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Abstract. Vision-language models show remarkable capabilities in medical imaging analysis, yet their de-
ployment in federated healthcare environments faces key challenges in privacy preservation, data heterogene-
ity, and adversarial robustness. We present FedDental3D-ICL, a theoretical framework for federated in-context
prompt learning that enables privacy-preserving collaboration across healthcare institutions without sharing
sensitive patient data or model parameters. Our framework introduces four core algorithmic contributions:
Multi-Modal Prompt Space (MMPS) abstraction unifying visual and textual prompt representations across
2D and 3D medical imaging modalities; Cross-Modal Prompt Alignment (CMPA) ensuring semantic consis-
tency through information-theoretic contrastive objectives; Hierarchical Multi-Modal Optimization (HMMO)
providing theoretical convergence guarantees for non-convex federated objectives; and Byzantine-Resilient
Cross-Modal Aggregation (BRCMA) with differential privacy bounds. Our theoretical analysis suggests poten-
tial convergence rates ofO(1/

√
T ), theoretical communication complexity bounds ofO(K log |P |) compared

to traditionalO(K ·d), and (ε, δ)-differential privacy guarantees with optimal composition bounds. While this
work establishes comprehensive mathematical foundations, empirical validation and practical implementation
remain important directions for future research.

Keywords: Federated learning · Vision-language models · Medical imaging · Privacy preservation · Multi-
modal learning · Prompt engineering · Differential privacy · Byzantine resilience

1 Introduction

Medical imaging analysis stands at a critical juncture where the transformative potential of vision-language models
(VLMs) collides with the immutable constraints of healthcare data governance. While recent advances in VLMs
have demonstrated unprecedented capabilities in multimodal medical reasoning [1, 2], their deployment in real-
world healthcare environments exposes a fundamental contradiction: the models that show the greatest promise
require precisely the type of large-scale, cross-institutional data sharing that regulatory frameworks explicitly pro-
hibit [3–5]. This paradox represents more than a technical challenge—it constitutes a systemic barrier that prevents
the medical community from leveraging the full potential of modern AI while maintaining the privacy guarantees
essential to patient trust and regulatory compliance [6]. The theoretical foundations of federated learning, when
applied to medical VLMs, reveal four interconnected failure modes that collectively render existing approaches
inadequate. The privacy-utility contradiction creates an irreconcilable tension where meaningful privacy protec-
tion fundamentally undermines model performance, while supposedly secure gradient-sharing mechanisms remain
vulnerable to sophisticated reconstruction attacks that can recover sensitive patient information [7–10]. Statistical
heterogeneity across medical institutions violates the fundamental assumptions underlying federated optimization,
creating convergence pathologies that no existing aggregation method can adequately address [11, 12]. Commu-
nication constraints impose prohibitive overhead costs that scale quadratically with model size, rendering feder-
ated training of large VLMs computationally infeasible within realistic healthcare network environments [13, 14].
Byzantine robustness requirements introduce additional complexity layers that existing defenses cannot handle
without sacrificing the cross-modal learning capabilities that make VLMs valuable for medical applications [15–
17]. To demonstrate the versatility and practical applicability of our approach, we present FedDental3D-ICL, a
specialized implementation tailored for federated 3D dental imaging analysis that showcases how our framework
can be adapted to domain-specific requirements while maintaining its core theoretical guarantees.

2 System Model and Problem Formulation

2.1 Federated Multi-Modal Medical Imaging System

The heterogeneity in medical institutions creates unique challenges that distinguish our setting from traditional
federated learning scenarios. Different institutions may specialize in different types of dental procedures, use
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Fig. 1. FedDental3D-ICL System Architecture showing multi-modal data flow across federated dental institutions with privacy-
preserving prompt exchange.

varying imaging equipment, and maintain distinct clinical protocols. This heterogeneity is not merely statistical
but also semantic, as the same diagnostic terms may carry different implications across institutions.As shown
in Fig.1, we consider a federated dental care system comprising K medical institutions {C1, C2, . . . , CK} and
a central coordination server S. Each client Ck possesses a private multi-modal dataset Dk = {(x(i)k , y

(i)
k )}nk

i=1

where x(i)k represents multi-modal dental data and y(i)k denotes diagnostic labels.

