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Abstract

The rise of generalist large-scale models in natural language and vision has made
us expect that a massive data-driven approach could achieve broader generalization
in other domains such as continuous control. In this work, we explore a method for
learning a single policy that manipulates various forms of agents to solve various
tasks by distilling a large amount of proficient behavioral data. In order to align
input-output (IO) interface among multiple tasks and diverse agent morphologies
while preserving essential 3D geometric relations, we introduce control graph,
which treats observations, actions and goals/task in a unified graph representa-
tion. We also develop MxT-Bench for fast large-scale behavior generation, which
supports procedural generation of diverse morphology-task combinations with
a minimal blueprint and hardware-accelerated simulator. Through efficient rep-
resentation and architecture selection on MxT-Bench, we find out that a control
graph representation coupled with Transformer architecture improves the multi-task
performances compared to other baselines including recent discrete tokenization,
and provides better prior knowledge for zero-shot transfer or sample efficiency in
downstream multi-task imitation learning. Our work suggests large diverse offline
datasets, unified IO representation, and policy representation and architecture se-
lection through supervised learning form a promising approach for studying and
advancing morphology-task generalization1.

1 Introduction

The impressive success of large language models [25, 84, 8, 10, 19] has encouraged the other domains,
such as computer vision [85, 42, 3, 52] or robotics [1, 51], to leverage the large-scale pre-trained
model trained with massive data with unified input-output interface. These large-scale pre-trained
models are innately multi-task learners: they surprisingly work well not only in the fine-tuning or few-
shot transfer but also in the zero-shot transfer settings [86, 15]. Learning a “generalist” model seems
to be an essential goal in the recent machine learning paradigm with the same key ingredients: curate
massive diverse dataset, define unified IO representation, and perform efficient representation
and architecture selection, altogether for best generalization.

In reinforcement learning (RL) for continuous control, various aspects are important for generaliza-
tion. First, we care about “task” generalization. For instance, in robotic manipulation, we care the
policy to generalize for different objects and target goal positions [58, 4, 103, 72]. Recent advances
in vision and language models also enable task generalization through compositional natural lan-
guage instructions [54, 91, 1, 23]. However, to scale the data, equally important is “morphology”
generalization, where a single policy can control agents of different embodiment [100, 76] and can
thereby ingest experiences from as many robots in different simulators [31, 96, 22] as possible. Most

∗Work done as Student Researcher at Google.
1https://sites.google.com/view/control-graph
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Figure 1: Behavior distillation pipeline. We first train a single-task policy for each environment on MxT-Bench,
and then collect proficient morphology-task behavior dataset. To enable a single policy to learn multiple tasks
and morphologies simultaneously, we convert stored transitions to the control graph representation to align with
unified IO interface for multi-task distillation. After behavior distillation, the learned policy can be utilized for
in-distribution or zero-shot generalization, downstream fine-tuning, and representation and architecture selection.

prior works [75, 44] only address either the task or morphology axis separately, and achieving broad
generalization over task and morphology jointly remains a long-standing problem.

This paper first proposes MxT-Bench2, the first multi-morphology and multi-task benchmarking
environments, as a step toward building the massive diverse dataset for continuous control. MxT-
Bench provides various combinations of different morphologies (ant, centipede, claw, worm, and
unimal [44]) and different tasks (reach, touch, and twisters). MxT-Bench is easily scalable to
additional morphologies and tasks, and is built on top of Brax [31] for fast behavior generation.

Next, we define unified IO representation for an architecture to ingest all the multi-morphology
multi-task data. Inspired by scene graph [55] in computer vision that represents the 3D relational
information of a scene, and by morphology graph [100, 13, 49, 44] that expresses an agent’s ge-
ometry and actions, we introduce the notion of control graph (CG) as a unified interface to encode
observations, actions, and goals (i.e. tasks) as nodes in the shared graph representation. Goals are
represented as sub-nodes, and different tasks correspond to different choices: touching is controlling
a torso node, while reaching is controlling an end-effector node (Figure 3). In contrast to discretizing
and tokenizing every dimension as proposed in recent work [53, 87], this unified IO limits data
representation it can ingest, but strongly preserves 3D geometric relationships that are crucial for any
physics control problem [100, 38], and we empirically shows it outperforms naive tokenization in our
control-focused dataset.

Lastly, while conventional multi-task or meta RL studies generalization through on-policy joint
training [103, 20], we perform efficient representation and architecture selection, over 11 com-
binations of unified IO representation and network architectures, and 8 local node observations,
for optimal generalization through behavior distillation (Figure 1), where RL is essentially treated
as a (single-task, low-dimensional) behavior generator [41] and multi-task supervised learning (or
offline RL [33]) is used for imitating all the behaviors [93, 14, 87]. Through offline distillation, we
controllably and tractably evaluate two variants of CG representation, along with multiple network
architectures (MLP, GNN [60], Transformers [98]), and show that CGv2 variant with Transformer
improves the multi-task goal-reaching performances compared to other possible choices by 23%
and provides better prior knowledge for zero-shot generalization (by 14∼18%) and fine-tuning for
downstream multi-task imitation learning (by 50 ∼ 55 %).

As the fields of vision and language move toward broad generalization [18, 8], we hope our work
could encourage RL and continuous control communities to continue growing diverse behavior
datasets, designing different IO representations, and iterating more representation and architecture
selection, and eventually optimize a single policy that can be deployed on any morphology for any
task. In summary, our key contributions are:

2Pronounced as “mixed”-bench. It stands for “Morphology × Task”.
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• We develop MxT-Bench3 as a test bed for morphology-task generalization with fast expert
behavior generator. MxT-Bench supports the scalable procedural generation of both agents
and tasks with minimal blueprints.

• We introduce control graph, a universal IO for control which treats the agent’s observations,
actions and goals/tasks in a unified graph representation, while preserving the task structure.

• We study generalization through offline supervised behavior distillation, where we can ef-
ficiently try out various design choices; over 11 combinations of unified IO representation
and network architectures, and 8 local node observations. As a result, we find that Trans-
former with CGv2 achieves the best multi-task performances among other possible designs
(MLP, GNN and Transformer with CGv1, Tokenized-CGv2, etc.) in both in-distribution and
downstream tasks, such as zero-shot transfer and fine-tuning for multi-task imitation learning.

2 Related Work
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Figure 2: We tackle morphology-task gen-
eralization, which requires achieving both
task and morphology generalization simulta-
neously.

Morphology Generalization While, in RL for continu-
ous control, the policy typically learns to control only a
single morphology [94, 96], several works succeed in gen-
eralizing the control problem for morphologically different
agents to solve a locomotion task by using morphology-
aware Graph Neural Network (GNN) policies [100, 49].
In addition, several work [62, 44, 48, 97] have investi-
gated the use of Transformer [98]. Other work jointly
optimize the morphology-agnostic policy and morphol-
ogy itself [80, 43, 105, 47], or transfer a controller over
different morphologies [24, 13, 46, 71].

While substantial efforts have been investigated to realize
morphology generalization, those works mainly focus on
only a single task (e.g. running), and less attention is paid
to multi-task settings, where the agents attempt to control different states of their bodies to desired
goals. We believe that goal-directed control is a key problem for an embodied single controller.
Concurrently, Feng et al. [30] propose a RL-based single controller that is applied to different
quadruped robots and target poses in the sim-to-real setting. In contrast, our work introduces the
notion of control graph as a unified IO that represents observations, actions, and goals in a shared
graph, and can handle more diverse morphologies to solve multiple tasks.

Task Generalization In the previous research, task generalization has been explored in multi-
task or meta RL literature [99, 27, 11, 95, 21, 67, 102, 63]. Each task might be defined by the
difference in goals, reward functions, and dynamics [37, 59, 28], under shared state and action
spaces. Some works leverage graph representation to embed the compositionality of manipulation
tasks [68, 108, 69, 61, 38], while others use natural language representation to specify diverse
tasks [54, 91, 1, 50, 23]. Despite the notable success of acquiring various task generalization, multi-
task RL often deals with only a single morphology. We aim to extend the general behavior policy into
the “cartesian product” of tasks and morphologies (as shown in Figure 2) to realize a more scalable
and capable controller.

Transformer for RL Recently, Chen et al. [12] and Janner et al. [53] consider offline RL as
supervised sequential modeling problem and following works achieve impressive success [87, 64, 36,
101, 90, 107, 79]. In contrast, our work leverages Transformer to handle topological and geometric
information of the scene, rather than a sequential nature of the agent trajectory.

Behavior Distillation Due to the massive try-and-error and large variance, training a policy from
scratch in online RL is an inefficient process, especially in multi-task setting. It is more efficient to
use RL for generating single-task behaviors (often from low dimensions) [41] and then use supervised
learning to imitate all behaviors with a large single policy [65, 93, 2, 14]. Several works tackle
the large-scale behavior distillation with Transformer architecture [87, 64], or with representation
that treats observations and actions in the same vision-language space [106, 92]. Our work utilizes

3https://github.com/frt03/mxt_bench
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Figure 3: We propose the notion of control graph, which expresses the agent’s observations, actions, and
goals/tasks in an unified graph representation, while preserving the geometric structure of the task. We develop
two practical implementations; control graph v1 (left) accepts the morphological graph, encoded from the
agent’s geometric information, as an input-output interface, and merges positional goal information as a part of
corresponding node features. control graph v2 (right) treats given goals as extra disjoint nodes of morphological
graph. While most of prior morphology-agnostic RL have focused on locomotion (run task), i.e. a single
static goal node controlling (maximizing) the velocity of center of mass, control graph could naturally extend
morphology-agnostic control to other goal-oriented tasks: single static goal node for reach, multiple static goal
nodes for twisters, and single dynamic goal node tracking a movable ball for an object interaction task; touch.

similar pipeline, but focuses on finding the good representation and architecture to generalize across
morphology and tasks simultaneously with proposed control graph.

