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Abstract
Neural Combinatorial Optimization (NCO) has
emerged as a promising approach for NP-hard
problems. However, prevailing RL-based meth-
ods suffer from low sample efficiency due to
sparse rewards and underused solutions. We pro-
pose Best-anchored and Objective-guided Prefer-
ence Optimization (BOPO), a training paradigm
that leverages solution preferences via objective
values. It introduces: (1) a best-anchored pref-
erence pair construction for better explore and
exploit solutions, and (2) an objective-guided pair-
wise loss function that adaptively scales gradients
via objective differences, removing reliance on
reward models or reference policies. Experiments
on Job-shop Scheduling Problem (JSP), Traveling
Salesman Problem (TSP), and Flexible Job-shop
Scheduling Problem (FJSP) show BOPO outper-
forms state-of-the-art neural methods, reducing
optimality gaps impressively with efficient infer-
ence. BOPO is architecture-agnostic, enabling
seamless integration with existing NCO models,
and establishes preference optimization as a prin-
cipled framework for combinatorial optimization.

1. Introduction
Combinatorial optimization problems (COPs), such as
scheduling (Zhang et al., 2019; Xiong et al., 2022) and rout-
ing problems (Vidal et al., 2020; Berghman et al., 2023), are
widely applied in real-world scenarios and have attracted
significant research attention. Most COPs are NP-hard,
making them challenging to find optimal solutions. Exact
methods, such as branch-and-bound algorithms, require ex-
ponential computation time as the problem size increases.
Consequently, heuristic methods have proven effective in
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obtaining high-quality solutions within reasonable time over
the past decades. Nevertheless, these methods still heavily
rely on expert knowledge and extensive iterative search.

In the emerging field of neural combinatorial optimization
(NCO), deep neural models are employed to automatically
learn heuristics from training data, enabling the rapid con-
struction of high-quality solutions in an end-to-end fashion
(Mazyavkina et al., 2021; Bengio et al., 2021; Yan et al.,
2022; Kayhan & Yildiz, 2023; Zhang et al., 2023; Gar-
mendia et al., 2024). Early research (Vinyals et al., 2015)
adopted supervised learning (SL) to train the deep models,
which required (near-) optimal solutions produced by ex-
pensive specialized solvers as labels. Different from SL,
reinforcement learning (RL), which does not require labels,
has emerged as the mainstream training paradigm for NCO
(Kool et al., 2019; Kwon et al., 2020; Zhang et al., 2020;
Ho et al., 2024). However, RL encounters challenges such
as sparse rewards and low sample efficiency (Kim et al.,
2024). Recently, self-labeling learning (SLL) (Corsini et al.,
2024; Luo et al., 2025) was proposed to partially address
these issues by sampling multiple solutions and treating the
best one among them as a pseudo-label for model training.
Nevertheless, SLL still faces the challenge of low sample
efficiency, as all sampled solutions except the optimal one
are discarded during training.

To improve sample efficiency in NCO training, we lever-
age multiple sampled solutions rather than focusing solely
on the optimal one by introducing preference optimization
(Rafailov et al., 2023; Meng et al., 2024). To this end, we
propose Best-anchored and Objective-guided Preference
Optimization (BOPO), which leverages the natural prefer-
ence relation among solutions according to their objective
values. Our approach builds upon two fundamental obser-
vations: (1) NCO models (typically generative models) can
generate multiple distinct solutions for a given problem in-
stance, and (2) the objective value of a COP solution can be
computed with a low cost. As shown in Figure 1, our BOPO
comprises two essential components: constructing multiple
preference pairs from sampled solutions and building a pref-
erence optimization loss. As a new training paradigm for
neural combinatorial optimization, BOPO avoids expensive
labels and formulation of Markov Decision Process, making
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it particularly well-suited for addressing various types of
COPs.

In summary, our contributions are as follows:

• We propose BOPO, a novel training paradigm using
preference optimization for neural combinatorial opti-
mization, which enhances sample efficiency compared
with the mainstream RL and recent SLL paradigms.

• As the first key component of BOPO, we design a
best-anchored preference pair construction method for
COPs to better explore and exploit solutions.

• As the second key component, we tailor a novel
objective-guided preference optimization loss that in-
corporates preferences quantified by objective values
of COPs.

• Experimental results on three classic problems, namely
the Job-shop Scheduling Problem (JSP), Traveling
Salesman Problem (TSP), and Flexible Job-shop
Scheduling Problem (FJSP), demonstrate that BOPO
outperforms state-of-the-art methods.

2. Related Works
Supervised Learning (SL) for NCO. SL methods utilize
optimal solutions as labels to train neural models with cross-
entropy loss for solving COPs, such as TSP (Vinyals et al.,
2015; Milan et al., 2017) and JSP (Ingimundardottir &
Runarsson, 2018). Data augmentation techniques have been
exploited to enhance the performance of SL methods for
routing problems (Luo et al., 2023; Yao et al., 2024). Ad-
ditionally, diffusion-based SL approaches (Sun & Yang,
2023; Li et al., 2023; 2024) learn to generate heatmaps for
TSP. The primary limitation of SL, however, lies in the high
computational cost of obtaining optimal solutions as labels,
which restricts its practical applications.

Reinforcement Learning (RL) & Self-Labeling Learning
(SLL) for NCO. Label-free RL is currently the mainstream
training paradigm in neural combinatorial optimization. At-
tention Model (Kool et al., 2019), which combines RL with
Transformer (Vaswani, 2017), marks a milestone in solving
routing problems. The policy optimization with multiple
optima (POMO) (Kwon et al., 2020) introduces a shared
baseline leveraging solution symmetry. Given its compet-
itive performance and practicality, POMO has established
itself as a prominent training algorithm for routing problems
and has inspired numerous advancements (Grinsztajn et al.,
2023; Chalumeau et al., 2023; Drakulic et al., 2023; Chen
et al., 2023a;b; Xiao et al., 2024b; Goh et al., 2024; Fang
et al., 2024; Zhou et al., 2024a;b; Bi et al., 2024; Zheng et al.,
2024; Wang et al., 2024; Chen et al., 2025a;b). Addition-
ally, RL has been widely adopted for scheduling problems,

including JSP (Zhang et al., 2020; Park et al., 2021a;b; Jeon
et al., 2023; Tassel et al., 2023; Iklassov et al., 2023; Ho
et al., 2024) and FJSP (Song et al., 2023; Yuan et al., 2024).
Different from the above RL-based constructive methods,
RL is also employed in improvement methods for both
routing (Ma et al., 2021; Wu et al., 2022; Ma et al., 2023;
Kong et al., 2024) and scheduling problems (Falkner et al.,
2022; Zhang et al., 2024b). Recently, SLL (Luo et al., 2025;
Corsini et al., 2024) utilizes the local optimal solution dur-
ing training as a pseudo-label to train an end-to-end model
using cross-entropy loss, where self-labeling improvement
method (SLIM) (Corsini et al., 2024) has achieved state-of-
the-art performance on JSP.

Preference Optimization. Preference optimization has
been widely adopted to align large language models (LLMs)
with human preferences. One of the most well-known
techniques is reinforcement learning with human feedback
(RLHF) (Stiennon et al., 2020; Ouyang et al., 2022), which
trains a reward model using ranking learning and then aligns
LLM through RL. Direct preference optimization (DPO)
(Rafailov et al., 2023) offers an efficient alternative by skip-
ping the reward model training phase and directly optimiz-
ing LLMs using preference pairs. Building upon DPO,
subsequent studies explore comparing more samples (Dong
et al., 2023; Song et al., 2024) and designing more concise
loss functions (Xu et al., 2023; Meng et al., 2024). Among
them, simple preference optimization (SimPO) (Meng et al.,
2024) has gained popularity due to its simplicity and effec-
tiveness. Recent advancements in preference optimization
are summarized in a comprehensive survey (Xiao et al.,
2024a). Inspired by preference optimization, we propose
best-anchored and objective-guided preference optimization
(BOPO). A concurrent work (Pan et al., 2025) also applies
preference optimization to COPs. However, fundamentally
different from Pan et al. (2025), BOPO develops a best-
anchored preference pair construction method and a novel
objective-guided preference optimization loss specially de-
signed for COPs.

