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Abstract

We study core-set construction algorithms for the task of Diversity Maximization
under fairness/partition constraint. Given a set of points P in a metric space
partitioned into m groups, and given k1, . . . , km, the goal of this problem is to
pick ki points from each group i such that the overall diversity of the k =

∑
i ki

picked points is maximized. We consider two natural diversity measures: sum-
of-pairwise distances and sum-of-nearest-neighbor distances, and show improved
core-set construction algorithms with respect to these measures. More precisely,
we show the first constant factor core-set w.r.t. sum-of-pairwise distances whose
size is independent of the size of the dataset and the aspect ratio. Second, we
show the first core-set w.r.t. the sum-of-nearest-neighbor distances. Finally, we
run several experiments showing the effectiveness of our core-set approach. In
particular, we apply constrained diversity maximization to summarize a set of
timed messages that takes into account the messages’ recency. Specifically, the
summary should include more recent messages compared to older ones. This is a
real task in one of the largest communication platforms, affecting the experience of
hundreds of millions daily active users. By utilizing our core-set method for this
task, we achieve a 100x speed-up while losing the diversity by only a few percent.
Moreover, our approach allows us to improve the space usage of the algorithm in
the streaming setting.

1 Introduction

Data summarization problem is a class of tasks where a small subset of items must be selected as a
summary to represent the whole data. Typically in applications, the selected summary is required
to fulfill various criteria such as diversity. In this paper, we focus on Diversity Maximization (DM)
which is a topic that has attracted significant attention over the past decades [11, 33, 3, 8, 9, 10,
31, 30, 24, 19, 20, 25, 14]. The goal of this line of research is to provide a summary of a large
dataset that preserves the diversity of the data as much as possible. This has many applications in
various domains including summarization, recommendation systems, search, and facility location
[15, 43, 40, 1, 5, 13, 2, 21, 39, 33]. Formally, in this task, given a universe P of n items, its goal is to
choose a small subset of size k that maximizes a given pre-specified measure of diversity.

Diversity Maximization under Partition Constraints is a variant of the problem that has been studied
to find a diverse summary while satisfying some additional orthogonal constraints [7, 31, 3, 28, 4, 10,
8, 9, 6, 26]. Here, the items in the input are partitioned into m disjoint groups P = P1∪· · ·∪Pm and
additionally, one is given a pre-specified number of desired results from each group k1, . . . , km, and
the goal is to return ki objects from each group Pi such that the overall diversity among all k =

∑
i ki

points is maximized. This formulation allows to control the number of objects from each category in
the output, e.g., the number of movies from each genre shown to a user in a recommendation system,
or to bound the number of old messages included in a summary of a user’s feed. Moreover, this
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formulation has been studied in the context of fairness (e.g. see [28, 4, 10]), where one wishes to
control the number of results from each population in the produced summary. We will therefore refer
to the Diversity Maximization under Partition Constraints as Fair Diversity Maximization (FDM),
and use divk1,...,km

(P ) to refer to the optimal achievable diversity under the fairness constraint. In
this work, we consider fair diversity maximization with respect to three common diversity measures.

Diversity Measures. Several measures (or objective functions) have been proposed in the literature
to model the notion of diversity [11, 3, 6, 25, 28, 9, 20, 16, 10, 31, 30]. A main category of such
measures are based on pairwise distances (see [11] for a complete list). In this work, we will consider
three of the most common pairwise distance-based measures: (1) the minimum-pairwise distance,
where for a subset of points S ⊆ P , their diversity is measured as the minimum pairwise distance
between the points in the subset, i.e., minp,q∈S dist(p, q); (2) sum-of-pairwise distances between the
points in the subset, i.e.,

∑
p,q∈S dist(p, q); and (3) the sum-of-nearest-neighbor distances which is an

interpolation between the first two measures, and is defined formally as
∑

p∈S minq∈S\{p} dist(p, q).
We refer to these measures respectively as MIN-PAIRWISE DIST, SUM-PAIRWISE DIST, and SUM-
NN DIST. All these three measures have been used previously to model diversity (e.g. see [11, 20, 6,
25], where they are respectively referred to as remote-edge, remote-clique, and remote-pseudoforest).
In this work, we study Fair Diversity Maximization (FDM) over large datasets with respect to these
three diversity measures.

Core-sets for Diversity Maximization. As one of the main applications of diversity maximization is
related to data summarization, there has been a large body of work to solve diversity maximization
in massive data models of computation, and in particular the design of core-sets [20, 19, 24, 27,
28, 8, 9, 41, 25, 26, 14]. Core-set is a small subset of the data which is sufficient for computing an
approximate solution of a pre-specified optimization problem on the whole data.

More specifically, in this work we focus on construction of composable core-sets[20]: we present
a summarization algorithm A that processes each group Pi independently and produces a small
subset of it as its summary Si = A(Pi) ⊆ Pi, with the property that the fair diversity of the data
is approximately preserved, i.e., divk1,...,km

(S) ≥ 1
α · divk1,...,km

(P ), where S is defined to be the
union of all core-sets, i.e., S =

⋃
i Si. Composable core-sets are in particular useful for big data

models of computation such as distributed and streaming settings as discussed in details in [20]. For
example, in a distributed setting where the dataset is partitioned over multiple machines based on
groups, each machine can compute a core-set for its own dataset, and only send this small summary
over to a single aggregator. The aggregator then processes the union of the summaries and outputs
the solution. We provide further applications of the core-sets for processing timed datasets in the
experiments sections of our paper.

1.1 Prior Work

Table 1 shows a summary of prior and our results.

Fair Diversity Maximization. Moumoulidou et al. [28] studied fair diversity maximization under
MIN-PAIRWISE DIST and gave an O(m) approximation algorithm for the problem. The bound
was later improved [4] to m + 1. However, it is not known whether a linear dependence on m is
necessary. In fact the problem admits an O(1) approximation in the unconstrained version [17, 33].
For SUM-PAIRWISE DIST the problem admits a (1/2 + ϵ) approximation [3, 7], which matches
the performance of the best algorithm for the unconstrained diversity maximization. Finally, for
SUM-NN DIST, Bhaskara et al. [6] presented a randomized O(1) approximation algorithm based on
solving an LP for both DM and FDM.

Core-sets for Fair Diversity Maximization. Core-set construction algorithms for the unconstrained
DM has been shown in [20] with respect to all three diversity measures. For FDM, Moumoulidou et
al. [28] showed that running a greedy algorithm on each group independently provides a core-set with
a constant approximation factor, with respect to the MIN-PAIRWISE DIST. For the SUM-PAIRWISE
DIST, Ceccarello et al. [8] provides a core-set with the almost optimal (1− ϵ) approximation factor.
However, the size of the core-set depends on a parameter similar to the aspect ratio of the dataset. In
particular, they show that for the case of doubling metrics, the core-set size could have an exponential
dependence on the doubling dimension. Under SUM-NN DIST, there has been no prior work on
core-sets for FDM.
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Table 1: The summary of prior and our results for FDM. Here k is the size of the solution and m is
the number of groups. All the core-set results mentioned in the table have size poly(k).

MIN-PAIRWISE DIST SUM-PAIRWISE DIST SUM-NN DIST
FDM O(m) [28, 4] O(1) [3] O(1) [6]

Core-set for FDM O(1) [28] O(1) Section 2 O(m · log k) Section 4

1.2 Our Results

Theoretical results. We show the following theoretical results in this paper.

• We show the first core-set construction algorithm for FDM under SUM-PAIRWISE DIST,
with constant approximation factor whose size is independent of the number of points and
the aspect ratio. In fact, we show a core-set of size only k2i for each group Pi, that together
achieve a constant factor approximation (see Theorem 2.1).

• We also show the first core-set construction algorithm for the FDM under the SUM-NN
DIST notion of diversity. We provide a core-set of size O(k2) for each group Pi that together
achieve an O(m · log k) approximation factor (see Theorem 4.1). We remark that although
the approximation factor is probably not optimal, we see in the experiments section that the
algorithm performs well on real data.
To get the above core-set algorithm, we first show in Section 3, an approximation algorithm
for FDM under the SUM-NN DIST. More precisely, we show an O(m2 · log k) approxima-
tion with polynomial running time (see Theorem 3.4) and O(m · log k) approximation with
an exponential runtime in k, (see Theorem 3.5). This algorithm might be of independent
interest as the best previous algorithm by [6], despite having the ideal O(1) approximation,
is randomized and based on solving an LP, whereas our algorithm is deterministic and
based on a greedy approach (see Algorithm 1). In fact all of our algorithms are simple to
implement and thus practical as we show next.

• Finally, in Section C of the Appendices we show how to apply our results to the setting
where the partitioning is not necessarily done according to the colors and thus get a fully
composable core-set for these notions.

Experiments. We perform experiments for all three diversity measures. Our first set of experiments
uses FDM as a tool to account for recency in a summary computed on timed datasets. Here, we
group a dataset of messages by their created time. The goal is to compute a diverse summary of the
messages, where we additionally require to include less number of messages in the summary from
the older batches of messages, and more from the recent batches. This is a real task in one of the
largest commercial communication platforms. We get the following experiments and results.

• First, we show that running diversity maximization algorithms without the group constraint
does not satisfy our requirement and reports about equally number of old messages and the
new ones.