3 Preliminaries

In RL, consider a Markov Decision Process with following tuple (S, A, p, p1, r, γ), which consists
of state space S, action space A, state transition probability function p : S × A × S → [0,∞),
initial state distribution p1 : S → [0,∞), reward function r : S × A → R, and discount factor
γ ∈ [0, 1). Deep RL parameterizes a Markovian policy π : S → A with neural networks.The agent
seeks optimal policy π∗ that maximizes the discounted cumulative rewards:

π∗ = argmax
π

1

1− γ
Es∼ρπ(s),a∼π(·|s) [r(s, a)] , (1)

where pπt (st) =
∫∫
s0:t,a0:t−1

∏
t p(st|st−1, at−1)π(at|st) and ρπ(s) = (1 − γ)

∑
t γ

tpπt (st = s)

represent time-aligned and time-aggregated state marginal distributions following policy π.

3.1 Graph Representation for Morphology-Agnostic Control

Following prior continuous control literature [96], we assume the agents have bodies modeled as
simplified skeletons of animals. An agent’s morphology is characterized by the parameter for rigid
body module (torso, limbs), such as radius, length, mass, and inertia, and by the connection among
those modules (joints). In order to handle such geometric and topological information, an agent’s
morphology can be expressed as an acyclic tree graph representation G := (V,E), where V is a
set of nodes vi ∈ V and E is a set of edges eij ∈ E between vi and vj . The node vi corresponds to
i-th module of the agent, and the edge eij corresponds to the hinge joint between the nodes vi and
vj . Each joint may have 1-3 actuators corresponding to a degree of freedom. If a joint has several
actuators, the graph G is considered a multipath graph. This graph-based formulation can describe
the various agents’ morphologies in a tractable manner [100, 49].

We assume that node vi observes local sensory input sit at time step t, which includes the information
of limb i such as position, velocity, orientation, joint angle, or morphological parameters. To process
these node features and graph structure, a morphology-agnostic policy can be modeled as node-based
GNN [60, 6], which takes a set of local observations {sit}

|V|
i=1 as an input and emit the actions for

actuators of each joint {aet}
|E|
e=1. The objective function of morphology-agnostic RL is the average of

Equation 1 among given morphologies.
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Benchmark Multi-Task Multi-Morphology Scalability

MuJoCo & DM Control % % %

Meta-World [103] " % %

Huang et al. [49] % " %

Gupta et al. [44] % " "

MxT-Bench(Ours) " " "

Figure 4: The overview of MxT-Bench, which can procedurally generate both various morphologies and tasks
with minimal blueprints. MxT-Bench can not only construct the agents with different number of limbs, but
also randomize missing limbs and size/mass of bodies. We could design the tasks with parameterized goal
distributions. It also supports to import custom complex agents such as unimals [44]. Compared to relevant RL
benchmarks in terms of (1) multi-task (task coverage), (2) multi-morphology (morphology coverage), and (3)
scalability, MuJoCo [96] and DM Control [94] only have a single morphology for a single task. While other
existing works [103, 49] partially cover task-/morphology-axis with some sort of scalability, they do not satisfy
all criteria.

3.2 Goal-conditional RL

In goal-conditional RL [57, 88], the agent aims to find an optimal policy π∗(a|s, sg) conditioned
on goal sg ∈ G, where G stands for goal space that is sub-dimension of state space S (e.g. XYZ
coordinates, velocity, or quaternion). The desired goal sg is sampled from the given goal distribution
pψ : G → [0,∞), where ψ stands for task in the task space Ψ (e.g. reaching the agent’s leg or
touching the torso to the ball). The reward function can include a goal-reaching term, that is often
modeled as rψ(st, sg) = −dψ(st, sg), where dψ(·, ·) is a task-dependent distance function, such as
Euclidean distance, between the sub-dimension of interest in current state st and given goal sg . Some
task ψ give multiple goals to the agents. In that case, we overload sg to represent a set of goals;
{sig}

Nψ
i=1, where Nψ is the number of goals that should be satisfied in the task ψ.

3.3 Morphology-Task Generalization

This paper aims to achieve morphology-task generalization, where the learned policy should gen-
eralize over tasks and morphologies simultaneously. The optimal policy should generalize over
morphology space M, task Ψ, and minimize the distance to any given goal sg ∈ G. Mathematically,
this objective can be formulated as follows:

π∗ = argmax
π

1

1− γ
Em,ψ∼M,Ψ

[
Esg∼pψ(sg)

[
Esm,am∼ρπ(sm),π(·|sm,sg) [−dψ(s

m, sg)]
]]
, (2)

where the graph representation of morphology m ∈ M is denoted as Gm = (Vm,Em), and
sm := {sit}

|Vm|
i=1 and am := {aet}

|Em|
e=1 stand for a set of local observations and actions of morphology

m. While we can use multi-task online RL to maximize Equation 2 in principle, it is often sample
inefficient due to the complexity of task, which requires a policy that can handle the diversity of the
scene among morphology M, task Ψ, and goal space G simultaneously.

4 Method

4.1 MxT-Bench as a Test Bed for Morphology-Task Generalization

To overcome these shortcomings in the existing RL environments, we develop MxT-Bench, which
has a wide coverage over both tasks and morphologies to test morphology-task generalization,
with the functionalities for procedural generation from minimal blueprints (Figure 4). MxT-Bench
is built on top of Brax [31] and Composer [41], for faster iteration of behavior distillation with
hardware-accelerated environments. Beyond supporting multi-morphology and multi-task settings,
the scalability of MxT-Bench helps to test the broader range of morphology-task generalization since
we can easily generate out-of-distribution tasks and morphologies, compared to manually-designed
morphology or task specifications.

5



In the morphology axis, we prepare 4 types of blueprints (ant, claw, centipede, and worm) as base
morphologies, since they are good at the movement on the XY-plane. Through MxT-Bench, we
can easily spawn agents that have different numbers of bodies, legs, or different sizes, lengths, and
weights. Moreover, we can also import the existing complex morphology used in previous work.
For instance, we include 60+ morphologies that are suitable for goal-reaching, adapted from Gupta
et al. [44] designed in MuJoCo. In the task axis, we design reach, touch, and twisters 4 as basic
tasks, which could evaluate different aspects of the agents; the simplest one is the reach task, where
the agents aim to put their leg on the XY goal position. In the touch task, agents aim to create and
maintain contact between a specified torso and a movable ball. The touch task requires reaching
behavior, while maintaining a conservative momentum to avoid kicking the ball away from the agent.
Twisters tasks are the multi-goal problems; for instance, the agents should satisfy XY-position for
one leg, and Z height for another leg. We pre-define 4 variants of twisters with max 3 goals (see
Appendix C.2 for the details). Furthermore, we could easily specify both initial and goal position
distribution with parameterized distribution. In total, we prepare 180+ environments combining the
morphology and task axis for the experiments in the later section. See Appendix C for further details.

4.2 Behavior Distillation

Toward broader generalization over morphologies and tasks, a single policy should handle the diversity
of the scene among morphology M, task Ψ, and goal space G simultaneously. Multi-task online RL
from scratch, however, is difficult to tune, slow to iterate, and hard to reproduce. Instead, we employ
behavior cloning on RL-generated expert behaviors to study morphology-task generalization. To
obtain rich goal-reaching behaviors, we train a single-morphology single-task policy using PPO [89]
with a simple MLP policy, which is significantly more efficient than multi-morphology training done
in prior work [44, 62, 49]. Since MxT-Bench is built on top of Brax [31], a hardware-accelerated
simulator, training PPO policies can be completed in about 5∼30 minutes per environment (on
NVIDIA RTX A6000). We collect many behaviors per morphology-task combination from the expert
policy rollout. We then train a single policy πθ with a supervised learning objective:

Lπ = −Em,ψ∼M,Ψ

[
Esm,am,sg∼Dm,ψ [log πθ(a

m|{sm, sg})]
]
,

where Dm,ψ is an expert dataset of morphologym and taskψ. Importantly, offline behavior distillation
protocol runs (parallelizable) single-task online RL only once, and allows us to reuse the same fixed
data to try out various design choices, such as model architectures or local features of control graph,
which is often intractable in multi-task online RL.

4.3 Control Graph

To learn a single policy that could solve various morphology-task problems, it is essential to unify the
input-output interface among those. Inspired by the concept of scene graph [55] and morphological
graph [100], we introduce the notion of control graph (CG) representation that incorporates goal
information while preserving the geometric structure of the task. Control graph could express
the agent’s observations, actions, and goals/tasks in an unified graph space. Although most prior
morphology-agnostic RL has focused on locomotion (running) with the reward calculated from the
velocity of the center of mass, control graph formulation could naturally extend morphology-agnostic
RL to multi-task goal-oriented settings: including static single positional goals (reaching), multiple-
goal problems (twister-game) and object interaction tasks (ball-touching). In practice, we develop
two different way to inform the goals and tasks (Figure 3); control graph v1 (CGv1) accepts the
morphological graph, encoded from the agent’s geometric information, as an input-output interface,
and merges positional goal information as a part of corresponding node features. For instance, in
touch task, CGv1 includes XY position of the movable ball as an extra node features of the body
node. Moreover, control graph v2 (CGv2) considers given goals as additional disjoint nodes of
morphological graph representation. These control graph strategies enable the policy to handle a lot
of combination of tasks and morphologies simultaneously.

