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Abstract
Federated Learning (FL) enables multiple devices
to collaboratively train a shared model while en-
suring data privacy. The selection of participat-
ing devices in each training round critically af-
fects both the model performance and training
efficiency, especially given the vast heterogeneity
in training capabilities and data distribution across
devices. To deal with these challenges, we intro-
duce a novel device selection solution called Fe-
dRank, which is based on an end-to-end, ranking-
based model that is pre-trained by imitation learn-
ing against state-of-the-art analytical approaches.
It not only considers data and system heterogene-
ity at runtime but also adaptively and efficiently
chooses the most suitable clients for model train-
ing. Specifically, FedRank views client selection
in FL as a ranking problem and employs a pair-
wise training strategy for the smart selection pro-
cess. Additionally, an imitation learning-based
approach is designed to counteract the cold-start
issues often seen in state-of-the-art learning-based
approaches. Experimental results reveal that Fe-
dRank boosts model accuracy by 5.2% to 56.9%,
accelerates the training convergence up to 2.01×
and saves the energy consumption up to 40.1%.

1. Introduction
Federated learning (FL) is a new learning paradigm that en-
ables multiple devices to collectively train a global machine
learning model while preserving data privacy (McMahan
et al., 2017). However, the practical deployment of FL on
diverse and resource-limited mobile devices poses several
challenges, as illustrated in Figure 2. First, the disparity in
training and communication capabilities of these devices,
coupled with their unpredictable runtime variations, can re-
sult in stragglers. Consequently, the overall training through-
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Figure 1. Illustration of FedRank. (a) Learning-based approaches:
tackle device selection with data-driven processes that holisti-
cally trade-off demands. (b) Heuristic-based approaches: hand-
developed heuristics perform well in the specific, straightforward
deployment configurations they were designed for. (c) FedRank:
utilizes imitation learning and a ranking approach to optimize de-
vice selection.

put is often restricted by these low-end clients, leading to
significant delays in the overall training process. Second, the
data heterogeneity can influence the convergence and overall
performance of the global model. In addition, computing-
intensive local training and round-to-round communication
with the central server can lead to substantial energy con-
sumption, thereby affecting the battery lifespan of mobile
devices.

To surmount the aforementioned barriers, strategic selec-
tion of devices for each training round becomes pivotal to
both training efficiency and model performance, as depicted
in Figure 1. While these heuristics excel in the specific,
straightforward deployment scenarios they are designed for,
they only cater to a limited subset of all potential deploy-
ment situations. As a result, their performance can be sub-
optimal on devices subjected to larger-scale deployments
with greater diversity and complexity. Adapting to unfamil-
iar and intricate scenarios frequently necessitates profound
domain expertise and extensive tuning. Conversely, certain
studies (Zhan et al., 2020; Wang et al., 2020a; Zhang et al.,
2022; Tian et al., 2023) explore the use of reinforcement
learning (RL) techniques to address the device selection
problem in a manner that holistically balances requirements
using data-driven methods. Yet, real-world deployment sce-
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Figure 2. Workflow and real-world deployment barriers of Federated Learning.

narios feature a plethora of devices that constantly evolve.
Such endeavors prove sample-inefficient and are plagued by
cold-start problem.

This paper presents FedRank, a novel methodology for au-
tomated device selection in FL. We augment the current
state-of-the-art in two pivotal ways. First, prior work typi-
cally assess each candidate device in isolation and predict
their potential value score of devices when selected. While
this approach aims to accurately predict the absolute arti-
ficial score, it is not trained directly to determine which
device outperforms another—the essence of the problem. In
response, we draw parallels between device selection and
the learning to rank (LTR) paradigm (Liu et al., 2009; Qin
et al., 2010; Casalegno, 2022). Our objective is to mold
FedRank into a recommendation system, guiding the FL
training agent toward the most impactful devices. To realize
this vision, the recommendation system is devised to rank
devices based on their significance, selecting the top-K. Em-
bracing this perspective, we transition from a pointwise loss
framework to a pairwise one (Joachims, 2002; Li, 2011),
yielding pronounced advantages. Second, we identify that
the cold-start issue has impeded the real-world utility of
RL-based solutions, resulting in performance that is not as
robust as that of analytical-based methodologies. To coun-
teract this challenge, we introduce a pre-training regimen
that leverages a state-of-the-art analytical model through
imitation learning (IL) (Ross & Bagnell, 2014; Sun et al.,
2017). Subsequently, we refine FedRank by further training
with real-world interactions, enabling it to outstrip the ana-
lytical model’s performance. In particular, this paper makes
the following contributions:

• This paper casts device selection in federated learning
as a ranking challenge, underscoring the superiority of
pairwise training compared to previous methodologies.

• This paper proposes an offline pre-training scheme
against state-of-the-art analytical solutions using imi-

tation learning. This strategy eliminates the cold-start
dilemma that has traditionally hindered the efficacy of
learning-based device selection techniques.

• Building on these strengths, our proposed method, Fe-
dRank, adeptly synchronizes model performance, con-
vergence, and energy efficiency amidst a dynamic and
varied training environment. The efficacy of FedRank
is substantiated through comprehensive experiments.

2. Background and Related Work
2.1. Federated Learning

Figure 2 provides a visualization of a typical federated learn-
ing framework, highlighting challenges that arise during
real-world implementations. At the beginning of each train-
ing cycle, a central server selects a subset K of devices
from the available pool N . It then distributes the initialized
collaborative models to the chosen devices. Upon receiv-
ing the model, these selected devices conduct local training
with their own data. Post-training, these devices transmit
model updates back to the central server. The server then
combines these updates, refining the overarching collabo-
rative model. This cyclical process persists until the model
either converges to a desired state or attains the target accu-
racy. Nonetheless, the variability in resources—including
hardware specifications, data volume, and communication
capacities—combined with stochastic runtime discrepancies
can introduce inefficiencies, potentially compromising both
training speed and model accuracy.