3 Algorithms

Definition 1 (Multi-Modal Medical Data). The input space X = X2D ×X3D ×Xtext where:

– X2D: 2D medical images (X-ray)
– X3D: 3D volumetric data (CBCT images)
– Xtext: Clinical notes and structured reports

Each client accesses a shared, frozen pre-trained vision-language model M : X × P → Y with parameters Θ
that remain fixed throughout federated learning.

Definition 2 (Multi-Modal Prompt Embedding). For prompt combination (pv, pt, p3D), the multi-modal em-
bedding is:

ψ(pv, pt, p3D) = F (φv(pv), φt(pt), φ3D(p3D)) (1)

where F : Rd×Rd×Rd → Rd is a fusion function preserving both modality-specific and cross-modal information.

The MMPS can approximate any combination of uni-modal prompts with bounded approximation error. By
construction using universal approximation principles. For any target prompt combination (p∗v, p

∗
t , p

∗
3D), we con-

struct a fusion function F using a neural network with sufficient capacity. By the universal approximation theorem,
there exists a network with O(ε−d) parameters achieving desired approximation error ε.Under Lipschitz continu-
ity assumptions, MMPS embeddings are stable with respect to small perturbations in input prompts.

3.1 Cross-Modal Prompt Alignment (CMPA) Framework

Information-Theoretic Foundation
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Definition 3 (Cross-Modal Mutual Information). For visual and textual representations Zv and Zt:

I(Zv;Zt) = E
[
log

p(zv, zt)

p(zv)p(zt)

]
(2)

We employ the InfoNCE lower bound to make optimization tractable:

I(Zv;Zt) ≥ E
[
log

ef(zv,zt)

E[ef(zv,z′
t)]

]
(3)

where f(zv, zt) is a critic function (cosine similarity).

Algorithm 1 Multi-Modal Prompt Space Construction (MMPS)
Require: Raw prompts Pv , Pt, P3D; contrastive parameters (τ, batch_size)
Ensure: Unified embeddings ψ(pv, pt, p3D), learned fusion function F
1: Initialize embedding functions ϕv , ϕt, ϕ3D with random weights
2: Initialize fusion network F with Xavier initialization
3: ▷ Phase 1: Individual modality embedding learning
4: for each modality m ∈ {v, t, 3D} do
5: for epoch = 1 to E1 do
6: Sample batch of prompts {p(i)m }
7: Compute embeddings z(i)m = ϕm(p

(i)
m )

8: Update ϕm via contrastive loss minimization
9: end for

10: end for
11: ▷ Phase 2: Cross-modal fusion learning
12: for epoch = 1 to E2 do
13: Sample multi-modal triplets (p(i)v , p

(i)
t , p

(i)
3D)

14: Compute modality embeddings z(i)v = ϕv(p
(i)
v ), z(i)t = ϕt(p

(i)
t ), z(i)3D = ϕ3D(p

(i)
3D)

15: Compute fused embedding ψ(i) = F (z
(i)
v , z

(i)
t , z

(i)
3D)

16: Update F via contrastive loss on ψ(i)

17: end for
18: return ψ(pv, pt, p3D), F

Theorem 1 (Temperature Sensitivity Bounds). For temperature τ > 0, the alignment quality satisfies:

∂LInfoNCE

∂τ
= − 1

τ2
E

f(zv, zt)− log
∑
z′
t

ef(zv,z
′
t)/τ

 (4)

∣∣∣∣∂2LInfoNCE

∂τ2

∣∣∣∣ ≤ Calign

τ3
(5)

where Calign is the alignment constant bounded by the maximum similarity score.