Transformer for Control Graph While control graph could represent the agent and goals in a unified
manner, because the task structure may change over time, the policy should unravel the implicit
relationship between the agent’s modules and goals dynamically. We mainly employ Transformer
as a policy architecture because it can process morphological graph as a fully-connected graph

4https://en.wikipedia.org/wiki/Twister_(game)
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Random MLP GNN (CGv1) Transformer (CGv1) Transformer (CGv2) Token-CGv2

In-Distribution 1.2019 ± 0.41 0.5150 ± 0.01 0.4776 ± 0.01 0.4069 ± 0.02 0.3128 ± 0.02 0.3402 ± 0.01
In-Distribution (unimal) 0.9090 ± 0.03 0.6703 ± 0.01 – 0.4839 ± 0.02 0.4178 ± 0.01 –

Compositional (Morphology) 1.1419 ± 0.41 0.7216 ± 0.01 – 0.4940 ± 0.01 0.4066 ± 0.01 –
Compositional (Task) 0.8932 ± 0.01 0.6849 ± 0.01 – 0.5395 ± 0.04 0.4461 ± 0.05 –
Out-of-Distribution 0.8979 ± 0.01 0.7821 ± 0.02 – 0.6144 ± 0.04 0.5266 ± 0.04 –

Table 1: The average normalized final distance in various types of morphology-task generalization on MxT-
Bench. We test (1) in-distribution, (2) compositional morphology/task, and (3) out-of-distribution generalization.
(2) and (3) evaluate zero-shot transfer. We compare MLP, GNN and Transformer with CGv1, Transformer
with CGv2, and tokenized CGv2 [87]. CGv2 improves multi-task performance to other choices by 23 % in the
in-distribution evaluation, and achieves better zero-shot transfer in the compositional and out-of-distribution
settings by 14 ∼ 18 %.

and achieve notable performance by leveraging the hidden relationships between the node beyond
manually-encoded geometric structure [62]. Transformer first encodes control graph to the latent
representation vector z0 with shared single-layer MLP and learnable position embedding (PE) (in
case of CGv1, we omit sg , but include it to corresponding node observation si instead):

z0 = [MLP(s1), . . . ,MLP(s|Vm|), MLP(sg)] + PE,
then multi-head attention (MHA) [98] and layer normalization (LayerNorm) [5] are recursively
applied to latent representation zl at l-th layer,

z′
l = LayerNorm(MHA(zl−1) + zl−1),

zl = LayerNorm(MLP(z′
l) + z′

l), (l = 1, ..., L).

Before decoding the action per module from the last-layer latent representation zL, we employ the
residual connection of the node features [62],

am = [MLP([z1L, s
1]), . . . , MLP([z|Vm|

L , s|Vm|]), MLP([z|Vm|+1
L , sg])],

where shared MLP has a single layer and tanh activation to clip the output within the range of [-1, 1].
We mask out the output from the goal modules or modules that have no actuators to ensure action
size as |Em|. See Appendix A for further details of implementation.

5 Experiments

We first evaluate the multi-task performance of control graph representation (CGv1, CGv2) in terms of
in-distribution (known morphology and task with different initialization), compositional (known task
with unseen morphology or known morphology with unseen task), and out-of-distribution generaliza-
tion (either morphology or task is unseen) on MxT-Bench (Section 5.1). Then, we investigate whether
control graph could contribute to obtaining better control prior for multi-task fine-tuning (Section 5.2).
Lastly, we examine how control graph works well by visualizing attention weights (Section 5.3).
The results are averaged among 4 random seeds. See Appendix A for the hyperparameters. We also
examine the other axis of representations or architectures (Appendix B, F, G) and test the effect of
dataset size, the number of morphology-task combinations, and model size (Appendix H).

Evaluation Metric Goal-reaching tasks are evaluated by the distance to the goals at the end of
episode [82, 83, 39, 17, 29]. However, this can be problematic in our settings, because the initial
distance or the degree of goal-reaching behaviors might be different among various morphologies
and tasks. We measure the performance of the policy π by using a normalized final distance
metric d̄(M,Ψ;π) over morphology M and task space Ψ with pre-defined max/min value of each
morphology m and task ψ,

d̄(M,Ψ;π) :=
1

|M||Ψ|

M∑
m

Ψ∑
ψ

Esg∼pψ

Nψ∑
i=1

dψ(s
m
T , s

i
g)− di,m,ψmin

di,m,ψmax − di,m,ψmin

 , (3)

where smT is the last state of the episode, di,m,ψmax is a maximum, and di,m,ψmin is a minimum distance
of i-th goal sig with morphology m and task ψ. We use a distance threshold to train the expert PPO
policy as di,m,ψmin , and average distance from initial position of the scene as di,m,ψmax . Equation 3 is
normalized around the range of [0, 1] and the smaller, the better. See Appendix C for the details.
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Figure 5: Multi-task goal-reaching performances on fine-tuning (multi-task imitation) for compositional and
out-of-distribution evaluation. These results reveal that fine-tuning outperforms random initialization in all
settings, and fine-tuned CGv2 outperforms others by 50 ∼ 55 %. See Appendix J for the detailed scores.

5.1 Behavior Distillation on MxT-Bench

We systematically evaluate three types of morphology-task generalization; in-distribution, composi-
tional, and out-of-distribution generalization through behavior distillation. As baselines, we compare
MLP, GNN [100] with CGv1, Transformer with CGv1 or CGv2, and tokenized CGv2, similar to
Reed et al. [87] (see Appendix G for the details).

In in-distribution settings, we prepare 50 environments and 60 unimal environments adapted from
Gupta et al. [44] (see Appendix C.3 for the details) for both training and evaluation. Compositional and
out-of-distribution settings evaluate zero-shot transfer. In compositional settings, we test morphology
and task generalization separately; we prepare 38 train environments and 12 test environments with
hold-out morphologies for morphology evaluation, and leverage 50 train environments and prepare
9 test environments with unseen task for task evaluation. In out-of-distribution settings, we also
leverage 50 environments as a training set, and define 27 environments with diversified morphologies
and unseen task as an evaluation set. The proficient behavioral data contains 12k transitions per each
environment. See Appendix E for the details of environment division.

Table 1 reveals that CGv2 achieves the best multi-task goal-reaching performances among other
possible combinations in all the aspects of generalization. Comparing average normalized distance,
CGv2 improves the multi-task performance against the second best, CGv1, by 23% in in-distribution
evaluation. Following previous works [62, 44], Transformer with CGv1 achieves better goal-reaching
behaviors than GNN. In compositional and out-of-distribution zero-shot evaluation, CGv2 outper-
forms other choices by 14 ∼ 18%. Moreover, the compositional zero-shot performance of CGv2
is comparable with the performance of CGv1 in in-distribution settings. These results imply CGv2
might be the better formulation to realize the morphology-task generalization.

5.2 Does Control Graph Obtain Better Prior for Control?

To reveal whether the distilled policy obtains reusable inductive bias for unseen morphology or task,
we test the fine-tuning performance for multi-task imitation learning on MxT-Bench. We adopt the
same morphology-task division for compositional and out-of-distribution evaluation in Section 5.1.
Figure 5 shows that fine-tuning outperforms random initialization in all settings, which suggests
that behavior-distilled policy works as a better prior knowledge for control. The same as zero-shot
transfer results in Section 5.1, CGv2 outperforms other baselines, and is better than the second
best, CGv1 by 50 ∼ 55%. Furthermore, CGv2 could work even with a small amount of dataset (4k,
8k); for instance, in compositional morphology evaluation (left in Figure 5), CGv2 trained with 8k
transitions still outperforms competitive combinations with 12k transitions, which indicates better
sample efficiency (see Appendix J for the detailed scores). These results suggest CGv2 significantly
captures the structure of control graph as prior knowledge for downstream tasks.

5.3 How Does Control Graph Work Well?

The experimental results suggest, despite the slight difference, CGv2 generalizes various morpholo-
gies and tasks better than CGv1. To find out the difference between those, we qualitatively analyze
the attention weights in Transformer. Figure 6 shows that CGv2 consistently focuses on goal nodes
over time, and activates important nodes to solve the task; for instance, in ant_twisters, CGv2 firstly

8



��������������������

���������

Figure 6: Attention analysis of CGv2 in ant_twisters. We visualize the attention weights of CGv2 during the
rollout. CGv2 consistently focuses on goal nodes over time, and activates important nodes to solve the task.

tries to raise the agent’s legs to satisfy goal1 and goal2, and then focus on reaching a leg to goal0.
Temporally-consistent attention to goal nodes and dynamics attention to relevant nodes can contribute
to generalization over goal-directed tasks and morphologies. In contrast, CGv1 does not show such
consistent activation to goal-conditioned node, rather it demonstrates some periodic patterns as
implied in prior works [62, 49]. See Appendix K for the full results.

6 Discussion and Limitation

While the experimental evaluation on MxT-Bench implies that control graph is a simple and effective
method to distill the diverse proficient behavioral data into a generalizable single policy, there
are some limitations. For instance, we focus on distillation from expert policies only, but it is
still unclear whether control graph works with moderate or random quality behaviors in offline
RL [33, 66, 32]. Combining distillation with iterative data collection [39, 74] or online fine-tuning [70]
would be a promising future work. In addition, we avoided tasks where expert behaviors cannot be
generated easily by single-task RL without fine-scale reward engineering or human demonstrations;
incorporating such datasets or bootstrapping single-task RL from the distilled policy could be critical
for scaling the pipeline to more complex tasks such as open-ended and dexterous manipulation [72,
38, 16]. Since control graph only uses readily accessible features in any simulator and could be
automatically defined through URDFs or MuJoCo XMLs, in future work we aim to keep training
our best control graph architecture policy on additional data from more functional and realistic
control behaviors from other simulators like MuJoCo [103, 94], PyBullet [91], IsaacGym [16, 81],
and Unity [56], and show it achieves better scaling laws than other representations [87] on broader
morphology-task families.

