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ABSTRACT

Multi-contrast magnetic resonance imaging (MRI) provides complementary
anatomical and pathological information, yet certain contrasts are often missing
due to scan time, motion artifacts, or protocol variability. We present SIMAE, a
masked autoencoder (MAE) operating in latent space that synthesizes arbitrary
missing contrasts. MAE naturally fits conditional synthesis by reconstructing
masked content from visible context in a single-pass, while latent space training
enables semantic reconstruction, suppresses pixel space grid artifacts, and is com-
putationally efficient. SIMAE employs a multi-contrast tokenizer with a shared
encoder that maps each contrast into a common latent space and a joint decoder
that outputs all contrasts simultaneously by aggregating cross-contrast cues. We
train latent MAE with a two-phase curriculum: (i) pre-training with random token
masking to learn general anatomical context, and (ii) fine-tuning with random con-
trast masking to specialize the model for missing-contrast synthesis. We introduce
a subject token, regularized by a subject-identity separation (SIS) loss, that serves
as a compact representation capturing anatomical identity and subject-specific fea-
tures. The subject token is withheld from the decoder to impose an information
bottleneck that encourages context-driven, token-level reconstruction. We further
estimate uncertainty by repeatedly masking tokens and resynthesizing to gener-
ate uncertainty maps that highlight low-confidence regions. On BraTS 2021 and
ADNI datasets, SIMAE achieves state-of-the-art synthesis quality and preserves
fine anatomy and pathology.

1 INTRODUCTION

Multi-contrast magnetic resonance imaging (MRI) is widely used in both clinical practice and re-
search as different imaging contrasts (e.g., T1-w, T2-w, FLAIR) accentuate distinct tissue properties
and pathologies, providing complementary views of the same anatomy (Wu et al.,|2010; Dickinson
et al., 2013)). Integrating these perspectives enables a more comprehensive understanding of a pa-
tient’s condition (Zhang et al., 2021} Rao et al.,|2022; Byeon et al., 2025). However, in real-world
practice, not all MR sequences are acquired for every patient (Kronberg et al.l[2022). Some contrasts
may be missing due to long scan times, patient motion or discomfort, or variations in imaging proto-
cols across institutions (Hollingsworth, [2015; Zaitsev et al.,|2015; Lustig et al., |2007). Such missing
modalities complicate radiological assessment and can degrade the performance of algorithms that
expect complete inputs (Chan et al., 2020).

A practical remedy is missing-modality imputation, i.e., synthesizing absent contrasts from available
ones. Early work explored one-to-one translation (Dar et al [2019; [Yu et al.,2019), then many-to-
one fusion for a designated target (Yurt et al., 2021} Jiang et al., |2023), and more recently many-
to-many synthesis that reconstructs multiple contrasts from arbitrary inputs (Chartsias et al., 2017;
Sharma & Hamarnehl 2019; [Meng et al., 2024). Generative adversarial networks (GANs) (Good-
fellow et al., 2014) and diffusion models (Song et al., |2020; [Ho et al.| 2020) have been widely
adopted, yet each method presents some limitations. GAN-based methods often train unstably and
can exhibit mode collapse, which degrades anatomical fidelity (Bau et al.,[2019; Dhariwal & Nichol,
2021). Diffusion-based methods deliver high fidelity but require many denoising iterations per im-
age, resulting in slow inference. Moreover, maintaining strict anatomical consistency across modal-
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Figure 1: Multi-contrast MRI synthesis with missing contrasts. We compare Ground Truth (GT)
and outputs from MM-GAN (Sharma & Hamarneh, [2019) (GAN), APT (Shin et al., [2025) (Diffu-
sion), and our SIMAE. Arrows indicate regions with differences. Per-scan inference time is mea-
sured on an A100 GPU.

ities while integrating their diverse characteristics remains challenging for generative models (Jiang
et al., [2023).