Optimal Temperature Selection. We derive the optimal temperature as:

τ∗ = argmin
τ

E[LInfoNCE(τ)] + λregτ
2

3.2 Hierarchical Multi-Modal Optimization (HMMO) Framework

Theoretical Framework We formulate federated prompt optimization as a hierarchical problem:

– Upper Level (Global): Optimize global prompt mixture distribution
– Lower Level (Local): Evaluate prompts on local data and generate rankings

Definition 4 (Hierarchical Optimization Problem). The global objective:

min
θ
L(θ) =

K∑
k=1

wkLk(θ; argmin
φk

Gk(φk, θ)) (6)

where Gk(φk, θ) is the local evaluation function and φk are client-specific parameters.
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Convergence Analysis [Smoothness] Each local objective Lk is L-smooth: ∥∇Lk(θ1) − ∇Lk(θ2)∥ ≤ L∥θ1 −
θ2∥.

[Bounded Variance] Stochastic gradients have bounded variance: E[∥∇Lk(θ)−∇L̂k(θ)∥2] ≤ σ2.

Theorem 2 (HMMO Convergence). Under Assumptions 3.1-3.2, HMMO achieves convergence rate:

E[∥∇L(θT )∥2] ≤ C1√
T

+
C2

T
+

Lσ2

pmin

√
T

(7)

where C1, C2 are constants depending on client heterogeneity and pmin is minimum participation probability.

Algorithm 2 Hierarchical Multi-Modal Optimization (HMMO)
Require: Global prompt candidates Pglobal, participation probability pm
Ensure: Optimal prompt distribution θ, client adaptations {θk}
1: Initialize global prompt parameters θ(0)

2: for round t = 1 to T do
3: Select subset of clients St ⊆ [K] with probability pm
4: for each client k ∈ St do
5: Evaluate prompt candidates on local data: qk(p) = quality(M(xk, p), yk) for p ∈ Pglobal

6: Generate local prompt ranking: rk = argsort(qk, descending = True)
7: Compute alignment statistics: ak = cross_modal_alignment(rk)
8: Send encrypted (rk, ak) to server
9: end for

10: Aggregate rankings via Byzantine-resilient mechanism: θ(t) = BRCMA({rk, ak}k∈St)
11: end for
12: return θ(T ), {θ(T )

k }

3.3 Byzantine-Resilient Cross-Modal Aggregation (BRCMA) Framework

Byzantine Threat Model

Definition 5 (Byzantine-Resilient Multi-Modal Aggregation). Given prompt rankings from K clients where up
to f < K/3 are Byzantine, compute a global ranking maintaining convergence guarantees for honest clients.

Theorem 3 (Byzantine Resilience). Under the assumption that f < K/3 clients are Byzantine, BRCMA main-
tains convergence with rate:

E[∥∇L(θT )∥2] ≤ C1√
T

+
C2

T
+

Lσ2

(K − f)
√
T

+
Cf

T
(8)

where Cf is a constant depending on Byzantine attack magnitude.

Privacy-Preserving Multi-Modal Selection (PMMS)

Definition 6 (Multi-Modal Quality Function). For prompt combination p = (pv, pt, p3D) and dataset D:

q(D, p) = accuracy(M(x, p), y) + λ · alignment(p) (9)

Theorem 4 (PMMS Privacy Guarantee). The PMMS mechanism satisfies (ε, δ)-differential privacy with:

ε =
2∆q

n
· log |P |+

√
2 log(1/δ)

n
(10)

where ∆q is the global sensitivity of the quality function.
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Algorithm 3 Byzantine-Resilient Cross-Modal Aggregation with Privacy-Preserving Selection (BRCMA-PMMS)
Require: Client rankings {rk}, privacy parameters (ε, δ), prompt set P
Ensure: Aggregated prompt parameters θ, privacy-preserving selection
1: Initialize global prompt parameters θ(0)

2: for round t = 1 to T do
3: Collect client rankings {r(t)k } and quality scores {q(t)k }
4: Apply exponential mechanism to select top prompts:
5: pselect(p) ∝ exp

(
ε·q(D,p)

2∆q

)
6: Filter out Byzantine clients using cross-modal consistency check:
7: Svalid

t = {k : consistency(rk, {rj}j ̸=k) > τbyz}
8: Aggregate valid client rankings using median-based robust estimator
9: Add calibrated Gaussian noise for (ε, δ)-differential privacy

