
NutePrune: Efficient Progressive Pruning with Numerous Teachers for
Large Language Models

Anonymous ACL submission

Abstract

The considerable size of Large Language Mod-001
els (LLMs) presents notable deployment chal-002
lenges, particularly on resource-constrained003
hardware. Structured pruning, offers an ef-004
fective means to compress LLMs, thereby re-005
ducing storage costs and enhancing inference006
speed for more efficient utilization. In this007
work, we study data-efficient and resource-008
efficient structure pruning methods to obtain009
smaller yet still powerful models. Knowledge010
Distillation is well-suited for pruning, as the011
intact model can serve as an excellent teacher012
for pruned students. However, it becomes chal-013
lenging in the context of LLMs due to memory014
constraints. To address this, we propose an015
efficient progressive Numerous-teacher prun-016
ing method (NutePrune). NutePrune mitigates017
excessive memory costs by loading only one018
intact model and integrating it with various019
masks and LoRA modules, enabling it to seam-020
lessly switch between teacher and student roles.021
This approach allows us to leverage numer-022
ous teachers with varying capacities to progres-023
sively guide the pruned model, enhancing over-024
all performance. Extensive experiments across025
various tasks demonstrate the effectiveness of026
NutePrune. In LLaMA-7B zero-shot experi-027
ments, NutePrune retains 97.17% of the perfor-028
mance of the original model at 20% sparsity029
and 95.07% at 25% sparsity.030

1 Introduction031

Large Language Models (LLMs) excel in language032

tasks (OpenAI, 2023; Touvron et al., 2023; Thoppi-033

lan et al., 2022; Scao et al., 2022), but their substan-034

tial size poses deployment and inference challenges035

(Frantar et al., 2022). Techniques like model prun-036

ing (Molchanov et al., 2016), knowledge distilla-037

tion (Jiao et al., 2019), and quantization (Dettmers038

et al., 2023) have been proposed to address compu-039

tational demands. The exploration of LLM pruning,040

especially structured pruning (Frantar and Alistarh,041
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Figure 1: The advantage of our NutePrune. Left: Pro-
gressive distillation guides the student with teachers
from easy to hard to avoid large capacity gap harm-
ing learning. But it suffers from multiple-fold costs
of loading numerous teachers. Right: Our NutePrune
leverages models with varying sparsity, enabling pro-
gressive distillation with negligible additional cost.

2023), holds great significance. Structured pruning 042

reduces model size by removing coherent parame- 043

ter groups, cutting inference costs on standard hard- 044

ware. But it is more challenging than unstructured 045

pruning in retaining the capabilities of LLMs (Hoe- 046

fler et al., 2021). Existing methods either adopt 047

data-efficient approaches, causing a performance 048

decline (Ma et al., 2023), or require extensive post- 049

training to recover model performance (Xia et al., 050

2023). In this work, we investigate efficient meth- 051

ods to prune the model to higher sparsity without 052

significant performance decline. 053

Knowledge distillation (KD) aims to train a more 054

compact student model with supervision from a 055

larger teacher model (Sanh et al., 2019; Gou et al., 056

2021). It’s widely adopted and proven highly ef- 057

fective in the field of LLMs. Progressive learning, 058
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utilizing intermediate teachers with a reduced gap059

in capabilities, has been demonstrated to improve060

performance in KD (Xiang et al., 2020). Previous061

work has shown that pruning with a distillation ob-062

jective can improve performance (Xia et al., 2022).063

Distillation is particularly suitable for pruning since064

the full original model inherently serves as an ex-065

cellent teacher for the pruned model (Sanh et al.,066

2020), which can offer a more detailed supervisory067

signal than conventional supervised training, en-068

hancing the effectiveness of pruning with limited069

data (Lagunas et al., 2021).070

However, applying this method in the realm of071

LLMs proves challenging. Given the vastness of072

an LLM, loading it onto GPUs consumes a substan-073

tial amount of memory. Introducing an additional074

teacher model requires twice the memory, mak-075

ing it impractical with limited memory resources.076

Furthermore, relying on a single teacher may not077

be the best practice (Liu et al., 2020; Wu et al.,078

2021). With the increasing gap of sparsity between079

teacher and student, the capacity gap is also widen-080

ing, which toughens distillation. Employing mul-081

tiple teachers with varying capacities can enhance082

the transfer of knowledge to students (Yuan et al.,083

2021). However, when it comes to the distillation084

of LLMs, memory consumption of multiple teach-085

ers becomes an even more pressing concern.086

Method NutePrune LLM-Pruner KD

GPU Memory (GB) 28.7 35.4 42.1

Table 1: GPU memory consumption during pruning.