3. Preliminaries
3.1. Neural Combinatorial Optimization (NCO)

COP aims to find a solution y that minimizes (or maximizes)
the objective function g(y). In the NCO domain, neural
constructive methods sequentially construct a solution y in
an end-to-end manner for a COP instance x. Specifically,
at step t ∈ {1, · · · , |y|}, a feasible action yt is selected
based on the partial solution y<t = (y1, · · · , yt−1) with
constraints enforced through masking. A model with param-
eter θ outputs the policy πθ(y|x) =

∏|y|
t=1 πθ(yt|y<t,x)

of solution y. Solutions can be obtained via multiple search
strategies based on policy πθ(y|x), including greedy and
sampling rollouts.
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Figure 1. The pipeline of best-anchored and objective-guided preference optimization (BOPO).

Typical training paradigms include SL, RL, and SLL.
SL utilizes the (near-) optimal solution y∗ as a label to
train model θ using cross-entropy loss L(πθ|y∗,x) =
− log πθ(y

∗|x). In RL, the REINFORCE loss (Williams,
1992) L(πθ|y,x) = −(g(y) − b(x)) log πθ(y|x) with a
baseline b(x) is commonly used for routing problems, while
the proximal policy optimization (PPO) (Schulman et al.,
2017) loss L(πθ|y,x) = −

∑
t min{rtÂt, clip(rt, 1 −

ϵ, 1+ ϵ)Ât} is predominantly used for scheduling problems,
where rt =

πθ(yt|y<t,x)
πθ′ (yt|y<t,x)

denotes the ratio of current policy

θ and old policy θ′, Ât represents the advantage estimate,
and ϵ is a hyperparameter. SLL, a recent paradigm, selects
the best among solutions sampled from current policy θ as
a pseudo-label and applies cross-entropy loss.

3.2. Solution Construction for Classic COPs

The job-shop scheduling problem (JSP) entails allocating
a set of n jobs across m machines with shape (n × m),
wherein each job must be performed on the machines in
a predefined sequence. The instance x comprises the pro-
cessing time of operations and the corresponding required
machines. Action yt is defined as an operation that assigns
a job to the earliest available time slot on the corresponding
machine and updates the job’s progress. The goal is to deter-
mine the job processing order on each machine to minimize
the maximum completion time, known as the makespan.
This construction involves |y| = nm steps.

For the traveling salesman problem (TSP), the instance x
is composed of n nodes with 2-dimensional coordinates.
The objective is to find a tour that passes through all nodes
with minimal total distance. To construct a TSP solution,
an unvisited node yt at step t is selected to be added to the
current partial tour. This process requires |y| = n steps.

The flexible job-shop scheduling problem (FJSP) extends
JSP by considering that each operation can be processed on

multiple candidate machines with shape (n×m×k), where
k denotes the maximum number of operations in all jobs.
To construct a FJSP solution, action yt at step t represents
a joint selection of an operation and one of its available
machines. This construction requires |y| = nk steps.

The definitions of above COPs and details of their features
are provided in Appendix A.

4. Methodology
4.1. Best-anchored and Objective-guided Preference

Optimization (BOPO)

To improve sample efficiency, we propose a novel training
paradigm, namely BOPO. Distinct from the RL and SLL
training paradigms, BOPO exploits the preference relations
among generated solutions according to their objective val-
ues. Specifically, for a COP with the minimization objective,
the explicit preference f∗(y,x) for instance x and solution
y is defined as the negative of the objective function:

f∗(y,x) = −g(y). (1)

A preference pair, denoted as a triplet (x,yw,yl), consists
of an instance x and two solutions yw and yl satisfying
yw ≻ yl ≜ f∗(yw,x) > f∗(yl,x).

BOPO employs a preference optimization loss based on
such preference pairs to train the neural model parameter-
ized as θ. As the two critical components of BOPO, we de-
velop a best-anchored preference pair construction method
and derive a novel objective-guided preference optimization
loss function specialized for COPs.

4.2. Best-anchored Preference Pair Construction

The construction of preference pairs consists of three steps:
(1) Hybrid Rollout generates diverse solutions via sampling
rollout and a high-quality one via greedy rollout. (2) Uni-
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form Filtering selects representative ones from the obtained
solutions for efficient pairing. (3) Best-anchored Pairing
constructs preference pairs to enhance model learning.

Hybrid Rollout. Both diverse and high-quality solutions
play vital roles in model learning. Sampling from policy
πθ(y,x) generates diverse solutions, occasionally surpass-
ing the greedy rollout solution. However, most sampled
solutions are inferior to the greedy one. To leverage their
complementary strengths, we propose a hybrid rollout strat-
egy combining both approaches. This strategy generates
B solutions, including B − 1 from sampling and one from
greedy rollout. It ensures coverage of both exploratory and
exploitative solutions.

Uniform Filtering. Constructing preference pairs using
all B solutions would produce a combination of

(
B
2

)
pairs,

resulting in high computational cost and many low-quality
pairs. Instead, we employ uniform filtering to select solu-
tions to maximize representational diversity. Specifically,
we select K solutions C = {y1 ≻ · · · ≻ yK} uniformly
from B sorted solutions S = {y′

1 ≻ · · · ≻ y′
B}, i.e.,

yk = y′
⌊B/K⌋·(k−1)+1, ∀k ∈ {1, · · · ,K}. This avoids

overfitting to clusters of similar solutions.

Best-anchored Pairing. Since a COP solely focuses on
finding the optimal solution, we anchor pairs to the best so-
lution to prioritize learning from high-quality examples. For
K solutions {y1 ≻ · · · ≻ yK}, we create K − 1 preference
pairs, each combining the best solution with a suboptimal
one, i.e., P = {(x,y1,yk)|k ∈ {2, · · · ,K}}. This design
encourages learning from the optimal solution while dis-
couraging learning from various suboptimal ones, being
more efficient than using all

(
K
2

)
possible pairs.

4.3. Objective-guided Preference Optimization Loss

After obtaining preference pairs, we formulate the loss func-
tion of BOPO by incorporating a preference-based scaling
factor derived from the objective values of COP solutions.

Objective-guided Preference Optimization Loss. For
policy πθ(y,x) used to construct solution y, its implicit
preference fθ(y,x) is defined as the average log-likelihood:

fθ(y,x) =
1

|y|
log πθ(y|x) =

1

|y|

|y|∑
t=1

log πθ(yt|y<t,x).

(2)
For a preference pair (x,yw,yl), the preference distribution
pθ(yw ≻ yl|x) is modeled using the Bradley-Terry ranking
objective (Bradley & Terry, 1952) and implicit preferences:

pθ(yw ≻ yl|x) =
σ(β(x,yw,yl)(fθ(yw,x)− fθ(yl,x))),

(3)

where σ(·) is the sigmoid function. β(x,yw,yl) =
f∗(yl,x)/f

∗(yw,x) is a preference-based adaptive scal-

Algorithm 1 BOPO Training

1: Input: Dataset X , number of epochs E, number of
training steps T , batch size D, number of obtained so-
lutions B, number of filtered solutions K, and learning
rate η

2: Initialize model parameter θ
3: for epoch = 1 to E do
4: for step = 1 to T do
5: xi ← SAMPLEINSTANCE(X ) ∀i ∈ {1, . . . , D}
6: Si ← HYBRIDROLLOUT(xi, B) ∀i ∈ {1, . . . , D}
7: Ci ← UNIFORMFILTERING(Si,K) ∀i ∈ {1, . . . , D}
8: Pi ← BEST-ANCHOREDPAIRING(Ci) ∀i ∈ {1, . . . , D}
9: Compute LBOPO(πθ,x,yw,yl) using Equation (4)

10: L(θ)← 1
D

∑D
i=1

1
|Pi|

∑
(x,yw,yl)∈Pi

LBOPO(πθ,x,yw,yl)

11: θ ← Adam(θ,∇θL(θ), η)
12: end for
13: end for

ing factor derived from explicit preferences, which acts as
a natural curriculum. For different pairs with the same
best solution yw but different suboptimal solutions yl, their
preference differences should vary according to explicit pref-
erences. Therefore, it is wise to introduce a scaling factor to
adjust the difference in the preference distribution.

By maximizing the log-likelihood of pθ(yw ≻ yl|x), the
model is encouraged to assign higher probabilities to pre-
ferred solutions yw compared with less preferred solutions
yl. From Equations (1) to (3), we can derive the BOPO loss
function:

LBOPO(πθ,x,yw,yl) =

− log σ

 g(yl)

g(yw)︸ ︷︷ ︸
Adaptive Scaling

 log πθ(yw|x)
|yw|

− log πθ(yl|x)
|yl|︸ ︷︷ ︸

Average Log-likelihood Difference


 .

(4)

The BOPO training algorithm is presented in Algorithm 1.

