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ABSTRACT

Ontology enrichment, understood as the process of extending and refining exist-
ing ontologies with new concepts, relations, and instances, has become a critical
task for building robust and up-to-date knowledge bases. The exponential growth
of scientific publications, datasets, and multimodal resources makes manual en-
richment highly impractical, creating the need for automated or semi-automated
approaches. In this work, we propose a framework that leverages multimodal large
language models and retrieval-augmented generation to support ontology enrich-
ment. Our method systematically extracts semantic knowledge units, aligns them
with existing ontological structures, and generates interlinked triples, thereby en-
hancing both the coverage and the expressivity of the ontology. This framework
addresses the knowledge acquisition bottleneck by enabling scalable integration
of heterogeneous resources and fostering cross-domain semantic interoperabil-
ity. To illustrate its effectiveness, we apply the framework to the domain of 4D
printing, a rapidly evolving field at the intersection of materials science, manu-
facturing, and design. By incorporating knowledge about materials, properties,
stimuli interactions, process parameters, and design strategies, the framework en-
riches a domain-specific ontology and supports innovation in the development of
programmable and multifunctional structures.

1 INTRODUCTION

In the era of artificial intelligence (Al) and data-driven technologies, the ability to structure and
interpret knowledge has become a cornerstone of intelligent systems. While vast amounts of data
are continuously generated, their utility depends on transforming raw information into machine-
readable semantic representations. Ontologies have emerged as a key solution to this challenge,
providing a formal and explicit specification of a shared conceptualization of a domain (Gruber,
1993). They allow the definition of concepts, properties, and semantic relations, which enables rea-
soning, knowledge integration, and inference beyond the explicitly available information (Guarino
et al., 2009). Ontologies play a central role in the development of the Semantic Web, where they
serve as the backbone for annotating and linking web resources with machine-interpretable seman-
tics (Shadbolt et al.L | 2006)). Instead of being limited to unstructured or human-centered information,
the Semantic Web envisions a knowledge-rich environment where data can be shared, reused, and
reasoned upon across heterogeneous systems. This has led to a significant research focus on domain-
and task-specific ontologies, which are increasingly applied in diverse fields such as biomedicine
(Bodenreider, 2004), materials science (Ghedini et al., 2017), and manufacturing (Chungoora et al.,
2013). Similarly, the HERMES (spatiotemporal semantics and logical knowledge description of me-
cHanical objEcts in the era of 4D pRinting and programmable Matter for nExt-generation of CAD
systemS) domain ontology has been established to capture 4D printing knowledge at the part design
level (Dimassi et al., 2021)).

Despite their structured nature, traditional ontologies are limited in dynamically adapting to evolv-
ing knowledge and in processing unstructured textual data and natural language inputs. These short-
comings highlight the need for enhanced integration between ontological systems and artificial in-
telligence (Al), particularly through natural language processing (NLP) and machine learning (ML)
techniques (L1, [2018). In such a context, large language models (LLMs), such as GPT (Radford
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et al.L|2019) and BERT (Kenton & Toutanova, 2019)), have transformed NLP by enabling advanced
capabilities in translation, question answering, and text generation (Zhao et al., 2023; Xu & Poo)
2023)). Built on the Transformer architecture (Vaswani, 2017), these models leverage vast datasets
to achieve high levels of contextual understanding. Scaling LLMs has led to emergent reasoning
capabilities, including in-context learning (ICL) (Peng et al., 2023), chain-of-thought (CoT) (Wei
et al., 2022), and retrieval-augmented generation (RAG) (Gao et al., 2023). These advances mit-
igate some limitations of conventional Al models by enabling real-time knowledge retrieval and
contextual inference. Additionally, the recent development of multimodal LLMs (MLLMs), such
as GPT-4V (Achiam et al.| 2023) and Gemini (Team et al.,[2023)), has further expanded AI’s ability
to integrate textual, visual, and symbolic information (Yin et al., 2024)). These models are particu-
larly relevant for domains like 4D printing, where information must be captured across modalities
to support design synthesis.

