard deviation from the maximum skewness
point more rapidly decreases the skewness than an increase in standard devation.
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Figure 12: The skewness of Tanh output depend on the mean and standard deviation of Tanh input

A.5 SKEWNESS TENDENCIES ON VARIOUS ACTIVATION FUNCTIONS

The key to the success of the Tanh model with the Swap order is asymmetric saturation. We show
that asymmetric saturation also appears in the other bounded activations, such as LeCun Tanh and
SoftSign. The Conv model with the 3 types of activation functions shows low layer-wise skewness.
The skewness is less than 1 over the overall layer. However, a significant skewness increment arises
when the Swap order is applied. The SoftSign shows a minor improvement in skewness due to its
property of preventing saturation.
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Figure 13: Shapes of activation functions (left) and skewness tendency of different activation func-
tions (right), dashed line represents the Convention model and the solid line represents the Swap
model.

A.6 BEST DEPTH MODEL SEARCHING ON VGG16

To find an appropriate model for CIFAR, we measured the accuracy of models without the last
convolution layers of VGG16. We train them from scratch using VGG16’s training hyperparameters.
The accuracy gradually increases until the VGG16 11 model, and decreases after that. The results
are shown in Table 7. One thing to note is that the omitted layers have a low skewness in the
VGG16 model. The layer-wise skewness considerably decrease after the 8th block, which is the
same number of convolution layers in the best performance model. The layer-wise skewness is
shown in Figure 14.
Table 7: Performance of shortened Swap VGG16 models. The number of removed convolution
layers in the VGG16 n model is the difference between 16 and n.

VGG16 VGG16 15 VGG16 14 VGG16 13 VGG16 12 VGG16 11 VGG16 10 VGG16 9 VGG16 8
Accuracy 72.17 73.02 73.48 73.85 73.76 73.92 72.57 70.91 70.69

13



Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Block depth

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Sk
ew

ne
ss

Swap

Figure 14: Skewness of the layers in the original VGG16 models

A.7 THE INPUTS OF WEIGHT LAYER AND THE GRADIENTS OF TANH AND WEIGHT

The vanishing gradients problem is inevitable when excessive saturation occurs. However, the Swap
model can alleviate the gradient vanishing problem. The forward propagation among the convolution
and Tanh layers in the Swap model is as follows: y = Wx, a = Tanh(y). Here, x is a hwc-by-1
vector, and W is a d-by-n matrix, where h is the height, w is the width, c is the number of channels,
d is the number of filters, and n is the size of column x, i.e., n = hwc. In backpropagation,
the gradient of W is obtained by the x of the corresponding dimension element. As a result, the
larger x can solve the vanishing gradients problem. The Conv block’s output is Tanh’s output in the
range of [-1, 1], while the Swap block’s output can have a larger value since BN has no limit. A
vanishing gradient occurs at Tanh of the Swap model in the experiment. However, it is alleviated on
the gradient of convolution weight due to the large x, and shows a similar scale to the gradients of
convolution weight in the Conv model. In the gradient on the shallow layers, the backpropagation
gradients on Tanh of the Swap model are smaller than those of the Conv model. On the other hand,
the Swap model has a larger scale of x than the Conv model. Thus, Conv and Swap models have a
similar scale when looking at the gradient of the convolution weight.
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Figure 15: Plots for mean of absolute value of Convolution input(left) and mean of absolute gradient
of Convolution weight value(center) and mean of absolute gradient of tanh input value(right) in the
Convention(top) model and the Swap(bottom) model
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A.8 LEARNING CURVE OF CONV AND SWAP MODELS

Both models were trained with the same hyperparameters. At the beginning of training, the training
loss of the Swap model decreases faster than that of the Conv model, but when training is complete,
the training losses of the two models become almost the same. However, through the validation loss,
we can see that the Swap model has better generalization ability. The training loss is shown in the
Figure 16 and the test loss is shown in the Figure 17.
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Figure 16: Training loss of Conv and Swap models.
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Figure 17: Test loss of Conv and Swap models.

A.9 RELATION BETWEEN PERFORMANCE AND SPARSITY FOR LARGE AFFINE PARAMETERS

We followed the As the size of the weight decay applied to the affine parameters increased, the
sparsity decreased. Accordingly, it was confirmed that the performance also decreased.
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Figure 18: Accuracy drops as the sparsity decreases for large affine parameters.

A.10 PROOF OF PROPERTIES FOR SPARSITY METRICS OF INVERSE SATURATION

Gl is a vector [g1, g2, g3, ..., gN] Ĝl is a vector [g1, g2, g3, ..., gN]
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Theorem 1.1: S satifies S(αGl) = S(Gl),∀α ∈ R, α > 0.

Proof: scaling the Gl also scale the g̃l.

∴ Ĝl(αGl) =
α|Gl|
α̃Gl

=
Gl

g̃l
= Ĝl(Gl)

Theorem 1.2: S satifies S(α + Gl) < S(Gl), α ∈ R, α > 0 (We also exclude the case mentioned
in Hurley & Rickard (2009) that all elements of Gl are the same.)