In this study, we introduce SiIMAE, a masked autoencoder (He et al.l 2022) (MAE) that operates in
latent space for multi-contrast MRI synthesis. MAE predicts masked content from visible context,
which aligns with our goal of synthesizing a missing MRI contrast from the available contrasts. By
moving reconstruction to latent space, the task shifts from pixel inpainting to semantic completion
of latent tokens, improving efficiency and suppressing the grid artifacts seen with pixel-based MAE
(Appx. [8). Compared to diffusion-based models, which require many iterative steps, SIMAE pro-
duces a result in a single-pass, making it much faster for inference while maintaining stable training.
As shown in Fig. |I|, SiMAE is 150x faster than APT, which is a diffusion-based model.

The multi-contrast tokenizer maps each input contrast into a shared latent space, and the model
aggregates cross-contrast cues to simultaneously generate all contrasts. We train the latent MAE
in two-phase curriculum. Curriculum training first learns general anatomy and then specializes to
missing-contrast synthesis. In phase 1, we use random token masking to build contextual under-
standing, and in phase 2, we use random contrast masking so the model learns to recover absent
contrasts from the available ones. We further introduce a subject token and regularize it with a
subject-identity separation (SIS) loss so that subject tokens from different subjects are well separated
in the embedding space, yielding a subject representation and improving the encoder’s representa-
tional quality. We prepend a subject token for identity modeling and deliberately withhold it from the
latent decoder. This imposes an information bottleneck that separates identity summarization from
reconstruction, guiding the decoder to rely on visible token context for detail recovery. Finally, we
estimate uncertainty by measuring how much the outputs change when latent tokens are repeatedly
masked and resynthesized, producing maps that highlight low-confidence regions without auxiliary
networks or ensembles. On BraTS 2021 and ADNI datasets, the proposed method achieves state-of-
the-art PSNR and SSIM, preserves fine anatomy and pathology, and provides uncertainty maps that
support clinical interpretability. Overall, our contributions are as follows:

* We propose SIMAE, a latent masked autoencoder equipped with a multi-contrast tokenizer,
enabling high-quality semantic reconstruction, effective artifact suppression, and improved
computational efficiency.

* We introduce a subject token, regularized by subject-identity separation (SIS) loss, to form
a compact subject representation. The token is withheld from the decoder, enforcing an
information bottleneck that promotes context-driven, token-level reconstruction.

* We produce uncertainty maps of synthesized output via iterative latent masking and resyn-
thesis, highlighting low-confidence regions without extra networks or ensembles.

* We demonstrate state-of-the-art performance of SIMAE on multi-contrast MRI datasets
(BraTS and ADNI), with both quantitative gains and qualitative fidelity, supported by un-
certainty estimation results and comprehensive ablation studies.

2 RELATED WORKS

Multi-Contrast MRI Synthesis Missing-modality synthesis has evolved from one-to-one transla-
tion (Dar et al.| 2019} Yu et al.,2019) to many-to-one translation (Yurt et al., 20215 |Jiang et al.| [2023)
and, more recently, many-to-many models that handle arbitrary input—output sets (Chartsias et al.,
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Figure 2: Overview of SiIMAE framework. SiMAE consists of a shared pixel encoder that tok-
enizes all contrast images in latent space, latent encoder and decoder for reconstruct tokens in latent
space, and a multi-contrast pixel decoder that transforms tokens to all contrasts simultaneously.
Training follows a two-phase curriculum with random token masking and random contrast masking.
At inference, when one or more contrasts are missing, SIMAE directly synthesizes the complete set
of contrasts in a single-pass.

2017;[Sharma & Hamarneh},2019; Meng et al.} 2024). GANs have been widely used across these set-

tings (Goodfellow et al.,[2014), including MM-GAN (Sharma & Hamarneh,|[2019), ResViT (Dalmaz,
2022), MMT (Liu et al.,[2023), and HF-GAN (Cho et al.| [2024), but adversarial training can

be unstable and prone to mode collapse, harming anatomical fidelity (Bau et al. 2019} [Dhariwal &
Nichol, 2021). Diffusion models mitigate instability and deliver strong fidelity (Song et al., 2020; Ho
et al., 20205 Kazerouni et al.l|2022); recent variants add joint synthesis with modality masks (Meng
et al., 2024), mutual learning (Dayarathna et al.| [2025)), frequency-guided schedules
2024), or anatomy-aware priors (Shin et al.,[2025). Nevertheless, diffusion requires many denoising
steps per image, slowing inference. Our approach instead performs single-pass inference in a latent
space while aggregating cross-contrast cues within one model.