Through these advancements, LLMs remain fundamentally limited in interpretability and domain
specificity. Their probabilistic nature can lead to hallucinations and unreliable outputs, particularly
in highly specialized fields like 4D printing. Ontologies, by contrast, offer structured and inter-
pretable knowledge representation but lack adaptability. The fusion of both technologies presents a
promising approach to overcoming these challenges, especially in the enrichment of ontological data
structures, termed as ontology learning. As manual annotation is labor-intensive and not scalable
for large datasets or rapidly changing domains, semi-automatic methods, such as Phrase2Onto (Pour
et al., [2023)), have been developed by suggesting new concepts through phrase-based topic model-
ing; however, they still rely heavily on user input for validation, introducing potential subjectivity
and inconsistency. Fully automated approaches using NLP and ML expedite the ontology extension
process but are dependent on the quality of training data. These may introduce biases or errors if the
data or models are not well-aligned with domain specifics. Advanced systems like online clustering
with LLM agents (Wu et al.| 2024) provide innovative ways to integrate new knowledge without
extensive annotated datasets. However, they struggle with maintaining consistency and effectively
integrating diverse information streams, posing challenges in ensuring the accuracy and relevance
of ontology extensions.

The emergence of 4D printing — a technology combining smart materials and additive manufac-
turing (AM) — has opened new frontiers in fields requiring adaptive, deployable, or transformative
structures (Demoly & André, 2022 Demoly & Andre, 2022). This paradigm enables objects to self-
transform in response to external stimuli such as heat, light, moisture, solvent, or magnetic/electric
fields (Tibbits,[2013;|Ge et al.L[2013)). The scientific landscape of 4D printing is both rapidly evolving
and inherently multidisciplinary, encompassing fields such as materials science, chemistry, mechan-
ical engineering, process engineering, and biomimicry (Demoly et al.l 2021). Since its inception
in 2013, the field has experienced exponential growth, with more than 3,500 publications and an
estimated annual growth rate of approximately 40%, according to the Web of Science database (De-
moly & André, [2021} |Demoly & and, 2021; Demoly & André, 2024)). Key challenges in advancing
4D printing include improving the printability of smart materials, enhancing their mechanical and
actuation performance, promoting safe and sustainable deployment, and ensuring reliability under
cyclic stimuli and real-world conditions (Demoly et al., [2021). These challenges can be consid-
ered as interdependent, especially when designing and developing practical 4D-printed systems,
where trade-offs between material properties, process parameters, and functional requirements must
be carefully balanced (Demoly et al., [2021). To support collective and coherent progress, it be-
comes vital to establish a comprehensive and dynamic knowledge and data infrastructure capable
of integrate both historical findings and emerging research. Such an infrastructure is crucial for
consolidating the existing body of knowledge and effectively guiding future developments.

The proposed retrieval-augmented MLLMs framework aims to integrate ontology-based reasoning
with the generative and retrieval capabilities of MLLMs to support knowledge discovery across
diverse domains. By embedding ontological structures within LLM architectures, the framework
enhances knowledge extraction, semantic reasoning, and adaptive learning from both structured and
unstructured data sources, ranging from scientific literature and datasets. This active ontology en-
richment approach ensures real-time alignment with emerging research and technological advance-
ments. To demonstrate its applicability, we apply this framework to the domain of 4D printing,
where it enables the integration of cross-disciplinary insights related to smart materials, processes,
and programmable structures.
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2 ONTOLOGY ENRICHMENT FRAMEWORK

Ontology enrichment enables the enhancement of an existing preliminary ontology by automati-
cally adding new concepts (also considered as knowledge), relationships, and individuals (meaning
information or data) to make it more comprehensive and practical for a specific domain or task. To
ensure both the enrichment and population of the initial ontology, we employ an integrated frame-
work combining information retrieval with advanced text generation capabilities (as illustrated in

Figure I).
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Figure 1: Retrieval-augmented ontology construction pipeline (adapted from (Bougzime et al.,
2025b)).