7 Conclusion

The broader range of behavior generalization is a promising paradigm for RL. To achieve morphology-
task generalization, we propose control graph, which expresses the agent’s modular observations,
actions, and goals as a unified graph representation while preserving the geometric task structure. As a
test bed for morphology-task generalization, we also develop MxT-Bench, which enables the scalable
procedural generation of agents and tasks with minimal blueprints. Fast-generated behavior datasets
of MxT-Bench with RL allow efficient representation and architecture selection through supervised
learning, and CGv2, variant of control graph, achieves the best multi-task performances among other
possible designs (MLP, GNN and Transformer with CGv1, and tokenized-CGv2, etc), outperforming
them in in-distribution evaluation (by 23 %), zero-shot transfer among compositional or out-of-
distribution evaluation (by 14 ∼ 18 %) and fine-tuning for downstream multi-task imitation (50 ∼ 55
%). We hope our work will encourage the community to explore scalable yet incremental approaches
for building a universal controller.
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Appendix

A Details of Implementation

The hyperparameters we used are listed in Table 2. We implement MLP and Transformer policy with
Jax [9] and Flax [45]. For the implementation of GNN policy, we use a graph neural network library,
Jraph [40].

Method Hyperparameter Value

Shared Learning rate 3e-4
Batch size 256
Gradient clipping 0.1
Activation function ReLU
Gradient steps 100k

MLP Hidden size 1024
# of layers 2

Transformer Embedding size 256
Attention hidden size 512
# of attention heads 2
# of attention layers 3

GNN Hidden size 256
# of layers (per node) 3

Table 2: Hyperparameters for each method.

B Architecture Selection: Position Embedding

As a part of architecture selection, we investigate whether position embedding (PE) contributes to the
generalization. Our empirical results in Table 3 suggest that, multi-task goal reaching performance
seems comparable between those. However, in more diverse morphology domains, PE plays an
important role. Therefore, we include PE into a default design.

Sub-domain Transformer (CGv2) (w/ PE) Transformer (CGv2) (w/o PE)

ant_reach 0.3206 ± 0.06 0.3966 ± 0.08
ant_touch 0.2668 ± 0.08 0.4573 ± 0.14
ant_twisters 0.1039 ± 0.05 0.1569 ± 0.02
claw_reach 0.3581 ± 0.04 0.3508 ± 0.03
claw_touch 0.2573 ± 0.08 0.3278 ± 0.07
claw_twisters 0.3442 ± 0.04 0.3071 ± 0.04
centipede_reach 0.1057 ± 0.04 0.0610 ± 0.02
centipede_touch 0.3869 ± 0.04 0.1687 ± 0.03
worm_touch 0.8952 ± 0.05 0.8427 ± 0.03

Average Dist. 0.3128 ± 0.02 0.3142 ± 0.03

unimal_reach 0.4532 ± 0.01 0.5856 ± 0.02
unimal_touch 0.4461 ± 0.05 0.3799 ± 0.06
unimal_twisters 0.3540 ± 0.02 0.3236 ± 0.04

Average Dist. 0.4178 ± 0.01 0.4297 ± 0.03

Table 3: The average normalized final distance on in-distribution evaluation. We compare the effect of position
embedding.
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C Details of MxT-Bench

C.1 Morphology

We prepare 4 base blueprints; ant, centipede, claw, and worm, for procedural scene generation (Fig-
ure 7). Base ant has 1 torso and 2 legs with 2 joints per limb, and we could procedurally generate
the agents with different number of limbs. Base centipede has 2 bodies and 4 legs with 2 joints per
limb, and we could procedurally generate the agents with different number of bodies. Base claw has
1 torso and 2 legs with 4 joints per limb (each leg consists of 3 modules), and we could procedurally
generate the agents with different number of limbs. Base worm has 2 bodies and no legs, and we
could procedurally generate the agents with different number of bodies.

Figure 7: Examples of procedurally-generated morphology from base blueprints in MxT-Bench. From left to
right, each figure shows the example of 5-leg ant, 4-body centipede, 6-leg claw, and 5-body worm.

Furthermore, we develop the functionality for morphology diversification, with missing, mass, and
size parameters (Figure 8). Missing randomization lacks one module at one leg. This might be an
equivalent situation that one leg is broken. Mass randomization changes the default mass of each
module with specified scales. The appearance does not change, but certainly the dynamics would
differ. Size randomization changes the default length and radius of each module with specified scales.

Figure 8: Examples of diversified morphology from base blueprints in MxT-Bench. From left to right, each
figure shows the example of 5-leg-1-missing ant, 5-leg-size-randomized ant, 4-body-1-missing centipede, and
3-body-size-randomized centipede.

C.2 Task

We prepare 4 base tasks with parameterized goal distributions; reach, touch, twisters, and push, for
procedural task generation (Figure 9). Reach task requires the agents to put their one leg to the given
goal position (XY). The variant, reach_hard task, represents that the goal distribution is farther than
reach task. Touch task requires the agents to contact their body or torso to the movable ball (i.e.
movable ball is an goal). Twisters is a multi-goal problem; the agents should satisfy given goals at
the same time. There are two basic constraints; reach and handsup. Handsup requires the agents to
raise their one leg to the given goal Z height. Twisters has some combinations like reach_handsup,
reach_hard_handsup, reach2_handsup, or reach_handsup2. For instance, in reach_handsup2, the
agents should put their one leg to the given goal position, and raise their two legs to the given goal
heights simultaneously. Push task requires the agents to move the box object to the given goal position
(XY). Since it has richer interaction with the object, push might be more difficult task than those
three. We use this task in Appendix L.

19



Figure 9: Examples of pre-defined task in MxT-Bench. From left to right, each figure shows the example of
reach, touch, twisters, and push task.

C.3 Custom Morphology

MxT-Bench also supports custom morphology import used in previous work. For instance, Gupta
et al. [44] propose unimal agents that are generated via evolutional strategy and designed for MuJoCo.
Since they are not manually designed, their morphologies seem more diverse than our ant, centipede,
claw, and worm. We inspect unimals whether they are suitable for goal-reaching, and include 72
morphologies from there (and use 60 morphologies for the experiments). Figure 10 shows some
example of unimals.

Figure 10: Examples of unimal agents, adapted from Gupta et al. [44]

C.4 Comparison to Existing Benchmark

Since the current RL community has not paid much attention to embodied control so far, there are
no suitable benchmarks to quantify the generalization over various tasks beyond single locomotion
tasks and morphologies at the same time. In addition, the scalability to various morphologies or tasks
seems to be required for the benchmark, because we should avoid “overfitting” to manually-designed
tasks.

As summarized in Figure 4, MuJoCo [96] or DM Control [94], the most popular benchmarks in the
continuous control domain, could not evaluate task or morphology generalization; they only have a
single morphology for a single task as a pre-defined environment. Yu et al. [103] propose a robot
manipulation benchmark for meta RL, but it does not care about the morphology. Furthermore, while
it has quite a diverse set of tasks, the scalability of environments seems to be limited. In contrast,
previous morphology-agnostic RL works [49, 62, 48, 97] have a set of different morphologies adapted
from MuJoCo agents. Gupta et al. [44] also provide a much larger set of agents that are produced via
joint-optimization of morphology and task rewards by the evolutionary strategy [43], with kinematics
and dynamics randomization. However, those works only aim to solve single locomotion tasks, i.e.
running forward as fast as possible.

20



D Details of Expert Data Generation

We train the single-task PPO [89] at each environment to obtain the expert policy. For the reward
function, we basically adopt dense reward (except for push task) −dψ(sm, sg) until agents satisfy a
given condition, 1[dψ(sm, sg) ≤ dm,ψmin ]. See Appendix E for the threshold dm,ψmin . After convergence,
we collect the proficient behaviors. Unless otherwise specified, we use 12k transitions per environment.
The average normalized final distance of those datasets are mostly less than 0.1.

E Environments Division

Throughout the experiments, we test a lot of morphology-task combinations to investigate the
in-distribution generalization, compositional generalization for morphology and task, and out-of-
distribution generalization. In this section, we list up the combination of environments used in the
experiments.

Table 4 explains the combinations for the experiments of in-distribution generalization, and composi-
tional generalization for morphology (both zero-shot transfer and fine-tuning) in Table 1 and Figure 5.
For compositional morphology evaluation, we use Morph-Train division as training dataset and
Morph-Test division as evaluation environments. For the evaluation of dataset size and the number of
morphology-task combinations (Appendix H), we use In-Distribution, 12 Env, and 25 Env division as
train datasets and test environments.

Table 6 also explains the combinations for the experiments of in-distribution generalization with
unimals [44] in Table 1 and Table 11.

Table 5 provides the combinations for the experiments of compositional generalization for task and
out-of-distribution generalization (both zero-shot transfer and fine-tuning) in Table 1 and Figure 5.
We use them as test environments, and for training datasets, we leverage In-Distribution division in
Table 4.