In this paper, we address the above challenges087

with an efficient progressive Numerous-teacher088

pruning method (NutePrune). Our motivation is089

demonstrated in Figure 1. NutePrune aims to di-090

minish the capacity gap between the full teacher091

model and the highly sparse student, thereby alle-092

viating the difficulty of distillation (Su et al., 2021;093

Mukherjee et al., 2023; Xiang et al., 2020). Instead094

of relying solely on a single full teacher, we in-095

struct the student with many teachers with varying096

sparsity. To achieve this, we formulate pruning as097

a optimization problem where we learn masks to098

prune sub-modules while updating model param-099

eters through LoRA (Hu et al., 2021). Specially,100

we load an intact model, serving dual roles as both101

a teacher and a student. In teacher mode, we in-102

corporate the original model with collected frozen103

low-sparsity masks and corresponding LoRA mod-104

ules. And in student mode, we incorporate it with 105

learnable high-sparsity masks and LoRA modules. 106

Since the masks and LoRA modules are highly 107

parameter efficient, we collect and leverage numer- 108

ous modules with different sparsity to incorporate 109

numerous teachers and progressively prune the stu- 110

dent. And as shown in Table 1, this novel strategy 111

remains highly memory efficient. Our contribu- 112

tions can be summarized as follows: 113

• We propose a novel distillation method that 114

progressively guide the student using numer- 115

ous teachers with varying sparsity to narrow 116

the capacity gap. Through progressive KD, 117

we achieve higher model sparsity without sig- 118

nificant performance decline on limited data. 119

• Our NutePrune only loads one intact model 120

and switch it between teacher and student 121

modes by incorporating various masks and 122

LoRA modules. This novel efficient distilling 123

method for pruning enables using numerous 124

teachers and introduces no extra memory cost, 125

which is especially critical for LLMs. 126

• Extensive experiments, including LLaMA- 127

1/2/3 with varying sizes and Mistral, demon- 128

strate the effectiveness of our approach across 129

perplexity, commonsense reasoning, MMLU, 130

and BBH. 131

2 Related Works 132

Pruning Type Speedup No Support No Index

Unstructured ✓

Semi-Structured ✓

Structured ✓✓ ✓ ✓

Table 2: Structured pruning yield most significant
speedup without any special hardware support or ad-
ditional index storage.

Pruning for LLMs For LLMs, SparseGPT 133

(Frantar and Alistarh, 2023) and WANDA (Sun 134

et al., 2023) employ unstructured pruning methods, 135

while N:M sparsity (Zhou et al., 2021) is consid- 136

ered semi-structured. Despite the effectiveness of 137

these methods, their intricate structures do not yield 138

significant inference speedup on standard hardware 139

(Frantar and Alistarh, 2023) and they need to store 140

additional indexes. As compared in Table 2, struc- 141

tured pruning offers significant advantages, result- 142

ing in increased focus on this field in recent works. 143
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CoFi (Xia et al., 2022) and nn pruning (Lagunas144

et al., 2021) are proposed for smaller language mod-145

els like BERT (Devlin et al., 2018), often designed146

for specific tasks. CoFi loads both the teacher and147

student models, which is impractical for LLMs.148

Sheared-LLaMA (Xia et al., 2023) proposes prun-149

ing LLMs using a dynamic pre-training method,150

enhancing performance through extensive data and151

training resources.152

However, concerns persist regarding limited153

memory and training resources for LLMs. In a154

pioneering effort, LLM-Pruner (Ma et al., 2023)155

prunes LLMs in one-shot and utilizes LoRA (Hu156

et al., 2021) for fine-tuning. LoRAPrune (Zhang157

et al., 2023) employs iterative pruning, replacing158

gradients on full weights with gradients on LoRA159

to calculate group importance. Compresso (Guo160

et al., 2023) leverages LoRA and elaborately de-161

signed prompts for training and inference. Mean-162

while, LoRAShear (Chen et al., 2023) employs163

LoRA and a dynamic fine-tuning scheme to recover164

knowledge.165

Knowledge Distillation (KD) for LLMs KD166

(Hinton et al., 2015) has emerged as a vital tech-167

nique to reduce inference costs while maintaining168

performance quality in the context of LLMs. Prior169

work of KD (Taori et al., 2023; Fu et al., 2023)170

mostly focuse on black-box KD, using teacher’s171

generations to fine-tune the student. With the rise172

of open-source LLMs (Zhang et al., 2022; Touvron173

et al., 2023), interest in white-box KD is growing.174

White-box KD, leveraging teacher weights and log-175

its, provides richer supervision signals, enhancing176

language abilities (Agarwal et al., 2023; Gu et al.,177

2023; Wen et al., 2023). Despite progress on small178

language models, significant performance gaps be-179

tween large and small models persist (Achiam et al.,180

2023; Anil et al., 2023).181

Progressive knowledge distillation (Xiang et al.,182

2020) has proven effective by using intermediate183

teachers to bridge the capacity gap with LLMs, es-184

pecially in scenarios reliant on data generated by185

multiple teachers (Mukherjee et al., 2023). Orca186

(Mukherjee et al., 2023) first learns from easier ex-187

amples from ChatGPT and then from harder ones188

from GPT-4, enhancing performance for smaller189

students in KD. However, applying white-box KD190

to LLMs poses challenges due to substantial mem-191

ory requirements for loading both teacher and stu-192

dent models. This challenge becomes even more193

difficult when attempting to load multiple teachers.194

3 Methodology 195

In this section, we first introduce how our 196

NutePrune enables efficient knowledge distillation 197

for structured pruning in 3.1. Then, to narrow ca- 198

pacity gap during distillation, we introduce the pro- 199

gressive knowledge distillation method that col- 200

lects and incorporates numerous teachers in 3.2. 201

The overview framework is illustrated in Figure 2. 202

3.1 Efficient Distillation for Structured 203

Pruning 204

We formulate structure pruning as a constrained op- 205

timization problem where we simultaneously learn 206

masks to prune the structure and update the model 207

to recover ability. To mitigate memory consump- 208

tion, we utilize LoRA for model updates, making 209

pruning the process of training these masks and 210

LoRA parameters. 211

Learning masks to control the pruned struc- 212

ture Three types of structure are pruned: atten- 213

tion heads, FFN intermediate dimensions, and hid- 214

den dimensions. We achieve this by learning masks 215

zhead,zint,zhid ∈ {0,1}. Formally, the multi-head 216

attention module MHA(x) and feed-forward net- 217

works FFN(x) of layer l are pruned as: 218

MHAl(X) = zhid ⋅
Nhead

∑
h=1

zl,hheadAtt
l,h(X). (1) 219

FFNl(X) = zhid ⋅W l
D (zlint ⋅W l

U(X) ⋅W l
G(X))