Initially, we collected a curated corpus of published articles and domain-specific datasets using
targeted keywords. Each published article is split into discrete text segments and extracted figures,
while each dataset table is parsed into individual records. All text and image snippets are then
encoded using a fine-tuned MLLM into dense vectors and stored in a high-throughput vector index.
At inference time, the LLM issues similarity queries against this index to retrieve the top-k relevant
passages or images, which it incorporates as “context windows” into its prompts. From the generated
and context-aware outputs, a downstream triplet-extraction module identifies candidate [Subject-
Predicate- Object] facts. These facts are merged with existing knowledge from knowledge graphs
and passed to a symbolic reasoner, which enforces ontology schema constraints, checks for logical
consistency, and removes duplicates. Resulted triplets are then translated into classes, properties, or
instances, thereby populating and enriching the initial ontology in a continuous loop that keeps our
knowledge base both up to date and semantically rigorous.

2.1 ONTOLOGY ENRICHMENT FROM SCIENTIFIC LITERATURE

To enrich the ontology, the process begins with the identification and selection of key terms rele-
vant to the domain of interest. Using the ResearchRabbit application tool (res), an Al-supported
scholarly discovery platform, the pertinent intersections among these keywords serve as the basis
for collecting a large body of published research.

Then, we split these published articles using tools like LLM Sherpa (nlmatics, [2024)) for robust text
extraction and semantic chunking, which divided each paper into coherent chunks based on struc-
tural elements. This approach was designed to optimize both semantic completeness and compu-
tational efficiency, ensuring that each segment retained meaningful contextual information. Chunk
boundaries followed the natural discourse flow (e.g., paragraphs or logical sections) rather than fixed
lengths, thereby preserving local coherence throughout the segmentation process. The Aspose tool
(Asposel [2024) was used for image extraction in order to isolate each figure into standalone image
files. Each token was then embedded using BERT model and CLIP for images. This process con-
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Figure 2: Pipeline for extracting textual sections and associated figures from scientific literature

(adapted from (Bougzime et al}[2025b)).

verts the content into vector representations, allowing us to store them in a vector space, as shown
in Figure

Subsequently, detailed information concerning domain-specific entities, processes, and methodolo-
gies is systematically extracted from textual sources. Queries are encoded within a text vector space
using BERT embeddings to identify the 25 nearest vectors. As illustrated in Figure [2| selecting
one text vector highlights the section in green as the most relevant to the query. This section serves
to identify and retrieve its corresponding relevant image through the CLIP embedding model and
image vector space.

By pairing each textual section with its corresponding image, we enriched the LLaVA (Large
Language-and-Vision Assistant) MLLM’s input context (Parthasarathy et al., 2024} [Kim et al.,[2023}
2024). This RAG process combines information retrieval with text generation, so that it helps
to address challenges such as hallucination, outdated knowledge, and opaque reasoning in language
models. By incorporating data from external databases, RAG ensures more accurate and credible
output, particularly in knowledge-intensive tasks. This integration facilitates ongoing updates and
the inclusion of specialized information, therefore making RAG a dynamic solution that combines
intrinsic model knowledge with extensive external data.

Initially, we employed the few-shot learning approach (Brown} 2020} [Hoffmann et al., 2022} [Yang
2022); however, this method was inefficient due to its time and memory demands related to

the excessive length of contexts and often yielding imprecise results. To enhance efficiency, we
fine-tuned the LLaVA model specifically for triplet extraction (Ghanem ruz, 2024} [Liu et all}