10: Update global prompt distribution: θ(t) = weighted_aggregate(Svalid
t )

11: end for
12: return θ(T )

4 Comprehensive Theoretical Analysis

Extended Byzantine Tolerance. We relax the standard f < K/3 assumption:

Theorem 5 (Adaptive Byzantine Resilience). Under adaptive adversary model where Byzantine clients can
coordinate, BRCMA maintains convergence if:

f < min

(
K

3
,
K · ρhonest

2 + ρhonest

)
(11)

where ρhonest =
mink ∥∇Lk(θ

∗)∥
maxk ∥∇Lk(θ∗)∥

(12)

Prompt Selection Bias Under Class Imbalance.

Lemma 1 (Imbalance-Aware Prompt Scoring). For dataset Dk with class distribution πk = (πk,1, . . . , πk,C),
the bias-corrected prompt quality is:

qcorrected
k (p) = qk(p)− λbias

C∑
c=1

πk,c log πk,c · I[prompt p favors class c]

4.1 Communication Complexity Analysis

Theorem 6 (Optimal Prompt Pool Size). The optimal prompt pool size minimizes the total error:

|P |∗ = argmin
|P |

[εapprox(|P |) + εcomm(|P |)] (13)

where εapprox(|P |) =
Capprox

|P |1/d
(approximation error) (14)

εcomm(|P |) =
Ccomm|P | log |P |

B
(communication error) (15)

and B is the available bandwidth per round.

Solution: |P |∗ =
(

CapproxdB
Ccomm(d+1)

) 1
d+1

Theorem 7 (Communication Complexity). The FedDental3D-ICL framework achieves communication com-
plexity of O(K log |P |) per round, compared to O(K · d) for traditional federated learning.

Proof. In traditional federated learning, each client sends gradient updates of size d (typically 109 parameters).
Our approach only requires:

– Prompt rankings: O(|P | log |P |) bits per client
– Alignment statistics: O(1) bits per client
– Quality scores: O(|P |) bits per client

Total per client: O(|P | log |P |) bits. Since |P | ≪ d, this represents significant reduction.



6 U. Bhattcharjee and T. Roy

4.2 Privacy Analysis

Theorem 8 (Composition-Based Privacy). Running FedDental3D-ICL for T rounds with parameters (εt, δt)
per round satisfies (εtotal, δtotal)-differential privacy where:

εtotal =

T∑
t=1

εt +
√
2T log(1/δtotal)

T∑
t=1

ε2t (16)

δtotal =

T∑
t=1

δt (17)

[Bounded Correlation] Prompt updates across rounds satisfy:

max
t,t′

|Corr(r(t)k , r
(t′)
k )| ≤ ρ < 1

Theorem 9 (Correlated Composition Privacy). Under bounded correlation assumption, the total privacy cost
after T rounds is:

εtotal ≤
T∑

t=1

εt +
√

2T log(1/δ)

√√√√ T∑
t=1

ε2t · (1 + ρ) (18)

δtotal ≤
T∑

t=1

δt · (1 + ρT ) (19)

4.3 Convergence Rate Analysis

Theorem 10 (Global Convergence Rate). The FedDental3D-ICL framework achieves the following convergence
rate:

E[L(θT )− L∗] ≤ C1√
T

+
C2σ

2

KT
+
C3ζ

2

T
+
C4f

T
(20)

where the constants are defined as:

C1 = L
√

2(L(θ0)− L∗) (depends on initial suboptimality) (21)

C2 = 2η2L2 (depends on learning rate and smoothness) (22)
C3 = 4ηL (heterogeneity impact factor) (23)

C4 = 4ηL∆2 (Byzantine attack magnitude) (24)

and the problem parameters are:

σ2 = max
k

E[∥∇Lk(θ)−∇L̂k(θ)∥2] (bounded gradient variance) (25)

ζ2 = max
k

E[∥∇Lk(θ
∗)−∇L(θ∗)∥2] (data heterogeneity) (26)