(2) 220

where Att() is the attention module and activation 221

is omitted. WD,WU ,WG are down projection, up 222

projection, and gating projection. 223

During mask training, we calculate the remain- 224

ing size to obtain the expected sparsity ŝ: 225

ŝ(z) = 1

M
⋅ 4 ⋅ dh ⋅

L

∑
l

Nhead

∑
h

d

∑
k

zl,hheadz
k
hid

+ 1

M
⋅ 3 ⋅

L

∑
l

dint

∑
i

d

∑
k

zl,iintz
k
hid,

(3) 226

where M denotes full model size. L is number of 227

layers. dh,Nhead, d, dint are head dimension, num- 228

ber of head, hidden dimension, and intermediate 229

dimension, correspondingly. 230

All masking variables are learned as real num- 231

bers in [0,1] during training. We follow (Louizos 232

et al., 2017; Guo et al., 2023) and employ the aug- 233

mented L0 regularization, which is detailed in Ap- 234

pendix A. 235
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Figure 2: The overall framework of NutePrune. The pruned model is frozen and incorporated with learnable masks
and LoRA. During pruning, the model is guided by numerous teachers. Before pruned to the target sparsity (e.g.
30%), it learns from teachers with a fixed capacity gap. Once the target sparsity is achieved, it continues to learn
from all previous teachers from weak to strong. All these teachers are derived from snapshots of the student model
itself. Since only the mask and LoRA modules are snapshotted, the additional memory cost is negligible.

Updating parameters with LoRA Considering236

massive memory usage during full fine-tuning for237

LLMs, we incorporate lightweight LoRA (Hu et al.,238

2021) modules into LLM weights to update param-239

eters during pruning.240

An incorporated module W ′ is consisted of the241

original weight W ∶ Rn → Rm and sequential242

LoRA weights parallel to W :243

W ′(X) =W (X) +WB (WA(X)) , (4)244

where WA ∶ Rn → Rr,WB ∶ Rr → Rm and r ≪245

m,n. During training, W is frozen and only WA246

and WB are learnable.247

Efficient distillation Instead of simultaneously248

loading two massive models into memory, we pro-249

pose to incorporate the frozen and intact model M250

with different lightweight masks and LoRA mod-251

ules for the teacher and the student. Formally, let252

I = {z,WA,WB} denotes the set of all masks and253

LoRA modules which is highly parameter efficient254

(∣I∣≪ ∣M∣). By incorporating I into M, we obtain255

MI. The objective of knowledge distillation is the256

KL-divergence (Van Erven and Harremos, 2014)257

between teacher’s and student’s output probability258

distributions p:259

LKL =DKL(p(MIS , x), p(MIT , x)), (5)260

where x denotes training data. IS and IT denote261

the lightweight modules of student and teacher.262

Additionally, intermediate layers of a teacher 263

model can serve as effective targets for training a 264

student model (Chen et al., 2021). This objective 265

can be formulated as: 266

Llayer =
L

∑
l

MSE(hl(MIS , x),hl(MIT , x)),

(6) 267

where hl is the hidden embedding of the l-th layer. 268

Therefore, the overall objective is: 269

L = LKL + α1Llayer + α2L0, (7) 270

where α1, α2 are hyperparameters to control the 271

importance of different loss terms. 272

3.2 Progressive Knowledge Distillation with 273

Numerous Teachers 274

All teachers are collected from the snapshot of stu- 275

dents as the dotted line illustrated in Figure 2. To 276

narrow the capacity gap between the intact teacher 277

and high sparsity students, we leverage a novel pro- 278

gressive knowledge distillation (PKD) method for 279

pruning. It consists of two stages when pruning a 280

model from 0% sparsity as illustrated in Figure 3. 281

Before reaching target sparsity The sparsity of 282

pruned model gradually increase from 0 to t. To 283

narrow the sparsity gap, we set a fixed gap value 284

g and make the pruned model S guided by teach- 285

ers T whose sparsity ŝ(T ) is approximately g less 286

than ŝ(S): ŝ(T ) = ŝ(S) − g. These teachers are 287
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Figure 3: Illustration of the sparsity of teacher and stu-
dent models during pruning. Take the example with the
target sparsity t = 50% and sparsity gap g = 10%.

