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ABSTRACT

Universal domain adaptation (UniDA) aims to tackle the knowledge transfer prob-
lem in the presence of both distribution and category shifts. Most existing UniDA
methods are developed based on the accessibility assumption of source-domain
data during target model adaptation, which may result in privacy policy viola-
tion and source-data transfer inefficiency. To address this issue, we propose a
novel source-free UniDA method by confidence-guided entropy discrimination
and likelihood-induced energy optimization. The entropy-based separation crite-
rion to determine known- and unknown-class target data may be too conservative
for known-class prediction. Thus, we derive the confidence-guided entropy by
scaling the normalized prediction score with the known-class confidence, such that
much more known-class samples are correctly predicted. Without source-domain
data for distribution alignment, we constrain the target-domain marginal distribu-
tion by maximizing the known-class likelihood and minimizing the unknown-class
one. Since the marginal distribution is difficult to estimate but can be written as
a function of free energy, the likelihood-induced loss is changed to an equivalent
form based on energy optimization. Theoretically, the proposed method amounts
to decreasing and increasing internal energy of known and unknown classes in
physics, respectively. Extensive experiments on four publicly available datasets
demonstrate the superiority of our method for source-free UniDA.

1 INTRODUCTION

Data-driven deep learning models have achieved remarkable success in many computer vision ap-
plications such as visual classification (Wang et al., 2020), object detection (Xie et al., 2021) and se-
mantic segmentation (Liu et al., 2021). Since data collected from different sensors or environments
may suffer from distribution shift, unsupervised domain adaptation (UDA) (Ganin & Lempitsky,
2015; Li et al., 2021b) is proposed to transfer domain-invariant knowledge from source to target
domain without target supervision. Besides distribution shift, the category gap across domains is
also an important problem to be addressed in partial domain adaptation (PDA) (Cao et al., 2019),
open-set domain adaptation (ODA) (Jing et al., 2021; Liu et al., 2019) and universal domain adap-
tation (UniDA) (Saito et al., 2020; Saito & Saenko, 2021; You et al., 2019). In PDA (or ODA), the
source label set is assumed to be a superset (or subset) of the target label set. Different from PDA
and ODA, UniDA is a more practical setting in which there are private label sets in both domains.

UniDA is a challenging problem due to the possible negative transfer caused by the presence of
the unknown private classes in each domain. Recently, many research works (Gao et al., 2022; Li
et al., 2021a; Saito et al., 2020; Saito & Saenko, 2021; You et al., 2019) have been proposed to
solve the challenging but more practical problem of UniDA. These methods learn to separate the
shared classes in both domains from the target private classes, such that the distribution shift of
the shared classes can be reduced to mitigate the negative transfer. Despite the inspiring progress
achieved in UniDA, source-domain data may not be always accessible during the model adaptation
stage to train the target model. In practice, the data privacy of the source domain is important and
the source-domain dateset may be large-scale constraining the data transmission efficiency. Thus,
it becomes necessary to develop source-free UniDA methods without accessing the source-domain
data for adapting the pre-trained source model to the target domain.
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Figure 1: (a) Entropy, (b) Confidence-guided Entropy and (c) Free Energy distributions of target-
domain data w.r.t. the pre-trained source model under the W→A task on the Office-31 dataset. The
separation of target known (positive) and unknown (negative) classes can be considered as a binary
classification problem. Without labels in the target domain, the optimal separation threshold (i.e. the
intersection point) cannot be estimated. Under the same threshold 1.8 (marked in red), the entropy-
based recall 0.53 in (a) is significantly lower than 0.88 which is the recall of separation based on
the proposed confidence-guided entropy in (b). This means much more known-class samples are
correctly predicted as known by using the proposed method, which is beneficial for multi-class
classification of known classes. By separating the target data into predicted known- and unknown-
class subsets, (c) shows that the known-class energy is lower compared to the unknown-class one.
Thus, free energy is used to define the loss function for further improvement.

Under the source-free setting, it is difficult, if not impossible, to align the distributions across do-
mains, as the source-domain data is not available for adversarial training (Ganin et al., 2016) or
maximum mean discrepancy (MMD) minimization (Long et al., 2015). Though several source-free
domain adaptation methods (Hou & Zheng, 2021; Li et al., 2020; Yang et al., 2021a;b) have been
proposed to reduce the distribution discrepancy, they are developed based on the closed-set assump-
tion (i.e. the source label set is equal to the target label set) without considering the category shift. To
address the source-free UniDA problem, Kundu et al. (2020b) propose to generate negative samples
by image composition of source-domain data which synthesizes the distribution out of the source
label set. Then, the target model is adapted from the source model pre-trained with the generated
negatives by assigning weights to target samples as similarities to the source domain. Nevertheless,
the generated source negatives are still different from the the target private classes which cannot
be approximated by the combination of source labels. Hence, data of the (unknown) target private
classes may not be well separated from the (known) source-domain classes.

To overcome these limitations, we propose a novel confidence-guided Entropy discrimination and
likelihood-induced Energy optimization (E2) method for source-free UniDA. Since entropy mea-
sures the classification uncertainty, it is probably higher for unknown and lower for known class.
Though the target-domain data could be separated into known- and unknown-class subsets with
lower and higher entropy respectively, such separation criterion may be too conservative for known-
class prediction as shown in Fig. 1a. In our method, we incorporate the known-class confidence to
derive the confidence-guided entropy by scaling the normalized prediction vector with its maximum.
Based on the confidence-guided entropy for separation, the number of known-class samples wrongly
predicted as unknown can be significantly reduced as illustrated in Fig. 1b. Moreover, we prove the
monotonically decreasing property of the confidence-guided entropy w.r.t. the known-class confi-
dence and use it to define the loss function for self-supervised discriminative learning.