Comparison with Other Losses. Our BOPO loss differs
from existing preference optimization losses in several key
aspects. Compared with RLHF (Stiennon et al., 2020), it
eliminates the need to train an additional reward model.
Compared with DPO (Rafailov et al., 2023), it avoids using
a reference model, reducing computational costs. Com-
pared with SimPO (Meng et al., 2024), it incorporates a
objective-guided scaling factor without requiring extra hy-
perparameters, avoiding labor-intensive hyperparameter tun-
ing. Detailed analyses are provided in Appendix C.

Comparison with RL. By leveraging preference learning
between the best solution and diverse inferior ones, BOPO
guides the model toward promising decision trajectories and
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discern suboptimal choices, demonstrating its advantage
against RL methods. Meanwhile, recognizing that precise
rewards (i.e., objective values) in RL are crucial to combina-
torial optimization, BOPO introduces an objective-guided
scaling factor beyond the standard preference optimization
loss function to better distinguish preference differences.

4.4. Characteristics of BOPO

In summary, our BOPO has the following characteristics.
(1) Novel training paradigm: BOPO introduces prefer-
ence optimization to neural combinatorial optimization as
a new training paradigm, featuring two effective problem-
awareness components: best-anchored preference pair con-
struction and objective-guided preference optimization loss.
(2) Architecture agnostic: BOPO is compatible with vari-
ous models for different problems, achieving high sample
efficiency without expensive labels while inheriting the fast
inference advantage of neural models. (3) Outstanding
performance: Compared with existing methods, BOPO
surpasses state-of-the-art results on classic COPs, including
JSP, TSP, and FJSP.

5. Experimental Results
To evaluate the performance of BOPO, we compare it with
state-of-the-art NCO methods and strong traditional solvers
on typical COP benchmarks with various problem shapes
and distributions. Performance evaluation is based on the
gap metric g(y)−g(y∗)

g(y∗) × 100% between the obtained solu-
tion y and known optimal solution y∗, where a lower gap in-
dicates better performance. The best results are highlighted
in bold. We also report total solving time for each instance
group. Experiments were conducted on a Linux system with
an NVIDIA TITAN Xp GPU and an Intel(R) Xeon(R) E5-
2680 CPU. Our implementation of BOPO using PyTorch
and trained models for each problem are available.1

5.1. Job-shop Scheduling Problem

Neural Model. Each JSP instance is represented as a dis-
junctive graph, a standard representation for scheduling
problems. For details of disjunctive graphs, see Appendix A.
We employ a neural model, named MGL, that combines a
multi-layer graph attention network (GAT) (Veličković et al.,
2018) encoder for computing node embeddings with a long
short-term memory (LSTM) based (Hochreiter & Schmid-
huber, 1997) context-attention decoder for predicting action
probabilities using both embedding and context features.
The complete architecture is detailed in Appendix B.

Training & Test. For evaluation, we use three standard JSP
benchmarks: Taillard’s (TA) (Taillard, 1993), Lawrence’s

1https://github.com/L-Z-7/BOPO

(LA) (Lawrance, 1984), and Demirkol’s (DMU) (Demirkol
et al., 1998). Each benchmark contains 8 different shapes
with 10 instances per shape, except LA which has 5 in-
stances per shape. We generate a training dataset of 30000
instances following SLIM (Corsini et al., 2024), consisting
of 6 shapes (n ×m) in {10 × 10, 15 × 10, 15 × 15, 20 ×
10, 20×15, 20×20} with 5000 instances per shape. During
training, we generate additional 100 different instances per
shape from the same shape set for validation. We employ
the Adam optimizer (Kingma & Ba, 2014) with learning
rate η = 0.0002 and train the neural model for 20 epochs.
We set the solution number of hybrid rollout B = 256, the
number of filtered solutions K = 16, batch size of D = 1.
During inference, we adopt both greedy rollout and sam-
pling rollout with B′ solutions.

Baselines. We compare BOPO with two categories of ap-
proaches: non-constructive methods and constructive meth-
ods. (1) Non-constructive methods, which require extensive
search time, include both exact solvers and state-of-the-
art neural improvement methods. We employ two exact
solvers: Gurobi and Google OR Tools, both with a time
limit of 3600 seconds. We also include four RL-based im-
provement methods: NLSA (Falkner et al., 2022), L2S with
500 (L2S500) and 5000 (L2S5k) solutions (Zhang et al.,
2024a), and TGA500 (Zhang et al., 2024b) with 500 so-
lutions. (2) Constructive methods comprise widely used
traditional constructive heuristics and state-of-the-art neu-
ral constructive methods, where neural methods adopt both
greedy rollout and sampling rollout with B′ solutions. For
traditional constructive heuristics, we consider three rep-
resentative traditional Priority Dispatching Rules (PDRs)
(Haupt, 1989): shortest processing time (SPT), most op-
erations remaining (MOR), and most work remaining
(MWR). The neural constructive baselines include three
RL-based methods: L2D (Zhang et al., 2020) and SchN
(Park et al., 2021a), which utilize PPO with different mod-
eling approaches, and CL (Iklassov et al., 2023), which
incorporates curriculum learning. We also include two state-
of-the-art SLL-based baselines, SLIM (Corsini et al., 2024)
and SLIMMGL, where SLIMMGL uses our MGL model with
SLIM’s training algorithm. For a fair comparison, we set its
batch size to 16, matching BOPO’s setting.

Results on JSP Benchmarks. Comparative results on the
TA and LA benchmarks are presented in Table 1. Our
method achieves the lowest average optimality gap among
all constructive methods on all benchmarks, with sampling
rollout further enhancing its performance through the explo-
ration of more solutions. Notably, BOPO even surpasses RL-
based improvement methods, with the exception of L2S5k,
where BOPO achieves a comparable gap (7.5% vs. 7.4% on
TA) while requiring significantly less computational time
(4.8m vs. 4h on TA). Detailed runtime analysis is provided
in Appendix D. Compared with SLIM, the current state-
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Table 1. Average gaps (%) of evaluated methods on JSP benchmarks. “-” indicates unavailable results from the corresponding paper.

Non-constructive Greedy Constructive Sampling Constructive
Exact Solver RL-based Improvement Traditional PDR RL SLL BOPO B′ = 128 B′ = 512

Shape Gurobi OR-Tools L2S500 NLSA TGA500 L2S5k SPT MOR MWR L2D SchN CL SLIMMGL SLIM BOPO L2D CL SLIMMGL SLIM BOPO SLIMMGL SLIM BOPO

TA

15×15 0.1 0.1 9.3 7.7 8.0 6.2 25.8 20.5 19.2 26.0 15.3 14.3 13.1 13.8 13.6 17.1 9.0 8.8 7.2 7.1 7.2 6.5 6.3
20×15 3.2 0.2 11.6 12.2 9.9 8.3 32.9 23.6 23.4 30.0 19.4 16.5 16.1 15 14.3 23.7 10.6 11.0 9.3 9.0 10.4 8.8 8.3
20×20 2.9 0.7 12.4 11.5 10.0 9.0 27.8 21.7 21.8 31.6 17.2 17.3 15.3 15.2 15.1 22.6 10.9 11.1 10.0 9.8 10.0 9.0 9.1
30×15∗ 10.7 2.1 14.7 14.1 13.3 9.0 35.1 22.7 23.7 33.0 19.1 18.5 17.7 17.1 16.6 24.4 14.0 14.0 11.0 11.0 12.2 10.6 10.3
30×20∗ 13.2 2.8 17.5 16.4 16.4 12.6 34.4 24.9 25.2 33.6 23.7 21.5 19.3 18.5 17.1 28.4 16.1 16.3 13.4 13.3 14.9 12.7 12.2
50×15∗ 12.2 3.0 11.0 11.0 9.6 4.6 24.1 17.3 16.8 22.4 13.9 12.2 13.4 10.1 9.8 17.1 9.3 9.2 5.5 5.8 8.2 4.9 4.9
50×20∗ 13.6 2.8 13.0 11.2 11.9 6.5 25.6 17.7 17.9 26.5 13.5 13.2 14.0 11.6 11.8 20.4 9.9 10.6 8.4 8.0 9.8 7.6 7.4
100×20∗ 11.0 3.9 7.9 5.9 6.4 3.0 14.4 9.2 8.3 13.6 6.7 5.9 7.4 5.8 4.9 13.3 4.0 4.8 2.3 1.8 4.4 2.1 1.4

Avg 8.4 2.0 12.2 11.3 10.7 7.4 27.5 19.7 19.5 27.1 16.1 14.9 14.5 13.4 12.9 20.8 10.4 10.7 8.4 8.2 9.6 7.8 7.5