In addition, we extensively evaluate the compositional generalization for task and out-of-distribution
generalization with more different unseen task, such as push (see Appendix L for the details). Table 7
also shows the environment division for both zero-shot transfer and fine-tuning.
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Sub-domain Environment dψmin dψmax In-Distribution Morph-Train Morph-Test 12 Env 25 Env

ant_reach

ant_reach_2 0.1 8.75 " "

ant_reach_3 0.1 8.75 " "

ant_reach_4 0.1 8.75 " " " "

ant_reach_5 0.1 8.75 " "

ant_reach_6 0.1 8.75 " " "

ant_touch

ant_touch_3 0.5 3.5 " " "

ant_touch_4 0.5 3.5 " " " "

ant_touch_5 0.5 3.5 " "

ant_touch_6 0.5 3.5 " " "

ant_twisters

ant_reach2_handsup_4 {0.1, 0.1, 0.1} {1.4, 1.4, 0.625} " "

ant_reach2_handsup_5 {0.1, 0.1, 0.1} {1.4, 1.4, 0.625} " " " "

ant_reach2_handsup_6 {0.1, 0.1, 0.1} {1.4, 1.4, 0.625} " " "

ant_reach_handsup2_3 {0.1, 0.1, 0.1} {1.5, 0.55, 0.55} " "

ant_reach_handsup2_4 {0.1, 0.1, 0.1} {1.5, 0.55, 0.55} " " "

ant_reach_handsup2_5 {0.1, 0.1, 0.1} {1.5, 0.55, 0.55} " " " "

ant_reach_handsup2_6 {0.1, 0.1, 0.1} {1.5, 0.55, 0.55} " "

ant_reach_handsup_4 {0.1, 0.1} {4.5, 0.55} " " "

ant_reach_handsup_5 {0.1, 0.1} {4.5, 0.55} " " " "

ant_reach_handsup_6 {0.1, 0.1} {4.5, 0.55} " "

claw_reach

claw_reach_2 0.1 8.75 " " "

claw_reach_3 0.1 8.75 " "

claw_reach_4 0.1 8.75 " " "

claw_reach_5 0.1 8.75 " " "

claw_reach_6 0.1 8.75 " "

claw_touch

claw_touch_3 0.5 3.5 " "

claw_touch_4 0.5 3.5 " " " "

claw_touch_5 0.5 3.5 " "

claw_touch_6 0.5 3.5 " " "

claw_twisters

claw_reach_handsup_3 {0.1, 0.1} {1.4, 0.625} " " "

claw_reach_handsup_4 {0.1, 0.1} {1.4, 0.625} " "

claw_reach_handsup_5 {0.1, 0.1} {1.4, 0.625} " " " "

claw_reach_handsup_6 {0.1, 0.1} {1.4, 0.625} " "

claw_reach_hard_handsup_5 {0.1, 0.1} {4.5, 0.55} " " " "

claw_reach_hard_handsup_6 {0.1, 0.1} {4.5, 0.55} " "

centipede_reach

centipede_reach_2 0.1 3.0 " "

centipede_reach_3 0.1 3.0 " " " "

centipede_reach_4 0.1 3.0 " "

centipede_reach_5 0.1 3.0 " "

centipede_reach_6 0.1 3.0 " "

centipede_reach_7 0.1 3.0 " " "

centipede_touch

centipede_touch_3 0.5 10.5 " "

centipede_touch_4 0.5 10.5 " " "

centipede_touch_5 0.5 10.5 " " "

centipede_touch_6 0.5 10.5 " " " "

centipede_touch_7 0.5 10.5 " "

worm_touch

worm_touch_3 0.5 3.5 " "

worm_touch_4 0.5 3.5 " " "

worm_touch_5 0.5 3.5 " " "

worm_touch_6 0.5 3.5 " " "

worm_touch_7 0.5 3.5 " "

Table 4: The combinations of environments used in the experiments of in-distribution generalization, and
compositional generalization for morphology.
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Sub-domain Environment dψmin dψmax Task-Test OOD-Test

ant_reach_hard

ant_reach_hard_3 0.1 11.0 "

ant_reach_hard_4 0.1 11.0 "

ant_reach_hard_5 0.1 11.0 "

ant_reach_hard_6 0.1 11.0 "

centipede_reach_hard

centipede_reach_hard_3 0.1 5.5 "

centipede_reach_hard_4 0.1 5.5 "

centipede_reach_hard_5 0.1 5.5 "

centipede_reach_hard_6 0.1 5.5 "

centipede_reach_hard_7 0.1 5.5 "

ant_reach_hard_diverse

ant_reach_hard_4_b 0.1 11.0 "

ant_reach_hard_5_b 0.1 11.0 "

ant_reach_hard_4_mass_0.5_1.0_3.0 0.1 11.0 "

ant_reach_hard_4_mass_0.5_1.0_1.0 0.1 11.0 "

ant_reach_hard_4_mass_1.0_3.0_3.0 0.1 11.0 "

ant_reach_hard_4_size_0.9_1.0_1.1 0.1 11.0 "

ant_reach_hard_5_mass_0.5_1.0_3.0 0.1 11.0 "

ant_reach_hard_5_mass_0.5_1.0_1.0 0.1 11.0 "

ant_reach_hard_5_mass_1.0_3.0_3.0 0.1 11.0 "

ant_reach_hard_5_size_0.9_1.0_1.1 0.1 11.0 "

centipede_reach_hard_diverse

centipede_reach_hard_3_b_r_0 0.1 5.5 "

centipede_reach_hard_3_b_l_0 0.1 5.5 "

centipede_reach_hard_3_b_r_1 0.1 5.5 "

centipede_reach_hard_3_b_l_1 0.1 5.5 "

centipede_reach_hard_4_b_r_0 0.1 5.5 "

centipede_reach_hard_4_b_r_1 0.1 5.5 "

centipede_reach_hard_4_b_l_1 0.1 5.5 "

centipede_reach_hard_4_b_r_2 0.1 5.5 "

centipede_reach_hard_4_b_l_2 0.1 5.5 "

centipede_reach_hard_3_size_0.9_1.0_1.1 0.1 5.5 "

centipede_reach_hard_3_mass_0.5_1.0_3.0 0.1 5.5 "

centipede_reach_hard_3_mass_0.5_1.0_1.0 0.1 5.5 "

centipede_reach_hard_3_mass_1.0_3.0_3.0 0.1 5.5 "

centipede_reach_hard_4_size_0.9_1.0_1.1 0.1 5.5 "

centipede_reach_hard_4_mass_0.5_1.0_3.0 0.1 5.5 "

centipede_reach_hard_4_mass_0.5_1.0_1.0 0.1 5.5 "

centipede_reach_hard_4_mass_1.0_3.0_3.0 0.1 5.5 "

Table 5: The combinations of environments used in the experiments of compositional generalization for task and
out-of-distribution generalization.
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unimal_id dψmin dψmax reach touch twisters

5506-0-13-17-12-26-41
5506-12-12-01-11-30-00 0.1 8.75 "

5506-15-16-01-14-17-18 0.35 3.5 "

5506-6-5-01-14-20-42 {0.1, 0.1} {1.5, 0.55} "

5506-0-2-01-15-36-43 {0.1, 0.1} {1.5, 0.55} "

5506-12-12-01-15-33-01 0.1 8.75 "

5506-15-16-02-22-21-06 0.1 8.75 "
5506-6-8-17-09-59-06
5506-0-5-01-12-45-36 {0.1, 0.1} {1.5, 0.55} "

5506-12-14-01-15-22-01 0.1 8.75 "

5506-2-0-01-11-27-44 {0.1, 0.1} {1.5, 0.55} "

5506-7-6-17-12-20-01 0.35 3.5 "

5506-0-7-01-15-34-13 0.35 3.5 "
5506-12-6-17-08-36-18
5506-2-16-01-10-58-23 0.1 8.75 "

5506-8-11-01-15-28-53 0.35 3.5 "

5506-1-12-17-11-10-12 0.1 8.75 "

5506-12-6-17-12-20-06 0.1 8.75 "

5506-2-17-17-10-16-02 0.1 8.75 "

5506-8-12-01-13-32-46 0.35 3.5 "

5506-1-13-17-12-03-16 0.1 8.75 "

5506-12-8-01-14-50-41 {0.1, 0.1} {1.5, 0.55} "
5506-2-9-17-11-10-42
5506-8-16-01-13-07-43 0.1 8.75 "

5506-1-15-17-07-32-47 {0.1, 0.1} {1.5, 0.55} "

5506-13-10-17-12-25-45 0.1 8.75 "

5506-3-10-01-14-19-06 0.1 8.75 "

5506-8-16-02-14-47-12 {0.1, 0.1} {1.5, 0.55} "

5506-1-2-02-20-28-11 {0.1, 0.1} {1.5, 0.55} "

5506-13-17-01-16-09-18 {0.1, 0.1} {1.5, 0.55} "

5506-3-15-01-14-36-50 0.35 3.5 "
5506-8-17-17-09-38-29
5506-1-5-02-19-23-33 {0.1, 0.1} {1.5, 0.55} "

5506-13-3-02-21-34-38 {0.1, 0.1} {1.5, 0.55} "

5506-3-15-17-12-18-03 0.1 8.75 "

5506-8-5-02-21-39-20 {0.1, 0.1} {1.5, 0.55} "

5506-10-0-01-15-43-53 0.35 3.5 "

5506-13-4-02-21-40-07 0.1 8.75 "

5506-4-12-01-15-10-52 0.35 3.5 "

5506-8-6-01-15-22-56 {0.1, 0.1} {1.5, 0.55} "