Self-supervised Learning Self-supervised Learning (SSL) is a dominant paradigm for learning
feature representations from large-scale unlabeled data (Gui et al., [2024). Masked image modeling
(MIM) learns by predicting masked content from visible context (Bao et al.| 2021} Xie et al.} [2022));
MAE with a ViT backbone (Dosovitskiy et al.| 2020) is a strong instance typically
used for pre-training encoders. We repurpose masked modeling for generation by doing masking
and recovery in a contrast-integrated latent space, reframing pixel-patch inpainting as semantic com-
pletion of latent tokens. Contrastive learning is another major SSL method (Chopra et al.| 2005
et al.l2020;/Chen et al.,[2020; Oord et al.,[2018), including negative-free variants (Chen & He, 2021
Grill et al., [2020). A positive-free regularizer, dispersive loss (Wang & Hel, [2025), keeps only the
repulsion term and has improved generative models such as DiT and SiT (Peebles & Xie, 2023}
2024). SIS follows the same dispersion-only principle but targets only the subject token to
enforce subject-wise separation, rather than promoting generic feature diversification.

Uncertainty Estimation in Medical Image Synthesis For medical image synthesis to be clini-
cally trustworthy, it should not only generate realistic images but also provide a reliable estimate of
its own confidence, as deep networks can hallucinate or remove pathology (Xie et al.,[2012;Ben Yed-
2021). In MRI reconstruction, Bayesian inference (Narnhofer et al., [2021), Monte Carlo
sampling (Edupuganti et al.l 2020), and model ensembles 2025)) are common approaches.
For multi-contrast synthesis, uncertainty estimation remains underexplored: MU-Diff
et al} 2025) uses attention masks to indicate confidence, but there is no analysis. Inspired by MAE-
DAY (Schwartz et al., [2024), we quantify output variability by repeatedly masking latent tokens of
the target contrast, resynthesizing, and aggregating the differences into uncertainty maps, requiring
no auxiliary networks or ensembles.
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3 MULTI-CONTRAST MRI SYNTHESIS

Our framework, SIMAE, operates in a latent space with continuous-valued tokens, similarly to
MAR (Li et al.| [2024). A multi-contrast tokenizer uses a shared encoder to map each contrast to
per-contrast latent tokens in a common latent space. A joint decoder attends over the concatenated
latent tokens to synthesize all contrasts simultaneously. On these tokens, SIMAE learns to complete
missing content from visible context. In addition, we introduce a subject token, withhold it from
the decoder, and regularize this token with a SIS loss. This design enables direct many-to-many
synthesis and supports uncertainty estimation by repeatedly masking latent tokens and quantifying
variability across resynthesized outputs. An overview of the training framework is shown in Fig.[2]

3.1 TOKENIZER

We train a multi-contrast tokenizer as a KL-regularized autoencoder following LDM (Rombach
et al.,|2022). Training minimizes the reconstruction loss with a KL penalty on the approximate pos-
terior and a GAN loss (Goodfellow et al.,[2014). We adopt continuous latents to avoid the quantiza-
tion errors that degrade reconstruction quality (Fan et al.,2024)). The only difference from a standard
KL-regularized autoencoder is that the multi-contrast decoder takes the concatenated tokens as input
and outputs all contrasts simultaneously. After convergence, the multi-contrast tokenizer is frozen.

3.2 MASKED AUTOENCODER IN LATENT SPACE

Given latent tokens Z from the tokenizer, we add positional embeddings (Vaswani et al.,|2017) and
process the sequence with a ViT-style Transformer (Dosovitskiy et al., [2020). Let M be a binary
mask over the token grid and M = 1— M. The latent encoder consumes only the visible tokens (i.e.,
M & Z). Then, we concatenate the encoded visible tokens with the learnable mask tokens at the
masked positions for the decoder input. Our latent decoder with the same architecture as the encoder

predicts the full set of tokens Z. The reconstruction loss is computed only on masked positions:
LRecon = ||M®(Z—Z)||1 (D

During training, we vary the masking pattern and ratio, enabling the model to recover both local
details and larger missing regions.