To surmount these challenges, selection of adept training
devices becomes pivotal. Prior solutions have gravitated
towards two predominant strategies: heuristic-based and
learning-based approaches.

Heuristic-based selection. Traditional methods for device
selection predominantly rely on heuristics rooted in isolated
considerations such as data heterogeneity (Cho et al., 2020;
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Balakrishnan et al., 2022), distinct training processes (Diao
et al., 2021; Tam et al., 2023; Ma et al., 2024), and energy
efficiency (Li et al., 2019). Advanced policies (Lai et al.,
2021; Tian et al., 2022; Ning et al., 2024), have secured
state-of-the-art results by employing analytical strategies
that comprehensively address the multifaceted nature of de-
vice selection. Nevertheless, heuristic-based methodologies
inherently risk escalating into NP-hard problems, especially
with the expansive scale of FL deployments. Adapting these
heuristics to unseen scenarios often demands a confluence
of domain-specific expertise and extensive tuning.

Learning-based selection. Several contemporary ap-
proaches have pivoted towards devising policies for device
selection through learning mechanisms. Specifically, Aut-
oFL (Kim & Wu, 2021), Favor (Wang et al., 2020a) and
FedMarl (Zhang et al., 2022) employ reinforcement learning
methodologies (Sutton & Barto, 2018) to formulate deci-
sions as Markov decision processes (MDPs). While AutoFL
leverages a Q-table, Favor adopts Q-learning, and FedMarl
utilizes Multi-Agent Reinforcement Learning (MARL) to
achieve its objectives. In theory, these approaches are de-
signed to select devices adeptly, however, uniformly demon-
strating a tendency towards sample inefficiency are suscepti-
ble to the cold-start conundrum. This limitation often results
in subpar selections during the initial phases. Consequently,
the practical applicability of these methods in real-world
scenarios remains circumscribed.

2.2. Imitation Learning & Learn to Rank

All of the above approaches (heuristic-based and learning-
based) struggle in diverse and heterogeneous real-world
deployment environments. A question is how they can com-
plement each other in order to select a qualitatively more
effective device?

Imitation learning. As a result, we introduce imitation
learning (Ross & Bagnell, 2014; Sun et al., 2017) to uti-
lize well-known heuristics as conditions (expert policy) to
warm-up RL (supervised). Imitation learning is instructed
by the expert’s demonstration, assuming its optimal settings
to learn a policy, so the current policy resembles the ex-
pert one. In the IL environment, there are two peculiarities:
One is that the analytical policy can be queried at any train-
ing state, which is more efficient than an expensive expert
during early stages of RL. The ability to probe the expert
arbitrarily allows us to avoid the performance gap with the
straggler. The other is that the distribution over actions
of the analytical policy is made available, enabling more
sophisticated loss functions. Previous work also investi-
gates settings with these two properties, albeit in different
domains. Sabour et al. (2018) shows that an approximate
oracle can be computed in some natural language sequence
generation tasks. Liu et al. (2020) learns to imitate Belady’s,

an oracle cache replacement policy.

Learn to rank. For an additional dimension, traditional
works typically evaluated each candidate device in isolation
and predicted the potential value score of the device if it
were to be selected. While this pointwise approach aims
to accurately predict the absolute artificial score, it is not
directly trained to determine which device is superior to
another, resulting in a loss function that may overempha-
size non-critical devices with low performance. Learn to
Rank (Liu et al., 2009; Qin et al., 2010; Casalegno, 2022;
Ning et al., 2022) is the application of machine learning
techniques for the creation of ranking models for infor-
mation retrieval systems. Ranking models typically work
by predicting a relevance score s = f(x) for each input
xi = (q, d) where q is a query and d is a document. Once
the relevance of each document is known, it can be sorted
(i.e., ranked) according to these scores to find contents of
interest with respect to a query. Therefore, in this paper,
we introduce pairwise (Joachims, 2002; Li, 2011) to enable
the selected devices to score significantly higher than the
remaining devices, which is computed as the sum of the
loss terms defined on each pair of selected devices di, dj ,
for i, j = 1...n. The goal of training the model is to pre-
dict whether the ground truth yi > yj or not, which of two
devices is more relevant.

3. FedRank: Framework Design
In this section, we introduce the design of FedRank. Specif-
ically, we first cast the problem of client selection in FL as
imitation learning through framing it as learning a policy
within an episodic Markov decision process. After that,
we describe the integration of imitation learning as a coun-
termeasure to the cold-start issue. Finally, we introduce
the learn-to-rank methodology to effectively augment the
training performance.

3.1. Casting Device Selection as Imitation Learning

This serves as a foundation to outline the optimization space
for FedRank that devices depend on a simple two-layer
multi-layer perceptron (MLP) at the central server to per-
form the participation decision-making. The imitation learn-
ing phase aims to extract device selection actions A based
on current states S, which are trained with the Value Decom-
position Network (VDN) (Sunehag et al., 2017) to maximize
the reward R.

STATE: Specifically, the state at the t-th timestep st =
(sTt , s

E
t , s

D
t ) ∈ S consists of three components, where:

• sTt = (T t
comp,i, T

t
comm,i) is the local training latency,

consisting of training latency T t
comp,i, communication

latency T t
comm,i, to capture system heterogeneity.
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• sEt = (Et
comp,i, E

t
comm,i) is the energy cost of lo-

cal training, consisting of computation energy cost
Et

comp,i and communication energy cost Et
comm,i, to

reflect system heterogeneity.

• sDt = (Lt
i, D

t
i) describes the data heterogeneity, where

Li is the training loss of device i and Di is its data size.