5506-10-12-02-12-35-19 0.1 8.75 "

5506-13-5-02-21-35-41 0.1 8.75 "

5506-4-14-01-14-32-47 0.1 8.75 "

5506-9-12-01-10-32-52 0.1 8.75 "

5506-10-13-01-15-03-41 0.35 3.5 "

5506-14-11-01-13-58-37 {0.1, 0.1} {1.5, 0.55} "
5506-4-16-17-05-46-47
5506-9-2-01-14-19-00 {0.1, 0.1} {1.5, 0.55} "

5506-10-14-17-10-38-34 0.35 3.5 "

5506-14-12-01-12-02-42 {0.1, 0.1} {1.5, 0.55} "

5506-4-3-01-09-35-18 0.35 3.5 "

5506-9-3-01-14-23-39 {0.1, 0.1} {1.5, 0.55} "

5506-10-3-01-15-22-34 0.35 3.5 "

5506-14-15-01-15-20-33 0.35 3.5 "
5506-5-12-01-15-05-55
5506-9-7-01-13-40-02 0.1 8.75 "
5506-10-3-17-12-09-26
5506-14-2-02-15-14-46 0.1 8.75 "
5506-5-16-02-21-15-42
5506-9-9-01-13-15-48 0.35 3.5 "

5506-11-2-01-14-11-40 0.35 3.5 "
5506-14-5-01-15-59-52
5506-5-3-02-18-52-53 {0.1, 0.1} {1.5, 0.55} "

5506-11-4-17-12-33-10 {0.1, 0.1} {1.5, 0.55} "

5506-15-11-01-10-04-14 0.35 3.5 "

5506-6-11-01-14-16-09 0.35 3.5 "
5506-11-6-17-12-43-05
5506-15-11-01-12-54-35 {0.1, 0.1} {1.5, 0.55} "

5506-6-2-01-09-16-44 0.35 3.5 "

5506-12-11-17-05-56-16 0.35 3.5 "
5506-15-11-17-12-12-28
5506-6-3-01-15-20-20 0.35 3.5 "

Table 6: Unimal IDs we adapted from Gupta et al. [44]. We inspect 100 morphologies and select 72 morphologies
that work healthily. In the experiment of Table 1 and Table 11, we select 20 morphologies each for 3 tasks (reach,
touch, twisters) as listed above.
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Sub-domain Environment dψmin dψmax Task-Test OOD-Test

ant_push

ant_push_3 1.0 4.0 "

ant_push_4 1.0 4.0 "

ant_push_5 1.0 4.0 "

ant_push_6 1.0 4.0 "

centipede_push

centipede_push_3 1.5 3.75 "

centipede_push_4 1.5 3.75 "

centipede_push_5 1.5 3.75 "

centipede_push_6 1.5 3.75 "

centipede_push_7 1.5 3.75 "

worm_push
ant_push_3 1.5 3.25 "

worm_push_4 1.5 3.25 "

worm_push_5 1.5 3.25 "

ant_push_diverse

ant_push_4_b 1.0 4.0 "

ant_push_5_b 1.0 4.0 "

ant_push_4_mass_0.5_1.0_3.0 1.0 4.0 "

ant_push_4_mass_0.5_1.0_1.0 1.0 4.0 "

ant_push_4_mass_1.0_3.0_3.0 1.0 4.0 "

ant_push_4_size_0.9_1.0_1.1 1.0 4.0 "

ant_push_5_mass_0.5_1.0_3.0 1.0 4.0 "

ant_push_5_mass_0.5_1.0_1.0 1.0 4.0 "

ant_push_5_mass_1.0_3.0_3.0 1.0 4.0 "

ant_push_5_size_0.9_1.0_1.1 1.0 4.0 "

centipede_push_diverse

centipede_push_3_b_r_0 1.5 3.75 "

centipede_push_3_b_l_0 1.5 3.75 "

centipede_push_3_b_r_1 1.5 3.75 "

centipede_push_3_b_l_1 1.5 3.75 "

centipede_push_4_b_r_0 1.5 3.75 "

centipede_push_4_b_r_1 1.5 3.75 "

centipede_push_4_b_l_1 1.5 3.75 "

centipede_push_4_b_r_2 1.5 3.75 "

centipede_push_4_b_l_2 1.5 3.75 "

centipede_push_3_size_0.9_1.0_1.1 1.5 3.75 "

centipede_push_3_mass_0.5_1.0_3.0 1.5 3.75 "

centipede_push_3_mass_0.5_1.0_1.0 1.5 3.75 "

centipede_push_3_mass_1.0_3.0_3.0 1.5 3.75 "

centipede_push_4_size_0.9_1.0_1.1 1.5 3.75 "

centipede_push_4_mass_0.5_1.0_3.0 1.5 3.75 "

centipede_push_4_mass_0.5_1.0_1.0 1.5 3.75 "

centipede_push_4_mass_1.0_3.0_3.0 1.5 3.75 "

Table 7: The extra combinations of environments used in the experiments of compositional generalization for
task and out-of-distribution generalization with push task.
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F Representation Selection: Local Observations

In this section, we explore the set of node features that is most suitable for behavior distillation in
multi-morphology-multi-task settings, and provide the design principle of node features. Previous
morphology-agnostic studies have worked on searching network architectures that could efficiently
process the encoded morphological graph, such as GNN [100], GNN for tree structure [49], and
various Transformers [62, 44, 97, 48]. However, it is still unclear what kind of observations in the
system could contribute to morphology-task generalization as the local features for each node of
control graph. It could be valuable to identify how each feature contributes to goal-reaching or
generalization and which sets of node features perform best.

There are a lot of observable candidates per module in the agent’s system, such as Cartesian position
(p), Cartesian velocity (v), quotation (q), angular velocity (a), joint angle (ja), joint range (jr), limb
id (id), joint velocity (jv), relative position (rp), relative rotation (rr), and morphological information
(m). Morphological information contains module’s shape, mass, inertia, actuator’s gear, and dof-
index, etc. To shed light on the importance of the local representation per module, we execute an
extensive ablation of node feature selections and prepossessing. In prior works, Huang et al. [49] and
the following [62, 48] used {p, v, q, a, ja, jr, id} and Gupta et al. [44] used {p, v, q, a, ja, jr, jv, rp,
rr, m}. Considering the intersection of those, we define {p, v, q, a, ja, jr} as base_set and test the
combination to other observations (jv, id, rp, rr, m).

We prepare In-Distribution division in Table 4 and evaluate in-distribution generalization with CGv2
IO. Table 8 shows that, while some additional features (id, rp, m) contribute to improving the
goal-reaching performance, the most effective feature seems morphological information (m). These
results suggest base_set contains sufficient features for control, and raw morphological properties
(m) serves better task specification than manually-encoded information such as limb id (id). The key
observations are; (1) morphological information is critical for morphology-task generalization, and
(2) extra observation might disrupt the goal-reaching performances, such as relative rotation between
parent and child node (rr). Throughout the paper, we use base_set-m for node features of control
graph representation.

Node features +jv +id +rp +rr +m Average Dist.

base_set 0.4330 ± 0.02
base_set-id " 0.4090 ± 0.02
base_set-rp " 0.3820 ± 0.01
base_set-rr " 0.4543 ± 0.01
base_set-m " 0.3128 ± 0.02
base_set-rp-rr " " 0.3869 ± 0.01
base_set-jv-rp-rr " " " 0.4000 ± 0.01
base_set-jv-rp-rr-m " " " " 0.3323 ± 0.01

Table 8: Combination of control-oriented node features. We compare the combination of Cartesian position
(p), Cartesian velocity (v), quotation (q), angular velocity (a), joint angle (ja), joint range (jr), limb id (id),
joint velocity (jv), relative position (rp), relative rotation (rr), and morphological information (m). base_set
is composed of {p, v, q, a, ja, jr}. In prior works, Huang et al. [49], Kurin et al. [62], Hong et al. [48] used
base_set-id and Gupta et al. [44] used base_set-jv-rp-rr-m. While some additional features (id, rp,
m) contribute to improving the goal-reaching performance, the most effective feature seems morphological
information. These results suggest base_set contains sufficient features for control. and raw morphological
properties (m) serves better task specification than manually-encoded information such as limb id (id).
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G Architecture Selection: Tokenized Control Graph

In the recent literature, offline RL is considered as supervised sequential modeling problem [12],
and some works [53, 87] tokenize the continuous observations and actions, like an analogy of vision
transformer [26]; treating input modality like a language.

As a part of offline architecture selection, we examine the effectiveness of tokenization. We mainly
follow the protocol in Reed et al. [87]; we first apply mu-law encoding [77] to control graph
representation:

mu_law(x) := sgn(x)
log(|x|µ+ 1)

log(Mµ+ 1)
,

with µ = 100 and M = 256. This pre-processing could normalize the input to the range of [0, 1].
Then, we discretize pre-processed observations and actions with 1024 bins. To examine the broader
range of design choice, we prepare the following 6 variants of tokenized control graph: whether layer
normalization is added after embedding function (LN) [7, 78, 34, 12], or outputting discretized action
(D), smoothed action by taking the average of bins (DA), and continuous values directly (C).

As shown in Table 9, predicting continuous value reveals the better performance than discretized
action maybe due to some approximation errors. However, the performance of Token-CGv2 (C) or
Token-CGv2 (C, LN) is still lower than CGv2 itself. This might be because tokenization looses some
morphological invariance among nodes. In Table 1, we adopt Token-CGv2 (C) for comparison.