• Next, we compute the price of fairness (i.e., price of balancedness in this context), that
is we compute how much we lose diversity by imposing the grouping requirement. Our
experiments on a Reddit dataset shows that the diversity only decreases by around 1% for
sum-of-pairwise distances; few percent up to no more than 20% for sum-of-NN distances
and around 50% for minimum-pairwise distances (due to its fragility) metrics.

• We use the core-set construction algorithms to summarize each group first, and then run our
diversity maximization algorithms on the union of the core-sets. Our experiments show that
using core-sets, the runtime of our algorithm improves on average by factor of 100×, while
only losing diversity by few percent. We further remark that using core-sets in this context
has an additional benefit: it removes the need to recompute the summary on the whole data
when new messages arrive: once we summarize a batch of old message, we no longer need
to process the batch and only need to work with the core-set that is computed once.

We further show experiments that uses FDM as a tool for controlling the desired contribution of each
genre in a movie recommendation system.
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Finally, we run experiments to compare our proposed core-set of Section 2 to the prior algorithm of
[8] for core-set construction. We see that while the core-set produced by our algorithm is on average
smaller by a factor of 200x, its performance is only worse by 1.3%.

1.3 Preliminaries

Throughout this work, we assume that we are given a point set P = P1 ∪ · · · ∪ Pm in a metric space
(X ,dist). Each point in P comes from one of the m groups in [m], which we also refer to as colors.
We use Pi to denote the points of color i. We use n to denote |P | and ni to denote |Pi|. We denote the
distance between two points p, q by dist(p, q) and for a set of points S, we use dist(p, S) to denote
minq∈S dist(p, q).

1.3.1 Optimization problem

The optimization problem considered in this paper is Fair Diversity Maximization as defined below.
Definition 1.1 (Fair Diversity Maximization (FDM)). Given a colored point set P =

⋃
i Pi, and

k1, . . . , km, the goal is to pick subsets Si ⊆ Pi, such that first |Si| = ki, and second div(S) is
maximized where S =

⋃
i Si. We will use divk1,...,km

(P ) to denote the optimal diversity one can
achieve this way, i.e.,

divk1,...,km
(P ) = max

S1⊆P1,...,Sm⊆Pm:|Si|=ki

div(
⋃
i≤m

Si)

We will use k to denote
∑

i ki, and thus |S| = k.
Definition 1.2 (Diversity Measures). For a set of points S, we consider the following diversity
measures in this work : i) MIN-PAIRWISE DIST: minp,q∈S dist(p, q); ii) SUM-PAIRWISE DIST:∑

p,q∈S dist(p, q); iii) SUM-NN DIST:
∑

p∈S minq∈S\{p} dist(p, q).

1.3.2 Summarization task

The goal in our paper is to provide an intermediate summarization (i.e., a core-set) algorithm such
that the union of the core-sets contains a good solution relative to the whole data. Let us formally
define this notion.
Definition 1.3 (Core-set). Given a point set P , a subset T ⊆ P is called an α-approximate core-set
with respect to an optimization function f if the optimal value of f over T is within a factor α of the
optimal value of f over P .

It is desired that the size of the core-set is small. In this paper we focus on the optimization function f
being the diversity maximization function. Further, we emphasize that our algorithm for constructing
core-sets for P , processes each group Pi independent of other groups. Therefore, it provides a form
of composability property as defined below.
Definition 1.4 (Color-Abiding Composable Core-set). An algorithm A is said to construct an α-
approximate color-abiding composable core-set, if it produces a subset Ti = A(Pi) ⊆ Pi independent
of the points in other colors, s.t. divk1,...,km

(T ) ≥ 1
αdivk1,...,km

(P ), where T =
⋃

i Ti.

Again, we note that although it is desireable that the size of the core-set |Ti| is small, it does not
necessarily need to be ki. Later on, as a post-processing, one can use any exact or approximation
algorithm on the union of the computed core-sets, i.e., T to get a final solution. However the focus of
this work is on the core-set computation algorithm A.

Throughout this work, for brevity we use composable core-set to refer to Definition 1.4. However, we
remark that the above definition of color-abiding composable core-set is only applicable when points
are partitioned based on the colors, and differs from the standard notion of composable core-sets
defined in [20], where the partitioning is done arbitrarily. Later in Section C of the Appendices,
we show how to employ our algorithms and get fully composable core-sets (that is not necessarily
color-abiding) as defined in [20].

1.3.3 The GMM algorithm

In this work we will use the greedy algorithm of [17, 33] which we denote by GMM and is depicted
in Algorithm 1. Let us also state three well-known properties of GMM:
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1. ri’s are decreasing, i.e., for j > i, we have ri ≥ rj .

2. For any i < k, let Si = {p1, . . . , pi}. Then for any p ∈ P \ Si, we have that dist(p, Si) ≤
ri+1.

3. Let T ⊂k P be any subset of k points in P . Then the minimum pairwise distance in T is at
most 2 · rk.

Algorithm 1 The GMM Algorithm
Input a point set P , and k
Output subset S = {p1, . . . , pk} ⊆ P , and radii r1, . . . , rk.

1: S ← an arbitrary point from P , and r1 ←∞
2: for i = 2 to k do
3: pi ← the farthest point in P from S, i.e., argmaxp∈Pdist(p, S)
4: S ← S ∪ pi
5: ri ← minimum pairwise distance in S, i.e., minp1,p2∈S dist(p1, p2)
6: end for
7: return S

2 Core-set for FDM under SUM-PAIRWISE DIST

In this section we show an algorithm for constructing a core-set for FDM with respect to the
SUM-PAIRWISE DIST notion of diversity. Given a colored point set P = P1 ∪ · · · ∪ Pm, and
k1, . . . , km, the goal is to come up with a core-set construction algorithm A that independently
summarizes each point set Pi and produces a small subset of it Si = A(Pi) ⊆ Pi, such that
divk1,...,km(S) ≥ 1

α · divk1,...,km(P ), where again S =
⋃

i Si.

Overview of the algorithm. Suppose that we want to find a solution that maximizes FDM under
SUM-PAIRWISE DIST notion of diversity. Consider the optimal solution OPT and let OPTi be the
set of points from color i. Our algorithm for constructing a core-set proceeds by running GMM for ki
iterations on Pi, to get a seed of size ki. It is then a property of GMM that if each point p ∈ OPTi is
mapped (i.e. moved) to the closest seed in Pi, its distance does not change by more than ri (as defined
in GMM). Now the points in different colors can have different ri and therefore the movements can
be of different scales. For two points p, q ∈ OPT, if the scales of their movements w.r.t. their original
distance are small, then the new distance is still large compare to before. Otherwise, if the scale of
these movements are large, we show how to charge the loss in the diversity of this pair onto other
pairs that have relatively small movements. If there are not enough such pairs, one can then show
that the solution returned by the seeds themselves have had large diversity. Finally, in order to make
the map injective (so that no two points are mapped to the same core-set point), for each of the seed
points, the algorithm also stores in the core-set, the closest ki points to the seed, and thus increasing
the size of the core-set to k2i .

There is one hard case in the above approach and that is when ki = 1. In this case, the GMM
algorithm can return any arbitrary point as the seed and that could provably be a bad core-set. To
handle this case, we show that it is enough for the core-set algorithm to find at least a minimum of
two seeds. Then we show that it is always possible to pick one of the seeds and get a reasonably good
approximation. This modification is proved to work in Appendix B.

Algorithm description. For simplicity, let us assume that for all i, we have ki ≥ 2. Otherwise, we
show in Appendix B that a slight modification of the algorithm works (although the proof becomes
more involved). The core-set construction algorithm is shown in Algorithm 2. The algorithm proceeds
by running GMM for ki iterations to compute a set of ki centers. Then for each of these ki centers
such as p, the algorithm stores at most ki points from Pi whose closest center among all ki centers is
p.

Theorem 2.1. Algorithm 2 produces a core-set with size O(k2i ) and a constant factor approximation:
divk1,...,km

(S) ≥ 1
C · divk1,...,km

(P ) for a constant C. (Proof in Appendix A.1)
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Algorithm 2 Core-set Construction Algorithm for SUM-PAIRWISE

Input a point set Pi, together with parameters ki and k (where k = k1 + · · ·+ km)
Output a subset Si ⊆ Pi

1: Si = {p1, . . . , pki
} ← GMM(Pi, ki)

2: T ← ∅
3: for p ∈ Si do
4: for j = 1 to ki do
5: T ← T∪ any point pj ∈ Pi \ T s.t. argminq∈Si

dist(pj , q) = p.
6: end for
7: end for
8: Si ← Si ∪ T
9: return Si

3 Approximation Algorithm for FDM under SUM-NN DIST

As mentioned in the results section, in order to obtain our core-set construction algorithm under
SUM-NN DIST in Section 4, first in this section we show an approximation algorithm for FDM
under the SUM-NN DIST notion of diversity.

Overview of the algorithm. Consider the optimal solution OPT that maximizes FDM under
SUM-NN DIST notion of diversity, and let OPTi be the set of points from color i. Now each point
p ∈ OPT has a contribution towards the diversity, i.e., dist(p,OPT \ {p}), and thus the contribution
of each group OPTi towards the optimal solution is well-defined. Let us call the color with the
maximum contribution as the most significant color. Clearly if we find a solution SOL whose value
is at least as large as the contribution of the most significant color, then we are within a factor of m of
the optimal solution.

Next, suppose that the most significant color is i and let d1 ≥ · · · ≥ dki be the contributions of the
points in the optimal solution that are of color i. It is not hard to prove (as we will show later) that
maxj(j · dj) approximates

∑ki

j=1 dj up to a factor of log k. So we will construct a solution whose
value is at least j ·dj and this will be within a factor of (m · log k) of the optimal solution as promised.