3.3 SUBJECT TOKEN

Subject token for identification. We prepend a learnable subject token to the encoder input to
serve as a compact embedding of the subject’s identity and anatomy-specific features, as in Fig.[2]
The subject token participates in self-attention as latent tokens, thereby aggregating global informa-
tion while broadcasting identity-related signals back to local tokens through attention. We experi-
mented with using multiple subject tokens (e.g., 1, 4, 8, ...) and found a sweet spot at 1-4 tokens;
adding many tokens tends to slightly degrade the identity representation and reconstruction quality
(Appx.[I3). Thus, we use a single subject token by default for simplicity and efficiency.

Information bottleneck. Crucially, the subject token is withheld from the decoder. This creates
an information bottleneck that prevents shortcutting via a subject-identity summary and compels
the model to rely only on visible token context for reconstruction. This asymmetric design places
identity modeling on the encoder side while keeping the decoder context-driven. Ablations show
that passing the subject token to the decoder weakens detail recovery (Sec.[5.2).

3.4 OBIECTIVES

Subject-identity separation. To encourage the model to distinguish between different subjects, we
introduce a subject-identity separation (SIS) loss on the subject token. SIS encourages tokens from
different subjects to occupy well-separated regions of the embedding space, thereby strengthening
subject recognition and improving the encoder’s representational quality. Let s; denote the encoded
subject token for the i-th scan in a batch. We adopt a dispersion-only objective that pushes subject
tokens apart:

Lsis = logE; j [exp (=D (s4,55) /7)] s 2)
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Figure 3: Uncertainty map estimation. After synthesizing the missing contrast, we repeatedly
mask its latent tokens and resynthesize the image /N times. The pixel-wise variations across these
resyntheses are aggregated to produce the uncertainty map.

where D is a dissimilarity function and 7 is a temperature hyperparameter. In our experiments we
use squared {5 distance, D (s;,s;) = [|s; — s, ||2 This loss is computed once per batch, applied
directly to the subject tokens, and introduces no extra parameters. The SIS loss ensures that subject
tokens become distinct for each individual, capturing unique anatomical identities. In Sec. [5.2] we
verify that subject tokens form subject-wise clusters, indicating subject-identity.

Total loss. Given a subject with C' contrasts, denote X; = {atl(-l), - ,xEC)}. The shared encoder
maps each z'° to latent tokens 2.
with Z; = [s;; P ...7z§0) ], where s; is the prepended subject token. The total training

]
objective is

in a common latent space. For a batch, we write Z = {Z,;} ,

L(Z) - EZiEZ [£Recon (Zz)] + A‘CSIS (Z)a (3)
where ) is a weighting hyperparameter. Since the reconstruction loss provides alignment targets for
training, the SIS term focuses on repelling subject tokens from each other.

Curriculum training. We adopt a two-phase training curriculum that differs only in the masking
pattern while keeping the architecture fixed. In phase 1, pre-training for anatomical context uses
random token masking across the latent tokens regardless of contrast. We mask a random subset of
tokens and train the model to reconstruct only the masked tokens from the visible ones. This en-
courages the model to leverage surrounding tokens and cross-contrast cues, learning overall context
such as global layout, relative structure, intra-/inter-contrast relationships.

Then, in phase 2, fine-tuning for contrast synthesis applies random contrast masking, which masks
all latent tokens corresponding to one or more contrasts. During fine-tuning, we turn off the SIS
loss (A = 0). This matches the test-time scenario and strengthens the model’s ability to synthesize
arbitrary missing contrast from the available inputs. Despite its simplicity, the two-phase curriculum
training effectively improves performance. Notably, training with both masking strategies mixed in
one-phase performed worse than two-phase, highlighting the benefit of first learning general context
then specializing (Sec.[5.2).