∆2 = max
i,j

∥∇Li(θ)−∇Lj(θ)∥2 (Byzantine attack bound) (27)

f <
K

3
(number of Byzantine clients) (28)

Proof. The proof follows from the convergence analysis of hierarchical multi-modal optimization with Byzantine
resilience. The first term C1√

T
captures the standard convergence rate for non-convex optimization, the second term

C2σ
2

KT reflects the benefit of averaging across K clients, the third term C3ζ
2

T accounts for data heterogeneity across
institutions, and the final term C4f

T quantifies the impact of Byzantine adversaries.

4.4 Multi-Modal Prompt Space Theory

The foundation of our approach lies in constructing a unified representation space that can seamlessly integrate
information from diverse dental imaging modalities. Traditional approaches treat each modality independently,
leading to suboptimal integration and missed opportunities for cross-modal reasoning.
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Definition 7 (Multi-Modal Prompt Space). The prompt space P = Pv × Pt × P3D where:

– Pv: Visual prompt space for 2D/3D teeth images
– Pt: Textual prompt space for clinical descriptions
– P3D: Specialized prompt space for 3D volumetric analysis

For each modality m ∈ {v, t, 3D}, we define embedding functions ϕm : Pm → Rd mapping raw prompts
to a common d-dimensional space. The choice of a common embedding dimension is not arbitrary—it reflects
the hypothesis that despite their surface differences, medical imaging modalities share fundamental diagnostic
patterns that can be captured in a unified representation.

[Lipschitz Continuity] Each embedding function ϕm is L-Lipschitz continuous:

∥ϕm(p1)− ϕm(p2)∥ ≤ L∥p1 − p2∥ (29)

Definition 8 (Fusion Function Implementation). The fusion function F : Rd × Rd × Rd → Rd is implemented
as:

F (zv, zt, z3D) = σ(W1[zv; zt; z3D] + b1) (30)

where:

– W1 ∈ Rd×3d, b1 ∈ Rd are learnable parameters
– σ is the ReLU activation function

Theorem 11 (Universal Approximation for MMPS). For any target prompt combination (p∗v, p
∗
t , p

∗
3D) and ap-

proximation error ε > 0, there exists a fusion function F with O(ε−d) parameters such that:

∥F (ϕv(pv), ϕt(pt), ϕ3D(p3D))− ψ∗(p∗v, p
∗
t , p

∗
3D)∥ ≤ ε (31)

for appropriately chosen prompts (pv, pt, p3D).

Proof (Proof Sketch). By the universal approximation theorem for neural networks, the fusion function F can
approximate any continuous mapping between the concatenated embeddings and the target representation with
arbitrary precision, provided sufficient network capacity.

Corollary 1 (Stability of MMPS Embeddings). MMPS embeddings are stable with respect to small perturba-
tions in input prompts:

∥ψ(pv + δv, pt + δt, p3D + δ3D)− ψ(pv, pt, p3D)∥ ≤ 3L∥F∥Lip(∥δv∥+ ∥δt∥+ ∥δ3D∥) (32)

where ∥F∥Lip is the Lipschitz constant of the fusion function F .

Remark 1 (Computational Complexity). The fusion function requires O(d2) operations per forward pass, with
memory complexity O(d2) for storing parameters W1. For typical embedding dimensions d ∈ [256, 1024], this
represents a computationally tractable approach compared to full model parameter sharing.

4.5 Federated Prompt Optimization Problem

Building upon the multi-modal prompt space foundation, we now formulate the central optimization problem that
drives collaborative learning across institutions.