Besides confidence-guided entropy discrimination, an innovative method is presented to maximize
the known-class likelihood and minimize the unknown-class one based on the concept of free en-
ergy in physics. Due to the difficulty in estimating the the marginal distribution, we rewrite the
loss function on likelihoods of known and unknown classes to an equivalent form depending on
free energy. Since the free energy of in-distribution (known-class) data is lower than that of out-
of-distribution (unknown-class) data (Fig. 1c), the loss is designed to decrease and increase the free
energy of known-class and unknown-class target data respectively. The overall optimization prob-
lem is given by combining confidence-guided entropy discrimination and likelihood-induced energy
optimization. Theoretical analysis in physics indicates that internal energy is minimized for known
class and maximized for unknown class by optimizing the overall loss function.
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The contributions of this work are summarized as follows. 1) We develop a novel source-free UniDA
approach based on confidence-guided Entropy discrimination and likelihood-induced Energy opti-
mization (E2). Theoretical analysis shows that minimization of the overall loss function amounts to
optimization of internal energy in physics. 2) We derive the confidence-guided entropy to balance
the trade-off between classification uncertainty and known-class confidence, such that target data
can be better separated into known- and unknown-class subsets. 3) Without source-domain data for
distribution alignment, target distribution is constrained by energy optimization which is equivalent
to likelihood maximization for known and minimization for unknown class. 4) Extensive experi-
ments on four publicly available domain adaptation datasets demonstrate the effectiveness of our E2

method for source-free UniDA.

2 RELATED WORK

Universal Domain Adaptation (UniDA). The UniDA setting is first introduced in (You et al., 2019)
to address the knowledge transfer problem under both distribution and category shifts. In (Fu et al.,
2020), a combination of confidence, entropy and consistency is presented as a uncertainty metric
to assign larger weights for more transferable samples during training. The Domain Adaptative
Neighborhood Clustering via Entropy optimization (DANCE) (Saito et al., 2020) is proposed to
learn the structure of the target domain via self supervision. In (Saito & Saenko, 2021), the One-
vs-All Network (OVANet) is trained with the labeled source-domain data and an open-set classifier
is adapted to the target domain by minimizing entropy. Different from these works which treat
all the target private classes as one unknown category, the Domain Consensus Clustering (DCC)
method (Li et al., 2021a) aims at not only identifying the private classes from the shared ones, but
also separating the private classes themselves. Nevertheless, these UniDA methods depend on the
assumption that source-domain data is accessible during target model adaptation, which may result
in privacy policy violation and data transfer inefficiency.

Source-free Domain Adaptation. Source-free domain adaptation methods (Kundu et al., 2020a;b;
Liang et al., 2020; Yang et al., 2022) have been proposed to address the data privacy and transfer
inefficiency issues. Existing source-free domain adaptation methods can be divided into two cat-
egories. The first approach (Kundu et al., 2020a;b) aims to improve the generalization ability of
the source model by generating negative samples in the hope of approximating the data distribution
of target private classes. To reduce the computational overhead in data augmentation, the second
approach (Liang et al., 2020) fine-tunes the network parameters for implicit distribution alignment
between the target domain and the source model.

Energy-based models (EBMs). In EBMs (LeCun et al., 2006), free energy is a quality score as-
signed to a given input which is lower for observed data and higher for unobserved ones. Recently,
EBMs have been employed in a wide range of applications like object recognition (Joseph et al.,
2021), out-of-distribution detection (Liu et al., 2020a), generative adversarial network (Zhao et al.,
2017) and so on. In (Grathwohl et al., 2020), it has been shown that EBMs can give better perfor-
mance in terms of improved calibration, out-of-distribution detection, and adversarial robustness.
In (Xie et al., 2022; Liu et al., 2020b), free energy is used as a regularization term following the
traditional EBMs. Both of these two methods are developed under the setting of closed-set domain
adaptation without category shift. They CANNOT be directly employed in the more challenging
source-free universal domain adaptation. In this paper, we propose to incorporate free energy for
source-free UniDA by decreasing the free energy of the known-class samples and increasing that of
the unknown-class ones.

3 METHOD

In universal source-free domain adaptation, the source model f0 is first pre-trained with a labeled
source domain Ds = {xs, ys} by minimizing the cross-entropy as in (Liang et al., 2020). In the
model adaptation stage, the source model f0 and an unlabeled target domain Dt = {xt} are used
for training the target model f without accessing the source-domain data. Denote the label sets of
source and target domain as Cs and Ct, respectively. The shared label set is C = Cs ∩ Ct. The source
private and target private label sets are the relative complements of C in Cs and Ct, respectively, i.e.,
C̄s = Cs − C and C̄t = Ct − C. Without label information in the target domain, both the shared label
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Figure 2: Overview of the proposed E2 method. In source-free UniDA, the target model f is
initialized with the pre-trained source model. Only the target-domain data is available for training
the target model (without accessing the source-domain data). The feature extractor is trainable and
the fully-connected layers are frozen. We derive the innovative confidence-guided entropy Hc to
separate the target-domain data Dt into two subsets Dk and Du probably containing known- and
unknown-class samples. The proposed method includes two components of confidence-guided en-
tropy discrimination and likelihood-induced energy optimization. By training with the two novel
components, both the confidence-guided entropy and the energy decrease for known-class and in-
crease for unknown-class samples. The lengths of rectangle and ellipse represent numerical values
of the entropy and energy, respectively.

set C and the private label set C̄t are unknown. Denote the number of classes in Cs as K = |Cs|.
The objective is to identify target samples of private classes in C̄t as unknown (i.e. the (|Cs| + 1)-
th class), and classify target samples of shared classes as the corresponding categories in C. The
framework of our method is shown in Fig. 2. We propose an innovative E2 approach by combining
confidence-guided Entropy discrimination (Sec. 3.1) and likelihood-induced Energy optimization
(Sec. 3.2). Theoretical analysis of the proposed method in physics is provided in Sec. 3.3.

3.1 CONFIDENCE-GUIDED ENTROPY DISCRIMINATION

In our method, we separate the target domain Dt into two subsets Dk and Du probably containing
samples of shared (known) and target private (unknown) classes, respectively. In (Saito et al., 2020),
the entropy H of the prediction probability ŷ is used for separation of the target-domain data,

Dk = {x ∈ Dt|H(ŷ) < αMH , ŷ = σ(f(x))},Du = {x ∈ Dt|H(ŷ) > αMH , ŷ = σ(f(x))} (1)

where σ(·) denotes the softmax function, MH = logK is the maximum value of the entropy and
α ∈ (0, 1) is a hyperparameter of the threshold percentage. Nevertheless, the entropy H may not
be discriminative enough for recognizing known and unknown classes in the target domain. For
example, if we have two target samples with estimated distributions (0.5, 0.5, 0) and (0.7, 0.2, 0.1),
the entropy of (0.5, 0.5, 0) is 0.69 smaller than 0.80 which is the entropy of (0.7, 0.2, 0.1). Entropy
measures the classification uncertainty which is larger for unknown class and smaller for known
classes. Based on the entropy separation criterion, (0.7, 0.2, 0.1) would not be classified to known
classes, if (0.5, 0.5, 0) is assigned to unknown. However, when the known-class confidence c =
maxi ŷi is used to separate the known and unknown classes, (0.7, 0.2, 0.1) with higher confidence
is more likely to belong to known classes, which is not consistent with the entropy-based separation.