2022} [Zhang et all 2024), leveraging low-rank adaptation (LoRA) (Hu et al., 2021) as a Param-
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eter efficient fine-tuning (PEFT) technique (Lialin et al. 2023). We opted for LoRA because it
significantly reduces the computational and memory overhead of fine-tuning. This allowed us to
efficiently adapt the LLaVA model to our domain-specific task without the need for large-scale re-
training. This process involved embedding domain-specific knowledge within the LLaVA model,
thus configuring the output format appropriately and ensuring consistent performance without the
need for additional tokens. The fine-tuning dataset comprised prompts, relevant images, and targeted
responses, enabling the model to align more closely with our extraction logic and generate outputs
in the specified format. Moreover, during fine-tuning, we trained the LLaVA model to distinguish
ontology classes, object properties, data properties, and instances, while preserving the hierarchical
relations among classes in accordance with ontology web language (OWL) formalism (Perera & Liu,
2024 \Val-Calvo et al., 2025; |Doumanas et al., 2025). This approach aims to refine a multimodal
large language model into a tool capable of identifying ontology-relevant triplets within a specific
domain.

To enable fine-tuning, a synthetic dataset is generated using a LLM. Relevant textual sections are
extracted from a corpus of scientific articles, and the CLIP model is employed to retrieve the most
semantically aligned image for each section. These image—text pairs are transformed into prompts,
which, through a one-shot learning approach with carefully designed instructions, guide a large lan-
guage model (e.g., ChatGPT-4) to generate both detailed textual descriptions and structured triplets
in the form of [Subject—Predicate—Object]. The resulting dataset follows a standardized format:
[prompt (combining the section and the image), triplets].

During inference, a single multimodal prompt was constructed for each target section. This prompt
included: (i) the raw section text, (ii) the associated figure or schematic, and (iii) a directive stating
“Extract all domain-relevant triplets”. This prompt was then processed by our MLLM, which jointly
attended to textual tokens and image patches to generate a set of [subject, predicate, object] asser-
tions. For figures, the model first employed an optical character recognition (OCR) module to detect
and encode text regions, and to extract key graphical elements (i.e., shapes, connectors, symbols)
as visual tokens. These visual tokens interacted with text embeddings via cross-attention within the
multimodal transformer. The text embeddings had been refined through our fine-tuning procedure,
therefore allowing for better alignment with domain-specific semantics. This cross-modal mech-
anism enabled the model to infer high-level semantic relations that are not explicitly stated in the
input but emerge from a combination of spatial configurations, textual cues, and prior knowledge
encoded in the pretrained weights.

2.2 ONTOLOGY ENRICHMENT FROM EXISTING DATASETS

To enhance the ontology, specific datasets that align with the domain’s requirements are incorpo-
rated. The selection process considers both the relevance of the datasets and their compatibility
with format constraints. Integration into the ontology follows a systematic methodology involving
detailed data preparation and mapping. Each dataset is decomposed into its constituent columns,
which are described and cataloged, with examples provided for clarity. To categorize each attribute
within the ontology, a one-shot learning approach (Li et al.} 2023} [Ucar et al., 2020) supported by
a large language model (Jiang et al., 2023)) is applied. Each cell in every row is instantiated as an
individual of its corresponding ontology class, as illustrated in Figure |3 and resource description
framework (RDF) object properties are extracted to link these instances. This end-to-end pipeline
yields a richly interconnected ontology graph that faithfully captures both the structural typology
and the relational semantics of the original data.

2.3 ONTOLOGY ENRICHMENT FROM KNOWLEDGE GRAPH

Furthermore, large-scale domain knowledge graphs can be leveraged to enrich ontologies with struc-
tured knowledge. Their integration typically relies on a systematic transformation pipeline that rep-
resents information in the standard [Subject, Relation, Object] format. To ensure semantic consis-
tency and interoperability, relationship mapping strategies are applied to align the extracted relations
with the target ontology.
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Figure 3: (A) Overview of the dataset pipeline, and (B) illustration of identified classes and intances
related to a dataset representation (adapted from (Bougzime et al.,[2025b)).

2.4 PREPROCESSING AND CONSTRUCTION OF THE ONTOLOGY

The results produced by the framework are subjected to a rigorous cleaning process to ensure that
only high-quality triplets are retained. In particular, the evaluation process considers the following
aspects :

Domain relevance: Each triplet’s subject and object are transformed into contextualized embed-
dings using BERT and compared against embeddings derived from a curated list of domain-specific
keywords. For each triplet element, the framework computes cosine similarity scores against all
domain keywords and retains the maximum similarity value as the relevance indicator. The final
domain relevance assessment combines both subject and object relevance scores in the overall eval-
uation function. This process ensures that the data is deeply aligned with the target field.