snapshots of previous students. The original intact288

model serves as the teacher for student ŝ(S) < g.289

To avoid collecting too many teachers, we only290

collect teachers with an interval of i. Therefore, for291

any teacher with sparsity ŝ(T ), it is responsible for292

guiding a student set within a range of sparsity. We293

use→ to denote the relationship in which a teacher294

distills knowledge to students.295

T → {S∣ŝ(T ) + g < ŝ(S) < ŝ(T ) + g + i}. (8)296

And the intact model M = T0 is responsible for the297

early students whose sparsity is less than g + i:298

T0 → {S∣ŝ(S) < g + i}. (9)299

After reaching target sparsity When the pruned300

model reaches the target sparsity t, we proceed to301

the second stage of PKD. The model undergoes dis-302

tillation by all preceding teachers, with a reduction303

of sparsity in the teachers. This gradual process304

guides the model’s learning trajectory from weaker305

to stronger knowledge and from easier to more306

challenging concepts. Throughout this stage, the307

sparsity of the pruned model ŝ remains close to308

the target sparsity t, while the masks z and LoRA309

modeuls WA,WB are continually optimized.310

To receive sufficient instruction from the best311

model (the intact model M), the teacher model is312

maintained as M during the final period.313

3.3 Post Fine-tuning314

After the pruning phase, to obtain better perfor-315

mance, we undergo a post fine-tuning stage fol-316

lowing LLM-Pruner (Ma et al., 2023). We fix the317

masks and only fine-tune LoRA modules on the318

Standford Alpaca (Taori et al., 2023) dataset.319

4 Experiments 320

4.1 Experimental Setup 321

Datasets To assess the zero-shot ability of LLMs, 322

we perform zero-shot classification tasks on seven 323

commonsense reasoning benchmarks: BoolQ 324

(Clark et al., 2019), PIQA (Bisk et al., 2020), Hel- 325

laSwag (Zellers et al., 2019), WinoGrande (Sak- 326

aguchi et al., 2021), ARC-easy (Clark et al., 2018), 327

ARC-challenge (Clark et al., 2018), and Open- 328

BookQA (OBQA) (Mihaylov et al., 2018). We 329

evaluate the general capcability of LLMs on the per- 330

plexity metric with WikiText (Merity et al., 2016). 331

Additionally, to evaluate the in-context learning 332

ability, We report the results on 5-shot MMLU 333

(Hendrycks et al., 2020), and 3-shot BBH (Suzgun 334

et al., 2022). 335

Models NutePrune is applicable across various 336

models of different sizes. We assess the per- 337

formance of NutePrune on the LLaMA-1 family 338

(7B/13B) (Thoppilan et al., 2022), LLaMA-2 (Tou- 339

vron et al., 2023) family (7B/13B), LLaMA-3-8B 340

and Mistral-7B (Jiang et al., 2023). 341

Baselines Considering the benefits of inference 342

acceleration, we focus on structured pruning. We 343

first replicate conventional methods: Magnitude 344

pruning (MaP) (Li et al., 2018), Movement Pruning 345

(MvP) (Sanh et al., 2020), and WANDA (Sun et al., 346

2023). For recent open-source methods, we imple- 347

ment LLM-Pruner (Ma et al., 2023) and Compresso 348

(Guo et al., 2023) and conduct detailed compar- 349

isons. For more recent works that are not publicly 350

available, we assess NutePrune using the same set- 351

tings as theirs. This includes LoRAPrune (Zhang 352

et al., 2023) and LoRAShear (Chen et al., 2023). 353

Implementation details For pruning stage, we 354

sample 20,000 sentences from the C4 (Raffel et al., 355

2020) dataset with a length of 512 tokens. We 356

train with AdamW optimizer, a batch size of 16, 357

and learning rates of 0.1 for masks and 0.001 for 358

LoRA. We prune the model for 7 epochs and a 359

linear sparsity schedule for target sparsity warmup: 360

4 epochs for 20% sparsity and 1 epoch for 50%. 361

The sparsity gap between the teacher and student 362

g is 10% and the snapshot interval i of teachers is 363

1%. After pruning, we post fine-tune the pruned 364

model on the Alpaca dataset (Taori et al., 2023) for 365

3 epochs. All experiments are conducted on one 366

A100 GPU (80G). 367
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Ratio Method WikiText2↓ BoolQ PIQA HellaSwag WinoGrandeARC-e ARC-c OBQA Avg. ⋆Avg.

0% LLaMA-7B 5.68 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25 66.39

20%
LLM-Pruner 9.96 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82 59.01
LoRAPrune - 57.98 75.11 65.81 59.90 62.14 34.59 39.98 56.50 -
†NutePrune 8.02 63.21 76.55 67.96 66.69 63.72 38.05 40.00 59.46 63.03

20%
Tuned

MaP 12.67 60.00 76.12 65.43 60.93 60.31 37.80 39.80 57.20 60.05
MvP 10.52 64.50 73.50 62.50 61.80 62.42 36.95 37.80 57.07 58.76

WANDA - 65.75 74.70 64.52 59.35 60.65 36.26 39.40 57.23 -
LLM-Pruner 8.57 69.54 76.44 68.11 65.11 63.43 37.88 40.00 60.07 61.94
LoRAPrune - 65.82 79.31 70.00 62.76 65.87 37.69 39.14 60.05 -
LoRAShear - 70.17 76.89 68.69 65.83 64.11 38.77 39.97 60.63 -
Compresso 10.38 73.64 75.08 64.77 67.72 66.12 37.54 40.40 60.75 62.60

‡NutePrune 8.04 72.69 76.71 68.99 65.51 65.49 38.48 40.20 61.15 63.57
NutePrune 7.65 74.56 77.04 70.01 65.67 65.78 37.97 39.20 61.46 64.39

25% †NutePrune 9.04 68.10 75.35 66.75 62.04 58.08 36.77 39.00 58.01 61.72
25%

Tuned
‡NutePrune - 65.84 76.17 66.69 64.56 61.49 37.03 39.20 58.71 63.12
NutePrune 7.85 68.99 77.20 67.90 65.04 63.76 37.80 40.20 60.13 63.78

50%
LLM-Pruner 98.10 52.32 59.63 35.64 53.20 33.50 27.22 33.40 42.13 40.94
LoRAPrune - 51.78 56.90 36.76 53.80 33.82 26.93 33.10 41.87 -
†NutePrune 17.45 62.29 67.95 53.03 57.06 45.45 30.03 36.60 50.35 53.14

50%
Tuned

MaP 33.18 39.69 66.81 42.49 50.67 49.32 30.63 31.40 44.43 46.33
MvP 27.62 59.94 63.06 40.98 55.64 44.07 26.79 31.80 46.04 46.23

WANDA - 50.90 57.38 38.12 55.98 42.68 34.20 38.78 45.43 -
LLM-Pruner 22.76 61.47 68.82 47.56 55.09 46.46 28.24 35.20 48.98 48.97
LoRAPrune - 61.88 71.53 47.86 55.01 45.13 31.62 34.98 49.71 -
LoRAShear - 62.12 71.80 48.01 56.29 47.68 32.26 34.61 50.39 -
Compresso 59.73 60.09 66.70 39.31 51.93 48.82 27.82 33.40 46.87 47.43

‡NutePrune 16.72 62.20 69.91 53.87 57.77 46.59 31.74 35.80 51.13 53.94
NutePrune 13.20 62.26 71.00 55.88 57.54 51.68 32.17 34.40 52.13 54.91

† only prunes the model by training masks without incorporating LoRA modules.
‡ prunes the model by co-training the masks and LoRA modules but without post fine-tuning on Alpaca.
⋆ includes results with the newer version of lm-evaluation-harness. See Appendix B for detail.