L
A

10×5∗ 0.0 0.0 2.1 - 2.1 1.8 14.8 16.0 16.0 14.3 12.1 - 8.6 9.3 6.0 8.8 - 3.7 1.9 2.7 2.5 1.1 2.1
10×10 0.0 0.0 4.4 - 1.8 0.9 15.7 18.1 12.2 23.7 11.9 - 9.1 8.9 8.2 10.4 - 3.5 3.1 2.3 2.4 2.5 2.1
15×5∗ 0.0 0.0 0.0 - 0.0 0.0 14.9 3.9 5.5 7.8 2.7 - 1.5 2.6 1.1 2.8 - 0.0 0.0 0.0 0.0 0.0 0.0
15×10 0.0 0.0 6.4 - 3.6 3.4 28.7 23.7 17.8 27.2 14.6 - 11.7 11.6 11.0 16.2 - 6.3 5.2 5.8 5.6 5.0 4.9
15×15 0.0 0.0 7.3 - 5.5 5.9 24.6 18.1 18.2 27.1 16.1 - 13.5 13.6 12.2 17.4 - 7.1 6.8 6.5 6.7 5.6 4.9
20×5∗ 0.0 0.0 0.0 - 0.0 0.0 13.7 3.8 5.2 6.3 3.6 - 1.5 2.1 0.4 3.1 - 0.5 0.0 0.0 0.0 0.0 0.0
20×10 0.0 0.0 7.0 - 5.0 2.6 33.4 20.9 17.2 24.6 15.7 - 14.3 12.1 12.2 18.3 - 7.9 6.9 5.9 7.1 5.6 4.6
30×10∗ 0.0 0.0 0.2 - 0.0 0.0 13.9 6.5 8.6 8.4 3.1 - 3.1 2 2.4 6.8 - 0.3 0.0 0.0 0.1 0.0 0.0

Avg 0.0 0.0 3.4 - 2.3 1.8 20.0 13.9 12.6 17.4 10.0 - 7.9 7.8 6.7 10.6 - 3.7 3.0 2.9 3.0 2.5 2.3

D
M

U

20×15 5.3 1.8 - - - - 28.0 30.9 28.8 39.0 - - 17.0 18 17.5 29.3 19.4 13.7 12.0 11.2 12.7 11.3 10.4
20×20 4.7 1.9 - - - - 31.3 27.4 27.3 37.7 - - 22.6 19.4 20.3 27.1 16.0 15.3 13.5 12.7 14.1 12.3 11.8
30×15∗ 14.2 2.5 - - - - 31.5 37.4 32.3 42.0 - - 24.1 21.8 19.1 34.0 16.5 18.4 14.4 13.9 17.5 14.0 12.9
30×20∗ 16.7 4.4 - - - - 34.4 34.7 31.4 39.7 - - 25.6 25.7 25.6 33.6 20.2 19.0 17.1 16.5 17.8 15.8 15.5
40×15∗ 16.3 4.1 - - - - 24.0 36.7 27.5 35.6 - - 20.1 17.5 15.9 31.5 17.6 15.8 11.7 11.4 15.3 10.9 10.9
40×20∗ 22.5 4.6 - - - - 37.2 37.1 32.9 39.6 - - 23.5 22.2 22.3 35.8 25.6 19.8 16.0 16.7 19.0 14.8 15.9
50×15∗ 14.9 3.8 - - - - 24.8 35.5 28.0 36.5 - - 18.2 15.7 14.5 32.7 21.7 15.6 11.2 11.2 15.3 10.6 10.4
50×20∗ 22.5 4.8 - - - - 30.1 37.0 30.8 39.5 - - 25.8 22.4 25.2 36.1 15.2 20.8 15.8 16.5 20.0 15.0 15.5

Avg 14.6 3.5 - - - - 30.2 34.6 29.9 38.7 - - 22.1 20.3 20.0 32.5 19.0 17.3 14.0 13.8 16.5 13.1 12.9

of-the-art SLL-based constructive method, BOPO, which
employs the efficient MGL model, achieves both reduced
parameter count and computational overhead (detailed in
Appendix B). More significantly, when evaluated against
SLIMMGL using the identical model, the performance dispar-
ity increases markedly across all scenarios, underscoring the
fundamental advantage of the proposed training paradigm
over the SLL counterpart. Furthermore, BOPO exhibits
superior generalization performance on out-of-distribution
problem shapes (marked by ∗).

5.2. Traveling Salesman Problem

Neural Model. BOPO adopts the same model as the typical
POMO (Kwon et al., 2020), comprising an encoder with 6
Transformer layers and a decoder with a multi-head atten-
tion layer. To further demonstrate the universality of BOPO,
it also employs the state-of-the-art INViT (Fang et al., 2024)
model.

Training & Test. Following the NCO literature, we evalu-
ate the proposed method on randomly generated instances
with n = 20/50/100 (denoted as TSP20/50/100), using
models trained on corresponding problem shapes. Train-
ing instances are generated randomly from an uniform dis-
tribution. Additionally, we assess BOPO’s generalization
capability on the out-of-distribution TSPLIB benchmark
(Reinelt, 1991), and randomly generated instances with four
different distributions, including uniform, cluster, explosion,
and implosion distributions. We adopt the same hyperpa-

rameter configuration as POMO and INViT, respectively.
During training, the number of filtered solutions is set to
K = 8. For TSP20 and TSP50, we set the hybrid rollout
solution number B = 128 and batch size D = 64. For
TSP100, we set B = 256,K = 16 and D = 48 due to the
memory limit. Specifically, we adopt BOPO to train INViT-
2V, but due to memory constraints, we set D = 1, B = 64
(half of batch size in INViT), with K = 8 and double
epochs. For inference, we adopt greedy rollout with multi-
ple start nodes and ×8 instance augmentation (denoted as
aug.), consistent with POMO.

Baselines. We assess BOPO against both traditional meth-
ods and neural constructive methods. The traditional meth-
ods include exact solver Concorde and Gurobi, and LKH3,
a powerful problem-specific heuristic. The neural con-
structive methods include POMO (Kwon et al., 2020), a
widely-adopted RL-based backbone for advanced methods;
DABL (Yao et al., 2024), a state-of-the-art SL-based method
with data augmentation for routing problems; INViT (Fang
et al., 2024), a state-of-the-art RL-based method; and SLIM
(Corsini et al., 2024), a state-of-the-art SLL-based method
applied to the POMO model.

Results on TSP. Results based on POMO are presented
in Table 2 and Table 3. As shown in Table 2, BOPO out-
performs other neural baselines (except DABL on TSP50)
while delivering competitive solutions against traditional
solvers, despite the latter requiring substantially more com-
putational time. Compared with DABL which requires ex-
pensive labeled optimal solutions for SL, BOPO achieves

6



BOPO: Neural Combinatorial Optimization via Best-anchored and Objective-guided Preference Optimization

Table 2. Results on 1000 uniformly generated TSP instances.

Method TSP20 TSP50 TSP100
Obj.↓ Gap↓ Time↓ Obj.↓ Gap↓ Time↓ Obj.↓ Gap↓ Time↓

Concorde 3.83 0.00 5m 5.69 0.00 13m 7.75 0.00 1h
Gurobi 3.83 0.00 7s 5.69 0.00 2m 7.75 0.00 17m
LKH3 3.83 0.00 42s 5.69 0.00 6m 7.75 0.00 25m

POMO 3.83 0.04 3.3s 5.70 0.21 6.4s 7.80 0.46 11.4s
DABL 3.83 0.01 3.3s 5.69 0.04 6.4s 7.77 0.29 11.4s
SLIM 3.85 0.22 3.3s 5.78 1.51 6.4s 8.18 5.51 11.4s
BOPO 3.83 0.02 3.3s 5.70 0.14 6.4s 7.78 0.37 11.4s

POMO (aug.) 3.83 0.00 3.6s 5.69 0.03 6.6s 7.77 0.14 18.1s
DABL (aug.) 3.83 0.00 3.6s 5.69 0.00 6.6s 7.75 0.05 18.1s
SLIM (aug.) 3.84 0.01 3.6s 5.70 0.15 6.6s 7.84 1.17 18.1s
BOPO (aug.) 3.83 0.00 3.6s 5.69 0.01 6.6s 7.75 0.04 18.1s

Table 3. Generalization on TSPLIB with various problem shapes.