More concretely, we will construct a solution such that it contains j points of color i where no other
point (from any color) lies within a distance dj of them (in reality, we find O(j) points such that no
other point lies within a distance O(dj) of them). Of course, we do not know i, j, and dj a priori.
We can enumerate i and j. Further, if we run the GMM algorithm on color i for j iterations, then the
minimum pairwise distance between the retrieved points is an approximation to dj .

This itself is enough to pick O(j) points of color i that are O(dj) far from each other. Let us call
these points the seeds. However, the remaining challenge is to pick the rest of the points (that is the
ki −O(j) points of color i, as well as kℓ points of color ℓ for all ℓ ̸= i) away from these seeds.

This brings us to the following problem: given a colored point set P and a set of at most k balls B,
how to pick the largest subset of balls B′ ⊆ B, such that enough points exist outside of B′. (Note
that B is basically the set of balls with radius O(dj), that are centered at the j points returned by
the first j iterations of GMM). This problem can be solved exactly by an exhaustive search and
spending exponential in k time. One can also get a polynomial time O(m)-approximate solution
for the problem by iteratively excluding half of the remaining balls from the solution, and at the
same time satisfying the condition for half of the colors. Thus, after O(logm) iterations, all color
constraints are satisfied, and a 1/m fraction of the balls remain. There are further technical details
needed for the proof to go through which we need to take care of.

3.1 Algorithm Description

Given a colored point set P = P1 ∪ · · · ∪ Pm, and k1, . . . , km, the goal is to find a solution SOL =
SOL1 ∪ · · · ∪ SOLm where SOLi ⊆ Pi, and |SOLi| = ki, and that div(SOL) ≥ 1

α · divk1,...,km(P ).
The approximation algorithm is shown in Algorithm 3. The only unspecified part of the algorithm is
in Line 8, where we need to specify how we find the subset B′ given the set of balls B. One can take
different approaches resulting in different trade-offs described below.
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Algorithm 3 Approximation Algorithm for FDM under SUM-NN DIST Notion of Diversity
Input a colored point set P = P1 ∪ · · · ∪ Pm, and k1, . . . , km
Output a solution SOL ⊆ P where |SOL ∩ Pi| = ki, with approximately maximum diversity

1: SOL← an arbitrary solution satisfying the color constraints, i.e., |SOL ∩ Pi| = ki
2: for i ∈ [m] do
3: Gi = {p1, . . . , pk} ← GMM(Pi, k), and let r1, . . . , rk be their corresponding radii.
4: for j = 2 to k do
5: S1, . . . , Sm ← ∅
6: Let t(j) ≥ j be the largest iteration where rt(j) ≥ rj/2 and let t(j) = k if no such iteration

exists.
7: Let B = {B1, . . . , Bt(j)} be the balls of radius rt(j)/2 around the points p1, . . . , pt(j)
8: Find an (approximately) largest subset of balls B′ ⊆ B such that P \B′ contains at least

ki − |B′| points from color i, and at least kℓ points from color ℓ for each color ℓ ̸= i.
9: Add centers of B′ to Si

10: Add an arbitrary set of ki − |B′| points from Pi \B′ to Si

11: for ℓ ̸= i do
12: Add an arbitrary set of kℓ points from Pℓ \B′ to Sℓ

13: end for
14: if S =

⋃
i Si is a valid solution and div(S) > div(SOL) then

15: SOL← S
16: end if
17: end for
18: end for
19: return SOL

3.1.1 Finding an optimal subset of balls (Line 8 of Algorithm 3)

Given a colored point set P and a set of disjoint balls B, the goal here is to find an (approximately)
largest subset of balls B′ ⊆ B, such that

• For a pre-specified color i ∈ [m], we have |Pi \B′| ≥ ki − |B′|,
• For all other colors ℓ ∈ [m] \ {i}, we have |Pℓ \B′| ≥ kℓ.

Moreover, we may assume that |B| ≤ t(j) ≤ k, and that we are interested only in subsets B′ of size
upto |B′| ≤ ki.

Approach 1. If the algorithm is allowed to spend exponential time in k, one can find the optimal
subset B′ in time kki ·m as stated below.
Observation 3.1 (Approach 1). There is an algorithm that finds the optimal largest subset B′ ⊆ B
in time

(
tj
j

)
·m · j = kO(ki). (Proof in Appendix A.2).

Approach 2. One can get an approximate solution in polynomial time if the number of points of
each color is sufficiently large, i.e, for each ℓ ∈ [m], we have nℓ = |Pℓ| ≥ 2 · kℓ. Note that this is a
realistic assumption (also appeared in [11]), as we expect the number of data points to be much larger
than the target size for the summary. Further, this assumption can be relaxed to nℓ being larger than a
constant times kℓ similar to [11].
Lemma 3.2. There is an algorithm that finds an O(m)-approximate largest subset B′ ⊆ B in
polynomial time, under the assumption that for each ℓ ∈ [m], we have nℓ ≥ 2 · kℓ. (Proof in
Appendix A.3).

3.2 Algorithm Analysis

Let us now describe the intuition behind Algorithm 3 along with defining a set of notations. Let
OPT ⊆ P be the optimal solution and let OPTi = OPT ∩ Pi be the points of color i in the optimal
solution. Moreover let di1, . . . , d

i
ki

be the values of the optimal solution, i.e., dij = dist(pij ,OPT \
{pij}), where pij’s are the points in OPTi. Therefore, we have that divk1,...,km(P ) = div(OPT) =∑

i≤m

∑
j≤ki

dij .
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Let i∗ ≤ m be the color with the maximum contribution in the optimal solution, i.e., i∗ =
argmaxi∈[m]

∑
j≤ki

dij . Clearly,
∑

j≤ki∗
di

∗

j ≥ div(OPT)/m. Moreover, WLOG assume that for
each i, dij’s are sorted, i.e., di1 ≥ · · · ≥ diki

. Now, let j∗(i) be defined as j∗(i) = argmaxj≤ki
j · dij ,

and define j∗ = j∗(i∗).
Claim 3.3. Let i ∈ [m] be any color. Then we have j∗(i) · dij∗(i) ≥

1
⌈log(ki+1)⌉

∑
j≤ki

dij . (Proof in
Appendix A.4)
Theorem 3.4. Algorithm 3 using Approach 2, runs in polynomial time and produces a solution with
an approximation factor of O(m2 · log k). (Proof in Appendix A.5)

Similarly, running Algorithm 3 with Approach 1 would give us the following theorem.
Theorem 3.5. There exists an O(m · log k) approximation algorithm that runs in time O(kk ·
poly(m, k)).

4 Core-set for FDM under SUM-NN DIST

In this section we show how to get a composable core-set for FDM with respect to the SUM-NN
DIST notion of diversity.

Overview of the algorithm. In order to construct a core-set for FDM under the SUM-NN DIST
notion of diversity, we show that it is enough to construct a subset of the points such that the solution
to the problem of finding the maximum number of balls such that enough points exist outside of
them (discussed in Section 3) remains unchanged. We show that the GMM algorithm has this
property. Intuitively, since GMM chooses the points that are pairwise-far from each other, not too
many points are picked inside individual balls and thus the solution to the balls problem remains
relatively unchanged. Therefore, if we run the algorithm of Section 3 on the core-sets produced by
GMM, the solution is similar as if we had run it on the whole data.

Algorithm description. In this section, the goal is to give a summarization algorithmA that processes
each dataset Pi independently of other color datasets Pj and produces a summary Si = A(Pi) such
that divk1,...,km

(S) ≥ 1
α · divk1,...,km

(P ) where again S =
⋃

i Si. The core-set construction
algorithm is simple and is shown in Algorithm 4. The algorithm proceeds by running the GMM
algorithm k times, and each time for k + 1 iterations, and without replacement.

Algorithm 4 Core-set Construction Algorithm for SUM-NN
Input a point set Pi, together with parameters ki and k (where k = k1 + · · ·+ km)
Output a subset Si ⊆ Pi

1: Si ← ∅
2: for j = 1 to k do
3: Gi = {p1, . . . , pk+1} ← GMM(Pi, k + 1)
4: Si ← Si ∪Gi

5: Pi ← Pi \Gi

6: end for
7: return Si

Theorem 4.1. Algorithm 4 returns a composable core-set of size O(k2) for each of the m colors,
with an approximation factor of O(m · log k). (Proof in Appendix A.6)

5 Experiments

To demonstrate the effectiveness of our algorithms, we run simulations on public and timed datasets.

5.1 Tasks and Datasets

FDM as a tool to account for recency in a summary. Here the task is to produce a summary of a
set of timed messages with a property that (i) the summary is a diverse subset of the messages, and
(ii) there are more recent messages shown in the summary. We model this task by partitioning the
messages into groups / colors based on their creation times and assign a desired budget to each group.
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We use a Reddit dataset [42] of text messages that are semantically embedded using BERT [12] into
a metric space. We also utilize message creation time stamps as we aim to show diverse, yet timely
and relevant messages to a user created across different time-window intervals within a certain period
and thus assign a color to each message based on to which time-window interval (e.g., a week, thus
having 4 colors in total) the message creation time belongs to.