How to obtain device state cost-effectively is the critical
challenge. Existing approaches (Cho et al., 2020; Wang
et al., 2020a; Lai et al., 2021; Tian et al., 2022; Wu et al.,
2024) typically retrieve states that first force devices to com-
plete all their local training along with updating the local
DNN weights, resulting in significant processing latency.
To address this issue, we introduce a “early exit” scheme
that obtains the device states after the first epoch of local
training (called “probing”) processes at each device. Prob-
ing training is performed as an intermediate result with no
additional computational overhead. In addition, sending the
probing training results to the central server avoids introduc-
ing extra processing latency and communication costs, since
the probing states (scalars) are tiny compared to the DNN
model. On the contrary, this scheme will reduce the overall
processing latency and communication overhead. This is for
the reason that after the outlier devices exit, only a subset of
devices need to complete their local training and send their
weight updates in each training round.

ACTION: The action set At are N binary indicators rep-
resenting whether each of the N devices available at times-
tamp t should be involved in (ati = 1) or excluded from the
incoming training round (ati = 0).

REWARD: To characterize the primary optimization axes,
we define three rewards: Racc, RT , and RE denote the test
accuracy of the global model, the processing latency and
the total energy consumption of each round, respectively.
Collectively, these rewards strike a balance among model
performance, training efficiency, and energy-friendly during
the training round t. They are denoted as:

Rt = ∆Rt
acc × (

T

Rt
T

)1(T<Rt
T )×α × (

E

Rt
E

)1(E<Rt
E)×β

where:

Rt
T = Tprob +max

i∈K
{[T t

comm,i + T t
comp,i ∗ (lep − 1)] ∗ ati}

Rt
E = Eprob +

∑
K

{[Et
comm,i + Et

comp,i ∗ (lep − 1)] ∗ ati}

(1)

Where T and E are the developer-preferred duration and
energy budget of the devices, respectively. lep is the num-
ber of local training epochs. Tprob and Eprob represent the
latency and energy cost of early exit from the first local
probing epoch, respectively. 1(x) is an indicator function
that takes the value 1 if x is true and 0 otherwise. In this way,

the utility of those clients that may be the bottleneck of the
desired speed and energy cost of the current round is penal-
ized by a developer-specified factor α and β. However, we
do not reward the non-straggler and non-overloader clients
because their completions do not affect the effectiveness of
the training round.

Despite the aforementioned optimization function setup em-
ployed in this paper, FedRank is highly flexible and con-
figurable, allowing users to tailor the setup to diverse ex-
ploration objectives. Our objective is to conduct the opti-
mal participant selection, which entails maximizing model
performance in terms of accuracy and optimizing training
efficiency in terms of both latency and energy-efficiency.

3.2. Offline Pre-Train with Imitation Learning

Unlike prior RL solutions that are trained entirely on-the-
fly (Zhang et al., 2022; Wang et al., 2020a; Zhan et al.,
2020), we pretrain the Q-Network in an offline manner us-
ing Behavioral cloning, a common approach in Imitation
Learning, by imitating actions taken by an expert. Specif-
ically, FedRank utilizes a three-layer Q-Network to ap-
proximate the Q-function for device selection, expressed
as Qθ

i (s, a) = π[Rt|sti = s, ati = a], where t represents
the current round, and the states sti, which is obtained by
profiling the i-th device, function as the input to the net-
work. Once the Q-values are computed, FedRank selects
the devices with top-K Q-value and the corresponding ac-
tions are set to ati = 1 while the others remain ati = 0.
Q(st, at) =

∑
Qθ

i (s
t
i, a

t
i), where st = {sti} and at = {ati}

are aggregated from all devices.

Algorithm 1 summarizes the offline pre-train algorithm for
FedRank policy πθ. The high-level scheme is to observe a
set of states B and then update the parameters θ to make
the same device decision as the optimal state-of-the-art an-
alytical policies π∗ as the experts for each state s ∈ B via
the loss function Lθ(s, π

∗). Specifically, we perform the
analytical policies (Harmony (Tian et al., 2022), Oort (Lai
et al., 2021), FedMarl (Zhang et al., 2022)) with a given set
of mobile devices and obtain episodes of state-action pairs
to form an expert demonstration B (lines 3-5). Given the
states, we train FedRank with truncated backpropagation
through time (lines 6-9). We first sample batches of states
with the demonstration B to initialize selection policy πθ.
Then, we compute the the loss L =

∑
i=k Lθ(st, π∗) and

update the policy parameters θ based on the loss L. The pre-
training encourages the learned selection policy πθ(at|st)
to make decisions that approximate the analytical policy π∗.

3.3. Online Learning Process

In the deployment setting, we apply the pre-trained model to
the online FL training optimization process. Meanwhile, we
also adopt the target Q-network and the predict Q-network
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Algorithm 1 FedRank Imitation Learning Algorithm.
1: Initialize policy πθ

2: for step = 0 to K do
3: if step ≡ 0 then
4: Collect dataset of state-action pairs to form a vis-

ited states B = {st}Tt=0 by perform the analytical
policies on a given set of mobile devices.

5: end if
6: Sample states st from B
7: Warm up policy πθ on sampled states.
8: Compute loss L =

∑
i=k Lθ(st, π∗)

9: Update policy parameters θ based on loss L
10: end for

to enhance the adaptability of the post-IL network to new en-
vironments. Therefore, the Q-Network is trained recursively
with minimum loss:

L = πst,a,r,st+1 [rt+ γ ∗
∑
i

Qθ
′

i (st+1
i , a)−Qθ

i (s
t
i, a)] (2)

where θ
′

denotes the target network parameters that are peri-
odically copied from θ throughout the entire training phase.
When all devices have completed their DNN inference, the
scheduler receives a global reward rt and proceeds to the
next state st+1

i . The Profiler Cache is used to store the tuple
of transitions < sti, a

t
i, s

t+1
i , rt > for each node i to train

the DNN.