A straightforward way to combine the entropy H and the known-class confidence c is the multipli-
cation of H and 1− c, since both H and 1− c are probably lower for known classes and higher for
unknown class. The property of using (1− c)H as the separation score is given by Proposition 1.

Proposition 1. Denote DH
k , D1−c

k and D(1−c)H
k as the known-class subsets w.r.t. H , 1 − c and

(1− c)H , under the same hyperparameter of the threshold percentage α. Then, we have,

DH
k ⊂ D(1−c)H

k ,D1−c
k ⊂ D(1−c)H

k (2)

The proof of Proposition 1 is provided in Appendix Sec. A.1. According to Proposition 1, if (1 −
c)H is used as the separation score, more samples will be predicted as known classes compared
to the separation based on H or 1 − c, which is also illustrated in Fig. 3. The inclusion relation
DH

k ⊂ D(1−c)H
k means that D(1−c)H

k contains more samples with higher classification uncertainty
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Figure 3: Distributions of three variables for (a) entropy H , (b) 1 − c, (c) (1 − c)H and (d) the
proposed confidence-guided entropy Hc, where c is the known-class confidence given by c =
maxi ŷi. The contour of each distribution with the separation threshold equal to 0.6 multiplying the
maximum is marked in red. Samples outside and inside the contour are classified as known and
unknown, respectively. The area ratios between the estimated known- and unknown-class samples
are 0.21 for H , 0.92 for 1− c, 2.02 for (1− c)H and 0.41 for Hc. This means entropy H is the most
conservative for known-class classification, while a sample is more likely to be predicted as known
classes by using 1− c or (1− c)H as the separation score. The proposed confidence-guided entropy
Hc balances the known- to unknown-class ratios w.r.t. H and 1− c.

measured by H , while D1−c
k ⊂ D(1−c)H

k implies more samples with lower known-class confidence
c (higher 1− c) are in D(1−c)H

k . Since unknown-class samples are probably with higher H or lower
c, the proportion of true known-class samples in D(1−c)H

k decreases compared to DH
k and D1−c

k .

To increase the separation discriminability and balance the trade-off between H and 1−c, we define
the confidence-guided entropy Hc by scaling each ŷi with 1− c, i.e.,

Hc(ŷ) = −
∑
i

(1− c)ŷi log(1− c)ŷi (3)

The target known- and unknown-class subsets in our method are obtained based on Hc as follows,

DHc

k = {x ∈ Dt|Hc(σ(f(x))) < αMHc
},DHc

u = {x ∈ Dt|Hc(σ(f(x))) > αMHc
} (4)

where MHc is the maximum of Hc. The sensitivity analysis on hyperparameter α is provided in
Appendix Sec. B.1. As shown in Fig. 3, if the proposed Hc is used for separation, the ratio between
the estimated known- and unknown-class samples is larger than that based on entropy H but smaller
than that based on 1− c. This ensures that the proposed separation criterion is less conservative than
H to recognize known-class data for more discriminative classification. At the same time, the true
unknown-class proportion in DHc

k would not be too large, since less samples are classified as known
compared to the known-class subset D(1−c)H

k based on 1− c.

The monotonically decreasing property between the confidence-guided entropy Hc and the known-
class confidence c is given in the following proposition:

Proposition 2. The confidence-guided entropy can be rewritten as Hc(ŷ) =
∑

i h(c, ŷi), where
h(c, ŷi) = −(1 − c)ŷi log(1 − c)ŷi. Denote i∗ as the class index with the highest prediction prob-
ability, i.e., i∗ = argmaxi ŷi. For i ̸= i∗, we have 0 ≤ ŷi ≤ min{c, 1 − c} ≤ 0.5 and the ranges
of c is constrained by ŷi, i.e., max { 1

K , ŷi} ≤ c ≤ 1− ŷi. With a fixed ŷi, h(c, ŷi) is monotonically
decreasing w.r.t. c when i ̸= i∗. On the other hand, the upper bound of the confidence-guided
entropy is a function h∗(c) of the known-class confidence c = yi∗ , i.e.,

Hc(ŷ) ≤ h∗(c) = (1− c)2 log(K − 1)− 2(1− c)2 log(1− c)− (1− c)c log(1− c)c (5)

Equality holds if and only if ŷi = 1−c
K−1 for i ̸= i∗. The upper bound h∗(c) is monotonically

decreasing in the range [ 1K , 1] of all possible c. Thus, the maximum of Hc is MHc
= h∗(

1
K ).

This proposition is proved in Appendix Sec. A.2. Fig. 4 shows the curves of h(c, ŷi) with fixed c or
ŷi in the specific range for i ̸= i∗ as well as the upper bound h∗(c) of all possible c. Both Proposition
1 and Fig. 4 illustrate that the confidence-guided entropy Hc is larger (smaller) with smaller (larger)
known-class confidence c. Without loss of generality, we simplify the symbols of the known- and
unknown-class subsets DHc

k and DHc
u by Dk and Du, respectively. For the estimated known-class
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Figure 4: (a) h(0.4, ŷi) and h(0.6, ŷi) in the range of 0 ≤ ŷi ≤ min{c, 1− c} = 0.4. (b) h(c, 0.1) in
the range of ŷi, i.e., 1

3 = max { 1
K , ŷi} ≤ c ≤ 1− ŷi = 0.9 for K = 3. (c) The upper bound h∗(c)

in the range [ 1K , 1] of all possible c when K = 3.

(unknown-class) samples in Dk (Du), the entropy uncertainty is minimized (maximized) while the
known-class confidence is maximized (minimized). Thus, the loss function LDIS for self-supervised
discriminative learning based on the confidence-guided entropy Hc is defined as,

LDIS = Ex∈Dk
Hc(ŷ)− Ex∈DuHc(ŷ) (6)

where E is the expectation operation.