FDM as a tool for controlling the desired fairness contribution of each group. We further use
FDM to control the contribution of each genre (besides time) in a movie dataset. Apart from the
Reddit dataset, for this task we also use the MovieLens dataset [18] where the movie titles are
semantically embedded into a metric space. For this dataset, we have assigned a movie to a group
represented by a color based on two criteria: (i) movie genre, and (ii) the time-window interval the
movie review creation time belongs to. We include the result of this dataset in Appendix D.2.

More details on the datasets preparation are given in Appendix D.1 and additional result figures are
provided in Appendix D.2. We have also made the code of the algorithms publicly available2.

(a) Reddit (SUM-PAIRWISE) (b) Reddit (SUM-NN) (c) Reddit (MIN-PAIRWISE)

Figure 1: DM algorithm outcomes for all colors (m = 4) with equidistant time period as fairness
colors in the Reddit dataset (k = 20 items).

5.2 Summary of the experiments and results

We run the following experiments using all three diversity measures.

Need for FDM. We first show why we need to resort to FDM. In particular, we show that if we
run DM on the data, the results are not as fairly balanced as we want, as depicted in Figure 1 and
Figures 2 & 3 (Appendix D.2.1). In the case of time periods as colors dividing the data into m = 4
colors (i.e., quarters within a month), for k = 20 DM algorithms give: (i) a certain color that is
clearly dominantly present in the outcome (for all diversity distances), and (ii) this color is not the
one from the most recent messages (i.e., from the last color), see Figure 1 for the Reddit dataset.

Price of fairness (balancedness). Our next set of experiments show that when using FDM the
diversity is not decreased by a lot compared to DM. We use the loss of diversity (% Div. loss)
expressed as a relative change of diversity distances as a measure. This is shown in Table 2,
and Tables 4 & 5 (Appendix D.2.2). For most of these experiments we use the state-of-the-art
algorithms. However for SUM-NN DIST we use our proposed deterministic algorithm of Section
3 as an alternative to the LP-based randomized algorithm of [6]. When we run FDM, we gain in
fairness (or balancedness), but we lose in diversity over the DM, expressed in different metrics.
Experiments from Table 2 show that we lose around 1% for SUM-PAIRWISE DIST; from few percent
up to no more than 20% for SUM-NN DIST and around 50% for MIN-PAIRWISE DIST (due to its
fragility) for various color distributions per group, while achieving the desired per group distribution,
in both cases where we enforce balancedness (i.e., uniform ki), and when we enforce recency (i.e., ki
increasing). The results also show a similar trend if we use alternative message embeddings (Table 7
in Appendix D.2.4).

Effectiveness of our core-sets. We then show the effectiveness of the core-sets. We run our core-set
construction algorithms (of Section 2 and Section 4) on each color independently, to get a smaller
size dataset. We then run the FDM optimization once on the union of the core-sets and once on the
whole data. We also measure the loss of diversity and runtime improvement achieved by the use of
core-sets. The results for all three measures are given in Table 3 and Table 6 (Appendix D.2.3). In

2https://github.com/microsoft/coresets-fair-diverse
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Table 2: The loss of diversity (% Div. loss) between DM vs. FDM on the full data, expressed as
a relative change, of the concerned SUM-PAIRWISE, SUM-NN and MIN-PAIRWISE distances for
uniform (upper part) or increasing (lower part) color values ki for the Reddit dataset.

DM vs. FDM SUM-PAIRWISE SUM-NN MIN-PAIRWISE

colors ki
∑

ki % Div. loss % Div. loss % Div. loss

[2, 2, 2, 2] 8 1.22% 9.66% 51.57%
[3, 3, 3, 3] 12 0.98% 14.27% 49.99%
[4, 4, 4, 4] 16 0.50% 13.72% 48.78%
[5, 5, 5, 5] 20 0.47% 18.96% 48.05%
[6, 6, 6, 6] 24 0.19% 9.48% 47.20%

[2, 4, 6, 8] 20 0.42% 15.40% 48.05%
[3, 6, 9, 12] 30 0.29% 13.29% 46.34%

[4, 8, 12, 16] 40 0.25% 1.98% 45.52%
[5, 10, 15, 20] 50 0.16% 9.62% 44.48%
[6, 12, 18, 24] 60 0.12% 3.98% 43.60%

terms of diversity loss, the results show the diversity values are on-par or with marginal difference
if we apply the FDM to the union of core-sets, compared to FDM applied to the full data. (In the
case of SUM-NN DIST, there are cases where one is marginally better than the other, due to higher
approximation factor.) Our experiments show that using core-sets, the runtime of our algorithm
improves on average by factor of few 10× or 100×, while only losing diversity by few percent. We
remark that using core-sets in this context has an additional benefit: it removes the need to recompute
the summary on the whole data when new messages arrive: once we summarize a batch of old
message, we no longer need to process the batch and only need to work with the core-set that is
computed once.

Table 3: The loss of diversity (% Div. loss) expressed as a relative change of diversity distances, and
the running time gains (× times faster) of the FDM when applied to the union of core-sets compared
to FDM applied to the full data for uniform or increasing color values ki for the Reddit dataset. We
remark that the results for MIN-PAIRWISE have % Div. loss being 0% as for this data the two points
connected with the minimum distance always end up in the union of the core-sets.

FDM full data vs. core-sets SUM-PAIRWISE SUM-NN MIN-PAIRWISE

colors ki
∑

ki % Div. loss Time gain (×) % Div. loss Time gain (×) % Div. loss Time gain (×)

[2, 2, 2, 2] 8 1.35% 196.24 2.22% 1 769.70 0.00% 208.64
[3, 3, 3, 3] 12 0.67% 333.13 0.29% 888.55 0.00% 152.48
[4, 4, 4, 4] 16 1.21% 539.69 −1.59% 474.26 0.00% 122.29
[5, 5, 5, 5] 20 1.17% 432.68 −0.44% 294.23 0.00% 89.08
[6, 6, 6, 6] 24 0.94% 130.87 −3.03% 183.28 0.00% 63.69

[2, 4, 6, 8] 20 1.50% 845.98 −1.80% 285.68 0.00% 91.44
[3, 6, 9, 12] 30 1.06% 134.76 2.27% 110.36 0.00% 53.05

[4, 8, 12, 16] 40 1.02% 182.06 −0.88% 57.88 0.00% 36.51
[5, 10, 15, 20] 50 1.16% 194.36 0.71% 34.90 0.00% 26.97
[6, 12, 18, 24] 60 1.27% 172.25 −0.49% 23.71 0.00% 20.53

Comparison to state-of-the-art core-set algorithm for SUM-PAIRWISE DIST. Finally, we compare
the core-set construction algorithm in [8] for SUM-PAIRWISE DIST to our algorithm of Section 2.
The experiments in Appendix D.2.5 show that, the size of the core-set obtained by the algorithm
in [8] for getting a factor 2 approximation is close to the data size in practice. In addition, the final
diversity loss of our algorithm is negligible (less than 1% to few percent) even though it produces a
much smaller core-set. Further, our core-set construction algorithm is also significantly faster.
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A Deferred Proofs

A.1 Proof of Theorem 2.1

Proof. First note that it is easy to see that the size of each Si is at most k2i .

We will then show that the approximation factor is O(1). Let OPTi = OPT ∩ Pi be the points of
color i in the optimal solution of P . For each color i ∈ [m], let us use ri to denote the minimum
pairwise distance between the set of ki points returned by GMM(Pi, ki) in Line 1 of the algorithm.
Further let us abuse the notation, and for a point x ∈ P , use rx to denote rcx where cx ∈ [m] is the
color of the point x.

Now let us also divide the optimal value of the diversity into two parts.

div(OPT) =
∑

x,y∈OPT: dist(x,y)<5max{rx,ry}

dist(x, y) +
∑

x,y∈OPT: dist(x,y)≥5max{rx,ry}

dist(x, y)

Let A :=
∑

x,y∈OPT: dist(x,y)<5max{rx,ry} dist(x, y) be the first term in the above summation and
B :=

∑
x,y∈OPT: dist(x,y)≥5max{rx,ry} dist(x, y) denote the second term. Now we consider two

cases separately.

Case 1: A ≥ B. In this case we have that

div(OPT) ≤ 2 ·A ≤ 2
∑

x,y∈OPT

5 ·max{rx, ry} ≤ 20
∑

x,y∈OPT

rx ≤ 20 · k
∑
i∈[m]

kiri

Now let us define a solution as follows. Let SOLi ⊆ Si be the first set of ki points added to Si in
Line 1 of the algorithm using GMM. Then clearly the overall diversity of this solution is at least

div(SOL) =
∑
i∈[m]

∑
x,y∈SOLi

dist(x, y) +
1

2
·
∑
i∈[m]

∑
y∈SOL\SOLi

∑
x∈SOLi

dist(x, y)

≥
∑
i∈[m]

(
ki
2

)
ri +

1

2
·
∑
i∈[m]

∑
y∈SOL\SOLi

(
ki

2

)
(ki − 1)

ri by the triangle inequality

≥
∑
i∈[m]

ri(

(
ki
2

)
+ (k − ki) ·

ki
4
)

≥ k

4

∑
i∈[m]

kiri +
∑
i∈[m]

ri(
k2i
4
− ki

2
)

≥ k

4

∑
i∈[m]

kiri

where to get the last inequality, we used the fact that for ki > 1 the second term is non-negative.
Therefore div(SOL) ≥ 1

80 · div(OPT).

Case 2: A < B. In this case we have that div(OPT) ≤ 2B. We will show how to choose the
solution SOL. Let OPTi = OPT ∩ Pi as before.