3.4. Pairwise Ranking Loss

The ranking of the Q-values rather than the absolute values
determines the selection of devices. The Q-Network trained
to preserve orders among Q-values fits the problem better
than the Q-Network trained to predict absolute Q-values.
Thus, we adopt the pairwise loss (Joachims, 2002; Li, 2011)
defined on each pair of selected devices di, dj , for i, j =
1...n. Specifically, in pairwise training, each pair of network
outputs are mapped to a binary indicator, which is trained
to minimize its distance to yi,j (=1 if yi > yj , 0 otherwise).
We then redefine the RL rewards with the pairwise loss
in Eq.(2) to prioritize the relative orders over the absolute
values of rewards. We map the output Q-value (predict Q
and target Q̄) to probabilities using a logistic function as
follows:

Pi,j = σ[Q (si, ai)−Q (sj , aj)]

Pi,j = σ[Q̄ (si, ai)− Q̄ (sj , aj)]
(3)

Subsequently, we employ RankNet (Burges et al., 2005) as a
pairwise method, which uses a Binary Cross Entropy (BCE)
loss to represent the pairwise loss of devices i and j as in

Equation (4). We can then obtain the average pairwise loss:

LRank = −
n∑

i,j=1

Pi,j logPi,j +
(
1− Pi,j

)
log (1− Pi,j)

(4)
The new joint loss function of the RL DNN model can be
defined as:

L = LRL + ϵ ∗ LRank (5)

4. Experiments
4.1. Experimental Setup

Infrastructure. We evaluated the effectiveness of FedRank
using a hybrid testbed with both simulation and off-the-shelf
mobile devices which effectively emulates both data and
system heterogeneity in real-world cases. Specifically, we
first built a simulator following the server/client architecture
based on PyTorch (Paszke et al., 2019), in which different
processes were created to emulate the central server and the
participating devices with heterogeneous data distribution.
Monsoon Power Monitor (Monsoon, 2023) was utilized to
monitor energy consumption during the training process. At
the same time, the user interaction traces (Shepard et al.,
2011) were further integrated to emulate the concurrently
running applications that impact the training capability at
runtime.

Models and datasets. The following representative models
and datasets were utilized for evaluation. For the datasets,
in-domain (ID) refers to the datasets consistent with imita-
tion learning, and out-of-domain (OOD) indicates the invis-
ible datasets. Specifically, MNIST (Lecun et al., 1998) on
LeNet5 (LeCun et al., 1998) was adopted as the ID dataset.
While for OOD datasets, ResNet18 (He et al., 2016) on
CIFAR10 (Krizhevsky et al., 2009), VGG16 (Simonyan.,
2014) on CINIC10 (Darlow et al., 2018), ShuffleNet (Zhang
et al., 2018) on TinyImageNet (Deng et al., 2009) for image
classification were utilized. Furthermore, Dirichlet distri-
bution pk ∼ DirN (σ) (Wang et al., 2020b) was utilized
to simulate the non-IID data distribution across different
devices.

Baselines. We compared FedRank with three types of rep-
resentative device selection approaches, including A. Ran-
dom selection: (1) FedAvg (McMahan et al., 2017) a vanilla
framework for FL without any operation. (2) FedProx (Li
et al., 2021) dynamically tunes the randomly selected local
device iterations utilizing training loss to keep the system
robustness. B. Heuristic-based selection: (3) AFL (Goetz
et al., 2019) selects each round of participating devices with
a probability conditioned on the current model, as well as
the data on the client, to maximize efficiency. (4) TiFL (Chai
et al., 2020) selects devices with similar response latency for
each round to reduce system heterogeneity. (5) Oort (Lai
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Table 1. Model performance of different selection approaches about test accuracy, energy cost per round on average, and training speed
per round on average. FedRank achieves the best performance across all the datasets. 1 Set σ = 0.01 for MNIST, σ = 0.1 for others to
emulate Non-IID. 2 Training round that target accuracy (99%) is achieved.

Dataset
&Model

ID OOD
MNIST-LeNet5 CIFAR10-Resnet18 CINIC10-VGG16 TinyImageNet-ShuffleNet

Acc (%) ↑ Energy ↓ Speed ↑ Acc (%) ↑ Energy ↓ Speed ↑ Acc (%) ↑ Energy ↓ Speed ↑ Acc (%) ↑ Energy ↓ Speed ↑

II
D

FedAvg 98.84 100% 1× 84.78 100% 1× 64.78 100% 1× 34.62 100% 1×
FedProx 992(35) 91.7% 1.03× 85.11 91.7% 1.01× 64.51 95.2% 1.05× 35.38 99.0% 1.04×

AFL 98.61 75.7% 1.10× 83.33 78.7% 1.08× 65.86 86.2% 1.07× 36.77 93.5% 1.15×
TiFL 98.91 71.9% 1.19× 84.96 67.6% 1.11× 67.32 76.3% 1.35× 38.8 70.9% 1.33×
Oort 99(49) 55.8% 1.26× 85.69 55.8% 1.40× 67.07 69.4% 1.62× 40.57 76.3% 1.51×
Favor 98.87 84.0% 1.03× 85.98 81.3% 1.10× 65.47 97.1% 1.15× 37.62 99.0% 1.24×

FedMarl 98.82 48.1% 1.07× 86.37 53.2% 1.30× 66.74 68.0% 1.86× 39.48 75.2% 1.67×
FedRank 99(32) 40.1% 1.56× 87.69 44.4% 1.67× 68.58 52.9% 2.01× 43.54 63.3% 1.81×

N
on

-I
ID

FedAvg 36.70 100% 1× 42.02 100% 1× 37.40 100% 1× 23.82 100% 1×
FedProx 67.67 95.2% 1.04× 52.40 101% 1.04× 39.59 99.3% 1.05× 24.72 98.7% 1.03×