3.2 LIKELIHOOD-INDUCED ENERGY OPTIMIZATION

Without source domain data for distribution alignment, we present an innovative method for known-
class likelihood maximization and unknown-class likelihood minimization based on free energy.
Denote the known-class marginal distribution as p. With the estimated subsets Dk and Du, the
expected log-likelihood functions are computed by Ex∈Dk

log p(x) and Ex∈Du
log p(x) for known

and unknown classes, respectively. Since known-class samples are more probable than the unknown
under the known-class marginal distribution p, the loss function can be defined by maximizing the
expected log-likelihood of known class and minimizing the one of unknown class, i.e.,

LLL = −Ex∈Dk
log p(x) + Ex∈Du log p(x) (7)

Nevertheless, it is extremely difficult to estimate the marginal distribution p accurately, so that we
cannot directly minimize the loss function LLL derived based on the expected log-likelihoods.

Instead of estimating the marginal distribution p for optimization, we propose to rewrite LLL in
eq. (7) by using the physics concept of free energy. For a target sample x in Dk or Du, denote the
free energy and the energy w.r.t. the i-th class (state) ωi as E(x) and E(x, ωi), respectively. As
in the energy-based model (Liu et al., 2020a), the relation between the energy functions and the
classification model f is derived by connecting the softmax function and the Gibbs distribution. The
energy E(x, ωi) of the state ωi is equal to the negative of the classification score fi(x) of the class
ωi, i.e., E(x, ωi) = −fi(x) (as shown in Appendix Sec. A.3). The free energy1 quantifying the
capacity of a thermodynamic system to do work in physics (Levine, 1978) is given by,

E(x) = − log

K∑
i=1

efi(x) (8)

It has been shown in (LeCun et al., 2006) that the probability distribution p can be written as a
function of the free energy E, i.e.,

p(x) =
e−E(x)

Z
(9)

where Z =
∫
e−E(x)dx is an intractable constant for normalization. Substituting eq. (9) into eq. (7)

and canceling out the constant Z which does not depend on x, the loss function LLL is changed to
LELL based on free energy as follows,

LELL = Ex∈Dk
E(x)− Ex∈DuE(x) (10)

1In contrast, entropy can be considered as the energy in a thermodynamic system that cannot do work.

6



Under review as a conference paper at ICLR 2023

By minimizing LELL in eq. (10), the energy of known-class samples is minimized for higher known-
class marginal probability and vice versa for unknown-class. Denote the partition function of the
free energy defined in eq. (8) as Z(x) =

∑K
i=1 e

fi(x). The loss function LELL can be rewritten as,

LELL = − log
∏

x∈Dk

Z(x)
1

nk + log
∏

x∈Du

Z(x)
1

nu = log
Mg(Du)

Mg(Dk)
(11)

where Mg(D) =
∏

x∈D Z(x)
1
n is the geometric mean for n = nk or nu, D = Du or Dk, nk and

nu are the numbers of samples in Dk and Du, respectively. According to eq. (11), when LELL is
minimized, the geometric mean of the partition functions in the estimated known-class subset Dk is
maximized while the one in Du is minimized. The overall loss function L is designed by combining
confidence-guided entropy discrimination and likelihood-induced energy optimization, i.e.,

L = LDIS + LELL (12)

3.3 THEORETICAL ANALYSIS IN PHYSICS

Given an input x and a classification model f , the classification score of the class ωi is denoted as
zi = fi(x). The data flow to obtain the prediction probability ŷi of the class ωi from x is given by,

x
f−→ zi = fi(x) = −E(x, ωi)

σ−→ ŷi =
ezi∑K
j=1 e

zj
(13)

The sum of the entropy H(x) and the free energy E(x) is computed in the following equation,

H(x) + E(x) = −
K∑
i=1

ŷi log ŷi − log

K∑
i=1

ezi = −
K∑
i=1

ŷi log
ezi∑K
j=1 e

zj
− log

K∑
i=1

ezi

= −
K∑
i=1

ŷizi +

K∑
i=1

ŷi log

K∑
j=1

ezj − log

K∑
i=1

ezi =

K∑
i=1

ŷiE(x, ωi) = U(x)

(14)

where the internal energy U is the weighted average energy of all the states w.r.t. the occurrence
probability ŷi of ωi (Levine, 1978). This means entropy H plus free energy E equals to internal
energy U . On the other hand, in thermodynamics, the Helmholtz free energy F is defined as,

F = U − TS (15)

where T denotes the absolute temperature of the surroundings, and U, S are the internal energy and
the entropy of the system, respectively. This equation gives similar result that the summation of
entropy S multiplying temperature T and Helmholtz free energy F is equal to internal energy U .

Therefore, minimizing the overall loss function L in eq. (12) is equivalent to minimizing and maxi-
mizing the internal energy for known and unknown classes, respectively. This can be interpreted as
a physical phenomenon. The target domain can be considered as a chemical compound, e.g., H2O.
The known and unknown classes are two states of the same chemical compound H2O, e.g., ice and
water, respectively. By reducing the internal energy of ice (known-class), it would not melt into wa-
ter (unknown-class). On the other hand, water (unknown-class) would not become ice (known-class)
by heating it. Consequently, known- and unknown-class samples can be better distinguished.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We compare the proposed E2 method with the state of the art on four publicly available
datasets, i.e., Office-31 (Saenko et al., 2010), Office-Home (Venkateswara et al., 2017), VisDA-C
(VisDA) (Peng et al., 2017) and DomainNet (Peng et al., 2019). Office-31 contains 31 object classes
in 3 domains, i.e., Amazon, DSLR and Webcam. Office-Home consists of 65 object classes in 4
domains, i.e., Art, Product, Clip Art and Real-World. VisDA is a large-scale benchmark for object
recognition which is composed of 12 classes. DomainNet is also larger-scale including about 0.6
million images and 345 classes. We use 3 domains in this dataset following (Fu et al., 2020).
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Table 1: Results (%) with class split (|C̄s|/|C|/|C̄t|=10/10/11) on Office-31 dataset. SF is short for
source-free. The best and the second-best results are marked in bold and underline, respectively.