4 UNCERTAINTY ESTIMATION

We estimate uncertainty by perturbing the latent tokens of the target synthesized contrast and mea-
suring output variability across resyntheses. See Fig. [3| for framework of uncertainty map. First,
we synthesize an initial synthesis of the missing contrast, denoted as Sy, using the trained SIMAE.
We then reencode Sy together with the available inputs through the shared encoder to obtain latent
tokens. Next, we apply /N random masks to the tokens corresponding to Sy with masking ratio m
and run the synthesis pipeline to obtain a set of resynthesized images, {S1,...,Sy}. Finally, the
uncertainty map U is computed by taking pixel-wise absolute differences between Sy and each S,
filtering each difference map with a Gaussian kernel g (kernel size 7, ¢ = 1.4), and averaging:

1 N
= =3 (80 - Sil 9. @)
=1

The uncertainty maps highlight regions where predictions are unstable. Masking in latent space
creates perturbations of the model’s internal process for the target contrast. Regions that are well-
constrained remain stable across resyntheses, whereas ambiguous structures (e.g., lesion rims and
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Table 1: Quantitative results of the comparison study on BraTS and ADNI.

BraTS ADNI

FLAIR  TIl-w T1Gd T2-w  Average Tl-w T2-w PD Average
Method PSNR  PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR
SSIM SSIM  SSIM  SSIM SSIM SSIM  SSIM  SSIM SSIM
MM-GAN 23.35 25.13 2040 2493 23.45 20.40  23.61 24.50 22.84
0.882 0.925 0.869 0.920 0.899 0.784  0.820  0.826 0.810
HiNet 24.36 2350  23.64  26.10 24.40 20.14 2397 24.44 22.85
0.898 0.923 0.886  0.930 0.909 0.793 0.838 0.833 0.821
ResViT 23.72 24.13 23.71 26.30 24.47 19.62  23.95 24.65 22.74
0.871 0914  0.877 0.928 0.898 0.768 0.833 0.827 0.809
ADM 21.58 22.79 23.03 22.84 22.56 16.53 21.37 22.31 20.07
0.833 0.887 0.868 0.855 0.861 0.659 0.767 0.795 0.740
SynDiff 21.98 2374 2449 25.17 23.85 2040  22.83 24.75 22.66
0.846 0924  0.856  0.916 0.886 0.794  0.813 0.821 0.809
M2DN 23.83 24.00  22.65 24.66 23.79 19.59 22.99 23.99 22.19
0.870 0.923 0.899 0.901 0.898 0.773 0.777 0.801 0.784
APT 25.52 25.88 2454 2744 25.85 20.82 24.56 2448 23.29
0.920 0.942 0.903 0.951 0.929 0.804  0.854  0.849 0.836
SIMAE 26.49 27.18  29.00 28.61 27.82 26.69  28.85  29.07 28.20
0.916 0944 0929 0943 0.933 0814 0.855  0.892 0.854
GT MM-GAN HiNet ResViT ADM SynDiff M2DN APT SIMAE

Figure 4: Qualitative results of comparison study on BraTS and ADNI. The top four rows are from
BraTS, while the bottom three rows from ADNI. Major differences are highlighted by red boxes.

tissue interfaces) produce larger variability. Our approach requires no additional parameters, auxil-
iary networks or retraining. It can also be extended straightforwardly to scenarios with two or more
missing contrasts.
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Figure 5: Uncertainty estimation: Ground Truth (GT), Synthesis, GT Error Map, Uncertainty Map,
GT Error Mask (top 20%), Uncertainty Mask (top 20%).

5 EXPERIMENTS

Datasets. We evaluate on BraTS 2021 (Baid et al.|, [2021) and Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) datasets. BraTS comprises 2,040 multi-parametric brain tumor MRI cases
with T1-weighted (T1-w), post-contrast T1-weighted (T1Gd), T2-weighted (T2-w), and T2 Fluid-
Attenuated Inversion Recovery (FLAIR) volumes collected across multiple institutions, reflecting
variation in imaging protocols and equipment. All images are resized to 256 x 256 and processed
as 2D slices. We allocate 80% of the subjects for training; the test set contains 200 slices from 50
randomly selected subjects. ADNI includes 837 MRI scans from both cognitively unimpaired and
Alzheimer’s Disease (AD) patients. The dataset includes T1-w, T2-w, and Proton Density (PD) se-
quences, resized to 256 x 256. We use 80% of the data for training; the test set contains 150 slices
from 30 randomly selected subjects.