Semantic coherence: The framework implements a comprehensive evaluation strategy to assess
semantic meaningfulness. It computes direct BERT-based cosine similarity between subject and
object embeddings to measure their semantic relatedness. The final coherence score integrates both
the relation validity and subject-object similarity components. Additionally, predicate coherence is
evaluated through template-based assessment, where the framework compares BERT embeddings
of complete triplet phrases against baseline phrases and relationship templates to ensure predicate
appropriateness within the semantic context.

Structural validity: The framework checks the syntactic correctness of each triplet by verifying
that all elements (subject, predicate, and object) are present, of sufficient length, and follow expected
formatting standards. This validation ensures data reliability for downstream applications.

Redundancy elimination: Duplicate or highly similar triplets are identified through a two-stage
process. First, exact duplicates are removed through string matching of subject-predicate-object
combinations. Second, semantic duplicates are detected by computing BERT-based cosine similarity
between triplet embeddings, where triplets exceeding a similarity threshold are flagged as redundant.
This ensures that the final dataset is concise and free from both literal and semantic redundancy.
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Together, these validation steps contribute to a robust and high-fidelity cleaning process that pre-
pares the data for subsequent ontology construction and analysis. In addition to these quality control
measures, the ontology construction phase integrated several advanced techniques to further enhance
the ontology. First, entity names are normalized and cleaned to create valid uniform resource identi-
fier fragments, thereby ensuring semantic consistency across the ontology. This preprocessing step
effectively mitigates errors arising from formatting discrepancies or lexical variations. Furthermore,
the framework incorporates a BERT-based similarity analysis that compares new class labels with
those already present in the ontology. This mechanism dynamically identifies semantically similar
classes and, when a sufficient similarity threshold is met, establishes subclass relationships. In doing
so, the ontology consolidates redundant entities and organizes them hierarchically in a manner that
mirrors the underlying domain structure. Moreover, special attention has been given to maintaining
the homogeneity of the complete ontology by enforcing uniform naming conventions and consistent
semantic representations across all entities. This ensures that the entire knowledge base exhibits a
high degree of internal consistency, which is critical for efficient reasoning and data integration.

3 RESULTS: APPLYING THE FRAMEWORK TO 4D PRINTING ONTOLOGY

The rapid advancements in 4D printing have introduced a need for a structured framework to manage
and formalize the diverse knowledge involved in designing transformable systems. The HERMES
ontology addresses this need by providing a semantic and logical foundation for representing the
dynamic behavior of 4D-printed objects (Dimassi et al.l 2021). Built upon the Basic Formal On-
tology (Arp et al., 2015) and mereotopology theory (Smith, [1996), this ontology is centered on
key 4D printing views, namely AM, material, transformation process, and design and engineering.
Although structured around philosophical foundations and DL rules to ensure expressivity and rea-
soning across abstraction levels, this ontology — like most existing material ontologies — suffers from
limited capabilities for automated and large-scale learning through enrichment and population. This
limitation is particularly critical in emerging and rapidly evolving research domains like 4D print-
ing, where knowledge consolidation is essential to enhance technological readiness levels and reach
practical applications.