Table 3: Performance (%) of the compressed LLaMA-7B models.

Ratio Method WikiText2↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA ⋆Avg.

0% LLaMA-2-7B 5.47 77.74 79.11 75.97 69.06 76.35 46.33 44.20 66.97

20% LLM-Pruner 12.94 50.55 75.46 67.18 65.67 67.38 38.14 38.40 57.54
NutePrune 8.74 77.06 76.66 70.56 65.59 71.97 42.58 42.40 63.83

50% LLM-Pruner 24.47 54.13 68.06 46.71 51.54 50.97 25.85 34.00 47.30
NutePrune 12.94 66.24 70.83 57.04 59.51 58.46 31.97 34.00 54.01

Table 4: Performance (%) of the compressed LLaMA-2-7B models.

Ratio Method WikiText2↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA ⋆Avg.

0% Mistral-7B 5.25 83.73 82.26 81.05 74.19 80.89 53.84 43.80 71.39

20% LLM-Pruner 7.50 77.52 78.13 73.64 69.46 72.59 46.41 41.80 65.65
NutePrune 7.06 78.29 80.41 75.57 68.82 76.35 45.05 42.20 66.67

50% LLM-Pruner 30.51 62.48 66.59 48.00 56.51 52.61 28.07 29.80 49.15
NutePrune 12.29 63.64 72.63 57.95 61.25 62.46 35.41 33.80 55.31

Table 5: Performance (%) of the compressed Mistral-7B models.

4.2 Results368

Zero-shot performance Table 3 demonstrates369

PPL and zero-shot performances on commonsense370

reasoning tasks for compressed LLaMA-7B mod-371

els. The reported results include experiments for372

20%, 25% and 50% sparsity levels, covering sce-373

narios with and without parameter tuning.374

The average performance of NutePrune consis-375

tently outperforms previous methods across all 376

settings. For pruning without tuning, NutePrune 377

outperforms LLM-Pruner by 2.64%/8.22% at 378

20%/50% sparsity, underscoring its ability to de- 379

rive a more effective pruned structure compared 380

to other methods. For pruning with LoRA con- 381

trained, NutePrune improves from 59.46%/50.35% 382

to 61.46%/52.13% at 20%/50% sparsity, indicating 383
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Ratio Method WikiText2↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA ⋆Avg.

0% LLaMA-3-8B 6.14 81.04 80.85 79.18 73.40 80.13 53.16 44.60 70.34

20% LLM-Pruner 10.06 71.50 77.97 70.49 68.75 72.35 42.83 38.40 63.18
NutePrune 9.51 78.65 79.76 73.74 70.09 76.22 45.90 43.40 66.82

50% LLM-Pruner 27.37 41.59 67.46 46.53 55.64 49.71 27.22 31.60 45.68
NutePrune 21.72 65.20 68.72 52.30 58.64 53.41 29.44 35.00 51.82

Table 6: Performance (%) of the compressed LLaMA-3-8B models.

Ratio Method Avg. Zero-Shot (%) WikiText2↓ MMLU (5-shot) BBH (3-shot)

0% LLaMA-13B 67.63 5.62 46.90 37.72

20% LLM-Pruner 65.76 6.95 29.57 15.77
NutePrune 67.51 6.55 39.37 31.99

0% LLaMA-2-13B 68.80 5.30 54.86 39.53

20% LLM-Pruner 65.87 7.25 31.26 25.20
NutePrune 67.39 6.86 45.78 31.22

Table 7: Performance of the compressed LLaMA-13B and LLaMA-2-13B models with 20% sparsity.

co-training with LoRA could help recover model384

capability damaged by pruning. And with addi-385

tional post fine-tuning on Alpaca, notably, it retains386

97.17% of the performance of the original model387

at 20% sparsity and 95.07% at 25% sparsity.388

Table 4, 5 and 6 further demonstrates perfor-389

mances for compressed LLaMA-2-7B, Mistral-7B390

and LLaMA-3 models. At the same sparsity, multi-391

query attention models experience a more signifi-392

cant performance decline. Nevertheless, NutePrune393

consistently outperforms LLM-Pruner, proving our394

method is applicable across various models. No-395

ticeable improvements are observed at higher spar-396

sity levels, proving the effectiveness of our PKD in397

mitigating the capacity gap during distillation.398

Pruning of larger model We assess larger mod-399

els: LLaMA-13B and LLaMA-2-13B with 20%400

sparsity. To evaluate the ability of these stronger401

models, we further assess their in-context learning402

ability with MMLU and BBH (Brown et al., 2020).403

As demonstrated in Table 7, our approach yield404

an average zero-shot commonsense reasoning per-405

formance of 67.51% and 67.39%, which is only406

slightly lower than the full model and much higher407

than LLM-Pruner. It also outperforms LLM-Pruner408

in terms of PPL in WikiText2. For in-context409

learning ability, NutePrune achieves a score of410

36.37 MMLU and 31.99 BBH in LLaMA-13B, and411

45.78 MMLU and 31.22 BBH in LLaMA-2-13B.412

The slight decline in performance compared to the413

full model is acceptable, indicating that NutePrune414

maintains sufficient in-context learning capability.415

Additionally, when compared to LLM-Pruner, our416

advantages are clearly evident.417

Inference latency We test the inference latency 418

by generating from 64 tokens to 256 tokens on 419

vLLM (Kwon et al., 2023), which is a fast and 420

widely deployed library for LLM inference and 421

serving. The results are presented in Table 8. 422

NutePrune achieves latency savings of 11% and 423

29% at sparsity levels of 20% and 50%. While 424

LLM-Pruner save slightly more latency due to its 425

predefined neater structure, it comes at the cost 426

of reduced flexibility in tailoring. As sparsity in- 427

creases, the difference becomes negligible.