Proof:

S(Gl + α) =
ΣN

i=1g
l
i +Nα

Ng̃l +Nα

if Ng̃l > ΣN
i=1g

l
i then ΣN

i=1g
l
i+Nα

Ng̃l+Nα
>

ΣN
i=1g

l
i

Ng̃l

∴ S(α+Gl) < S(Gl)

Theorem 1.3: S satifies S(Gl) = S(Gl||Gl||...||Gl)

(|| is concatenation)

Proof: We define concat(X, t) which means concatenate vector X as t times. Then

S(concat(Gl, t)) =
tΣN

i=1ĝ
l
i

tN = S(Gl)

Theorem 1.4: S satifies ∀i∃β = βi > 0, such that ∀α > 0:

S([gl1...g
l
i + β + α...]) > S([gl1...g

l
i + β...])

We choose sufficiently large β that |gli| + β > g̃l. Let assume that S([gl1...g
l
i + β + α...]) ≤

S([gl1...g
l
i + β...]).

Then

1− ΣN
k=1g

l
k + β + α

N(gli + β + α)
≤ 1− ΣN

k=1g
l
k + β

N(gli + β)

ΣN
k=1g

l
k + β + α

N(gli + β + α)
≥ ΣN

k=1g
l
k + β

N(gli + β)

Σk ̸=ig
l
k + gli + β + α

gli + β + α
≥ Σk ̸=ig

l
k + gli + β

gli + β

Σk ̸=ig
l
k

gli + β + α
≥ Σk ̸=ig

l
k

gli + β

1

gli + β + α
≱

1

gli + β

∴ S([gl1...g
l
i + β + α...]) > S([gl1...g

l
i + β...]).

Theorem 1.5: S satifies S(Gl||0) > S(Gl)

Proof:

1− ΣN
k=1ĝ

l
k

N + 1
> 1− ΣN

k=1ĝ
l
k

N

A.11 ALGORITHMS

For more details, we take channel-wise summation with respect to batchs, but we divide the summa-
tion value by D and accumulate as batch statistics. Because the whole step is same as taking average
with respect to total sample, we can divide by the total size first and sum all values as batchs later.
We follow this step due to the memory usage.
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Algorithm 1: Calculating skewness over the layers

Input: xs(s = 1, 2, ..., S) = mini− batch ∈ Rbs×H×W

N = totalnumberofsamples
Output: skewness ∈ RL

1 Function Statistics(X ,mean,variance,skewness,condition):
2 X = {X1,X2, ...,XL}.
3 for l = 1, 2, ..., L do
4 Cl, bs, h

l, wl is the shape of X l

5 B = bs × hl × wl, D = N × hl × wl

6 # RCl×B ← RCl×bs×hl×wl

7 blockl ← flat(X l) by channels
8 if condition is mean then
9 # RCl ← RCl×B

10 1. batch statisticl ← sum of blockl along the channels
11 2. batch statisticl ← batch statisticl

D

12 3. meanl += batch statisticl

13 end
14 if condition is variance then
15 # RCl ← RCl×B

16 1. batch statisticl ← sum of (blockl −meanl)2 along the channels
17 2. batch statisticl ← batch statisticl

D

18 3. variancel += batch statisticl

19 end
20 if condition is skewness then
21 # RCl ← RCl×B

22 1. batch statisticl ← sum of (blockl−meanl)3√
variancel

3 along the channels

23 2. batch statisticl ← batch statisticl

D ×
√

D×(D−1)

D−2

24 3. skewnessl += batch statisticl

25 end
26 end
27 end
28 mean = {mean1,mean2, ...,meanL}.
29 variance = {variance1, variance2, ..., varianceL}.
30 skewness = {skewness1, skewness2, ..., skewnessL}.
31 for s = 1, 2, ..., S do
32 X ← getactivation(xs) : get activation output values over the layers.
33 update mean with Statistics (X ,mean,condition← mean)
34 end
35 for s = 1, 2, ..., S do
36 X ← getactivation(xs) : get activation output values over the layers.
37 update variance with Statistics (X ,mean,variance,condition← variance)
38 end
39 for s = 1, 2, ..., S do
40 X ← getactivation(xs) : get activation output values over the layers.
41 update skewness with

Statistics (X ,mean,variance,skewness,condition← skewness)
42 end
43 # R← RCl

44 skewnessl ← Average of absolute of each channel values in skewnessl along the layers.
45 return skewness
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Algorithm 2: Calculating (Empirical) saturation over the layers

Input: xs(s = 1, 2, ..., S) = mini− batch ∈ Rbs×H×W

N = total number of samples
saturation type = empirical or not
activationtypeisLeCun or not.

Output: saturation ∈ RL

1 if saturation type is empirical then
2 upper ← channel-wise maximum absolute value
3 else if activation type is LeCun tanh then
4 upper ← 1.7159
5 else
6 upper ← 1
7 end

8 saturation = {saturation1, saturation2, ..., saturationL}.
9 for s = 1, 2, ..., S do

10 if saturation type is empirical then
11 X ← getblock(xs) : get block output values over the layers.
12 end
13 else
14 X ← getactivation(xs) : get activation output values over the layers.
15 end
16 X = {X1,X2, ...,XL}.
17 for l = 1, 2, ..., L do
18 Cl, bs, h

l, wl is the shape of X l

19 B = bs × hl × wl, D = N × Cl × hl × wl

20 # RCl×B ← RCl×bs×hl×wl

21 1. blockl ← flat(X l) by channels.
22 2. Take absolute to blockl.
23 3. blockl ← blockl

upper .

24 # R← RCl×B

25 4. sum← sum of all values of blockl.
26 5. saturationl

s ← sum
D .

27 6. saturationl += saturationl
s.

28 end
29 end
30 return saturation
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