To enrich the ontology, the process starts with the selection of key terms, ie., “Additive Manufac-
turing”, “3D/4D Printing”, “Shape Memory Polymer”, “Shape Memory Alloy”, “Liquid Crystal
Elastomer”, “Hydrogel”, “Active/Smart Material”, “Metamaterial”, and “Multi-Material Structure”.
By identifying the pertinent intersections among these keywords, more than 1,810 relevant publica-
tions were retrieved. These articles are then decomposed into textual sections and extracted figures,
which are encoded into dense vectors and indexed within a high-performance retrieval store. In
parallel, material datasets collected from eight specialized databases (Jain et al., |2013a; Kuenneth
& Ramprasad, 2022; hyd, 2023} |Crews et al., 2012} lof Chicagol 2023} Jain et al., 2013bj [Takahashi
et al.| 2024; NASA) undergo a column-centric processing pipeline: column names and descriptions
are parsed and mapped to ontology classes using a one-shot prompting technique with an LLM,
thereby instantiating each row as an instance of its corresponding class and uncovering relationships
among the fields. Atinference, the MLLM retrieves the most relevant text or image snippets and gen-
erates context-aware outputs, from which a dedicated extraction module derives candidate triples.
These newly extracted triples, together with pre-existing entries from the MATKG knowledge graph
(Venugopal & Olivettil 2024)), are then passed to a downstream symbolic reasoner. The reasoner
performs rigorous validation—ensuring coherence, semantic consistency, structural integrity, and
duplicate elimination—before constructing and enriching the HERMES ontology. The quality of
the extracted triplets is underpinned by a Graph BERTScore F1 (Saha et al. [2021) of 0.7, demon-
strating high semantic fidelity (see Appendix [A). This integrated multimodal approach thus ensures
a reliable extraction of triplets from both explicit textual descriptions and implicit visual patterns.

Our framework initiates the ontology enrichment process with an initial 4D printing ontology, which
comprises only 170 classes, 9 instances, 48 object properties, and 13 data properties. Through the
successive integration of heterogeneous data sources and advanced validation techniques, the frame-
work has dramatically enriched and populated the ontology. In the first phase, the system processed a
corpus of scientific articles by extracting triplets that describe various domain-specific relationships.
This stage resulted in the identification of 5,706 classes, 16,651 instances, 1,331 object properties,
4,390 data properties, and the establishment of 7,913 subclass relationships. The consideration of
MatKG further augmented the ontology by processing additional instance-of relationships. It was
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responsible for incorporating 6,629 new instances and two additional data properties with 445,370
relations. This considerable increase reflects the framework’s ability to integrate detailed instance-
level data from supplementary sources, thereby enhancing the granularity and applicability of the
ontology. A further enrichment occurred through the automated ingestion of multiple datasets from
an external directory. This step contributed 144 additional classes, 12,540,671 instances, 26 object
properties, and 113 subclass relationships (see Figured). By parsing and merging these large-scale
datasets, the framework ensured a comprehensive and diverse coverage of the domain knowledge,
while maintaining structural validity and eliminating redundancy.

12,540,671

HERMES Ontology
107 1 mmm Published Articles
B Existing Datasets
mm MatkKG

106 4

10° 4

10% 4 5,706

Count (Log Scale)

102 4

10! 4

100 4

Classes Object Properties Data Properties Instances

Figure 4: Comparison of ontology components between the baseline HERMES ontology and its
extended counterparts derived from published articles processing, dataset parsing, and integration

with MatKG triplet (adapted from (Bougzime et al},[2025D)).

After synthesizing the contributions from the scientific literature, the MatKG module, and additional
datasets, the final ontology exhibits 5,849 classes, 12,563,951 instances, 1,357 object properties,
4,392 data properties, and 8,196 subclass relationships. This substantial ontology expansion demon-
strates the efficacy of our multi-stage enrichment process, where material, design and engineering,
and AM views have been highlighted.

In summary, the integration of multiple data sources, coupled with advanced NLP and robust valida-
tion measures, has culminated in a high-fidelity, richly structured ontology. This framework is fully
domain-agnostic—while it was demonstrated on 4D printing, it can just as easily be applied to any
other field. The resulting ontology not only represents a substantial expansion in scale and detail
compared to its initial state but also provides a solid foundation for downstream applications such
as knowledge-based reasoning, data integration, and semantic information retrieval across complex
scientific and technical domains. When embedded within a neuro-symbolic Al (NSAI) framework,
the ontology can be dynamically updated in real-time and reasoned over alongside neural models,
thereby bridging symbolic and neural approaches for a context-aware design strategy

et all, 2025%).