Method 20% 50%

0% Baseline 3.06
LLM-Pruner 2.63(-14%) 2.17(-29%)

NutePrune 2.72(-11%) 2.18(-29%)

Table 8: Inference latency of pruned LLaMA-7B.
428

Training cost We report the memory and latency 429

cost on different settings in Table 9. For extra 430

GPU memory cost of PKD, NutePrune snapshot 431

lightweight modules (masks and LoRA) of numer- 432

ous teachers into CPU. Only one teacher module is 433

loaded onto the GPU when needed, resulting in neg- 434

ligible memory cost compared with KD. In terms 435

of extra time cost, compared with supervised train- 436

ing, KD requires one extra forward pass of teacher 437

model, which is inevitable and cost 18.0% extra la- 438

tency. When snapshoting a teacher or switching to 439

a new teacher, due to the extremely low frequency 440

of operations, the time can be ignored. Introducing 441

Llayer requires additional 32% memory which is 442

also efficient compared to conventional KD. 443
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Progressive KD Llayer Memory Latency

27.68 3.67
✓ 28.67 4.33

✓ ✓ 28.69 4.33
✓ ✓ ✓ 38.00 5.52

Table 9: Training cost measured by average GPU mem-
ory (GB) and per step latency (s/iter).

4.3 Ablation Study444

We validate the effectiveness of NutePrune and445

investigate which properties make for a good446

NutePrune. Results are average zero-shot perfor-447

mance with tuning but without post fine-tuning,448

unless otherwise stated.449

Effectiveness of PKD To validate progressive450

knowledege distillation (PKD) in our NutePrune,451

we conduct ablation studies on various learning452

strategies. We eliminate the progressive schedule453

and adopt standard KD, where the intact model454

serves as the teacher throughout. Subsequently, we455

exclude the entire distillation procedure and em-456

ploy the standard generative language model loss,457

specifically next-token prediction, to train masks458

and LoRA modules. The results presented in Table459

10 demonstrate the critical role of KD in enhancing460

performance, with further improvements achieved461

through PKD. This phenomenon is particularly pro-462

nounced at higher sparsity.463

Progressive KD 20% 50%

✓ ✓ 63.57 53.94
✓ 63.19 52.73

59.98 41.77

Table 10: NutePrune and variants at 20%/50% sparsity.

Two stages of PKD PKD includes one stage be-464

fore reaching target sparsity and the other stage465

after that. Different progressive schedules are466

adopted. To assess the effectiveness of them, we467

conducted an ablation study at 50% sparsity under468

two training settings, as shown in Table 11: train-469

ing masks only and co-training masks with LoRA.470

In a stage without a progressive schedule, the intact471

model serves as the teacher. For the masks-only472

scenario, adopting either stage 1 or 2 alone yields473

significant improvements over KD. And for co-474

training, significant improvement is observed when475

both stages are adopted simultaneously.

Stage 1 Stage 2
Avg.(%)

masks-only co-train

✓ ✓ 53.14 53.94
✓ 52.31 52.79

✓ 52.40 52.53
51.83 52.73

Table 11: Performance of two stages of PKD.

476

Sparsity gap and interval of teachers During 477

stage 1, the sparsity gap between teacher and stu- 478

dent model is an important hyperparameter. As 479

shown in Table 12, a 10% gap is deemed appro- 480

priate to prevent a gap that is too small, as it may 481

result in insufficient guidance, or a gap that is too 482

large, which would toughing distillation. And when 483

taking snapshots of students as teachers, it is prefer- 484

able to save as many teachers as possible to facil- 485

itate more comprehensive training. However, it 486

comes with extra costs. As demonstrated in Table 487

13, selecting an interval of 1% leads to significant 488

improvement over the 10% interval, and the associ- 489

ated extra storage is acceptable.

Sparsity Gap 5% 10% 20%

Avg.(%) 53.62 53.94 53.04

Table 12: Performance of various sparsity gap.

490
Snapshot Interval CPU Storage Avg.(%)

1% (ours) 728MB 53.94
10% 73MB 53.27

Table 13: Storage and performance of various intervals.