AFL 89.60 90.1% 1.13× 51.81 87.7% 1.10× 41.03 93.0% 1.17× 25.90 93.4% 1.08×
TiFL 91.21 76.3% 1.21× 56.39 66.7% 1.20× 42.16 74.9% 1.34× 25.85 73.6% 1.27×
Oort 92.47 71.4% 1.36× 53.51 61.7% 1.38× 43.57 68.3% 1.46× 26.62 71.5% 1.51×
Favor 85.48 90.1% 1.08× 51.34 93.4% 1.16× 39.26 96.8% 1.19× 25.34 93.5% 1.20×

FedMarl 90.13 65.8% 1.16× 56.73 60.2% 1.35× 44.16 67.4% 1.67× 26.31 68.8% 1.57×
FedRank 93.67 47.4% 1.48× 59.11 50.8% 1.78× 47.07 55.2% 1.75× 30.04 67.4% 1.83×

et al., 2021) selects the optimal participating devices based
on the user-defined utility value that combines training loss
and latency. C. Learning-based selection: (6) Favor (Wang
et al., 2020a) adopts accuracy as an indicator to learn local
weight selection to reduce Non-IID effects while speeding
up convergence. (7) FedMarl (Zhang et al., 2022) employs
multi-agent reinforcement learning for device selection. It
randomly chooses devices as RL agents each round, opti-
mizing the final participant selection with accuracy, training
latency, and communication cost. Specifically, we set the
reward hyperparameters α = β = 2 in Eq. 1. This is for the
reason that FedRank jointly considers energy consumption
and training time in each round in the reward function. We
set the device pool N = 100, and K = 10 devices were
selected to participate according to various selection poli-
cies, with r = 50 training rounds and lep = 5 local training
epochs per round. (More details are given in Appendix A).

4.2. Overall Performance

Model performance. Table 1 compares the model perfor-
mance of FedRank with the baselines. FedRank achieves
significantly higher accuracy and converges faster than the
others, 56.9% (Non-IID) on the ID dataset. For the OOD
datasets, FedRank improves the test accuracy up to 8.92%
on IID and 17.08% on Non-IID over all datasets, while
5.2% on IID and 11.0% on Non-IID averaged. There are
two possible reasons 1) the robust and effective groundwork
laid by high-quality SOTA selection approaches through
offline IL sets a solid base for the development of discern-
ing online RL selection. 2) the pairwise loss correction
term accentuates the selection or non-selection of a device,
thereby elevating variance. This adjustment facilitates the
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Figure 3. Efficiency comparison of various schemes to train the
ResNet18 model on CIFAR10 (IID). We compared the FedRank
with the SOTA in the three baselines, respectively.

model’s ability to more effectively discern and assimilate
the distinct attributes of devices. Overall, this experiment
demonstrates the practical and robust ability of FedRank to
scale to complex workloads and application scenarios.

System efficiency. From Table 1, we also can see that Fe-
dRank effectively speeds up the training process with faster
convergence up to 2.01× and achieves significant energy
saving up to 40.1%. This is for the reason that FedRank
jointly considers energy consumption and training time in
each round in the reward function. In contrast, no baselines
are SOTA in all cases, due to incomplete consideration. Oort
emphasizes solely training duration as the system effective-
ness metric, while FedMarl takes into account the energy
costs associated with communication. However, it overlooks
the intrinsic energy overheads of the training process itself, a
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critical oversight, especially for devices operating on battery
power. We further conduct a comprehensive evaluation of
the system efficiency of FedRank from two critical aspects:
Time to Accuracy (ToA) and Energy to Accuracy (EoA). As
depicted in Figure 3 (a), FedRank markedly accelerates the
training phase, demonstrating rapid convergence paired with
enhanced accuracy. Furthermore, Figure 3 (b) illustrates
that FedRank also realizes considerable energy savings, un-
derlining its efficiency. This can be attributed to FedRank
thoughtfully integrates considerations of both latency and
energy consumption during training. In comparison, Oort fo-
cuses exclusively on training time as the measure of system
effectiveness. Conversely, while FedMarl accounts for the
energy expenses related to communication, it neglects the
inherent energy demands of the training phase, a significant
lapse, particularly for battery-operated devices.
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Figure 4. Generalization ability of FedRank to train the ResNet18
model on CIFAR10 (IID).

Generalization and robustness. An effective device selec-
tion policy must be able to suit unseen real-world deploy-
ments (e.g., datasets and training models), as there are large
amounts of mobile devices in real-world cases. Moreover,
as the states are highly diverse and time-evolving, encoun-
tering all of them during imitation learning is infeasible.
In this experiment, we test FedRank’s ability to general-
ize to unseen deployments. Table 1 represents the corre-
sponding results. The model performance shows that with
ID datasets (i.e., MNIST), FedRank improves the model
convergence speed and model accuracy significantly. For
OOD datasets, for the cases with simpler data and similar
to domain datasets, it also shows significant performance
improvement (CIFAR10). For more comprehensive datasets
(CINIC10), the global training model in the baseline setting
all perform inferiorly in heterogeneous real-world deploy-
ments. In contrast, FedRank maintains high accuracy even
in more complicated and self-unseen scenarios, indicating
that it can effectively generalize to unseen deployment envi-
ronments during imitation learning.

4.3. Ablation Study

To explore the impact of the different modules of Fe-
dRank, we develop three model variants: (1) FedRank−I ,
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Figure 5. Ablation study explores the effects of imitation learning
and pairwise loss on model performance across several datasets
(MNIST, CIFAR10, CINIC, and TinyImageNet) under Non-IID
settings. Model−I (without imitation learning), Model−P (with-
out pairwise loss), and Model−IP (lacking both features).
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Figure 6. Reward function analysis in the ablation study for imita-
tion learning.

where offline imitation learning is ablated before FL. (2)
FedRank−P , where rank loss is ablated at DQN training. (3)
FedRank−IP , which directly employ RL to select devices.