Definition 9 (Federated Multi-Modal Prompt Optimization). Find optimal prompt parameters θ∗ = {p∗v, p∗t , p∗3D}
that minimize:

min
θ
L(θ) =

K∑
k=1

wkLk(θ;Dk) (33)

where wk ≥ 0 are client weights with
∑K

k=1 wk = 1, and the local loss function incorporates:

Lk(θ;Dk) = Ltask
k (θ;Dk) + λLalign

k (θ;Dk) + γLreg
k (θ) (34)

where Ltask
k is the primary diagnostic task loss, Lalign

k is the cross-modal alignment loss, and Lreg
k is the regu-

larization term.The multi-objective nature of this formulation reflects the complex requirements of dental imaging
analysis. The task loss ensures diagnostic accuracy, the alignment loss maintains semantic consistency across
modalities, and the regularization term prevents overfitting to institution-specific patterns.
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5 Architectural Framework

5.1 Dental System Architecture

We have developed a novel theoretical framework, FedDental3D-ICL, tailored for federated multi-modal learn-
ing in dental imaging and diagnostics. Our approach integrates four synergistic components to enable privacy-
preserving collaborative learning across dental institutions, enhancing dental care delivery. At the core, we propose
a Local Prompt Evaluation Engine, which enables each dental clinic or hospital to evaluate prompts using local
multi-modal dental data—such as 3D cone-beam computed tomography (CBCT) scans, intraoral photographs,
and clinical dental records—while ensuring patient privacy and compliance with dental regulatory standards. This
theoretical engine keeps sensitive dental data within institutional boundaries, yet supports global learning for im-
proved dental diagnosis and treatment planning.

To address the complexities of multi-modal dental AI, we introduce a Cross-Modal Alignment Module that
ensures semantic consistency across dental data types, including CBCT scans, panoramic X-rays, intraoral photos,
and clinical notes, despite variations in dental imaging equipment and documentation practices across institutions.
By leveraging advanced embedding techniques, we create a unified representation space for seamless alignment
of dental modalities, critical for accurate diagnosis of conditions like caries, periodontal disease, or orthodontic
anomalies. We must clarify that this module is purely theoretical and has not been implemented or tested with real
dental imaging data.

We also propose a Hierarchical Optimization Coordinator to manage global prompt distribution tailored to
dental diagnostics, while upholding stringent privacy constraints inherent in dental healthcare. This coordinator
employs sophisticated algorithms to balance learning efficiency with privacy preservation, preventing leakage of
sensitive patient or dental practice data. Additionally, we introduce a Byzantine-Resilient Aggregator, leveraging
dental-specific cross-modal validation to defend against malicious participants, ensuring robustness in dental clin-
ical workflows. We emphasize that these components are theoretical constructs, unimplemented and untested in
real dental environments.

5.2 Dental Privacy-Preserving Architecture

We designed the FedDental3D-ICL framework to prioritize patient privacy in dental settings through mechanisms
tailored to dental practice environments. Our approach ensures that raw dental imaging data, patient records,
and clinical notes—such as those detailing restorations, implants, or orthodontic treatments—never leave insti-
tutional boundaries, addressing critical privacy and regulatory concerns in dental healthcare. Through careful
system design, we process all sensitive dental data locally, sharing only aggregated, anonymized insights about
dental pathology patterns and treatment outcomes. We acknowledge that this design remains theoretical, untested
with actual dental practice management systems or clinical workflows.

We propose a prompt-only communication protocol, where dental institutions exchange only prompt rankings
and encrypted alignment statistics related to dental diagnostic accuracy and treatment planning efficacy. This
method significantly reduces privacy risks compared to traditional federated learning approaches, which share
model parameters or gradients that could be reverse-engineered to expose sensitive dental patient information. We
note that these protocols are unimplemented and lack validation in real dental networking environments.

To ensure robust privacy in dental applications, we integrate differential privacy through strategic noise in-
jection at aggregation points, providing mathematically provable privacy bounds. Our approach guarantees that
no individual dental institution or patient’s participation can be inferred from global model outputs, even by ad-
versaries with significant computational resources. We also employ secure multi-party computation for critical
aggregation steps, enabling collaborative computation without exposing individual dental contributions. We must
stress that these cryptographic protocols are theoretical specifications, unimplemented in cryptographic libraries
and untested against real-world attack vectors in dental healthcare.