5 Conclusion 491

In this work, we propose NutePrune as a novel ef- 492

ficient progressive structured pruning method for 493

LLMs. Our well-designed techniques minimize 494

the memory cost of KD, enabling NutePrune to 495

utilize numerous teachers to mitigate the capac- 496

ity gap between teacher and student and improve 497

the quality of distillation. We show the effective- 498

ness of NutePrune across various base models on 499

diverse metrics. This work contributes to struc- 500

tured pruning techniques for LLMs, particularly in 501

resource-constrained scenarios. 502
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6 Limitations503

Recent work (Ma et al., 2023; Xia et al., 2023)504

proves that using extensive data for post-training505

could substantially enhance the performance, but it506

comes with a substantial increase in computational507

costs. We target on pruning on resource-constraint508

scenarios and leave pruning with extensive data for509

future work.510
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A Detailed L0 Regularization757

To get the learnable masks z, L0 regularization758

introduces a sampling strategy as augmentation759

during training. z is a real number in [0,1] and is760

obtained from:761

u ∼ U(0,1)

s = sigmoid( 1
β
log

u

1 − u
+ logα)

s̃ = s × (r − l) + l
z =min(1,max(0, s̃)),

(10)762

where u is uniformly sampled between 0 to 1. α is 763

the parameter to be learned and β is a hyperparam- 764

eter. l, r is often −0.1 and 1.1 to ensure most z are 765

either 0 or 1 after training. 766

To prevent models from drastically converging 767

to different sizes, we follow (Wang et al., 2019) to 768

use this Lagrangian term: 769

L0 = λ1 ⋅ (ŝ − t) + λ2 ⋅ (ŝ − t)2, (11) 770

where λ1 and λ2 are both learnable. This loss term 771

L0 will impose ŝ to gradually converge to target 772

sparsity t. 773

B Zero-shot Performance with Newer 774

Version 775

lm-evaluation-harness released a new version in 776

June 2023 to assess the zero-shot performance of 777

LLaMA 1. This update addressed a tokenization 778

bug specific to LLaMA, resulting in higher and 779

more accurate performance results compared to the 780

older version. Despite these improvements, current 781

state-of-the-art reports continue to reference the 782

older version. Consequently, we conducted experi- 783

ments using both the new and old versions, and the 784

detailed results for the new version are presented 785

in Table 14. 786

C Pruning at Higher Sparsity 787

To demonstrate the effectiveness of NutePrune at 788

higher sparsity, we conducted experiments at 70% 789

sparsity in Table 14. 790

D Pruned Structure 791

To gain insights into the pruned model, we present 792

a detailed overview of the pruned structure at spar- 793

sity levels of 20% and 50%. The original hidden 794

dimension is 4096, with a number of heads set at 795

32 and an intermediate dimension of 11008. Tables 796

16 and 17 reveal several observations. Notably, 797

NutePrune tends to avoid pruning the hidden di- 798

mension, which aligns with the observation that 799

pruning it may result in significant performance 800

degradation (Ma et al., 2023). Regarding heads 801

and intermediate dimensions, NutePrune tends to 802

prune the the last few layers. This observation 803

differs from LLM-Pruner, which asserts the impor- 804

tance of the last layers. Further analysis of this 805

phenomenon is left for future work. 806

1https://github.com/EleutherAI/lm-evaluation-
harness/pull/531
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Ratio Tune Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA ⋆Avg.

0% LLaMA-7B 75.11 79.16 76.21 69.85 75.29 44.71 44.40 66.39

20% LLM-Pruner 57.49 76.06 69.53 63.93 67.17 38.05 40.80 59.01
†NutePrune 70.21 76.93 71.66 68.27 71.09 40.44 42.60 63.03

20% ✓

MaP 64.43 76.82 67.42 63.61 66.92 36.95 44.20 60.05
MvP 64.56 75.19 64.71 64.09 66.12 38.65 38.00 58.76

LLM-Pruner 67.37 77.86 71.47 65.90 69.57 39.59 41.80 61.94
Compresso 73.21 75.90 66.90 68.90 69.99 41.47 41.80 62.60

‡NutePrune 73.79 77.37 72.27 67.48 72.77 38.91 42.40 63.57
NutePrune 75.38 78.02 72.97 67.40 73.82 40.36 42.80 64.39

25% †NutePrune 71.53 76.50 70.60 65.98 69.11 39.93 38.40 61.72

25% ✓
‡NutePrune 72.91 77.42 70.34 68.11 70.92 41.55 40.60 63.12
NutePrune 74.95 77.75 71.27 67.40 71.25 41.81 42.00 63.78

50% LLM-Pruner 46.48 61.10 36.87 51.78 35.10 27.65 27.60 40.94
†NutePrune 65.38 69.04 55.08 61.33 55.72 30.80 34.60 53.14

20% ✓

MaP 43.33 67.46 44.27 54.78 52.19 30.46 31.80 46.33
MvP 60.00 63.11 41.73 56.04 47.10 27.05 28.60 46.23

LLM-Pruner 57.89 69.97 50.06 52.64 49.66 28.58 34.00 48.97
Compresso 61.31 66.32 40.73 52.41 51.18 27.65 32.40 47.43

‡NutePrune 67.25 70.67 56.64 59.83 57.07 31.74 34.40 53.94
NutePrune 67.52 71.60 58.64 60.14 59.72 32.94 33.80 54.91

Table 14: Zero-shot performance of the compressed LLaMA models in the new version of lm-evaluation-harness.
Bold denotes the best average performance at the same setting.

Ratio Method WikiText2↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA ⋆Avg.

0% LLaMA-7B 5.68 75.11 79.16 76.21 69.85 75.29 44.71 44.40 66.39

70% LLM-Pruner 56.33 47.28 60.83 31.66 50.75 39.56 24.83 28.80 40.53
NutePrune 34.30 62.08 62.30 39.43 51.46 42.17 26.19 30.20 44.83

Table 15: Performance (%) of the compressed LLaMA-7B models at 70% sparsity.