Sub-domain Token-CGv2 (D, LN) Token-CGv2 (DA, LN) Token-CGv2 (C, LN) Token-CGv2 (D) Token-CGv2 (DA) Token-CGv2 (C) Transformer (CGv2)

ant_reach 0.9256 ± 0.01 0.9252 ± 0.01 0.4394 ± 0.01 0.9210 ± 0.02 0.9215 ± 0.00 0.3846 ± 0.03 0.3206 ± 0.06
ant_touch 1.0373 ± 0.01 1.0631 ± 0.01 0.4465 ± 0.01 1.0528 ± 0.00 1.0630 ± 0.01 0.3458 ± 0.03 0.2668 ± 0.08
ant_twisters 0.5581 ± 0.00 0.5655 ± 0.00 0.2090 ± 0.00 0.5587 ± 0.01 0.5655 ± 0.00 0.2487 ± 0.01 0.1039 ± 0.05
claw_reach 0.9568 ± 0.00 0.9584 ± 0.01 0.3685 ± 0.01 0.9674 ± 0.00 0.9583 ± 0.01 0.2862 ± 0.07 0.3581 ± 0.04
claw_touch 1.0300 ± 0.01 1.0584 ± 0.01 0.3238 ± 0.07 1.0392 ± 0.03 1.0585 ± 0.01 0.3229 ± 0.07 0.2573 ± 0.08
claw_twisters 0.6228 ± 0.01 0.6205 ± 0.00 0.4035 ± 0.02 0.6241 ± 0.00 0.6202 ± 0.00 0.3810 ± 0.03 0.3442 ± 0.04
centipede_reach 0.5692 ± 0.12 0.5784 ± 0.13 0.1166 ± 0.00 0.6373 ± 0.09 0.5780 ± 0.13 0.1132 ± 0.03 0.1057 ± 0.04
centipede_touch 0.9818 ± 0.01 1.0088 ± 0.00 0.1696 ± 0.00 0.9910 ± 0.01 1.0087 ± 0.00 0.1823 ± 0.03 0.3869 ± 0.04
worm_touch 1.0596 ± 0.01 1.0731 ± 0.01 0.9357 ± 0.14 1.0639 ± 0.01 1.0706 ± 0.01 0.9235 ± 0.07 0.8952 ± 0.04

Average Dist. 0.8124 ± 0.01 0.8232 ± 0.02 0.3572 ± 0.02 0.8248 ± 0.01 0.8225 ± 0.02 0.3402 ± 0.01 0.3128 ± 0.02

Table 9: The average normalized final distance in in-distribution evaluation. We extensively evaluate the
tokenized control graph variants, similar to Reed et al. [87].
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H Does Transformer with Control Graph scale up with
dataset/morphology-task/model size?

The important aspect of the success in large language models is the scalability to the size of training
data, the number of tasks for joint-training, and the number of parameters [86, 10]. One natural
question is whether the similar trend holds even in RL.

Figure 11 suggests that the performance can get better if we increase the number of datasets and the
number of parameters. The performance of Transformer with 0.4M parameters is equivalent to that
of MLP with 3.1M. In contrast, when we increase the number of environments, the performance
degrades while Transformer withCGv1 and CGv2 surpasses the degree of degradation, which seems
inevitable trends in multi-task RL [104, 63] and an important future direction towards generalist
controllers.
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Figure 11: The average normalized final distance with different size of datasets (left), morphology-task com-
binations (middle), and model size (right). The smaller value means the better multi-task performance (see
Appendix E for environment division). These results suggest that the performance can get better when we
increase the number of datasets, and control graph can surpasses the degradation of the performance when
we increase the number of environments. Transformer is parameter-efficient than MLP, and improves the
performance as many parameters.

I Percentage of Improvement

For clarification, we compute the percentage of improvement between two average normalized final
distances (defined in Equation 3) d̄1 and d̄2 as follows (d̄1 < d̄2):

100 ∗ d̄2 − d̄1
d̄2

.
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J Additional Results

In this section, we provide the detailed performance of in-distribution generalization (Table 10 and
Table 11), compositional morphology and task generalization (Table 12 and Table 13), and out-of-
distribution generalization (Table 14). For fine-tuning experiments, we summarized the detailed
scores of Figure 5 in Table 15.

Sub-domain Random MLP GNN (CGv1) Transformer (CGv1) Transformer (CGv2)

ant_reach 0.9637 ± 0.02 0.6426 ± 0.03 0.6240 ± 0.03 0.3657 ± 0.04 0.3206 ± 0.06
ant_touch 1.0817 ± 0.02 0.3689 ± 0.02 0.4434 ± 0.03 0.1140 ± 0.03 0.2668 ± 0.08
ant_twisters 0.9113 ± 0.84 0.3708 ± 0.01 0.2513 ± 0.01 0.2517 ± 0.02 0.1039 ± 0.05
claw_reach 1.0760 ± 0.20 0.6617 ± 0.00 0.6214 ± 0.02 0.7158 ± 0.03 0.3581 ± 0.04
claw_touch 1.5240 ± 0.88 0.6824 ± 0.06 0.3135 ± 0.06 0.6121 ± 0.04 0.2573 ± 0.08
claw_twisters 1.3786 ± 1.42 0.4907 ± 0.03 0.6063 ± 0.07 0.4614 ± 0.07 0.3442 ± 0.04
centipede_reach 0.5843 ± 0.35 0.0803 ± 0.02 0.1088 ± 0.02 0.0981 ± 0.03 0.1057 ± 0.04
centipede_touch 1.0077 ± 0.01 0.4743 ± 0.03 0.5089 ± 0.01 0.4609 ± 0.07 0.3869 ± 0.04
worm_touch 2.7087 ± 1.73 1.1034 ± 0.06 1.0559 ± 0.04 0.7708 ± 0.03 0.8952 ± 0.05

Average Dist. 1.2019 ± 0.41 0.5150 ± 0.01 0.4776 ± 0.01 0.4069 ± 0.02 0.3128 ± 0.02

Table 10: The average normalized final distance for in-distribution evaluation on MxT-Bench (as shown in
Table 1).

Sub-domain Random MLP Transformer (CGv1) Transformer (CGv2)

unimal_reach 0.9662 ± 0.01 0.7448 ± 0.02 0.5692 ± 0.01 0.4532 ± 0.01
unimal_touch 1.1302 ± 0.10 0.7634 ± 0.03 0.5290 ± 0.04 0.4461 ± 0.05
unimal_twisters 0.6305 ± 0.02 0.5027 ± 0.02 0.3534 ± 0.03 0.3540 ± 0.02

Average Dist. 0.9090 ± 0.03 0.6703 ± 0.01 0.4839 ± 0.02 0.4178 ± 0.01

Table 11: The average normalized final distance for in-distribution evaluation on MxT-Bench with challenging
morphologies from Gupta et al. [44] (as shown in Table 1).

Sub-domain Random MLP Transformer (CGv1) Transformer (CGv2)

ant_reach 0.9697 ± 0.03 0.8541 ± 0.03 0.5511 ± 0.10 0.4170 ± 0.04
ant_touch 1.0821 ± 0.00 0.7742 ± 0.07 0.4464 ± 0.07 0.3752 ± 0.12
ant_twisters 0.9215 ± 0.95 0.5356 ± 0.02 0.2569 ± 0.04 0.2608 ± 0.02
claw_reach 0.9915 ± 0.04 0.9370 ± 0.01 0.7332 ± 0.03 0.4399 ± 0.06
claw_touch 1.0695 ± 0.02 1.0283 ± 0.02 0.7074 ± 0.10 0.1375 ± 0.01
claw_twisters 0.7001 ± 0.17 0.5456 ± 0.02 0.5486 ± 0.02 0.5589 ± 0.05
centipede_reach 0.7929 ± 0.04 0.4626 ± 0.15 0.2640 ± 0.07 0.2506 ± 0.14
centipede_touch 1.0121 ± 0.01 0.7632 ± 0.02 0.4971 ± 0.06 0.3474 ± 0.09
worm_touch 2.7376 ± 2.23 1.1417 ± 0.10 0.8608 ± 0.07 1.0110 ± 0.03

Average Dist. 1.1419 ± 0.41 0.7216 ± 0.01 0.4940 ± 0.01 0.4066 ± 0.01

Table 12: The average normalized final distance for compositional morphology evaluation on MxT-Bench (as
shown in Table 1).
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Sub-domain Random MLP Transformer (CGv1) Transformer (CGv2)

ant_reach_hard 0.9542 ± 0.01 0.8299 ± 0.03 0.6176 ± 0.07 0.4522 ± 0.06
centipede_reach_hard 0.8443 ± 0.02 0.5689 ± 0.03 0.4770 ± 0.05 0.4412 ± 0.05

Average Dist. 0.8932 ± 0.01 0.6849 ± 0.01 0.5395 ± 0.04 0.4461 ± 0.05

Table 13: The average normalized final distance for compositional task evaluation on MxT-Bench (as shown in
Table 1).

Sub-domain Random MLP Transformer (CGv1) Transformer (CGv2)

ant_reach_hard_diverse 0.9520 ± 0.01 0.8288 ± 0.02 0.6798 ± 0.04 0.5365 ± 0.05
centipede_reach_hard_diverse 0.8660 ± 0.02 0.7546 ± 0.02 0.6130 ± 0.03 0.5208 ± 0.04

Average Dist. 0.8979 ± 0.01 0.7821 ± 0.02 0.6144 ± 0.04 0.5266 ± 0.04

Table 14: The average normalized final distance for out-of-distribution evaluation on MxT-Bench (as shown in
Table 1). The agents are diversified with missing, mass, size randomization.