Method
n < 100 100 ≤ n < 200 200 ≤ n < 500 500 ≤ n < 1k

(6 instances) (21 instances) (16 instances) (6 instances)
Obj.↓ Gap↓ Time↓ Obj.↓ Gap↓ Time↓ Obj.↓ Gap↓ Time↓ Obj.↓ Gap↓ Time↓

POMO (aug.) 6.26 2.36 0.15s 6.75 3.08 0.27s 10.63 14.81 0.95s 16.22 30.14 4.6s
SLIM (aug.) 6.19 1.36 0.15s 6.88 5.24 0.27s 10.82 16.99 0.95s 19.40 55.57 4.6s
BOPO (aug.) 6.19 1.26 0.15s 6.72 2.55 0.27s 10.21 10.41 0.95s 15.29 22.44 4.6s

comparable performance, demonstrating its superiority. No-
tably, our BOPO achieves superior performance over POMO
on TSP100, even with fewer training epochs (700 vs. 2000).
Generalization results on TSPLIB presented in Table 3
demonstrate BOPO’s significant advantages over other neu-
ral baselines when generalizing to out-of-distribution in-
stances. Moreover, results based on INViT’s generalization
to other distributions are shown in Figure 2, showing con-
sistent superiority when implemented on different models.

5.3. Flexible Job-shop Scheduling Problem

Neural Model. For an FJSP instance represented as a dis-
junctive graph, we adopt the MGL model (see Appendix B)
to compute action probabilities, which is similar to the
model for JSP.

Training & Test. For evaluation, we use FJSP instances
from the LA benchmark (Lawrance, 1984). The benchmark
includes e-data, r-data, and v-data, where each operation
can be allocated to 1-2 machines, 1-3 machines, and 1-
m machines, respectively. Following Song et al. (2023),
we generate 25000 FJSP instances with 5 different shapes:
{10 × 5 × 5, 10 × 10 × 10, 15 × 10 × 10, 20 × 5 × 5,
20 × 10 × 7}. For each shape, 2500 instances belong to
r-data and 2500 to v-data. We set B = 128, K = 16, and
D = 1 during training, and employ both greedy rollout and
sampling rollout with B′ solutions during inference.

Baselines. For FJSP, we compare our proposal with both
representative traditional PDRs and state-of-the-art RL-
based constructive methods: DNN (Yuan et al., 2024) using
the actor-critic framework, HG (Song et al., 2023) utilizing
heterogeneous graphs for instance representation, and RS

Table 4. Average gaps (%) on FJSP benchmarks.

Greedy Constructive Sampling Constructive
Traditional PDR RL BOPO B′=100 B′=256 B′=512

Benchmarks SPT MOR MWR DNN HG RS BOPO HG RS BOPO BOPO BOPO

LA(e-data) 26.1 17.7 20.5 15.5 15.5 13.2 14.5 8.2 6.9 6.1 5.4 5.0
LA(r-data) 28.7 14.4 17.8 12.1 11.2 9.6 8.4 5.8 4.7 4.0 3.6 3.4
LA(v-data) 17.8 6.0 6.6 5.4 4.3 3.8 1.8 1.4 0.8 0.6 0.5 0.4

Table 5. Average gaps (%) of various preference pair construction
methods on the DMU benchmark.

w/o Hybrid Rollout w/o Uniform Filtering w/o Best-anchored Pairing

Shape Sampling Rollout Random Top-K Bottom-K Full Permutation Pairing BOPO

20x15 11.6 12.0 12.8 12.5 11.9 10.9
20x20 13.0 12.9 14.5 12.5 13.3 12.5
30x15 15.2 14.0 15.9 14.6 15.5 13.3
30x20 16.7 16.4 18.5 16.7 16.6 15.8
40x15 12.1 11.7 13.2 11.8 11.2 11.2
40x20 17.5 16.1 18.7 16.4 16.5 16.1
50x15 12.1 12.1 12.8 11.4 11.2 10.9
50x20 17.1 16.3 18.8 16.6 16.4 16.3

Avg 14.4 14.0 15.6 14.1 14.1 13.3

(Ho et al., 2024) employing residual scheduling to remove
finished operations.

Results on FJSP Benchmarks. As shown in Table 4,
with greedy rollout, BOPO significantly outperforms most
baselines, only marginally falling behind RS on LA e-data.
When all methods use sampling rollout with 100 solutions,
the proposed method even achieves the best performance
across all cases. Notably, increasing the number of sampled
solutions consistently reduces the optimality gap.

5.4. Ablation Study

Higher Sample Efficiency of the BOPO Training
Paradigm. We compare BOPO with two representative
training paradigms: RL and SLL. For JSP, we compare
BOPO with RL-based PPO and SLL-based SLIMMGL, all
using the MGL model and identical training settings. For
TSP, we compare BOPO with RL-based POMO and SLL-
based SLIM, all using the POMO model and identical train-
ing settings. The training curves in Figure 3 demonstrate
our proposal’s higher sample efficiency, achieving lower
optimality gaps than both baselines with the same num-
ber of training instances, with the advantage being more
pronounced when training data is limited.

Effectiveness of the Best-anchored Preference Pair Con-
struction Method. To validate our three-step preference
pair construction method, we replace each step with a sim-
pler alternative. We substitute sampling rollout for hybrid
rollout, replace uniform filtering with random, top-K, or
bottom-K filtering, and use full permutation pairing instead
of best-anchored pairing while maintaining the same total
number of pairs. As shown in Table 5, BOPO’s perfor-
mance deteriorates without (w/o) any of these components,
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Figure 2. Performance on TSP with different problem scales and distributions: (a) uniform, (b) cluster, (c) explosion, and (d) implosion.
RL-original denotes the results reported in the INViT paper; RL-retrained denotes the results retrained with the same batch size as BOPO.

0 20000 40000 60000 80000 100000 120000 140000
Training Instances

6

8

10

12

14

16

18

20

Av
er

ag
e 

Ga
p 

on
 V

al
id

at
io

n 
Se

t

PPO (RL)
SLIMMGL (SLL)
BOPO

(a)

0 20 40 60 80 100 120 140 160
Training Epochs

3.830

3.835

3.840

3.845

3.850

3.855

3.860

Av
er

ag
e 

Ob
j. 

on
 T

SP
20

POMO (RL)
SLIM  (SLL)
BOPO

(b)

Figure 3. Training curves of different training paradigms for: (a) JSP and (b) TSP.

demonstrating the necessity of our design. Notably, top-K
filtering leads to significantly worse performance, highlight-
ing the importance of filtering worse solutions to create
sufficient preference differences in pair construction. Addi-
tional analyses of hybrid rollout effectiveness are provided
in Appendix E.

Superiority of the Objective-guided Preference Op-
timization Loss. To evaluate our proposed loss with
a preference-based scaling factor, we compare it with
other preference optimization losses: the classic DPO loss
(LDPO) (Rafailov et al., 2023), the popular SimPO loss
(LSimPO) (Meng et al., 2024), and a variant of BOPO loss
without the scaling factor (LBOPO−). Complete loss for-
mulations are provided in Appendix C. For DPO, which
requires a reference model to prevent excessive policy devi-
ation, we use the old model from 10 episodes prior, similar
to PPO, with the common hyperparameter setting β = 0.1.
For SimPO, we follow their standard parameters with β = 2
and γ = 1. As shown in Table 6, BOPO achieves the best
performance across all benchmarks for both B′ = 128 and
B′ = 512, with particularly significant improvements on
the DMU benchmark, demonstrating the effectiveness of
our loss design and its preference-based scaling factor. It is
worth noting that SimPO performs poorly on DMU, where

Table 6. Average gaps (%) of various loss functions for JSP.

B′ = 128 B′ = 512

Benchmark LSimPO LDPO LBOPO− LBOPO LSimPO LDPO LBOPO− LBOPO

TA 8.5 8.7 8.5 8.2 7.7 7.8 7.6 7.5
LA 2.9 2.9 2.9 2.9 2.4 2.5 2.4 2.3

DMU 15.2 14.5 14.1 13.8 14.1 13.6 13.2 12.9

the test distribution diverges from training. This hints at
potential overfitting caused by its target margin term γ.

5.5. Hyperparameter Study

BOPO has two crucial hyperparameters: the solution num-
ber of hybrid rollouts B and the number of filtered so-
lutions K. We analyze their individual effects by vary-
ing B ∈ {32, 64, 128, 256, 512} and K ∈ {4, 8, 16, 32}.
Additionally, we explore their interaction by maintaining
a fixed ratio B/K = 16 while scaling both parameters
K ×B ∈ {4× 64, 8× 128, 16× 256, 32× 512}.