E Generated Examples807

We present generated examples from our pruned808

model using NutePrune at 20% sparsity. We pro-809

vide examples of three types: without tuning (w/o810

tune), with tuning but without post-finetuning (w/811

tune), and with tuning and post fine-tuning (w/ tune812

+ post FT). The results are displayed in Table 18.813
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# Hidden Dim 4070
Layer 1 2 3 4 5 6 7 8

# Head 23 22 30 22 29 27 30 28
# Intermediate Dim 5832 7820 9169 9187 8967 9163 9186 9112

Layer 9 10 11 12 13 14 15 16
# Head 30 30 31 30 32 27 30 30

# Intermediate Dim 9261 9165 9303 9695 10005 10258 10417 10564
Layer 17 18 19 20 21 22 23 24

# Head 30 29 26 25 23 21 16 21
# Intermediate Dim 10715 10759 10785 10790 10808 10778 10729 10707

Layer 25 26 27 28 29 30 31 32
# Head 14 15 6 7 11 8 7 9

# Intermediate Dim 10568 10366 10054 9403 8519 7297 6588 5164

Table 16: Detailed structure of compressed 20% LLaMA.

# Hidden Dim 4021
Layer 1 2 3 4 5 6 7 8

# Head 24 21 27 18 26 21 20 20
# Intermediate Dim 3980 6216 7120 6590 5889 5731 5283 4944

Layer 9 10 11 12 13 14 15 16
# Head 25 21 27 26 23 21 25 21

# Intermediate Dim 4879 4563 4590 5040 5469 5832 6215 778
Layer 17 18 19 20 21 22 23 24

# Head 23 23 21 19 16 15 6 13
# Intermediate Dim 7706 8121 8005 8091 8232 7705 6879 6134

Layer 25 26 27 28 29 30 31 32
# Head 7 8 2 5 7 5 3 8

# Intermediate Dim 4912 3762 3107 2527 2357 2314 2931 2622

Table 17: Detailed structure of compressed 50% LLaMA.
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Model Generated Sentences

w/o Tune

Neural Sequential Model, especially transformers, are used to model the human brain. The model is based on the
assumption that the brain is a system of interconnected modules, each of which is responsible for a specific function.
The modules are connected by synapses, which are the synaptic connections between neurons. The synapsis are
responsible for the transfer of information between the modules. The information is transferred in the form of a signal,
which is a combination of the input signal and the output signal. The input signal is the signal that is received by the
module, while the output is the output of the module. The output signal is then passed on to the next ...

AI can create a logo in seconds . It can also create a logo that is more creative than a human designer. AI can also
create logos that are more creative and unique than a human can. AI is also able to create logos in a short time. AI
has the ability to create logotypes. AI will be able to create a logo for a company in a short period of time. A logo is
a symbol that is used to identify a company. A logo can be used to identify the company. AI also has the ability of
creating logos that can be used in different ways. AI creates logos that have ...

What’s great about the holiday season ? The holiday spirit, of course! But it’s also a time for giving. And giving is
what we do best at the Chamber. We give you the opportunity to give back to your community. We’ve got a great list
of charitable organizations that are looking for your help. And we’ve made it easy for you to give. Just click on the
link below and you’ll be taken to the website of the charity of your choice. You can make a donation online, or you
can mail a check. Either way, you’re giving back to the community. And that’s what the ...

w/ Tune

Neural Sequential Model, especially transformers, are used to model the human brain. The model is a neural network
that is trained to recognize patterns in data. The network is trained by feeding it data and then testing it on new data.
This is a form of machine learning. The neural network is a type of artificial neural network. The term neural network
refers to a group of neurons that are connected together. The neurons are connected by synapses. The synapsis are
the connections between the neurons. The connections are called weights. The weights are used by the network to
determine how much influence each neuron has on the other neurons in the network ...

AI can create a logo in seconds , but it can’t design a logo that will work for a company. AI is great for creating a
logo, but not for designing a logo. A logo is a visual representation of a company’s brand. It’s a visual symbol that
represents the company’ logo. It is a symbol that is used to identify a company and its products. A good logo is
one that is memorable and easy to recognize. A great logo is memorably and easy recognizable. A bad logo is not
memorable or easy to recognize. A poorly designed logo is also not memorably or easy recognized. A ...

What’s great about the holiday season is that it’s a time for giving. And what better way to give than to give the gift
of a new home? Whether you’re buying a home for the first time or you’ve been in the market for a while, there are
a few things you should know before you start looking. 1. Know your budget. This is the most important thing to
consider when you’ll be looking for a home. You’ll want to know how much you can afford to spend on a home, and
you’d want to make sure you don’t go over your budget when you start searching for homes ...

w/ Tune +
Post FT

Neural Sequential Model, especially transformers, is a popular model for deep learning. It is a model that can be
trained on large datasets. It is used for tasks such as image classification, natural language processing, and other tasks.
It is an effective model for tasks such as image classification and natural language processing. It is also used for tasks
like natural language understanding and natural film fiction. It is able to learn from large datasets and can be trained
for various tasks. It can be used for tasks that require a large amount of data. It is capable of learning from large
datasets. It is used to train neural networks for tasks such image classification ...

AI can create a logo in seconds. AI Logo Designer. A Logo AI Can Create. A logo is a key element of any business.
It helps to create a unique identity and helps to stand out from the crowd. A good logo can help to build trust and
credibility. It can also help to increase the sales. Alogoai.com is a AI logo design service. We can design logos for any
business, with the latest technology. We provide high quality logos at affordable prices. Logo design service provided
by Alogo AI. Logos designed by AI are more accurate and effective. Logs designed by ...

What’s great about the holiday season is the opportunity to give back to the community. Whether it’s donating to a
local charity or giving to a needy family, it’ll make you feel good to know that you’re making a difference. Here are
some ideas to get started. Volunteer at a local organization. If you have some free time, consider volunteering at a
nonprofit organization. You can help with the holidays by helping with the decorations, helping with food preparation,
or even helping with some of the administrative tasks. You’ll feel great knowing that you are making a contribution to
the organization. Donate ...

Table 18: Generated Examples from the Compressed LLaMA-7B at 20% sparsity
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