Evaluations. We compared our method with seven recent methods for multi-contrast MR image
synthesis: three GAN-based approaches (MM-GAN (Sharma & Hamarnehl 2019), HiNet (Zhou
et al., [2020), and ResViT (Dalmaz et al.,[2022)) and four diffusion-based approaches (ADM (Dhari-
wal & Nichol, 2021), SynDiff (Ozbey et al.,[2023), M2DN (Meng et al., 2024), and APT (Shin et al.,
2025))). We report Peak Signal-to-Noise Ratio (PSNR) (Wang et al, 2004)) and Structural Similarity
(SSIM). Unless otherwise noted, all experiments compare the single-contrast missing scenarios, in
which the model synthesizes one missing modality based on the available others, and report averaged
results.

Implementation details. We use the standard ViT (Dosovitskiy et al., |2020) as our backbone. We
perform pre-training for 1,000 epochs and fine-tune for 50 epochs without SIS loss. By default, the
SIS loss weight A is 0.5, and the temperature 7 is 0.5. More details can be found in Appx.

5.1 MAIN RESULTS

Quantitative Results. In Tab. [T, SIMAE achieves the best average performance on both datasets.
On BraTS, SiMAE attains the highest PSNR for all four targets. For SSIM, it ranks first or second
across all targets, with particularly strong gains on T1Gd, where both PSNR and SSIM improve
by a large margin. On ADNI, SiIMAE achieves the best results for every target on both metrics;
PSNR gains are substantial, and SSIM improves notably on PD. Overall, SIMAE offers consistent
improvements in both PSNR and SSIM across all contrasts, without modality-specific trade-offs.

Qualitative Results. Fig. [4| shows qualitative comparisons with other methods. In BraTS, our
synthesis results better preserve fine anatomy and tumor morphology, with fewer artifacts relative to
competing models. In ADNI, SiMAE recovers subtler anatomical cues, including the cortical distor-
tions characteristic of AD. Across datasets, our method exhibits visually consistent and anatomically
plausible syntheses. More results are in Appx.

Uncertainty Map. We evaluate the reliability of the uncertainty maps by comparing them to the
ground truth (GT) error. The GT error map is the absolute difference between the synthesis and the
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Table 2: Random missing-modality results on BraTS, comparing SIMAE against APT.

Input SiMAE (PSNR/SSIM) APT (PSNR/SSIM)
FLAIR T1-w T1Gd T2-w| FLAIR Tl-w T1Gd T2-w FLAIR T1-w T1Gd T2-w

v - 26.16/0.918 27.96/0.913 26.86/0.912 - 23.54/0.914 21.20/0.869 21.67/0.904
v 25.31/0.899 - 28.54/0.923 27.36/0.930(23.54/0.893 - 22.22/0.883 25.62/0.931
v 24.90/0.887 25.67/0.921 - 26.81/0.913|22.25/0.869 24.27/0.912 - 23.24/0.898

v’ (24.91/0.887 25.83/0.929 28.38/0.918 - 23.40/0.893 23.93/0.925 23.17/0.889 -
v v - - 28.83/0.926 28.38/0.940 - - 24.26/0.899 27.06/0.948
v v - 26.67/0.934 - 28.10/0.931 - 24.74/0.930 - 23.03/0.924

v v - 26.97/0.939 28.47/0.924 - - 24.50/0.938 21.14/0.886 -
v v 25.85/0.904 - - 27.80/0.935(24.08/0.898 - - 26.52/0.939

v v’ [26.15/0.912 - 28.99/0.928 - 26.40/0.923 - 23.30/0.896 -

v V' (26.17/0.909 26.65/0.940 - - 25.26/0.914 25.11/0.935 - -

GT image. Both the GT error map and the predicted uncertainty map are thresholded at their top
20% values to form binary masks. We then compute pixel-wise accuracy between these two masks.
Treating the GT error mask as the reference label, we also compute the Area Under the Receiver
Operating Characteristic Curve (AUROC) using uncertainty map. All metrics are computed within