A→D A→W D→A D→W W→A W→D Avg.
Method SF OS H OS H OS H OS H OS H OS H OS H

OSBP × 72.9 51.1 66.1 50.2 47.4 49.8 73.6 55.5 60.5 50.2 85.6 57.5 67.7 52.3
UAN × 86.5 59.7 85.6 58.6 85.5 60.1 94.8 70.6 85.1 60.3 98.0 71.4 89.2 63.5
CMU × 89.1 68.1 86.9 67.3 88.4 71.4 95.7 79.3 88.6 72.2 98.0 80.4 91.1 73.1
ROS × - 71.4 - 71.3 - 81.0 - 94.6 - 79.2 - 95.3 - 82.1
DANCE × 91.6 78.6 92.8 71.5 92.2 79.9 97.8 91.4 91.4 72.2 97.7 87.9 93.9 80.3
DCC × 93.7 88.5 91.7 78.5 90.4 70.2 94.5 79.3 92.0 75.9 96.2 88.6 93.1 80.2
OVANet† × 84.2 84.6 74.5 78.3 67.2 76.3 96.6 95.2 77.6 82.5 99.2 95.5 83.2 85.4

USFDA ✓ 88.5 85.5 85.6 79.8 87.5 83.2 95.2 90.6 86.6 81.2 97.8 88.7 90.2 84.8
SHOT§ ✓ - 73.5 - 67.2 - 59.3 - 88.3 - 77.1 - 84.4 - 74.9
UMAD ✓ - 79.1 - 77.4 - 87.4 - 90.7 - 90.4 - 97.2 - 87.0

E2 (Ours) ✓ 91.6 86.8 87.2 86.3 88.9 89.7 94.9 96.0 89.3 89.6 98.5 93.4 91.7 90.3

Table 2: HScore (%) with class split (|C̄s|/|C|/|C̄t|=5/10/50) on Office-Home dataset.
Method SF Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

OSBP × 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5
UAN × 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU × 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6
ROS × 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2
DANCE × 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9
DCC × 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2
OVANet§ × 59.7 76.9 80.0 68.8 69.1 76.2 69.6 56.9 81.0 75.5 62.0 78.6 71.2

SHOT§ ✓ 32.9 29.5 39.6 56.8 30.1 41.1 54.9 35.4 42.3 58.5 33.5 33.3 40.7
UMAD ✓ 61.1 76.3 82.7 70.7 67.7 75.7 64.4 55.7 76.3 73.2 60.4 77.2 70.1

E2 (Ours) ✓ 63.2 73.9 78.8 70.1 65.6 72.9 74.9 60.8 81.0 77.1 64.2 77.3 71.7

Evaluation Metric. We use the average per-class accuracy OS and the HScore (Fu et al., 2020) as
the evaluation metric for comparison. The HScore is defined as follows,

HScore = 2 · OS∗ · UNK
OS∗ + UNK

(16)

where OS∗ denotes the average per-class accuracy on known classes and UNK denotes the accuracy
on unknown class.

Implementation Details. We employ the ResNet50 (He et al., 2016) pre-trained on ImageNet as
the backbone and use the PyTorch (Paszke et al., 2019) framework with GeForce RTX 3090 for all
the experiments. The source model is pre-trained as in (Liang et al., 2020) with label smoothing.
Since the maximum values of the entropy and confidence-guided entropy are almost the same for
large K (see proof in Appendix Sec. A.4), we set the separation threshold in eq. (4) as 0.6 logK.
Stochastic Gradient Descent (SGD) optimizer with momentum 0.9 is adopted together with the
inverse scheduler for learning rate decay. In the stage of source model training, the learning rate is
set as 1e−3 for Office-31, Office-Home and VisDA datasets. For DomainNet dataset, the learning
rate is set as 1e−2 for batch normalization and fully-connected layers, and is set as 1e−3 for other
layers. The batch size 36 is set as default in the source model training stage. During target model
adaptation, the training parameters including learning rate 1e−5 and batch size 100 are set as default.

Comparing Methods. Our method is compared with source-data-accessible and source-free meth-
ods. Source-data-accessible methods include OSBP (Saito et al., 2018), UAN (You et al., 2019),
CMU (Fu et al., 2020), ROS (Bucci et al., 2020), DANCE (Saito et al., 2020), DCC (Li et al., 2021a)
and OVANet (Saito & Saenko, 2021). Source-free methods are USFDA (Kundu et al., 2020b),
SHOT (Liang et al., 2020) and UMAD (Liang et al., 2021).

4.2 COMPARISON RESULTS

The OS and HScore results2 of our method on Office-31 are compared the state of the art in Table 1.
Table 2 and Table 3 report the HScore on the Office-Home, DomainNet and VisDA datasets. From

2The symbol † means our implementation of the official codes and § refers to results cited from UMAD.
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Table 3: HScore (%) on VisDA (|C̄s|/|C|/|C̄t|=3/6/3) and DomainNet (|C̄s|/|C|/|C̄t|=50/150/145).

Method SF VisDA DomainNet Avg.
Avg. P→R P→S R→P R→S S→P S→R

OSBP × 27.3 33.6 30.6 33.0 30.6 30.5 33.7 32.0
UAN × 30.5 41.9 39.1 43.6 38.7 39.0 43.7 41.0
CMU × 34.6 50.8 45.1 52.2 45.6 44.8 51.0 48.3
ROS§ × 30.3 20.5 30.0 36.9 28.7 19.9 23.2 26.5
DANCE × 4.4 21.0 37.0 47.3 46.7 27.7 21.0 33.5
DCC × 43.0 56.9 43.7 50.3 43.3 44.9 56.2 49.2
OVANet† × 53.1 55.5 45.8 51.6 42.4 45.6 56.6 49.6