Observation A.1. There exists a one-to-one mapping µ : OPTi → Si s.t. for each o ∈ OPTi,
dist(o, µ(o)) ≤ 2ri.

Proof. Let S′
i ⊆ Si be the first set of ki points added to Si in Line 1 of the algorithm. For a point

p ∈ Pi let n(p) = argmins′∈S′
i
dist(p, s′) be the nearest center in S′

i to p. Also, for a center s′ ∈ S′
i,

let N(s′) = {s ∈ Si : n(s) = s′} be the set of points in the core-set whose nearest center in S′
i is

s′, i.e., the points that have been added to the core-set in Line 5 of the algorithm while processing
s′. Finally let D(s′) = {o ∈ OPTi : n(o) = s′} be the set of points of color i in the optimal
solution whose closest center in S′ is s′. Note that because |OPTi| = ki, we have |N(s′)| ≥ |D(s′)|,
as the algorithm keeps adding points to Si as long as such point exists, and fewer than ki points
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have been added to N(s′). Therefore, we can always find a matching between D(s′) and N(s′) of
size at least |D(s′)|. Thus such a µ exists that maps a point o ∈ D(s′) to its match in N(s′). By
Property 3 of GMM we know that dist(o, s′) ≤ ri and dist(s′, µ(o)) ≤ ri, and thus we get that
dist(o, µ(o)) ≤ 2ri.

Now define SOLi ⊆ Si to be {µ(o) : o ∈ OPTi} and clearly |SOLi| = ki. Then we have

div(SOL) ≥
∑

x,y∈OPT: dist(x,y)≥5max{rx,ry}

dist(µ(x), µ(y))

≥
∑

x,y∈OPT: dist(x,y)≥5max{rx,ry}

dist(x, y)− dist(x, µ(x))− dist(y, µ(y))

≥
∑

x,y∈OPT: dist(x,y)≥5max{rx,ry}

dist(x, y)− 2rx − 2ry

≥
∑

x,y∈OPT: dist(x,y)≥5max{rx,ry}

dist(x, y)/5

≥ B/5 ≥ div(OPT)/10

A.2 Proof of Observation 3.1

Proof. One can brute force on each possible subset B′, and count the number of points from each
color that falls in B′, and thus compute the number of remaining points for each color, i.e., |Pℓ \B′|
in O(|B′| · m) time and check whether the number exceeds kℓ. So the total runtime is at most∑ki

z=1

((
t(j)
z

)
· z ·m

)
≤ m · kki .

A.3 Proof of Lemma 3.2

Proof. First one can check if there exists a subset B′
0 of size 2 = O(1) in polynomial time using

Approach 1.

Next we construct a solution B1. For each ℓ ∈ [m], let dℓ = kℓ be the demand of color ℓ, that is the
total number of points of that color which we want to exist outside of our solution B1. First WLOG
we assume that all points of P lie inside one of the balls in B (if this is not the case, one can subtract
the number of points of each color that are outside of all the balls from the demands dℓ). Then we
start with B1 = B and repeat the following process as long as there are non-zero demands left.

• We let A be an arbitrary subset of half of the balls in B1 and let Ā = B1 \A.

• Note that for each color ℓ ∈ [m] with non-zero demand dℓ > 0, either A or Ā contains at
least dℓ points of color ℓ in them. This is initially true as one of A or Ā should contain half
of the points that is nℓ/2 ≥ kℓ ≥ dℓ. We show this remains true at the end of the process.

• Let tA be the number of colors ℓ ∈ [m] with non-zero demands (i.e., dℓ > 0) such that
A contains more points of color ℓ than Ā, and define tĀ similarly as the number of colors
ℓ ∈ [m] with non-zero demands such that Ā contains more points of color ℓ than A.

• Now we let B1 = A if tĀ ≥ tA and let B1 = Ā otherwise. This ensures that the demand
of at least half of the colors with non-zero demand has been satisfied as the set we are
excluding from B1 satisfies the demand of at least half of the colors with non-zero demands.
This means that the total number of iterations is at most logm.

• We will update the demands of all the colors based on the set that was excluded from B1.
WLOG assume that tA ≥ tĀ. Then for each ℓ that dℓ > 0 we set dℓ = max{0, dℓ −
|A ∩ Pℓ|}.
Let ℓ be a color that has still a non-zero demand. Note that this means that |A ∩ Pℓ| ≤
dℓ. Therefore we will still have the property that

∣∣Ā ∩ Pℓ

∣∣ = |(B1 \A) ∩ Pℓ| ≥ 2dℓ −
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|A ∩ Pℓ| ≥ 2(dℓ − |A ∩ Pℓ|), where here we used B1 and dℓ to denote their values before
we apply the update corresponding to this iteration.

Finally, we return the best of B0 and B1 as B′, i.e., the one with maximum size. Note that if
OPT ≤ 2m, then B0 itself is an O(m) approximation. Otherwise, if OPT > 2m, then as the total
number of iterations to obtain B1 is at most logm, we have |B′| = |B1| ≥ |B| /2logm = |B| /m ≥
OPT/m.

A.4 Proof of Claim 3.3

Proof. Divide the interval [1, ki] into logarithmically many number of intervals such that for each
1 ≤ ℓ ≤ ⌈log(ki + 1)⌉, Iℓ = [2ℓ−1,min{2ℓ, ki + 1}). Then for each ℓ, we have that∑

j∈Iℓ

dij ≤ 2ℓ−1 · di2ℓ−1 ≤ j∗(i) · dij∗(i)

and therefore,
∑

j≤ki
dij ≤ ⌈log(ki + 1)⌉ · j∗(i) · dij∗(i).

A.5 Proof of Theorem 3.4

Proof. First note that, it can be easily checked that the algorithm runs in polynomial time by Lemma
3.2. Next, consider the iteration of Algorithm 3 corresponding to i and j where i = i∗ and j is chosen
as follows,

1. j is the largest value in the range j∗ ≤ j ≤ k such that rj ≥ di
∗

j∗

2. If no such j exists, we let j = j∗.

3. Finally, if j∗ < j < k and rj+1 ≥ di
∗

j∗/2, increase j by one, i.e., j = j + 1.

In all of the above cases, either by Property 3 of the GMM algorithm, or by definition, we have that
rj ≥ di

∗

j∗/2. Therefore, rt(j) ≥ di
∗

j∗/4. Therefore the balls in B defined in Line 7 of the algorithm,
have radius at least di

∗

j∗/8.

Claim A.2. Let B′′ ⊆ B be the maximum size subset of the balls s.t. P \ B′′ contains ki − |B′′|
points of color i, and at least kℓ number of points from color ℓ, for each ℓ ̸= i. Then |B′′| ≥ j∗.

Proof. Note that OPTi∗ contains a subset R of j∗ points from Pi∗ such that there are no other points
from OPT in the ball of radius di

∗

j∗ around the points in R. Now, we consider three cases separately.

Case 1: j = k. Note that in this case we also have that t(j) = k. Therefore, B contains k disjoint
balls. Obtain B′′ from B as follows. First set B′′ = B. Then for each color ℓ ̸= i, remove at most kℓ
balls from B′′ that contain the points of color ℓ in the optimal solution. Since B has size k =

∑
ℓ kℓ,

in the end B′′ will have size at least ki ≥ j∗.

Case 2: j < k and t(j) = k. Again in this case B contains k disjoint balls and one can obtain B′′

with size at least j∗ similar to the above case.

Case 3: j < k and t(j) < k. For this case, let us first prove the following simple claim.

Claim A.3. rt(j)+1 < di
∗

j∗/2.

Proof. First note that by the definition of t(j), we know that rt(j)+1 < rj/2. Now if we have
rj ≤ di

∗

j∗ (this happens when we increased the value of j in the last step), then we have that
rt(j)+1 < rj/2 ≤ di

∗

j∗/2 and the claim is proved. Otherwise, it means that rj+1 < di
∗

j∗/2 (since we
did not increase j in Item 3). But then since t(j) ≥ j, we have that t(j) + 1 ≥ j + 1. Therefore,
rt(j)+1 < di

∗

j∗/2 and the claim is proved again.
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Therefore, all the points in P lie within a distance of at most rt(j)+1 < di
∗

j∗/2 of one of the centers of
the balls in B. For each point q ∈ R let N(q) be the closest center among the centers of B to q. Note
that for two points q1, q2 ∈ R, N(q1) ̸= N(q2) as otherwise their distance is less than 2rt(j)+1 < di

∗

j∗

contradicting the definition of the set R. Let B′′ be the subset of the j∗ balls centered at N(R). Note
that for any other point in the optimal solution, i.e., q ∈ OPT \R, it cannot lie inside any of the balls
in the subset B′′, as again it contradicts the definition of R. This means that the set P \B′′ contains
enough points: i.e., ki − |R| points from color i, and kℓ points from color ℓ for each ℓ ̸= i.