Effectiveness of imitation learning. Figure 5 shows that
simply casting device selection as an RL problem with
DQN neural architecture (FedRank−IP ) only produces a
negligible gain as RL faces the cold-start issue. There-
fore, our additions are required to achieve better model
performance with right device selection. Meanwhile, it indi-
cates that FedRank−I only marginally increases efficiency
in FL model training performance, while employing imita-
tion learning can greatly enhance the accuracy by tackling
the cold-start issue of the RL model in the early training
round. We further present an analysis of the reward varia-
tion tendency of the RL DNN model. Figures 6 show that
FedRank−IP trained from scratch, the reward converges
on average after about 70-100 aggregation rounds – more
than 200 rounds are usually required for FL convergence.
Consequently, using IL to pre-train FedRank leads to faster
convergence due to the rich reservoir of knowledge.

Effectiveness of pairwise loss. In addition, as Figure 5 (d)
shows, the ranking loss better optimizes model performance,
as it more heavily penalizes non-critical devices with lower
utility values, which impairs model performance. In addi-
tion, from a distillation perspective of loss, the probability
of selecting a device is proportional to the reward value
for performing the ranking, which suggests that ranking
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Figure 7. Training loss analysis in the ablation study of pairwise.
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Figure 8. Average training latency and energy cost per round (5
local epochs) to train LeNet5 on MNIST. Vanilla: Full local train-
ing over 5 epochs to assess model bias. Probing: Clients perform
the 1st local epoch, then report the probing loss and training over-
head information to the central server. Based on this, the server
performs an early rejection and stops further 4-epoch training of
clients with high bias and low performance.

loss provides greater supervision than the pointwise loss
of FedRank−P . Figure 7 compares the federated learning
model training convergence loss. We can observe that rank
loss speeds up the training process and accelerates the model
convergence rate.

Generalization ability of FedRank. Figure 4 outlines when
baselining the ResNet18 model via IID CIFAR10, the gener-
alizability of FedRank in combination with different client
selection methods and the effectiveness of using multiple
selection methods for imitation learning. The adoption of
a single selection method for imitation learning can sig-
nificantly improve results over the corresponding baseline,
highlighting the merits of continuous space paradigms in
enhancing generalizability. Furthermore, the use of diverse,
multiple selection methods for imitation learning (i.e., the
FedRank) outperforms the single strategy, emphasizing the
value of diversity in imitation learning for comprehensive
imitation.

Impact of penalty factors α and β of FedRank. FedRank
uses two penalty factors to penalize the utility of high la-
tency and energy devices in participant selection, whereby
it adaptively prioritizes high system efficiency participants.
Figure 9 shows that FedRank outperforms its counterparts
across different α and β. Note that FedRank orchestrates
its components to automatically navigate the best perfor-
mance across parameters: larger α and β overemphasizing
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Figure 9. Penalty factors sensitivity of FedRank. α is the training
latency penalty factor to avoid straggler, and β is the energy penalty
factor to avoid high cost devices.

system efficiency drives the Pacer to relax the system con-
straint to admit clients with higher statistical efficiency. and
vice versa. As such, FedRank achieves similar performance
across all non-zero α and β.

Impact of probing (early exit). Utilizing the Monsoon
Power Monitor, we evaluate the training latency and energy
consumption of the probing approach. Fig. 8 shows the
training latency and energy consumption for one training
round under the following two schemes: 1) Vanilla and 2)
Probing. Specifically, Vanilla conducts full local training
over 5 epochs to access model bias. While, with probing,
the clients conduct the 1st epoch of local training, then re-
port the probing loss and training overhead to the central
server. Based on this, the server performs an early rejection
and stops further local training of clients with high bias and
low performance. In this case, the conventional approach
consumes 37.4s of latency and 8.2J of energy in executing a
local training round, effectively decreasing the latency by
10.6% and energy consumption by 25.2% by probing for
early exit. We can see that probe training can effectively re-
duce resource and computational overhead and significantly
improve efficiency. Meanwhile, probing data consisting
only of scalars incurs negligible communication overhead
compared to full model parameters.

5. Conclusion
Federated learning is making significant strides in secure
environments. Real-world FL requires selecting the right
participant subset, factoring in diverse use-cases, data, sys-
tems, and dynamic changes. Our work introduces a founda-
tional, ranking-based device selection method for efficient
FL, named FedRank. This method treats device selection
as a ranking problem, using a pairwise training approach
for intelligent selection, and continually identifying the best
device group. To overcome initial challenges, FedRank em-
ploys an offline pre-training strategy, guided by advanced
analytical solutions and imitation learning. The experimen-
tal results demonstrate that FedRank achieves a balance in
FL between model performance and training efficiency.
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A. Experiment Details
A.1. Dataset Details

For four computer vision datasets, we generate IID data splits by randomly assigning training examples to each client without
replacement. For Non-IID splits, we simulate data heterogeneity by sampling label ratios from a Dirichlet distribution
pk ∼ DirN (σ) with the symmetric parameter σ. We set σ = 0.01 for MNIST, and σ = 0.1 for others to emulate Non-IID.
For two natural language processing datasets, Shakespeare and Wikitext are naturally non-IID. We use LeNet5 (LeCun et al.,
1998) on MNIST, ResNet18 (He et al., 2016) on CIFAR10, VGG16 (Simonyan., 2014) on CINIC10, ShuffleNet (Zhang
et al., 2018) on TinyImageNet, LSTM (Hochreiter & Schmidhuber, 1997) on Shakespeare. For a fair comparison, baselines
and FedRank will be compared under the same settings.