SHOT§ ✓ 44.0 35.0 30.8 37.2 28.3 31.9 32.2 32.6
UMAD ✓ 58.3 59.0 44.3 50.1 42.1 32.0 55.3 47.1

E2 (Ours) ✓ 63.4 56.3 44.1 48.7 39.4 46.1 55.2 48.3

Table 4: Ablation study on loss functions.
Ablations Office VisDA DomainNet

LENT LDIS LELL OS OS* H OS OS* H OS OS* H

✓ 84.2 83.8 85.2 48.6 41.8 57.0 29.8 29.4 44.0
✓ 84.8 84.5 86.2 53.0 48.8 60.0 33.0 32.7 46.9
✓ ✓ 89.3 ↑5.1 89.2 ↑5.4 89.6 ↑4.4 60.7 ↑12.1 59.4 ↑17.6 63.4 ↑6.4 35.4 ↑5.6 35.1 ↑5.7 48.7 ↑4.7

these results, we can see that the proposed E2 achieves the highest average HScore on the Office-31,
Office-Home and VisDA, compared with all the other methods even including the ones accessing the
source-domain data for model adaptation. On the Office-31 dataset, the average OS and HScore of
our method are 8.5% and 4.9% higher than those of the OVANet which is the source-data-accessible
method with the highest HScore. Compared with the competitive source-free universal model adap-
tation method UMAD, the proposed E2 improves the HScore performance by 3.3% in average on
Office-31. Results of the Office-Home dataset show that the proposed method outperforms the state
of the art with the highest average HScore. On the VisDA dataset, our method achieves the best
performance and is better than UMAD by 5.1% average HScore and significantly outperform other
methods (e.g., 10.3% higher than OVANet) no matter source data is available or not. On the Do-
mainNet dataset, our method achieves competitive results compared with all the existing methods
and improves over the source-free domain adaptation methods by 1.2% in average HScore.

4.3 ABLATION STUDY

Ablation study on different combinations of the loss functions including the entropy loss LENT (by
substituting the entropy H for Hc in eq. (6)), the proposed confidence-guided entropy loss LDIS and
likelihood-induced energy loss LELL. Experimental results on the Office-31 (W→A), VisDA and
DomainNet (R→P) are shown in Table 4. The baseline results obtained by using the entropy loss
LENT for both the target known- and unknown-class samples are recorded in the first row. Results in
the second and the third rows show that the performance can be improved by replacing LENT with
the proposed confidence-guided entropy loss LDIS and adding the energy loss LELL. By combining
LDIS and LELL in the proposed E2, the highest results (OS, OS∗ and HScore) are obtained.

5 CONCLUSION

In this paper, we propose a novel source-free UniDA method based on two innovative components
of confidence-guided Entropy discrimination and likelihood-induced Energy optimization (E2). The
confidence-guided entropy is defined by scaling the normalized prediction score with the known-
class confidence, so as to correctly recognize more known-class data. To constrain the target dis-
tribution, likelihood is maximized for the known class and minimized for the unknown class by
the proposed free energy optimization technique. In-depth theoretical analysis connects our method
with the physical concept of internal energy, which uncovers the underlying mechanism on why our
method works. Extensive experiments on four domain adaptation datasets demonstrate the superi-
ority of the proposed E2 method compared with the state of the art. Our future work will explore
whether the proposed approach is still effective to improve the performance for other challenging
problems (e.g., detection, segmentation) under the source-free UniDA setting.
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A SUPPLEMENTAL THEORETICAL ANALYSIS

A.1 PROOF OF PROPOSITION 1

In this subsection, we present the proof of Proposition 1. The proposition is restated as follows:

Proposition 1. Denote DH
k , D1−c

k and D(1−c)H
k as the known-class subsets w.r.t. H , 1 − c and

(1− c)H , under the same hyperparameter of the threshold percentage α. Then, we have,

DH
k ⊂ D(1−c)H

k ,D1−c
k ⊂ D(1−c)H

k (17)

Proof. x ∈ DH
k means H(ŷ) = H(σ(f(x))) < αMH = α logK. To ensure that

∑
i ŷi = 1,

c = maxi ŷi ≥ 1/K, which implies 1−1/K is the maximum value of (1−c). Thus, (1−c)H(ŷ) ≤
(1−1/K)H(ŷ) < α(1−1/K) logK. Since the maximum value of (1−c)H(ŷ) is (1−1/K) logK,
we have x ∈ D(1−c)H

k .

On the other hand, if x ∈ D1−c
k , 1− c < α(1− 1/K). Since the maximum value of H(ŷ) is logK,

we have (1− c)H(ŷ) < α(1− 1/K) logK. This means x ∈ D(1−c)H
k .

A.2 PROOF OF PROPOSITION 2

In this subsection, we present the proof of Proposition 2. The proposition is restated as follows:

Proposition 2. The confidence-guided entropy can be rewritten as Hc(ŷ) =
∑

i h(c, ŷi), where
h(c, ŷi) = −(1 − c)ŷi log(1 − c)ŷi. Denote i∗ as the class index with the highest prediction prob-
ability, i.e., i∗ = argmaxi ŷi. For i ̸= i∗, we have 0 ≤ ŷi ≤ min{c, 1 − c} ≤ 0.5 and the ranges
of c is constrained by ŷi, i.e., max { 1

K , ŷi} ≤ c ≤ 1− ŷi. With a fixed ŷi, h(c, ŷi) is monotonically
decreasing w.r.t. c when i ̸= i∗. On the other hand, the upper bound of the confidence-guided
entropy is a function h∗(c) of the known-class confidence c = yi∗ , i.e.,

Hc(ŷ) ≤ h∗(c) = (1− c)2 log(K − 1)− 2(1− c)2 log(1− c)− (1− c)c log(1− c)c (18)
Equality holds if and only if ŷi = 1−c

K−1 for i ̸= i∗. The upper bound h∗(c) is monotonically
decreasing in the range [ 1K , 1] of all possible c. Thus, the maximum of Hc is MHc = h∗(

1
K ).

Proof. For i ̸= i∗, we can prove that h(c, ŷi) = −(1−c)ŷi log(1−c)ŷi is monotonically decreasing
in the range of max { 1

K , ŷi} ≤ c ≤ 1 − ŷi. Since ŷi ≤ ŷi∗ and ŷi + ŷi∗ ≤ 1, we have 0 ≤ ŷi ≤
min{c, 1 − c} ≤ 0.5 and c ∈ [ŷi, 1 − ŷi]. On the other hand, ŷi∗ ≤ 1 ≤ Kŷi∗ , so c ∈ [1/K, 1]
and the range of c is constrained by ŷi as max { 1

K , ŷi} ≤ c ≤ 1 − ŷi. With a fixed ŷi, the partial
derivative of h(c, ŷi) w.r.t. c is denoted as h′

c(c, ŷi), and h′
c(c, ŷi) = ŷi log(1 − c)ŷi + ŷi. Then,

h′
c(c, ŷi) is monotonically decreasing and ∀c ∈ [ŷi, 1 − ŷi], h

′
c(c, ŷi) ≤ h′

c(ŷi, ŷi). When c = ŷi,
h′
c(c, ŷi) = ŷi log(1− ŷi)ŷi + ŷi = ŷi log e(1− ŷi)ŷi. With (1− ŷi)ŷi ≤ 0.25 and e(1− ŷi)ŷi < 1,

h′
c(c, ŷi) < 0 so ∀c ∈ [ŷi, 1− ŷi], h

′
c(c, ŷi) < 0. This means, if 1− ŷi ≥ ck > cu ≥ max { 1

K , ŷi} ≥
ŷi, then h(ck, ŷi) < h(cu, ŷi).