Method (data size) Compositional (Morphology) Compositional (Task) Out-of-Distribution

MLP (4K, randinit) 0.8162 ± 0.02 0.7046 ± 0.01 0.6674 ± 0.03
MLP (4K, fine-tuning) 0.6715 ± 0.02 0.5582 ± 0.03 0.5694 ± 0.04
Transformer (CGv1) (4K, randinit) 0.6021 ± 0.03 0.5017 ± 0.04 0.5222 ± 0.06
Transformer (CGv1) (4K, fine-tuning) 0.3499 ± 0.04 0.3378 ± 0.08 0.3401 ± 0.08
Transformer (CGv2) (4K, randinit) 0.5504 ± 0.03 0.4894 ± 0.03 0.4980 ± 0.05
Transformer (CGv2) (4K, fine-tuning) 0.2863 ± 0.02 0.3180 ± 0.07 0.3115 ± 0.07

MLP (8K, randinit) 0.7044 ± 0.02 0.4818 ± 0.02 0.5247 ± 0.04
MLP (8K, fine-tuning) 0.5579 ± 0.06 0.3709 ± 0.01 0.4238 ± 0.05
Transformer (CGv1) (8K, randinit) 0.4001 ± 0.04 0.2791 ± 0.06 0.2762 ± 0.04
Transformer (CGv1) (8K, fine-tuning) 0.2600 ± 0.04 0.1926 ± 0.03 0.2089 ± 0.03
Transformer (CGv2) (8K, randinit) 0.3758 ± 0.03 0.1868 ± 0.05 0.1868 ± 0.05
Transformer (CGv2) (8K, fine-tuning) 0.1871 ± 0.01 0.1356 ± 0.03 0.1498 ± 0.03

MLP (12K, randinit) 0.5530 ± 0.01 0.4256 ± 0.03 0.4399 ± 0.02
MLP (12K, fine-tuning) 0.4312 ± 0.03 0.2982 ± 0.02 0.3358 ± 0.02
Transformer (CGv1) (12K, randinit) 0.2914 ± 0.03 0.1555 ± 0.04 0.1759 ± 0.03
Transformer (CGv1) (12K, fine-tuning) 0.2042 ± 0.01 0.0888 ± 0.01 0.0894 ± 0.01
Transformer (CGv2) (12K, randinit) 0.2655 ± 0.03 0.1149 ± 0.02 0.1149 ± 0.02
Transformer (CGv2) (12K, fine-tuning) 0.1301 ± 0.02 0.0562 ± 0.02 0.0513 ± 0.01

Table 15: The average normalized final distance among test environments in fine-tuning settings (compositional
morphology/task or out-of-distribution evaluation).

30



K Additional Attention Analysis

In this section, we provide the full results of attention analysis of Transformer (with CGv1 and CGv2)
(Figure 12 and Figure 13).

The experimental results reveal that despite slight differences, CGv2 generalizes various morphologies
and tasks better than CGv1. To find out the difference between those, we qualitatively analyze the
attention weights in Transformer. Figure 12 shows that CGv2 consistently focuses on goal nodes
over time, and activates important nodes to solve the task; for instance, in centipede_touch (top),
CGv2 pays attention to corresponding nodes (torso0 an goal0) at the beginning of the episode, and
gradually sees other relevant nodes (torso1 and torso2) to hold the movable ball. Furthermore, in
ant_twisters (bottom), CGv2 firstly tries to raise the agent’s legs to satisfy goal1 and goal2, and then
focus on reaching a leg (goal0). Temporally-consistent attention to goal nodes and dynamics attention
to relevant nodes can contribute to generalization over goal-directed tasks and morphologies.

Figure 13 implies that CGv1 does not show such consistent activation to the goal-conditioned
node; for instance, in centipede_touch_3 (above), the goal information is treated as an extra node
feature of torso0, but there are no nodes that consistently activated with torso0. Moreover, in
ant_reach_handsup2_3 (bottom), CGv1 does not keep focusing on the agent’s limbs during the
episode. Rather, CGv1 tends to demonstrate some periodic patterns during the rollout as implied in
prior works [49, 62].
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Figure 12: Attention analysis of CGv2 in centipede_touch_3 (top) and ant_reach_handsup2_5 (bottom; from
twisters). From left to right, we visualize the attention weights of CGv2 during the rollout. In contrast to CGv1,
CGv2 consistently focuses on goal nodes over time, and activates important nodes to solve the task.
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Figure 13: Attention analysis of CGv1 in centipede_touch_3 and ant_reach_handsup2_5. This tends to demon-
strate some periodic patterns during the rollout as implied in prior works [49, 62].
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L Additional Results of Task Generalization

Although in Table 1 and Figure 5, we examine the compositional task generalization and out-of-
distribution generalization with reach_hard tasks, where the goal distribution is farther than original
reach tasks. While they seem more difficult unseen tasks [35], they also seem to have some sort of
task similarities between training dataset environments and those evaluation environments.

Another question might be how control graph performs in more different unseen tasks. To evaluate
compositional task generalization and out-of-distribution on the environments that have less similarity
to the training datasets, we prepare push task, where the agents try to move the box objects to the
given goal position. See Table 7 for the environment division. For training datasets, we leverage
In-Distribution division in Table 4. Because this task requires the sufficient interaction with the
object, the nature of tasks seem quite different from training dataset environments (reach, touch, and
twisters).

Table 16 shows the results of compositional task evaluation and Table 17 shows those of out-of-
distribution evaluation. In contrast to Table 1, the zero-shot performance seems limited. Transferring
pre-trained control primitives to significantly different tasks still remains as important future work.

However, as shown in Figure 14, control graph works as better prior knowledge for downstream
multi-task imitation learning, even with the environments that have less similarity to the pre-training
datasets. As prior work suggested [73], these results suggests that, in RL, jointly-learned multi-task
model has a strong inductive bias even for unseen and significantly different environments.

Sub-domain Random MLP Transformer (CGv1) Transformer (CGv2)

ant_push 1.0808 ± 0.02 0.9995 ± 0.00 0.9212 ± 0.14 0.8836 ± 0.09
centipede_push 1.0816 ± 0.01 0.9942 ± 0.00 0.9557 ± 0.02 0.9377 ± 0.01
worm_push 1.1026 ± 0.04 0.6300 ± 0.01 0.5579 ± 0.10 0.4091 ± 0.15

Average Dist. 1.0866 ± 0.02 0.9051 ± 0.00 0.8800 ± 0.02 0.8263 ± 0.04

Table 16: The average normalized final distance for compositional task evaluation on MxT-Bench with unseen
push task. See Table 7 for the environment division.

Sub-domain Random MLP Transformer (CGv1) Transformer (CGv2)

ant_push_diverse 1.0814 ± 0.02 1.0018 ± 0.01 0.9906 ± 0.01 0.8800 ± 0.04
centipede_push_diverse 1.0848 ± 0.02 1.0031 ± 0.01 0.9997 ± 0.00 0.9355 ± 0.04

Average Dist. 1.0835 ± 0.02 1.0021 ± 0.02 0.9965 ± 0.01 0.9155 ± 0.03

Table 17: The average normalized final distance for out-of-distribution evaluation on MxT-Bench with unseen
push task. See Table 7 for the environment division.
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Figure 14: Comparison of multi-task goal-reaching performances on fine-tuning settings in the unseen push
tasks. The results imply that control graph works as better prior knowledge for downstream multi-task imitation
learning, even with the environments that have less similarity to the pre-training datasets.

Method (data size) Compositional (Task) Out-of-Distribution

MLP (4K, randinit) 0.8042 ± 0.05 0.8332 ± 0.04
MLP (4K, fine-tuning) 0.7818 ± 0.05 0.8108 ± 0.02
Transformer (CGv1) (4K, randinit) 0.6653 ± 0.03 0.7191 ± 0.02
Transformer (CGv1) (4K, fine-tuning) 0.6398 ± 0.05 0.6893 ± 0.04
Transformer (CGv2) (4K, randinit) 0.6276 ± 0.05 0.6999 ± 0.04
Transformer (CGv2) (4K, fine-tuning) 0.5826 ± 0.05 0.6779 ± 0.03

MLP (8K, randinit) 0.7542 ± 0.06 0.7751 ± 0.03
MLP (8K, fine-tuning) 0.6847 ± 0.04 0.7611 ± 0.03
Transformer (CGv1) (8K, randinit) 0.6027 ± 0.03 0.6613 ± 0.05
Transformer (CGv1) (8K, fine-tuning) 0.5448 ± 0.06 0.6169 ± 0.05
Transformer (CGv2) (8K, randinit) 0.5704 ± 0.03 0.6286 ± 0.05
Transformer (CGv2) (8K, fine-tuning) 0.4993 ± 0.06 0.5772 ± 0.06

MLP (12K, randinit) 0.7037 ± 0.03 0.7452 ± 0.03
MLP (12K, fine-tuning) 0.6678 ± 0.04 0.7110 ± 0.06
Transformer (CGv1) (12K, randinit) 0.5925 ± 0.04 0.6203 ± 0.04
Transformer (CGv1) (12K, fine-tuning) 0.4993 ± 0.06 0.5158 ± 0.08
Transformer (CGv2) (12K, randinit) 0.5510 ± 0.05 0.5454 ± 0.11
Transformer (CGv2) (12K, fine-tuning) 0.4132 ± 0.04 0.4748 ± 0.06

Table 18: The average normalized final distance among test environments in fine-tuning settings (compositional
morphology/task or out-of-distribution evaluation) with unseen push task.
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