Therefore, having Claim A.2 and using Lemma 3.2, we get that |B′| ≥ j∗/m. Now, let S1, . . . , Sm

be the solution created at the iteration corresponding to i and j as specified above. That is, Si contains
the centers of the balls in B′ returned by Approach 2, together with an arbitrary set of ki − |B′|
points from Pi \B′. Further, for each ℓ ̸= i, let Sℓ contain an arbitrary set of kℓ points from Pℓ \B′.
This solution contains a set of |B′| ≥ j∗/m points such that no other point in S lies within a distance
of rt(j)/2 ≥ di

∗

j∗/8. Now, to see the approximation, note that

div(SOL) ≥ div(S)

≥ (j∗/m) · di
∗

j∗/c1 by what we just proved

≥ 1

m · c1 · ⌈log(ki∗ + 1)⌉
∑

j′≤ki∗

di
∗

j′ by Claim 3.3

≥ 1

m2 · c1 · ⌈log(ki∗ + 1)⌉
∑
i′≤m

∑
j′≤ki′

di
′

j′ by choice of i∗

=
1

m2 · c1 · ⌈log k⌉
· div(OPT) by definition of di

′

j′ ’s

A.6 Proof of Theorem 4.1

Proof. We show the lemma by comparing the result of running Algorithm 3 on the union of the
core-sets S =

⋃
i Si, and running it on the whole dataset P =

⋃
i Pi. In particular, in Line 3 of

Algorithm 3, running the GMM algorithm on Si would return the same set of points as running it on
Pi, as Si itself contains Gi. Therefore, both runs of the algorithm end with the same set of balls B.
We will now show the following claim.

Claim A.4. Let B be a set of at most k disjoint balls of radius r/2 such that there exists a subset
B′ ⊆ B of size at most |B′| ≤ k of them such that Pℓ \B′ contains kℓ points. Further let C be a set
of |B| balls with the same centers as B but with radius r/6 instead, and let C ′ ⊆ C be the subset of
them corresponding to B′. Then Sℓ \ C ′ contains kℓ points.

Proof. Note that Sℓ is the result of running the GMM algorithm k times on Pℓ each for k+1 iterations.
Now, for i ≤ k, let us use T i to denote the set of k + 1 points returned by the ith run of GMM. Thus,
T i is the result of running GMM on the set Pℓ \

⋃
j<i T

j . Let ri be the minimum pairwise distance
between the points in T i. Now if for all i ≤ kℓ, T i contains at least one point outside of the balls in
C ′ then clearly Tℓ contains kℓ points outside C ′ and the claim is proved.

Otherwise consider the first iteration i such that T i ⊂ C ′. This means that since
∣∣T i

∣∣ = k + 1 and
|C ′| = |B′| ≤ k, there exists a pair of points in T i whose distance is at most 2 · r/6 = r/3. But then
by Property 2 of GMM, this means that all the other points in Pℓ \

⋃
j≤i T

i are within a distance of
r/3 from one of the balls in C ′ and therefore, they are all within B′. This means that Pℓ \ B′ can
only contain points from

⋃
j<i T

j ⊆ Sℓ, and thus the lemma is proved.

This means that if we replace the set of balls B in Algorithm 3 with C, both Approach 1 and Approach
2, will be able to find the set C ′ (either exactly or approximately depending on which Approach we
use). This means that corresponding to each solution SOL found by Algorithm 3 2, there will be a
corresponding solution in the core-set of diversity at least div(SOL)/3 (as the radius of the balls in
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C is 1/3 of the radius of the balls in B). Therefore, as Theorem 3.5 shows that using approach 1, one
gets a solution with approximation factor of O(m · log k), then this means that Algorithm 4 provides a
composable core-set of size O(k2) for each color, with an approximation factor of O(m · log k).

B Generalization of Section 2 to the case where ki ≥ 1

In Section 2 of the paper, for simplification of the proof, we assumed that for all i, we have ki > 1.
Here, we remove this assumption, and show that a simple modification of the algorithm works even if
for some i’s we have ki = 1. The modified algorithm is shown in Algorithm 5. The only modification
made is that in Line 1, the GMM will be run for at least two iterations even if ki = 1.

Algorithm 5 Core-set Construction Algorithm for SUM-PAIRWISE

Input a point set Pi, together with parameters ki and k (where k = k1 + · · ·+ km)
Output a subset Si ⊆ Pi

1: Si = {p1, . . . , pki
} ← GMM(Pi,max{ki, 2})

2: T ← ∅
3: for p ∈ Si do
4: for j = 1 to ki do
5: T ← T∪ the closest point pj ∈ Pi \ T to p s.t. argminq∈Si

dist(pj , q) = p.
6: end for
7: end for
8: Si ← Si ∪ T
9: return Si

Theorem B.1. Algorithm 5 produces a core-set with size O(k2i ) and a constant factor approximation:
divk1,...,km(S) ≥ 1

C · divk1,...,km(P ) for a constant c.

Proof. Again it is easy to see that the size of each Si is at most k2i , and we only need to show that the
approximation factor is O(1). We use the same notation as in the proof of Theorem 2.1. Note the
only modification is that now for colors i with ki = 1, we have that ri is the distance between the
two points in Si returned by GMM(Pi,max{k1, 2}) in Line 1 of the algorithm. Again, we divide
the optimal value of the diversity into two parts A and B defined as before. Again we consider the
two cases separately. The case of A < B (i.e., Case 2 in the proof of Theorem 2.1), holds similar to
before. So we only need to prove the case of A ≥ B, which we show below.

In this case as before, we have that div(OPT) ≤ 20 · k
∑

i∈[m] kiri.

Now let us divide the colors into two groups based on the value of their ki, i.e., let G = {i : ki > 1}
and thus [m] \G will contain colors i with ki = 1. WLOG, let us rename the colors so that the first
|G| colors of [m] are the colors in G, and moreover, colors |G|+1 to m are sorted such that rj1 ≤ rj2
whenever |G|+1 ≤ j1 < j2 ≤ m. Finally, we define t =

∑
j≤|G| kj to be the total number of points

in any solution that are from groups with at least one point in them.

Constructing the solution. Now let us define a solution as follows.

• For i ≤ |G|, define SOLi ⊆ Si as before, to be the first set of ki points added to Si in Line 1
of the algorithm using GMM. Let SOLG =

⋃
i∈G SOLi be the union of all these solutions.

• To define SOLi for |G|+ 1 ≤ i ≤ m, note that ki = 1, and thus we need to decide which
of the two points added in Line 1 of the algorithm to Si should be picked in SOLi. Note
that these two points are at distance exactly ri.

We go over the colors |G| + 1 to m one by one and decide which of the two points to
choose for SOLi. When at color i, let pi, p′i ∈ Si be the two points returned in Line 1 of
the algorithm using GMM which are at distance ri from each other. We let SOLi = {pi} if∑

x∈
⋃

j<i SOLj
dist(x, pi) ≥

∑
x∈

⋃
j<i SOLj

dist(x, p′i), and let SOLi = {p′i} otherwise.
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This way of constructing the solution gives us the property that∑
x∈

⋃
j<i SOLj

dist(x, SOLi) ≥
ri
2
· (t+ i− 1− |G|)

where we abused the notation SOLi to refer to the only point in SOLi.

Analysis. To show that the constructed solution has large diversity, let us divide the participating
distances into three parts as below.

div(SOL) =
∑

x,y∈SOLG

dist(x, y) +
∑

x∈SOLG,y∈SOL\SOLG

dist(x, y) +
∑

x,y∈SOL\SOLG

dist(x, y)

Let us refer to the above three terms as div1, div2, and div3. Now by the construction of SOLi for
i ≤ |G|, similar to Case 1 in the proof of Theorem 2.1, one can show that

div1 + div2 ≥
k

4

∑
i≤|G|

kiri

Claim B.2. div2 + div3 ≥ k
8

∑m
i=|G|+1 ri.

Proof. Note that we have

div2 + div3 =
∑

x∈SOL\SOLG,y∈SOL

dist(x, y) ≥
m∑

i=|G|+1

ri
2
· (t+ i− 1− |G|)

Now we consider two cases separately, if t ≥ k/2 then clearly (t+i−1−|G|) ≥ k/2 for i ≥ |G|+1,
and we have

div2 + div3 ≥
m∑

i=|G|+1

ri
2
· (t+ i− 1− |G|) ≥

m∑
i=|G|+1

ri
2
· k
2
=

k

4
·

m∑
i=|G|+1

ri

Otherwise, if t < k/2 then since we assumed that the ri for |G|+ 1 ≤ i ≤ m are sorted, and noting
that the last term in the summation is rm

2 · (k − 1), we have

div2 + div3 =

m∑
i=|G|+1

ri
2
· (t+ i− 1− |G|) ≥

m∑
i=m−k/2

ri
2
· k
2
=

k

4
·

m∑
i=m−k/2

ri ≥
k

8

m∑
i=|G|+1

ri

Thus, noting that ki = 1 for i ≥ |G|+ 1, and using the upper bound we stated on div(OPT), we get
that

div(SOL) = div1 + div2 + div3 ≥
1

2

k

4

∑
i≤|G|

kiri +
k

8

m∑
i=|G|+1

kiri

 ≥ 1

16

∑
i

kiri ≥
1

320
div(OPT)

C Arbitrary Partitioning and Fully Composable Core-sets

In this section, we show what our results imply when the partitioning of the point sets into multiple
parts is not necessarily based on the colors. This will provide a composable core-set as defined in
[20] as opposed to the color-abiding composable core-set as defined in 1.4.
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Formally, the goal is to present a summarization algorithm A that now receives a colored point set
P =

⋃
i≤m Pi and the goal is to summarize it into T ⊆ P with the following composablility property.

For any collection of colored point sets P (1), · · · , P (N), we have that

divk1,··· ,km(
⋃
j≤N

A(P (j))) ≥ 1

α
divk1,··· ,km(

⋃
j≤N

P (j))

Corollary C.1. We have an algorithm that given a colored point set P =
⋃

i≤m Pi computes a
(not necessarily color-abiding) composable core-set of size k2 for the Fair Diversity Maximization
problem under the SUM-PAIRWISE DIST notion of diversity.