Effect of the Solution Number of Hybrid Rollouts. As
shown in Figure 4a, increasing the number of sampled solu-
tions during training, i.e., larger B, improves solution qual-
ity by enhancing the probability of collecting higher-quality
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Figure 4. GPU memory usage in training and average gap (%) on TA benchmark for: (a) varying B, (b) varying K, and (c) varying B×K.

solutions. However, GPU memory consumption grows with
B due to parallel computation, raising costs. While the
performance improves significantly up to B = 256, further
increases yield diminishing returns despite rising compu-
tational costs, making B = 256 a reasonable choice. We
also evaluate our method on TSP20/50 with B = 20/50,
the performance remains comparable to B = 128 (detailed
in Appendix F). This suggests that for small-scale problems,
the optimal B is low since the model can efficiently sample
high-quality solutions.

Effect of the Number of Filtered Solutions. The number
of filtered solutions K determines the number of preference
pairs, making it a critical parameter. As shown in Figure 4b,
while increasing K generates more preference pairs, it also
increases the similarity among solutions, as they are more
likely to come from the same local region. Our experiments
show that K=16 achieves the best performance, with either
larger or smaller values leading to performance degradation.
This suggests that a moderate K value balances the trade-off
between sufficient training data and solution diversity.

Effect of Interaction Between Number of Rollouts and
Filtered Solutions. B and K are interdependent parameters,
as B affects the uniform filtering step size ⌊B/K⌋, which
influences the similarity between solutions. As shown in
Figure 4c, we maintain a fixed step size of 16 while scal-
ing B and K proportionally. The performance improves
until B × K reaches 256 × 16, after which larger values
yield minimal gains despite increased memory costs. This
further validates our choice of B = 256 and K = 16 as
recommended parameters.

6. Conclusion
In this work, we present BOPO, a preference optimization-
based training paradigm for neural combinatorial optimiza-
tion. By introducing best-anchored preference pair construc-
tion and a novel objective-guided pairwise loss function
for COPs, our proposal achieves higher sample efficiency

than mainstream RL and recent SLL paradigms. Extensive
experiments on JSP, TSP, and FJSP demonstrate BOPO’s su-
perior performance over state-of-the-art neural constructive
methods, while requiring significantly less time to deliver
solutions competitive with traditional problem-specific it-
erative heuristics. The proposed method requires neither
expensive labels nor specialized design of the Markov De-
cision Process, making it easy to use in practice. More
importantly, it establishes a general training paradigm that
can be readily applied to various neural models for solving
different COPs.

Although BOPO demonstrates superior sample efficiency
compared with RL and SLL, one limitation is that it still re-
quires a relatively large number of rollout solutions, similar
to SLIM. This incurs moderate costs in collecting high-
quality solutions for effective model learning. In future
work, we will explore efficient ways to obtain high-quality
solutions that facilitate model training. One promising di-
rection is to leverage problem invariance and solution sym-
metry to efficiently generate diverse high-quality training
data. Another direction is to efficiently enhance solution
quality by incorporating problem-specific heuristics during
training, providing better learning signals for the model.
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Table 7. The state features sj ∈ R15 that describes the information of an operation Oj for JSP.

ID Description

1 The processing time tj of the operation.
2 The completion of job Ji up to Oj :

∑j
j′=li1

tj′/
∑

j′∈Oi
tj′ .

3 The completion of job Ji after Oj :
∑lim

j′=j+1 tj′/
∑

j′∈Oi
tj′ .

4-6 The 1st, 2nd, and 3rd quartile among processing times of operations on job Ji.
7-9 The 1st, 2nd, and 3rd quartile among processing times of operations on machine Mj .

10-12 The difference between tj and feature 4 6.
13-15 The difference between tj and feature 7 9.

Table 8. The context features ci ∈ R11 that describes the status of a job Ji within a partial solution y<t at step t for JSP.

ID Description

1 C(Ji) minus the completion time of machine M(i,t)

2 C(Ji) divided by the makespan of partial solution C(y<t).
3 C(Ji) minus the average completion time of all jobs.

4-6 The difference between C(Ji) and the 1st, 2nd, and 3rd quartile computed among the completion
time of all jobs.

7 The completion time of machine M(i,t) divided by the makespan of the partial solution C(y<t).
8 The completion time of machine M(i,t) minus the average completion of all machines.

9-11 The difference between the completion of M(i,t) and the 1st, 2nd, and 3rd quartile computed
among the completion time of all machines.

A. Formalization of Problems
A.1. Job-shop Scheduling Problems

JSP consists of a set of jobs J = {J1, · · · , Jn}, a set of operations O = {O1, · · · , Ol}, and a set of machines M =
{M1, · · · ,Mm}. Each job Ji ∈ J is composed of a sequence of m operations (Oli1 , · · · , Olim), where lij ∈ {1, · · · , l}.
It must be completed sequentially in a strict order. Each operation Oj ∈ O must be performed on a specific machine
Mj ∈ M continuously for tj seconds, and each machine can only process one operation at a time. For convenience, we
define assignable operations at step t as Ot, the pending operation of job Ji at step t as O(i,t), and the corresponding
machine of O(i,t) as M(i,t). Once a scheduling plan is determined, the completion time C(Oj) of each operation Oj is
decided accordingly, resulting in the maximum completion time C(y) = maxi∈{1,...,n} C(Ji) of all jobs (i.e., makespan),
where C(Ji) = maxj∈{li1,...,lim} C(Oj) represents the completion time of job Ji. Makespan is typically the objective to be
minimized in JSP.

Disjunctive Graph. JSP can be represented using a disjunctive graph G = (V,A,E). In this graph, the node set
V = {Oj | Oj ∈ O} represents operations, the directed edge set A = {Olij → Oli(j+1)

| Olij , Oli(j+1)
∈ O} indicates

precedence constraints between successive operations (Olij → Oli(j+1)
), and the disjunctive (undirected) edge set E

connects operations performed on the same machine. A feasible solution is obtained by assigning directions to the undirected
edges in E = {Oj ↔ Oj′ | Oj , Oj′ ∈ O,Mj = Mj′}, resulting in a directed acyclic graph.

Features of JSP. Following previous works (Zhang et al., 2020; Corsini et al., 2024), we define two types of features. The
first type consists of static state features sj assigned to each operation Oj in the node set V , while the second type comprises
contextual features ci based on job Ji information at step t. The state features sj are fed into the encoder to compute
embeddings for each node (operation), while the contextual features ci are combined with these embeddings to jointly
contribute to the prediction. Table 7 details the state features sj ∈ R15, and Table 8 details the contextual features ci ∈ R11.

A.2. Traveling Salesman Problem

Two-dimensional Euclidean TSP, which is discussed in this paper, involves n nodes, where each node i ∈ {1, . . . , n} is
represented by a two-dimensional coordinate, forming a fully connected graph. The distance C(i, j) between nodes i and j
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Table 9. The state features sjk ∈ R15 that describes the information of an operation-machine node (Oj ,Mk) for FJSP.

ID Description

1 The processing time tjk of the node (Oj ,Mk).
2 The average completion of job Ji up to Oj :

∑j
j′=li1

tj′/
∑

j′∈Oi
tj′ .

3 The average completion of job Ji after Oj :
∑lim

j′=j+1 tj′/
∑

j′∈Oi
tj′ .

4-6 The 1st, 2nd, and 3rd quartile among processing times of operations on job Ji.
7-9 The 1st, 2nd, and 3rd quartile among processing times of operations on machine Mk.

10-12 The difference between tj and feature 4-6.
13-15 The difference between tj and feature 7-9.

is calculated by their coordinates. The objective of TSP is to find the shortest Hamiltonian cycle g(y) =
∑n

j=1 C(yj , yj+1),
where y = (y1, . . . , yn, y1), yj ∈ {1, . . . , n} visits each node exactly once and returns to the starting node.

Features of TSP. Similar to Kool et al. (2019), the input of TSP consists of n nodes with 2-dimensional features. At each
decoding step, the context embedding hc is defined as the concatenation of embeddings from the first and last visited nodes.
The coordinates of each instance are sampled from a uniform distribution on [0, 1]2.

A.3. Flexible Job-shop Scheduling Problem

FJSP, a variant of JSP, better reflects real-world scenarios. Unlike JSP, FJSP allows each operation Oj ∈ O to choose from
multiple candidate machinesMj ⊆M, rather than being restricted to a specific one. We redefine the processing time of Oj

in machine Mk ∈ Mj as tjk, and denote the tj =
1

|Mj |
∑|Mj |

k=1 tjk as the average processing time of operation Oj . This
flexibility significantly increases decision-making complexity, leading to a denser disjunctive graph.