5.3 Dental Scalability Considerations

We designed FedDental3D-ICL with scalability to support large networks of dental institutions, enabling collabo-
rative learning across diverse dental practices. Our theoretical system achieves linear communication scaling with
O(K log |P |) complexity, where K is the number of participating dental clinics and |P | is the dental-specific
prompt space size. This bound suggests feasibility for hundreds of dental institutions, from small clinics to large
hospitals, though we have not validated this with empirical tests. We acknowledge that these scalability claims are
mathematical projections, untested with real dental network conditions or IT infrastructure.

We include adaptive participation mechanisms that dynamically select dental clients based on computational
capacity and data quality, such as the resolution of CBCT scans or the detail of clinical notes. We emphasize that
these mechanisms are theoretical and have not been implemented or validated in real dental networks.
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5.4 Critical Implementation Gap: From Dental Theory to Practice

We present a rigorous theoretical framework with mathematical foundations, convergence guarantees, and privacy-
preserving mechanisms tailored for dental federated learning, but we acknowledge that practical implementation
remains entirely unaddressed. Our pipeline exists solely on paper, requiring complete development before real-
world validation in dental settings.

We acknowledge that our Local Prompt Evaluation Engine, Cross-Modal Alignment Module, Hierarchical
Optimization Coordinator, and Byzantine-Resilient Aggregator are purely theoretical constructs, each requiring
extensive software development, testing, and optimization for deployment in dental environments. We have not
processed real CBCT scans, intraoral photographs, or clinical dental records, leaving our cross-modal alignment
mechanisms untested against variations in dental imaging equipment or documentation practices across institu-
tions.

Our differential privacy guarantees and secure multi-party computation protocols require implementation in
cryptographic libraries and validation against real attack vectors, which we have not undertaken in dental contexts.
We recognize that our O(K log |P |) complexity bound remains untested under realistic dental network conditions
or IT infrastructure.

We admit that our framework lacks validation across all dental aspects. Our theoretical privacy guarantees have
not been audited or tested against dental healthcare privacy regulations. Dental practitioners have not interacted
with our system, and clinical workflow integration—such as compatibility with electronic dental records—remains
unexplored. We have not evaluated our framework against HIPAA, GDPR, or other dental data protection regula-
tions, nor conducted regulatory compliance testing.

5.5 What Has Been Done Versus What Remains Undone in Dental AI

We have established theoretical foundations for federated multi-modal prompt learning in dental AI, providing
mathematical frameworks, convergence analysis, and privacy-preserving mechanisms for dental applications.
However, we acknowledge that practical implementation, empirical validation, and real-world testing in dental
settings are entirely absent. The gap between our theoretical framework and a deployable dental system is vast,
with no code written for any FedDental3D-ICL component. We have not processed actual dental imaging data,
validated our claimed communication efficiency in real dental network conditions, or implemented our privacy
mechanisms as tested security protocols.

No dental practitioner has used or evaluated our system, and we have not attempted integration with den-
tal practice management systems, such as those used for scheduling or treatment planning. Our methodological
innovations, including Multi-Modal Prompt Space abstraction, Cross-Modal Prompt Alignment techniques, and
Byzantine-Resilient Cross-Modal Aggregation approaches, remain theoretical, unimplemented, and unvalidated
in dental practice. We offer no functioning system, no validated performance metrics for dental diagnostics, and
no evidence that our innovations work in real dental healthcare environments.

We recognize that our implementation requirements for dental AI include building the entire federated learn-
ing infrastructure from scratch, including secure communication protocols, cryptographic implementations, and
user interfaces tailored for dental practitioners. We must establish multi-institutional dental data collection through
partnerships to provide real CBCT scans, intraoral images, and clinical records for validation. Performance bench-
marking requires implementing baseline systems and conducting comparisons to validate our theoretical claims
in dental tasks, while security implementation demands developing cryptographic protocols and rigorous testing
against dental-specific attack simulations.

We lack a prototype to demonstrate feasibility, performance data to validate efficiency improvements in dental
workflows, or real-world testing in dental practice environments. Our theoretical benefits for dental diagnostics
remain unproven, with no comparative analysis against existing federated learning approaches using actual dental
imaging tasks.