Proof. The algorithm simply runs Algorithm 2 for each of Pi and returns their union. The size of
the core-set is clearly

∑
i≤m k2i ≤ k2. Moreover, by Theorem 2.1 it is easy to verify that this is in

fact a composable core-set, because for any collection of colored point sets P (1), · · · , P (N), one can
treat them as having N ·m different groups with k

(j)
i ≤ ki (more precisely, one can set k(j)i to be

the number of points the optimal solution on
⋃

j≤N P (j) picks from P (j)). Now note that although

one does not know the value of k(j)i at the time of running Algorithm 2 on P
(j)
i , however since

k
(j)
i ≤ ki, it is easy to verify that running Algorithm 2 on P

(j)
i with parameter ki as opposed to k

(j)
i

still works.

Similarly, one can get a composable core-set for the SUM-NN DIST notion of diversity.

Corollary C.2. We have an algorithm that given a colored point set P =
⋃

i≤m Pi computes a (not
necessarily color-abiding) composable core-set of size O(m · k2) for the Fair Diversity Maximization
problem under the SUM-NN DIST notion of diversity.

Proof. The algorithm simply runs Algorithm 4 for each of Pi and returns their union. The size of
the core-set is clearly

∑
i≤m k2 ≤ mk2 = O(k3). Moreover, by Theorem 4.1 it is again easy to

verify that this is in fact a composable core-set, because for any collection of colored point sets
P (1), · · · , P (N), again one can treat them as having N ·m different groups with k

(j)
i ≤ ki. Again,

although one does not know the values of k(j)i at the time of running Algorithm 4, however since
k
(j)
i ≤ ki, it is easy to verify that the point set picked by running Algorithm 4 on P

(j)
i with parameter

ki is a super set of the core-set that would have been picked if the algorithm was run with parameter
k
(j)
i as opposed to ki.

Remark C.3 (Applications). Now that we showed how to get a (not necessarily color-abiding)
composable core-set, the result of [20] readily implies that we have a streaming algorithm and an
MPC algorithm for the Fair Diversity Maximization under the SUM-PAIRWISE DIST and SUM-NN
DIST notions of diversity.

D Data Preparation and Additional Experiments

In order to demonstrate the effectiveness of the proposed approximation algorithms, we run sim-
ulations on public and timed datasets. In this section, we give details on the used datasets, data
preparation, pre-processing, and additional experiment results.

D.1 Datasets, data preparation, and experiments setup

Datasets and data preparation. We use Reddit public dataset [42] of text messages that are
semantically embedded into a metric space (e.g., 748-dimensional metric space with BERT embed-
dings [12]). We use this collection3 of Reddit messages as it provides the creation time stamp in
the schema, which we need to mark the relative recency of the messages, presented by its color

3https://github.com/henghuiz/MaskedHierarchicalTransformer
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within a given month4. We want to remark other commonly used Reddit datasets [37, 22]5 are not
considered in this work as they do not have the creation time in their schema. Since we have the
messages metadata included in the creation timestamp ti of a message i, we can assign a color colori
of message i as

colori = ⌊m ·
ti − tmin

tmax − tmin
⌋

where tmin and tmax are the minimum and maximum creation timestamp within the considered
full input data and m is the desired total number of colors. In this way, we have m equidistant
time intervals such that messages (relatively) close to one another by creation time belong to the
same color and the most recent messages are in the m-th color. In this way, we can also run Fair
Diversity Maximization (FDM) for a desired distribution of number of messages within a color,
i.e., ki, for ∀i = 1, 2, . . . ,m, either by fairness (all ki’s equal) or by recency (ki increases with i).
In order to transform the message into a multi-dimensional space, we use BERT-model semantic
embeddings [12] in our experiments (presented in the paper). Sentences and paragraphs embedding is
an active area of NLP research [34, 36]. Although, the quality of sentences and paragraphs semantic
embedding is out-of-scope for this work and we assume the messages are already given in the metric
space, we have demonstrated (in Section D.2.4) the trend of the results is preserved by using other
state-of-the-art (such as MPNETv2 [35], T5 [29], RoBERTa [23] or MiniLM [38]) and traditional
(like GloVe [32]) pre-trained models for semantic embeddings. In the paper, the input "pool" of
messages for the DM and FDM algorithms in the experiments is set to one month as we want to
present to a user messages that are selected from a timely and fresh period and the DM and FDM
approximation algorithms make a decision for the most relevant, but also diverse and fairly distributed
(per color) messages. We present results from January 2018 Reddit dataset that consists of 21,474
samples, divided into four colors6 and our experiments show there is a consistency in the results using
input data from other periods.

We also utilize the MovieLens movie reviews dataset [18] from 2001, where the movie titles are
semantically embedded into a metric space. In addition to the color determined by the creation
time of the review (determined in the same way as explained for the Reddit dataset), for MovieLens
dataset, we also assign a color based on the movie genre. There are 18 movie genres: {’Western’,
’Documentary’, ’Mystery’, ’Film-Noir’, ’Thriller’, ’Crime’, ’Adventure’, ’Musical’, ’Sci-Fi’, ’War’,
’Action’, ’Fantasy’, ’Comedy’, "Children’s", ’Animation’, ’Horror’, ’Romance’, ’Drama’}.

Description of the experiments. The main experiments we run in this work are the followings.

• First we show that if we run DM on the data, the results are not balanced as we want, see
Section 5 (main part, Figure 1) and Section D.2.1 (Figures 2 and 3), and thus we need to
resort to FDM. Further, we show that using FDM the diversity does not decrease by much.
This is shown in Section 5 (main part, Table 2) and Section D.2.2 (Tables 4 and 5).

• Second, we show the effectiveness of the core-sets. We run our core-set construction
algorithms (developed in Section 2 and Section 4) on each color independently, to get a
smaller size dataset. We then run the FDM optimization once on the union of the core-sets
and once on the whole data. We measure the diversity loss and runtime improvement
achieved by the use of core-sets. The results are given in Section 5 (main part, Table 3) and
Section D.2.3 (Table 6).

• The difference of the results (in the SUM-PAIRWISE notion of diversity) if we use alternative
message embeddings are given in Section D.2.4 (Table 7).

• Last, the practical comparison of our algorithm with the state-of-the-art algorithm of Cecca-
rello et al. [8] for core-set construction respect with to SUM-PAIRWISE diversity is given in
Section D.2.5 (Table 8).

4The messages in this dataset are given with a creation time (time stamp) and message IDs, but with no
content / message text and the message content is extracted by using the Reddit API: https://github.com/
reddit-archive/reddit/wiki/OAuth2. We request the messages for several months (using a similar script
as the one used by the dataset creators) as we want to provide fresh messages from the recent month (our search
pool) in our output.

5see also: https://www.tensorflow.org/datasets/catalog/reddit and
https://huggingface.co/datasets/reddit_tifu

6Based on the quarter (roughly a week) to which a message belongs within this month.
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D.2 Additional experiment results

D.2.1 Fairness of the DM algorithms outcome and justification of FDM need

While the DM algorithms produce diverse results, they often do not have the balance in the fairness
we prefer to have. When we make the color division based on time periods (m = 4, quarters within
a month), DM algorithms produce imbalanced outcome (k = 20) for colors presence, see Figure 1
(main part) and Figure 2. The conclusions are two-fold: (i) the most present messages are not the most
recent ones and (ii) the results are also not equally balanced per quarter. In the case of MovieLens
where the color is the movie genre (m = 18 genres), the most present movies genres in the most
optimal k = 50 items are Drama and Comedy across all diversity distances and some genres are
not present as shown in Figure 3. This highlights the need for the colored version of the algorithms
(FDM) to achieve the desired fairness.

(a) MovieLens (SUM-PAIRWISE) (b) MovieLens (SUM-NN) (c) MovieLens (MIN-PAIRWISE)

Figure 2: DM algorithm outcomes for all colors (m = 4) with equidistant time period as fairness
colors in the MovieLens dataset (k = 20 items).

(a) MovieLens (SUM-PAIRWISE) (b) MovieLens (SUM-NN) (c) MovieLens (MIN-PAIRWISE)

Figure 3: DM algorithm outcomes for top 5 colors with genres as fairness colors (m = 18) in the
MovieLens dataset (k = 50 items).

D.2.2 DM vs. FDM results

Reddit dataset. When we run FDM, we gain in fairness (or balancedness), but we lose in diversity
over the DM expressed in different metrics. How much the diversity becomes worse when we apply
the FDM, for the Reddit dataset, is shown in Table 2. Experiments show that we lose around 1% for
SUM-PAIRWISE DIST; from few percent up to no more than 20% for SUM-NN DIST and around 50%
for MIN-PAIRWISE DIST (due to its fragility) for various distributions per color, while achieving the
desired per colors distribution, both in balancedness (uniform ki = const) and recency (ki increasing
linearly; km most recent items).

MovieLens dataset. The results for the MovieLens dataset follow the trend of the results of Reddit
dataset, when we compare the diversity loss (and fairness gains). This is given in Table 4, comparable
to Table 2 in the main part of the paper. In the cases with time as a color, experiments show that
on diversity, we lose less than 1% for SUM-PAIRWISE DIST; few percents for SUM-NN DIST and
around 50-70% for MIN-PAIRWISE DIST, while achieving the desired per color distribution. For this
dataset, we also run experiments where the number of colors is larger (genres; m = 18) and we also
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see a similar trend of diversity loss of around 2-3% for for SUM-PAIRWISE DIST; few percents for
SUM-NN DIST and around 50-55% for MIN-PAIRWISE DIST as shown in Table 5.