Disjunctive Graph for FJSP. To simplify the disjunctive graph for FJSP, we introduce operation-machine nodes,
where an operation is decomposed into multiple operation-machine nodes. Each operation-machine node is simi-
lar to a node in JSP and can be treated as an action. Specifically, the disjunctive graph is formalized as G =
(V,A,E,U), where V = {(Oj ,Mk) | Oj ∈ O,Mk ∈ Mj} represents the set of all operation-machine pairs,
A = {(Olij ,Mk) → (Oli(j+1)

,Mk′) | Olij , Oli(j+1)
∈ O;Mk ∈ Mlij ;Mk′ ∈ Mli(j+1)

} denotes the directed edge
set, E = {(Oj ,Mk) ↔ (Oj′ ,Mk) | Oj , Oj′ ∈ O;Mk ∈ Mj ∩Mj′} denotes the disjunctive (undirected) edge set, and
U = {(Oj ,Mk)↔ (Oj ,Mk′) | Oj ∈ O, ;Mk,Mk′ ∈Mj} connects all operation-machine nodes belonging to the same
operation.

Features of FJSP. Similar to JSP, we define two types of features for FJSP. To accommodate operation-machine nodes used
in FJSP, we split the context features into job context features cJi and machine context features cMk , where cJi represents
the context features of job Ji, and cMk represents the context features of machine Mk. Similarly, the static state features
sj → sjk are modified from describing operation Oj to describing the operation-machine nodes (Oj ,Mk). Table 9 details
the state features sjk ∈ R15, and Table 10 details the contextual features cJi , c

M
k ∈ R5.

B. Neural Model for Scheduling Problems
For scheduling problems, we design an efficient neural model named MGL, which combines a multi-layer graph attention
network (GAT) (Veličković et al., 2018) encoder with a long short-term memory (LSTM) based (Hochreiter & Schmidhuber,
1997) context attention decoder.

B.1. Neural Model for JSP

Encoder. Since the disjunctive graph contains two types of edges: directed edges related to jobs, and disjunctive edges
(undirected) related to machines, we treat it as a two-layer graph to better distinguish between these two edge types, i.e.,
Gjob = (V,A), Gmac = (V,E), and G = Gjob ∪Gmac. One layer contains only directed edges, while the other contains
only disjunctive edges. To process this structure, we introduce a multi-layer GAT as the encoder, where each layer can be
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Table 10. The job context features cJi ∈ R5 and the machine context features cMk ∈ R5 that describe the status of a job Ji and a machine
Mk within a partial solution y<t at step t for JSP.

Job ID Description

1 C(Ji) divided by the makespan of partial solution C(y<t).
2 C(Ji) minus the average completion time of all jobs.

3-5 The difference between C(Ji) and the 1st, 2nd, and 3rd quartile computed among the completion
time of all jobs.

Machine ID Description

1 The completion time of machine Mk divided by the makespan of the partial solution C(y<t).
2 The completion time of machine Mk minus the average completion of all machines.

3-5 The difference between the completion of Mk and the 1st, 2nd, and 3rd quartile computed
among the completion time of all machines.

considered a standard 2-head GAT. The computation for an N -layer GATN is as follows:

GATN (x, G1, . . . , GN ) = [σ(GAT1(x, G1))|| · · · ||σ(GATN (x, GN ))].

In our encoder, we stack two 2-layer GAT as follows to embed ej of operation Oj :

ej = [sj ||σ(GAT2
second([sj ||σ(GAT2

first(sj , Gjob, Gmac))], Gjob, Gmac))].

Decoder. At step t, we use the embedding eyt−1
of the operation selected at step t − 1 as input to the LSTM, which

computes the query qt as follows:
qt = LN(LSTM(σ(eyt−1

·W1))) ·W2.

For each operation Oj , we concatenate context feature ci of its job Ji with the embedding ej to obtain the key kt,j as
follows:

kt,j = [σ(ci ·W3)||ej ] ·W4.

Finally, the query qt attends to the keys kt,j of assignable operations, computing the attention to generate the policy
distribution for action selection:

π(Oj |t) =
exp(qt · k⊤

t,j)∑
j′∈Ot

exp(qt · k⊤
t,j′)

.

B.2. Neural Model for FJSP

Encoder for FJSP. We also employ the MGL model for FJSP. With the introduction of operation-machine nodes and the
operation-related edge set U , we redefine Gopr = (V,U) and G = Gjob ∪ Gopr ∪ Gmac. The following describes the
embedding ejk of a 3-layer GAT to node (Oj ,Mk):

ejk = [sjk||σ(GAT3
second([sjk||σ(GAT3

first(sjk, Gjob, Gmac, Gopr))], Gjob, Gmac, Gopr))].

Decoder for FJSP. For operation-machine node (Oj ,Mk) of job Ji, the key kt,j,k is modified as:

kt,j,k = [σ(cJi ·W3)||σ(cMk ·W4)||ejk] ·W5.

Due to the fact that query qt is independent of operation-machine nodes, the policy distribution for nodes (Oj ,Mk) is:

π((Oj ,Mk)|t) =
exp(qt · k⊤

t,j,k)∑
Oj′∈Ot,Mk′∈Mj′

exp(qt · k⊤
t,j′,k′)

.
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Table 11. MGL’s efficiency compared with SLIM’s model.

Model Parameters Memory Usage (MB) Training Time (ms) Inference Time (ms)
During Training per Instance per Instance

MGL 351.23K 262.19 1395.99 800.04
GAT-MHA 376.96K (+25.73K) 7110.69 (27x) 1785.7 (+27.9%) 851.81 (+6.4%)

B.3. Comparison with Neural Model Used in SLIM

Our MGL is compared with the neural model used in SLIM (Corsini et al., 2024), denoted as GAT-MHA. The main
distinction between these models lies in their decoders, significantly impacting memory consumption and computational
efficiency, as analyzed in Table 11. All data are collected from a 15× 15 instance, with the solution size B set to 256.

The multi-head attention (MHA) module in GAT-MHA introduces additional weight matrices that contribute to its higher
parameter count. In contrast, LSTM in MGL achieves efficiency through recurrent weight sharing. GAT-MHA requires
32.8% more memory during forward propagation than MGL. Moreover, GAT-MHA’s backward pass memory usage is 27×
higher than MGL’s, primarily due to MHA’s gradient computation needs: Intermediate Activation Storage and Gradient
Scaling with Heads. For the former, MHA must retain attention score matrices and head-specific outputs during forward pass
for gradient computation, while LSTM’s recurrent nature minimizes intermediate storage. For the latter, MHA’s memory
overhead scales linearly with the number of attention heads, as gradients for each head’s parameters are stored separately.

C. Comparison with Other Loss Functions
C.1. Formulations of Loss Functions

In SLIM (Corsini et al., 2024), the locally optimal solution yo is treated as a pseudo-label, and the model is trained using
cross-entropy loss. The loss function of SLIM can be expressed as::

LSLIM (πθ|x,yo) = −
1

|yo|
log πθ(yo|x). (5)

This formulation effectively maximizes the average log-likelihood of the locally optimal solution. In contrast to SLIM, our
method incorporates suboptimal solutions into the loss function, effectively minimizing the average log-likelihood of these
suboptimal candidates. This approach improves sample efficiency and accelerates the convergence of model training.

DPO (Rafailov et al., 2023) employs a reference model πref, analogous to RLHF (Stiennon et al., 2020), to regularize the
trained model against excessive deviation from the initial policy. The DPO loss function is defined as:

LDPO(πθ|πref,x,yw,yl) = − log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
, (6)

where β controls the strength of regularization toward the reference model πref. In contrast, our method eliminates the
dependency on an explicit reference model, simplifying the training framework while avoiding potential distributional shift
issues.

To simplify the training phase and align the training goal with the generation goal, SimPO (Meng et al., 2024) eliminates the
reference model and simplifies the loss function as follows:

LSimPO(πθ|x,yw,yl) = − log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)
, (7)

where β is a constant that controls the scaling of the difference, and γ is a target margin term. In contrast, BOPO uses an
adaptive objective gap factor to scale the differences, instead of relying on additional hyperparameters.

Considering the similarity between the BOPO loss and that of policy gradients, we additionally analyze the loss function in
the REINFORCE algorithm (Kwon et al., 2020) here:

LPG(πθ|x,y) = −(g(y)− b) log πθ(yw|x), (8)
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where b is a baseline to distinguish positive or negative optimization signals for each sample y. In POMO, b =
∑B

i g(yi)/B
is the average objective of B samples. Note that, both BOPO and REINFORCE use the exact reward (objective) to optimal
policy. However, BOPO directly distinguishes optimization signals based on exact preferences, and the strength of the
optimization signal correlates with the difference in log-likelihood, requiring the model to maximize the probabilities gap
between yw and yl.