5.6 The Massive Implementation Gap in Dental AI

We acknowledge that our immediate implementation requirements for dental AI represent a substantial undertak-
ing we have not initiated. We must develop the entire federated learning infrastructure, including secure commu-
nication protocols, data handling systems, and user interfaces tailored for dental practitioners managing tasks like
cavity detection or implant planning. Cryptographic protocol implementation requires developing and testing se-
cure multi-party computation and differential privacy mechanisms beyond our theoretical specifications for dental
data. We need multi-modal data processing pipelines to process and align CBCT scans, intraoral photographs,
panoramic X-rays, and clinical notes from diverse dental institutions.
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We recognize that critical validation studies for dental applications are absent, requiring experiments with real
dental imaging datasets from multiple institutions with varied equipment and clinical practices. Network perfor-
mance testing is needed to validate communication efficiency under realistic dental network conditions. Security
and privacy validation demands comprehensive penetration testing, security audits, and privacy impact assess-
ments with dental-specific attack scenarios. Clinical workflow integration testing is essential to validate compat-
ibility with dental practice management systems and practitioner acceptance. Regulatory compliance verification
requires navigating dental healthcare regulations and demonstrating compliance through legal and technical as-
sessments.

The reality is that our work presents a sophisticated theoretical framework with transformative potential for
dental AI, but it remains entirely theoretical. Every claimed benefit—communication efficiency, privacy preser-
vation, diagnostic accuracy in dental tasks—requires comprehensive implementation and validation before real-
world deployment in dental practice. The journey from theory to practical dental AI system is a substantial research
and development endeavor that has yet to begin, with our framework serving as a roadmap for what could be built,
but the actual construction remaining entirely in the future.

6 Conclusion and Future Directions for Dental AI

We have established foundational mathematical frameworks for adaptive prompt generation, continual learning
extensions, and personalization techniques in dental AI applications, but we lack any implementation roadmap,
development timeline, or practical steps toward a working dental system. All proposed future research directions,
from adaptive prompt generation for dental diagnostics to continual learning for evolving dental practices, build on
a theoretical foundation, making them academic exercises until the basic framework is implemented and validated
in dental contexts.

The most critical future direction for dental AI is practical implementation, not theoretical extension. We need
proof-of-concept development to build a minimal working system demonstrating feasibility in dental settings. Pilot
studies with real dental data must conduct small-scale experiments with actual dental institutions to validate core
concepts, such as cross-modal alignment for caries detection. Incremental validation should test each component
separately before full system integration in dental workflows. Performance reality checks must compare actual
performance against theoretical predictions to identify gaps and refinements needed for dental tasks. Clinical
validation requires engaging dental practitioners to evaluate the system’s utility for real diagnostic and treatment
planning tasks, such as planning crowns or orthodontic interventions.

The fundamental gap between theory and practice is our greatest challenge in dental AI. While our research
demonstrates the theoretical possibility of achieving collaborative learning benefits with strict privacy and regu-
latory compliance in dental healthcare, transitioning to practical deployment requires substantial implementation
effort we have not undertaken. Our framework provides a roadmap for what could be built for dental practice, but
the actual building—and the inevitable practical challenges theory cannot predict—remains entirely in the future.
Every claim of potential benefit for dental diagnostics must be validated through rigorous implementation and
empirical testing before our theoretical contribution can impact dental practice, transforming it from an academic
exercise into a practical tool to advance dental healthcare through artificial intelligence.

So our work establishes a rigorous theoretical foundation for federated multi-modal dental imaging, but empir-
ical validation is crucial. We are actively collaborating with dental care institutions across South Asian countries,
specifically to collect CBCT scans along with panoramic X-rays, intraoral photographs, and clinical notes. This
collaboration will enable us to benchmark our framework against existing federated learning approaches, evaluate
privacy guarantees in realistic settings, and explore integration with clinical workflows. Alongside, we plan to
develop a prototype implementation, paving the way toward multi-institutional deployment and practical impact
in dental healthcare.
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