For i = i∗, the upper bound of the confidence-guided entropy Hc can be written as a function of c
monotonically decreasing when c ∈ [1/K, 1]. Without additional constraint, the range of c is given
by c ∈ [1/K, 1]. According to Jensen’s inequality, we have,

−
∑
i ̸=i∗

(1− c)ŷi log(1− c)ŷi = (1− c)2
∑
i ̸=i∗

ŷi
1− c

log
1

(1− c)ŷi
≤ (1− c)2 log

K − 1

(1− c)2
(19)

Equality holds if and only if ŷi = 1−c
K−1 for i ̸= i∗. Thus, Hc(ŷ) ≤ h∗(c) = (1− c)2 log(K − 1)−

2(1− c)2 log(1− c)− (1− c)c log(1− c)c. To prove that h∗(c) is monotonically decreasing with
c ∈ [1/K, 1], we compute the derivative of h∗(c) and obtain,

h′
∗(c) = −2(1− c) log(K − 1) + 4(1− c) log(1− c) + 2(1− c) + (2c− 1) log(1− c)c+ 2c− 1

= 2(1− c) [− log(K − 1) + 2 log(1− c)− log(1− c)c] + log(1− c)c+ 1

= 2(1− c)

[
log(

1

c
− 1)− log(K − 1)

]
+ log(1− c)ce

(20)
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For c ∈ [1/K, 1], 1/c ≤ K, so log(1/c−1)− log(K−1) ≤ 0. On the other hand, log(1−c)ce < 0.
As a result, h′

∗(c) < 0 and h∗(ck) < h∗(cu) for 1 ≥ ck > cu ≥ 1/K.

A.3 RELATION BETWEEN ENERGY E(x, ωi) AND CLASSIFICATION SCORE fi(x)

To ensure that this manuscript is self-contained, we prove the following proposition about the rela-
tion between the energy E(x, ωi) and the classification score fi(x) of the i-th class ωi.

Proposition 3. The energy E(x, ωi) is equal to the negative of the i-th classification score fi(x),
i.e., E(x, ωi) = −fi(x), where ωi denotes the i-th class.

Proof. According to the definition of Gibbs distribution in statistical mechanics, the posterior
p(ωi|x) can be given by,

p(ωi|x) =
e−E(x,ωi)∑K
j=1 e

−E(x,ωj)
(21)

On the other hand, the posterior p(ωi|x) is defined in the softmax operation as,

p(ωi|x) =
efi(x)∑K
j=1 e

fj(x)
(22)

By comparing eq. (21) and eq. (22), we have E(x, ωi) = −fi(x).

A.4 RELATION BETWEEN MAXIMUMS OF ENTROPY H AND CONFIDENCE-GUIDED
ENTROPY Hc

To explain why the upper bound of Hc can be approximated by logK for the experiments, we prove
that maximums of entropy H and confidence-guided entropy Hc are almost the same for large K.

Proposition 4. Denote the maximum values of entropy H and confidence-guided entropy Hc as MH

and MHc
, respectively. We have lim

K→+∞
MH −MHc

= 0.

Proof. According to the results in Appendix Sec. A.2, we have MHc
= h∗(

1
K ), where h∗ is the

upper bound of Hc and K is the number of source classes. By substituting 1
K into eq. (18), we have,

h∗(
1

K
) = (1− 1

K
)2 log(K − 1)− 2(1− 1

K
)2 log(1− 1

K
)− (1− 1

K
)
1

K
log(1− 1

K
)
1

K

= (
K − 1

K
)2 log

K2

K − 1
− K − 1

K2
log

K − 1

K2

=
K − 1

K2
(log(

K2

K − 1
)(K−1) − log

K − 1

K2
)

=
K − 1

K2
log(

K(2K−2)

(K − 1)(K−1)

K2

K − 1
)

=
K − 1

K2
log

K2K

(K − 1)K

=
K − 1

K2
(2K logK −K log(K − 1))

=
2(K − 1)

K
logK − K − 1

K
log(K − 1)

=
K − 1

K
log

K2

K − 1

= logK − 1

K
logK +

K − 1

K
log

K

K − 1

(23)

On the other hand, the upper bound of entropy H is logK, i.e., MH = logK. Thus, lim
K→+∞

MH −

MHc = lim
K→+∞

1
K logK − K−1

K log K
K−1 = 0.
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B ADDITIONAL EXPERIMENTS

B.1 SENSITIVITY ANALYSIS ON HYPERPARAMETER α

For the hyperparameter of the percentage of the separation threshold α, we conduct experiments
with α in the set of {0.5, 0.6, 0.7} on the Office (A→D), Office-Home (Ar→Cl) and VisDA datasets.
Results from Fig. 5 show that α = 0.6 works well for the three tasks. Thus, the threshold percentage
in eq. (4) is set as 0.6 in all the experiments.
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Figure 5: Performance with different α.

B.2 MORE ABLATION RESULTS ON LELL

To analyze the effectiveness of the likelihood-induced energy loss LELL, we conduct experiments on
Office-31 (W→A). Fig. 6a and Fig. 6b show the confidence-guided entropy distributions of target
known- and unknown-class data without and with LELL w.r.t the target model. Accuracy, Precision,
Recall and F1-Score of the ablation on LELL are presented in Fig. 6c. It can be observed that the
binary classification performance to separate the target known- and unknown-class data is improved
by adding the proposed likelihood-induced energy loss LELL.
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(a) E2 without LELL
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(c) Quantitative Results

Figure 6: Confidence-guided entropy distributions of the proposed E2 method (a) without LELL
and (b) with LELL under the W→A task on Office-31 dataset. (c) Quantitative results of Accuracy,
Precision, Recall and F1-Score by using the proposed E2 without or with LELL under the same
threshold for binary classification of target known- and unknown-class data.