A.2. Baseline Details

We compare FedRank with three types of representative device selection approaches, including

• Random Selection:

– FedAvg (McMahan et al., 2017), a vanilla framework for FL without any operation. In each round t, the server
randomly selects a subset of available devices Kt from the total devices K. Each chosen device k trains the model
on its local dataset using the current global model parameters wt, resulting in updated local parameters wk

t+1. The
server aggregates these updated local parameters using the formula:

wt+1 =
1

Kt

Kt∑
k=1

wk
t+1 (6)

This step effectively averages the local updates to form the new global model parameters.
– FedProx (Li et al., 2021) improves FedAvg by handling heterogeneous data and systems, adding a proximal term

to the local training objective to address non-IID data and system differences. In each round t, a subset of devices
Kt is selected to train on their local data with the global model parameters wt and a proximal term. The local
update wk

t+1 is obtained by minimizing Lk(w) +
µ
2 ∥w − wt∥2, where Lk(w) is the local loss, and µ adjusts the

proximal term’s influence. FedProx’s main advantage is its ability to stabilize training across diverse data and
system environments by ensuring local updates remain close to the global model.

• Heuristic-based Selection:

– AFL (Goetz et al., 2019) uses a device selection method conditioned on the model and client data to enhance
efficiency in each round t. This method focuses on devices likely to offer significant model improvements
based on data diversity, model uncertainty, or past updates’ impact. Post-training, devices submit their updates
and informativeness measures (like loss or uncertainty) to the server. The server then combines these updates,
potentially weighted by informativeness, to revise the global model to wt+1, the following:

wt+1 =

Kt∑
k=1

αkw
k
t+1 (7)

Here, αk denotes the weight of the k-th device’s contribution.
– TiFL (Chai et al., 2020) groups devices by response latency to mitigate system heterogeneity, sorting them into

tiers by capability, bandwidth, and data quality. Each tier has a Tier Server (TS) where selected devices contribute
to local updates. These updates are first aggregated within tiers at the TS using:

wTS
t+1 =

1

Kt

Kt∑
k=1

wk
t+1 (8)

Then, Tier Servers forward their updates to a central server for global aggregation, potentially weighted by tier
attributes:

wt+1 =

T∑
i=1

βiw
TSi
t+1 (9)

This balances individual contributions and overall data characteristics.
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– Oort (Lai et al., 2021) optimizes device selection by integrating training loss and latency into a user-defined utility.
To enhance efficiency, it’s crucial to maximize the per-unit-time statistical utility. The utility of client i is defined
as a product of her statistical utility and the global system utility, considering the duration of each training round,
as shown in the equation:

Util(i) = |Bi|
√

1

|Bi|
∑
k∈Bi

Loss(k)2

︸ ︷︷ ︸
Statistical utility U(i)

×
(
T

ti

)1(T<ti)×α

︸ ︷︷ ︸
Global sys utility

(10)

• Learning-based Selection:

– Favor (Wang et al., 2020a) utilizes accuracy to determine local weight selection, mitigating non-IID impacts
and enhancing convergence. It involves training a DRL agent via a double-deep Q-learning Network (DQN).
Despite evident disparities in local model weights, which hold guiding data for device selection, the DQN
agent’s training aims to optimize the expected total discounted reward, represented as R =

∑T
t=1 γ

t−1rt =∑T
t=1 γ

t−1
(
Ξ(ωt−Ω) − 1

)
.

– FedMarl (Zhang et al., 2022) applies multi-agent reinforcement learning to select devices for federated learning.
It strategically selects RL agents each round to optimize accuracy, training latency, and communication cost. The
reward rt for each round t is given by:

rt = w1[U(Acc(t))− U(Acc(t− 1))]− w2Ht − w3Bt (11)

where Ht, the processing latency, is:

Ht = max
1≤n≤N

(
Hp

t,n

)
+ max

n:1≤n≤N,at
n=1

(
Hrest

t,n +Hu
t,n

)
(12)

In this, max1≤n≤N Hp
t,n signifies the maximum time for generating probing losses, used by MARL agents

for client selection and model update. The time for client n to complete training and upload updates is
maxn:1≤n≤N,at

n=1

(
H rest

t,n + Hu
t,n

)
Here, U(.) is a utility function ensuring even modest improvements in Acc(t)

are recognized towards the end of the learning process, and Bt represents the total communication cost.

B. Convergence Analysis
In this section we present a convergence analysis as a proof of the stability of FedRank, based on the works in (Zhao
et al., 2018; Zhang et al., 2022). Given that each client n ∈ N contains Dn local training data with underlying probability
Pn(.). Denote X × Y as the compact space and label space [C], where class [C] = {1, ..., C}. While {x, yx} as
the training data point and its ground truth label. Also, denote fm(x,w) as the output probability for input x to take
label m using DNN model f , where w is the weight of the neural network. On each device, local conventional SGD
is conducted separately. At timestamp t on device n ∈ N , local performs: wt

n loc = wt−1
n loc − η∇wℓ

(
wt−1

n loc

)
. where

ℓ(w) =
∑C

i=1 p
(n)(y = i)Ex|y=i

[
log fi

(
x,wt−1

n loc

)]
. Then, let wt

glb =
∑N

n=1
Dn∑N

n=1 Dn
wt

n loc denotes the trained DNN

weights after t-th update by aggregating the local weight. Theorem 1 provides a bound on
∣∣∣wt

glb −wt
n loc

∣∣∣.
Theorem 1. If ∇wEx|yx=m log (fm(x,w)) is λx|yx=m-Lipschitz for each m ∈ M . Assume atn satisfies P (m) =∑N

n=1
Dna

t
nPn(m)∑N

n=1 Dnat
n

+ ϵt for a constant ϵt and ϵt ≤ ϵ ∀t. Then, we have the following inequality for the weight divergence
after the t-th aggregation.