4 CONCLUSION

In this work, we presented an innovative framework for ontology enrichment applicable across di-
verse domains, integrating MLLMs and RAG to overcome the limitations of traditional ontological
systems. Our approach, successfully combines the formal rigor of structured knowledge repre-
sentation with the adaptive and contextual capabilities of advanced language models, which sys-
tematically captures heterogeneous information from scientific literature, databases and extensive
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knowledge graphs. Experimental results demonstrate that our methodology significantly expanded
an initial, rather limited ontology — starting from 170 classes and a few instances — to a compre-
hensive structure encompassing over 5,800 classes and more than 12.5 million instances. Future
work should focus on (i) designing specialized agent architectures that integrate vision encoders and
domain-specific prompt templates for materials science modalities (Bougzime et al., [2025cid), (ii)
implementing advanced verification heuristics that leverage both linguistic and visual ontological
rules, (iii) developing evaluation metrics for multimodal triplet extraction that reflect the unique
challenges of materials knowledge representation, and (iv) creating dedicated relation classification
agents for precise typing along with specialized validation agents for ontology cohesion and triplet
integrity. By embracing multimodal multi-agent systems, we can move toward adaptive ontologies
that evolve seamlessly with the scientific literature, providing researchers with powerful tools for
accelerated materials discovery and development.
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A Al MODEL ASSESSMENT

To determine the optimal temperature — a key parameter that regulates the level of randomness
in the model’s output during inference — we evaluated the model’s performance across a range of
temperature settings. Specifically, we tested two configurations: the fine-tuned model on its own,
and the fine-tuned model combined with one-shot learning. Temperature plays an important role
in balancing determinism and creativity in language model outputs. Lower temperatures make the
model’s responses more focused and predictable, while higher temperatures increase variability and
originality. This trade-off impacts the accuracy and relevance of extracted triplets (Murel & No-
ble, 2024). As illustrated in Figure [5] the standard fine-tuning approach without any in-context
learning demonstrated higher stability and improved performance when compared to the fine-tuning
approach with one-shot across metrics which represent n-gram-based metrics encompassing preci-
sion (Bilingual Evaluation Understudy, termed as BLEU), Recall-Oriented Understudy for Gisting
Evaluation (termed as ROUGE), and F1-score (combining BLEU and ROUGE metrics) (Ghanem
& Cruz, |2024)). These n-gram-based metrics rely on the comparison of overlapping word sequences
(called n-grams) between the generated and reference texts. For instance, an e-gram refers to a con-
tiguous sequence of e words, 1-grams are unigrams (single words), 2-grams are bigrams, and so on,
thus providing nuanced evaluation of fluency and relevance in generated text (Jurafsky & Martin,
2025)). Details of the metric computation are provided in the next section.

Across all four metrics, the stand-alone fine-tuned model consistently outperforms the fine-tuned
with one-shot configuration, which exhibits pronounced variability and uniformly lower scores. The
triplet-matching F1 peaks sharply at T ~ 0.55, while G-BLEU and G-ROUGE F1 scores remain op-
timal in the 0.55-0.70 interval. Moreover, the G-BERTScore attains its highest precision at T = 0.55,
underscoring the model’s fine-grained semantic alignment between predicted and reference graphs.
By combining robustness — in the form of stable F1 performance — with high sensitivity afforded
by both n-gram overlap and contextualized embeddings, these metrics demonstrate that T ~ 0.55
provides the ideal trade-off between precision and recall. Consequently, simple fine-tuning not only
yields superior extractive accuracy and consistency for relational triple extraction but also avoids the
added complexity and instability introduced by one-shot in-context learning.

13



Under review as a conference paper at ICLR 2026

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725

TripleF1 G-BLEU

Score

Temperature Temperature
726 G-Rouge G-BertScore
727

728
729
730
731
732
733
734
735
736
737
738
739
740
41

Score

Temperature Temperature

I Fine-Tune I Fine-Tune with One-Shot
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