B.3 FEATURE VISUALIZATION

To analyze the extracted features visually, Fig. 7 compares the t-SNE (Van der Maaten & Hinton,
2008) results of the source-only model, the OVANet and the proposed E2 method on Office-31
(A→W). From Fig. 7, it can be observed that the target known- and unknown classes are more
clearly separated by the proposed E2 compared to the OVANet. Moreover, the clusters of target
known classes obtained by the E2 are more compact than those of the OVANet.
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(a) Source-only (b) OVANet (c) E2 (Proposed)

Figure 7: t-SNE visualization of the Source-only model, the OVANet and the proposed E2 method.
The target unknown-class data is marked in cyan-blue while known-class samples in different colors
represent different classes.

B.4 COMPARING DIFFERENT STRATEGIES FOR TARGET DATA SEPARATION

To validate the effectiveness of the proposed confidence-guided entropy for target data separation,
we compare three different separation strategies based on (1−c)H , (1−c)+H and Hc, respectively.
Experiments are conducted on Office (A→D), Office-Home (Ar→Cl) and VisDA. For (1− c) +H ,
the entropy is normalized by dividing by the range, i.e., H/ logK. The threshold is set as 0.6(1 −
1/K) logK for (1− c)H , 0.6(2− 1/K) for (1− c) +H and 0.6 logK for Hc. Results from Fig. 8
illustrates that the HScore of the separation strategy based on the proposed Hc is higher than that
based on (1− c)H or (1− c) +H .
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Figure 8: HScore (%) of different strategies for target data separation.

B.5 COMPARISON UNDER DIFFERENT DOMAIN ADAPTATION SETTINGS

In this experiment, our method is compared with source-accessible and source-free methods un-
der open-set (ODA), partial- and closed-set domain adaptation (PDA and CDA). Source-accessible
method is (OVANet) (Saito & Saenko, 2021). Source-free methods are: Source Hypothesis Trans-
fer (SHOT) (Liang et al., 2020), Inheritable models (Inheritune) (Kundu et al., 2020a) and Universal

Table 5: HScore (%) with class split (|C̄s|/|C|/|C̄t|=0/10/11) on Office-31 dataset under source-free
open-set domain adaptation. The best and the second-best results are marked as bold and underlined,
respectively.

Method A→D A→W D→A D→W W→A W→D Avg.

SHOT 77.0 70.3 66.3 83.7 58.6 84.6 73.5
Inheritune 73.3 76.6 80.1 87.7 81.3 90.7 81.6
USFDA 80.4 69.9 81.7 92.3 78.5 93.7 82.8

E2 (Ours) 81.1 85.4 77.8 95.1 76.4 90.1 84.3
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Table 6: HScore (%) with class split (|C̄s|/|C|/|C̄t|=0/25/40) on Office-Home dataset under source-
free open-set domain adaptation.

Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

SHOT 39.8 41.0 47.8 54.4 48.1 44.5 57.6 42.2 47.4 59.1 41.5 43.5 47.2
Inheritune 56.1 57.5 67.2 50.6 58.4 62.7 46.8 50.7 63.2 54.5 53.5 63.9 57.1
USFDA 46.8 59.3 65.5 48.1 59.0 65.7 56.8 50.4 67.1 56.1 48.9 68.9 57.7

E2(Ours) 58.0 65.3 71.7 58.7 64.1 66.3 56.8 52.1 71.5 67.0 58.5 68.6 63.2
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Figure 9: Results (%) on VisDA dataset with different number of private (unknown) classes in the
target domain under open-set domain adaptation.

Source-free Domain Adaptation (USFDA) (Kundu et al., 2020b). Results in this section are obtained
by the implementation of their official codes.

Open-set Domain Adaptation. For ODA, results of HScore on the Office-31 and Office-Home
datasets are recorded in Table 5 and Table 6, respectively. Results of OS, OS∗ and HScore on the
VisDA dataset are shown in Fig. 9 with varying number of target unknown classes (# Unknown
classes=6 is the usual class split case for ODA). From Table 5, it can be observed that the proposed
E2 achieves the highest average HScore on Office-31 and Office-Home datasets compared with
the state of the art. The average HScore of our method is 2.7% higher than the Inheritune which
is tailored-made for open-set source-free domain adaptation. Table 6 shows that the proposed E2

achieves the highest average HScore which is 6.1% higher than the Inheritune. In Fig. 9, the results
including OS, OS∗ and HScore under different openness show that the proposed method gives a
notable improvement over SHOT and OVANet.

Partial- and Closed-Set Domain Adaptation. For PDA and CDA, the results of OS∗ on the Office-
31 (A→D, A→W and W→D) and Office-Home (Ar→Pr, Cl→Re, Pr→Cl and Re→Pr) datasets
under different openness are shown in Fig. 10 and Fig. 11, respectively. When the number of target
classes is 31 for Office-31 and 65 for Office-Home dataset, it becomes the CDA problem with the
same set of classes across domains. Fig. 10 shows that the proposed method E2 achieves the highest
OS∗ compared with the USFDA and OVANet under different numbers of target classes. In Fig. 11,
the proposed method E2 achieves higher OS ∗ than the OVANet. It can be observed that the proposed

5 10 31
# Target classes

55

60

65

70

75

80

85

90

OS
*

E2

USFDA
OVANet

(a) A→D

5 10 31
# Target classes

40

50

60

70

80

OS
*

E2

USFDA
OVANet

(b) A→W

5 10 31
# Target classes

92

94

96

98

100

OS
* E2

USFDA
OVANet

(c) W→D

Figure 10: OS∗ (%) on Office-31 dataset with different number of target classes in the target domain
under partial- and closed-set domain adaptation.
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Figure 11: OS∗ (%) on Office-Home dataset with different number of target classes in the target
domain under partial- and closed-set domain adaptation.

method E2 without the likelihood-induced energy loss LELL, i.e., E2 w/o LELL, is even better than
the OVANet in some cases under the performance metric of OS∗ .
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