∥∥wt
glb −wt

n loc

∥∥ ≤ qtn ∗ [
N∑

n=1

atn ∗
∥∥∥wt−1

glb −wt−1
n loc

∥∥∥
+ η

N∑
n=1

M∑
m=1

∥Pn(m)− P (m)∥
t−1∑
j=1

ain ∗ gmax

(
wt−1−n

n loc

)
]

(13)

13



Ranking-based Client Selection with Imitation Learning for Efficient Federated Learning

where gmax(w) = maxCi=1

∥∥∇wEx|y=i log fi(x,w)
∥∥, an = 1 + η

∑C
i=1 Pn(y = i)λx|y=i, qtn = Dn∑N

n=1 Dn
and η is the

learning rate. Theorem 1 states that, given certain conditions and assumptions, the local DNN model wt
nloc

and global
model wt

glb are both bounded ∀t ∈ T . This bound implies that the stability of FedRank is maintained, ensuring that the
learning process converges.

B.1. Proof of Theorem 1

Based on the definition of wt
glb and wt

n loc, we have

∥∥wt
glb −wt

n loc

∥∥
=

∥∥∥∥∥
N∑

n=1

Dn∑N
n=1 Dn

wt
glb −wt

n loc

∥∥∥∥∥
= ∥

N∑
n=1

Dn∑N
n=1 Dn

(
wt

glb − η

C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−1

glb

)]
−wt−1

n loc + η
C∑

i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,wt−1

n loc

)])
1

≤

∥∥∥∥∥
N∑

n=1

Dn∑N
n=1 Dn

wt−1
glb −wt−1

n loc

∥∥∥∥∥
+ η

∥∥∥∥∥
N∑

n=1

Dn∑N
n=1 Dn

C∑
i=1

p(k)(y = i)
(
∇wEx|y=i

[
log fi

(
x,wt−1

glb

)]
−∇wEx|y=i

[
log fi

(
x,wt−1

n loc

)])∥∥∥∥∥
2

≤
N∑

n=1

Dn∑N
n=1 Dn

(
1 + η

C∑
i=1

p(k)(y = i)λx|y=i

)∥∥wt−1
glb −wt−1

n loc

∥∥ .

Here, inequality 1 holds because for each class i ∈ [C], p(y = i) =
∑K

k=1
Dn∑N

n=1 Dn
p(k)(y = i), i.e., the data distribution

over all the clients is the same as the distribution over the whole population. Inequality 2 holds because we assume
∇wEx|y=i [log fi(x,w)] is λx|y=i-Lipschitz. In terms of

∥∥∥wt−1
glb −wt−1

n loc

∥∥∥ for client n ∈ [N ], we have

∥∥wt−1
glb −wt−1

n loc

∥∥
= ∥wt−2

glb − η

C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
−wt−2

n loc + η

C∑
i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
∥

≤
∥∥wt−2

glb −wt−2
n loc

∥∥+ η∥
C∑

i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
−

C∑
i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]
∥

3

≤
∥∥wt−2

glb −wt−2
n loc

∥∥+ η

∥∥∥∥∥
C∑

i=1

p(k)(y = i)
(
∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
−∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)])∥∥∥∥∥
+ η∥

C∑
i=1

(
p(k)(y = i)− p(y = i)

)
∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]
||

4

≤

(
1 + η

C∑
i=1

p(k)(y = i)Lx|y=i

)∥∥wt−2
glb −wt−2

n loc

∥∥+ ηgmax

(
wt−2

n loc

) C∑
i=1

∥∥∥p(k)(y = i)− p(y = i)
∥∥∥ .
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Here, inequality 3 holds because

∥
C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
−

C∑
i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]
∥

= ||
C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
−

C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]
+

C∑
i=1

p(k)(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]
−

C∑
i=1

p(y = i)∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]
||

≤ ||
C∑
i=1

p(k)(y = i)
(
∇wEx|y=i

[
log fi

(
x,wt−2

glb

)]
−∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)])
∥

+

∥∥∥∥∥
C∑
i=1

(
p(k)(y = i)− p(y = i)

)
∇wEx|y=i

[
log fi

(
x,wt−2

n loc

)]∥∥∥∥∥

Inequality 4 holds because gmax

(
wt−2

glb

)
= maxCi=1

∥∥∥∇wEx|y=i log fi

(
x,wt−2

glb

)∥∥∥. Based on Eq. (3), let an = 1 +

η
∑C

i=1 p
(k)(y = i)λx|y=i, by induction, we have

∥∥∥wt−1
glb −w

(c)
mT−1

∥∥∥
≤an

∥∥∥wt−2
glb −wt−2

n loc

∥∥∥+ ηgmax

(
wt−2

glb

) C∑
i=1

∥∥∥p(k)(y = i)− p(y = i)
∥∥∥

≤ (an)
2
∥∥∥wt−3

glb −wt−3
n loc

∥∥∥+ η

C∑
i=1

∥∥∥p(k)(y = i)− p(y = i)
∥∥∥(gmax

(
wt−2

glb

)
+ angmax

(
wt−2

glb

))

≤ (an)
t−1

∥∥∥w(m−1)t
glb −w

(m−1)t
n loc

∥∥∥+ η

C∑
i=1

∥∥∥p(k)(y = i)− p(y = i)
∥∥∥
t−2∑

j=0

(an)
j
gmax

(
wt−2−j

glb

)
=(an)

t−1
∥∥∥w(m−1)t

glb −w
(m−1)t
n loc

∥∥∥+ η

C∑
i=1

∥∥∥p(k)(y = i)− p(y = i)
∥∥∥
t−2∑

j=0

(an)
j
gmax

(
wt−2−j

glb

)
Therefore,

∥∥wt
glb −wt

n loc

∥∥ ≤ qtn ∗ [
N∑

n=1

atn ∗
∥∥∥wt−1

glb −wt−1
n loc

∥∥∥
+ η

N∑
n=1

M∑
m=1

∥Pn(m)− P (m)∥
t−1∑
j=1

ain ∗ gmax

(
wt−1−n

n loc

)
]

Hence proved.
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