C.2. Gradient Analysis

Let z denote the argument of the sigmoid in Equation (4):

z =
g(yl)

g(yw)

(
1

|yw|
log πθ(yw|x)−

1

|yl|
log πθ(yl|x)

)
.

The gradient of LBOPO with respect to θ is:

∇θLBOPO =
∂LBOPO

∂z
· ∇θz.

Derivative of − log σ(z) becomes:
∂LBOPO

∂z
= −(1− σ(z)).

Gradient of z with respect to θ:

∇θz =
g(yl)

g(yw)

(
1

|yw|
∇θ log πθ(yw|x)−

1

|yl|
∇θ log πθ(yl|x)

)
.

Combining these, the total gradient becomes:

∇θLBOPO = − g(yl)

g(yw)︸ ︷︷ ︸
Adaptive Scaling

· (1− σ(z))︸ ︷︷ ︸
Confidence Weight

·

 1

|yl|
∇θ log πθ(yl|x)−

1

|yw|
∇θ log πθ(yw|x)︸ ︷︷ ︸

Direction of Policy Update

 .

Adaptive Scaling g(yl)
g(yw) : For minimization problems, g(yw) < g(yl), so g(yl)

g(yw) > 1. This amplifies the gradient magnitude
for pairs where yl is significantly worse than yw, prioritizing updates that correct large suboptimalities.

Confidence Weight 1− σ(z): As the policy becomes more confident in preferring yw over yl (σ(z)→ 1), the gradient
diminishes. This prevents overfitting to already well-separated pairs.

Normalization by |y|: The normalization 1
|y| ensures that solutions of different lengths contribute equally to the gradient.

Without this, longer solutions (e.g., JSP schedules with more operations) would dominate updates.

Direction of Update: The gradient increases the likelihood of yw (since ∇θ log πθ(yw|x) is added) and decreases the
likelihood of yl (since∇θ log πθ(yl|x) is subtracted).

Compared with DPO and SimPO, their gradients are as follows:

∇θLDPO = −β · (1− σ(d))︸ ︷︷ ︸
Confidence Weight

·

∇θ log πθ(yl|x)−∇θ log πθ(yw|x)︸ ︷︷ ︸
Direction of Policy Update

 ,

∇θLSimPO = −β · (1− σ(s))︸ ︷︷ ︸
Confidence Weight

·

 1

|yl|
∇θ log πθ(yl|x)−

1

|yw|
∇θ log πθ(yw|x)︸ ︷︷ ︸

Direction of Policy Update

 ,
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where

d = β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
, s = β

(
1

|yw|
log

πθ(yw|x)
πref(yw|x)

− 1

|yl|
log

πθ(yl|x)
πref(yl|x)

− γ

β

)
,

represent the confidence weight in DPO and SimPO.

DPO and SimPO rely on fixed hyperparameters (i.e., β and γ) to control the gradient magnitude, requiring manual tuning and
lacking dynamic adaptability. Furthermore, DPO does not perform length normalization on the log-likelihood calculations,
which may lead to instability in scenarios with variable-length outputs. In contrast, BOPO enhances robustness across diverse
scenarios through adaptive scaling factors and length normalization, thereby reducing dependence on the β hyperparameter.

D. Runtime Analysis for JSP
We additionally provide the solving time in Table 12, which is an important aspect in some scheduling scenarios.

Our model, MGL, achieves significantly lower solving time compared to all non-constructive methods while delivering
performance closing to L2S5k. When compared to RL-based greedy constructive methods, MGL maintains competitive
solving time even when sampling 512 solutions. Notably, MGL’s solving time does not increase significantly with larger
B′, a clear distinction from GAT-MHA, the model proposed in SLIM. This is because GAT-MHA relies on MHA decoder,
which has a computational complexity of O(n2), a drawback that becomes particularly pronounced as B′ grows.

E. Further Analysis of Hybrid Rollout
To investigate the impact of introducing a greedy solution through hybrid rollout, we trained the model using both hybrid
rollout and pure sampling approaches under different numbers of generated solutions B. The comparison results are shown

Table 12. The average solving time (s) of algorithms on the TA benchmark.

Non-constructive Greedy Constructive B′=128 B′=512

Shape OR-Tools L2S500 TGA500 L2S5k PDRs L2D SchN CL SLIM BOPO SLIM BOPO

15x15 462 9.3 12.6 92.2 0.00 0.39 3.5 0.80 0.69 0.67 0.72 0.75
20x15 2880 10.1 14.6 102 0.00 0.60 6.6 1.10 0.84 0.80 1.07 0.96
20x20 3600 10.9 17.5 114 0.00 0.72 11 1.39 1.11 1.06 1.37 1.23
30x15 3600 12.7 17.2 120 0.01 0.95 17.1 1.49 1.24 1.19 1.83 1.44
30x20 3600 14 19.3 144 0.01 1.41 28.3 1.72 1.66 1.59 2.42 1.91
50x15 3600 16.2 23.9 168 0.01 1.81 52.5 2.82 2.19 1.99 4.06 2.60
50x20 3600 22.8 24.4 228 0.02 3.00 96 3.93 2.91 2.63 5.41 3.44
100x20 3600 50.2 42.0 504 0.19 9.39 444 9.58 7.85 5.31 20.05 7.96
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Figure 5. Analysis of Hybrid Rollout. (a) Average gap (%) on TA benchmark of different rollout methods with varying numbers of
generated solutions B, (b) Participation and optimality of greedy solution during training.
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in Figure 5a. Evidently, hybrid rollout not only improves model performance but also significantly reduces the dependency
on B. Notably, the model achieves competitive results even with smaller generated sizes B. For instance, B = 32 with
hybrid rollout performs similarly to B = 64 with hybrid rollout and is only 0.4 points behind B = 512 with hybrid rollout.
In contrast, B = 32 without hybrid rollout performs poorly, with a gap of 0.8 compared to B = 512 without hybrid rollout.
Notably, hybrid rollout enables a generated solutions size of 256 to match the performance of a generated solutions size of
512 without hybrid rollout, demonstrating equivalent efficacy with reduced computational demand.

As illustrated in Figure 5b, to investigate how greedy solutions enhance training efficacy, we trained the model on TSP20
with hyperparameters B = 128 and K = 8, systematically tracking two metrics per epoch:

• The frequency of greedy solutions selected for preference pair construction (theoretical random selection probability:
1/16);

• The frequency of greedy solutions being identified as the best solution.

The rising selection frequency of greedy solutions demonstrates their growing dominance in training. Given that greedy
solutions exhibit the highest log-likelihood among all candidates, their participation delivers stronger gradient signals,
accelerating model convergence. The synchronized increase in greedy solutions being recognized as the best solution, and
the decrease of difference between the frequencies mentioned above validates their critical role in improving solution set
quality. This inherently addresses the limitation of sampling rollout, where suboptimal exploration often fails to capture
high-quality candidates.

These demonstrate that introducing a greedy solution via hybrid rollout has an effect akin to increasing the solution generated
size B during training, but without incurring additional computational costs. This is particularly significant because
large-scale and complex COPs often require substantial resources. Hybrid rollout offers a memory-efficient alternative while
maintaining high performance.

F. Additional Experiments.
To further investigate the impact of B on different problem types, we evaluate our method on TSP20/50 with B = 20/50
(denoted as BOPO−). As shown in Table 13, when sampling the same number of solutions as POMO, the performance of
the model remains comparable to B = 128. This suggests that for small-scale or simple problems, the optimal B is low, as
the model can efficiently sample high-quality solutions with fewer times.

BOPO’s advantage primarily stems from pairwise preference learning, rather than simply being an RL variant with the
proposed filtering method. To demonstrate this point, we compare BOPO with a POMO variant employing our Hybrid
Rollout and Uniform Filtering (denoted as POMO+). The key difference lies in the loss: while BOPO uses pairwise loss,
POMO+ calculates a standard POMO loss based on the filtered K solutions, as it lacks the pairwise mechanism. Results
in Table 13 show that POMO+ is inferior to BOPO, demonstrating the effectiveness of the preference learning of BOPO.
Moreover, POMO+ is even inferior to POMO, underscoring that the filtering method is tightly adapted to BOPO and may
not be applicable to general RL methods.

Table 13. Average gaps (%) on generated TSP instances.

Methods TSP20 TSP50

POMO 0.002 0.042
POMO+ 0.005 0.081

BOPO− 0.000 0.009
BOPO 0.000 0.009
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