Table 4: The loss of diversity (% Div. loss) between DM vs. FDM on the full data, expressed as
a relative change, of the concerned SUM-PAIRWISE, SUM-NN and MIN-PAIRWISE distances for
uniform (upper part) or increasing (lower part) color values ki for MovieLens dataset with time period
within January 2001 as colors (m = 4).

DM vs. FDM SUM-PAIRWISE SUM-NN MIN-PAIRWISE

colors ki
∑

ki % Div. loss % Div. loss % Div. loss

[2, 4, 6, 8] 20 0.14% 1.46% 58.93%
[3, 6, 9, 12] 30 0.02% 3.33% 68.94%

[4, 8, 12, 16] 40 0.03% 1.62% 68.32%
[5, 10, 15, 20] 50 0.02% 1.70% 67.64%
[6, 12, 18, 24] 60 0.02% 1.15% 67.36%

Table 5: The loss of diversity (% Div. loss) between DM vs. FDM on the full data, expressed as
a relative change, of the concerned SUM-PAIRWISE, SUM-NN and MIN-PAIRWISE distances for
uniform color values ki for MovieLens dataset with genres as colors (m = 18).

DM vs. FDM SUM-PAIRWISE SUM-NN MIN-PAIRWISE

colors ki
∑

ki % Div. loss % Div. loss % Div. loss

[2, 2, . . . , 2] 36 2.84% 9.51% 52.63%
[3, 3, . . . , 3] 54 2.88% 5.78% 54.04%
[4, 4, . . . , 4] 72 2.87% 11.38% 53.09%
[5, 5, . . . , 5︸ ︷︷ ︸

18

] 90 2.93% 12.52% 52.25%

D.2.3 Effectiveness of the core-sets results

Reddit dataset. We also run experiments to show the power of data summarization in terms of
core-sets. The results in terms of diversity loss are on-par or with marginal difference if we apply the
FDM to the union of core-sets, compared to FDM applied to the full data. See Table 3 for the results
on both SUM-PAIRWISE and SUM-NN distances. (In the case of SUM-NN DIST, there are cases
where one is marginally better than the other7.) Moreover, running FDM to the union of core-sets is
orders of magnitude faster compared to the same algorithm applied to the full data.

MovieLens dataset. As shown in Table 6, the comparison of the diversity outcome of the FDM
applied on the full data versus the FDM applied on the data summary presented by the core-sets show
similar trend as in the Reddit dataset (Table 3): few percent in diversity is lost for SUM-PAIRWISE
notion, while for the SUM-NN the results are mixed either in favor of the full data outcome or the
core-set in terms of diversity. In the case of MIN-PAIRWISE the loss of diversity is either 0% in a
case the two points connected with the minimum distance are in the union of the core-sets, or it can
be a higher value in the opposite case due to the fragility of the MIN-PAIRWISE DIST.

7For example, FDM on the core-sets is occasionally better in diversity compared to the full data. One should
note that the higher approximation factor contributes to this.
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Table 6: The loss of diversity (% Div. loss) expressed as a relative change of diversity distances, and
the running time gains (× times faster) of the FDM when applied to the union of core-sets compared
to FDM applied to the full data for SUM-PAIRWISE, SUM-NN and MIN-PAIRWISE distances for
uniform or increasing color values ki for MovieLens dataset for January 2001 and m = 4.
FDM full data vs. core-sets SUM-PAIRWISE SUM-NN MIN-PAIRWISE

colors ki
∑

ki % Div. loss Time gain (×) % Div. loss Time gain (×) % Div. loss Time gain (×)

[2, 2, 2, 2] 8 1.16% 1 515.18 2.81% 1 225.64 0.00% 1 734.86
[3, 3, 3, 3] 12 1.38% 967.96 −0.16% 604.15 26.51% 1 130.37
[4, 4, 4, 4] 16 0.79% 617.67 −1.62% 325.73 46.17 874.17
[5, 5, 5, 5] 20 0.61% 455.46 0.00% 207.71 26.75 686.42
[6, 6, 6, 6] 24 0.62% 277.63 −0.23% 128.25 26.75 582.37

[2, 4, 6, 8] 20 0.83% 412.02 −2.94% 205.90 9.25% 1 515.18
[3, 6, 9, 12] 30 0.77% 143.14 0.04% 83.48 0.68% 967.96
[4, 8, 12, 16] 40 0.90% 121.84 5.30% 41.73 11.79% 617.67

[5, 10, 15, 20] 50 0.70% 30.68 0.05% 25.92 0.00% 455.46
[6, 12, 18, 24] 60 0.75% 18.40 −8.85% 13.07 43.38% 277.63

D.2.4 Experiment results with alternative semantic embeddings

In this part, we show that using different embeddings for the messages produce similar trend in the
obtained results. Table 7 present the comparison results in terms of diversity loss in the notion of SUM-
PAIRWISE DIST if we apply a FDM algorithm in comparison with the standard DM algorithm for
various semantic message embeddings. The results show that we have a negligible loss of diversity,
while we have the desired fairness (in terms of the requested ki’s); irrelevant of the employed
pre-trained model to embed the messages in a multi-dimensional space by using 6 state-of-the-art
pre-trained models for embedding a message or a paragraph: BERT [12]; T5 [29]; MPNETv2 [35];
MiniLM [38]; RoBERTa [23] and GloVe [32]. We use one of the highest performance and popular
pre-trained models (without further training), however the quality of semantic sentence & paragraph
embeddings using Large Language Models (LLM) is out-of-scope for this work.

D.2.5 Comparison of core-set construction algorithms

In this section for the SUM-NN notion of diversity, we first compare the size of the obtained core-sets
of the algorithm proposed in this paper and the one from [8], in practice, for Reddit data. The results
are given in Table 8. The results show that core-set size of the algorithm from [8] can indeed be very
high providing very little summarization, while the core-set of our proposal is indeed much smaller
(columns 3 and 4). As a result, our algorithm is few orders of magnitude faster than the core-set
construction algorithm from [8] (column 5). This is true while the diversity loss of our algorithm is
negligible (less than 1% to few percent).
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Table 7: The loss of diversity (% Div. loss) between DM vs. FDM on the full data, expressed as a
relative change, of the concerned SUM-PAIRWISE DIST for uniform or increasing color values ki for
six popular semantic embeddings. The results in the main part of the paper and in the other figures in
this appendix are based on BERT [12] message embeddings.

DM vs. FDM BERT [12] T5 [29] MPNETv2 [35]

colors ki
∑

ki % Div. loss % Div. loss % Div. loss

[2, 2, 2, 2] 8 1.22% 1.15% 0.32%
[3, 3, 3, 3] 12 0.98% 0.60% 0.32%
[4, 4, 4, 4] 16 0.50% 0.30% 0.20%
[5, 5, 5, 5] 20 0.47% 0.29% 0.11%
[6, 6, 6, 6] 24 0.19% 0.20% 0.05%

[2, 4, 6, 8] 20 0.42% 0.26% 0.08%
[3, 6, 9, 12] 30 0.29% 0.23% 0.14%
[4, 8, 12, 16] 40 0.25% 0.08% 0.06%
[5, 10, 15, 20] 50 0.16% 0.10% 0.02%
[6, 12, 18, 24] 60 0.12% 0.10% 0.03%

MiniLM [38] RoBERTa [23] GloVe [32]

% Div. loss % Div. loss % Div. loss

[2, 2, 2, 2] 8 1.14% 1.27% 1.11%
[3, 3, 3, 3] 12 0.71% 0.17% 0.47%
[4, 4, 4, 4] 16 0.38% 0.06% 0.13%
[5, 5, 5, 5] 20 0.32% 0.14% 0.03%
[6, 6, 6, 6] 24 0.21% 0.05% 0.10%

[2, 4, 6, 8] 20 0.38% 0.31% 0.43%
[3, 6, 9, 12] 30 0.35% 0.18% 0.38%
[4, 8, 12, 16] 40 0.27% 0.19% 0.31%
[5, 10, 15, 20] 50 0.32% 0.14% 0.32%
[6, 12, 18, 24] 60 0.33% 0.15% 0.13%

Table 8: The size of the union of core-sets produced by the algorithm of [8] and the size of the union
of core-sets produced by our algorithm. The loss of diversity (% Div. loss) expressed as a relative
change of diversity distances, and the running time gains (× times faster) of the FDM when applied
to the union of core-sets produced by our algorithm vs. the one from [8] for SUM-PAIRWISE distance
for uniform or increasing color values ki for the Reddit dataset.

Corsets size comparison ∪i core-sets size core-sets compute FDM (∪i core-sets)

colors ki
∑

ki [8] alg. our alg. Time gain (×) % Div. loss Time gain (×)

[2, 2, 2, 2] 8 12791 40 17.19 3.89% 1 055.62
[3, 3, 3, 3] 12 13486 56 9.20 0.62% 529.96
[4, 4, 4, 4] 16 13857 72 5.28 0.26% 458.05
[5, 5, 5, 5] 20 13993 154 3.65 1.69% 246.58
[6, 6, 6, 6] 24 14305 164 2.78 0.27% 129.73
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