the brain region only.
0.73 0.62

Fig. [6]shows accuracy and AUROC versus mask-
ing ratio and number of resyntheses. First, fixing
the number of resyntheses to N = 32, we vary the
masking ratio m applied to the latent tokens of
the initially synthesized target Sy. Performance 07Lf
peaks at m = 0.8, yielding the highest mask ac-
curacy and AUROC. Second, fixing m = 0.8, we ol $ L merheama e AUROC ]
vary N. AUROC increases gradually with IV, but pon L0 ri;k;’lg 0 TR 0008
gains taper while computation grows linearly, so o073 02
we set N = 32 for all experiments. Detailed val-

ues are in Appx.

AUROC
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L 0721 0.6
Fig. [5] visualizes our uncertainty estimation re-
sults on BraTS. High uncertainty regions are lo-
cated particularly along lesion and tissue bound-
aries with large synthesis errors. This indicates e Aceuracy —oe AUROC
that the uncertainty map highlights structures L S T "R VIS U T
with low confidence that are indeed difficult to number of resyntheses
reconstruct. More results are in Appx. [0}

Accuracy
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Figure 6: Accuracy and AUROC for the uncer-
tainty map are plotted against masking ratio and
5.2 ABLATION STUDIES the number of resyntheses.

Scenarios of Random Missing Modalities. We further evaluate robustness when two or more
contrasts are missing. In Tab.[2] SIMAE outperforms APT in most random-missing scenarios, par-
ticularly in terms of PSNR. As the number of available inputs decreases, the performance of both
methods drops, but the gap in favor of SIMAE widens, indicating more effective use of cross-contrast
context. These results indicate that SIMAE scales reliably from the single-missing setting to more
challenging multi-missing scenarios with consistent improvements over a diffusion-based model.
Results on ADNI are in Appx.

Subject Token Design and SIS Loss. Tab. [3shows the effect of the subject token, the information
bottleneck, and SIS loss. Adding the subject token alone underperforms the baseline, indicating
that when the token is available to the decoder it acts as a shortcut and weakens context model-
ing. Withholding the token from the decoder improves performance by creating an information
bottleneck, which supports our claim that forcing the decoder to rely on visible, token-level evi-
dence rather than summarized subject-identity is more effective. Applying SIS loss to the subject
token yields enhanced results by making embeddings more distinct and thus strengthening the en-
coder’s representation. The full design achieves the best results on both datasets, which indicates
that subject-aware encoding and context-only decoding are effective.
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Table 3: Ablation study on subject token (S.T.), infor- Table 4: Training strategy with the base-
mation bottleneck (I.B.), and SIS loss. line model. (RTM: Random Token Mask-
BraTS ADNI ing, RCM: Random Contrast Masking)
S.T. I.B. SIS PSNR SSIM PSNR SSIM BraTS ADNI
Baseline 27.63 0.930 27.37 0.839 Strategy PSNR SSIM PSNR SSIM
27.12 0.928 27.26 0.837 RTM 2691 0.927 27.11 0.838
27.70 0.932 27.67 0.846 RCM 26.34 0919 27.09 0.837
27.59 0.930 28.05 0.849 RTM+RCM 25.87 0915 26.32 0.819
27.82 0.933 28.20 0.854 RTM—RCM 27.63 0.930 27.37 0.839

ANEN

w/ SIS loss

Fig.[7)visualizes the subject tokens with t-SNE (Maaten &
Hinton/ |2008). For each subject, we plot four slices. With
SIS loss, all cases form compact, well-separated clus-
ters, indicating stronger subject-wise separability. With- -
out SIS loss, some cases exhibit partial intermingling,
which indicates weaker separation. This supports that
SIS loss tightens within-subject cohesion while increas-
ing between-subject separation.

e g’

One-phase vs. Two-phase Training. In Tab. we
use the baseline model without a subject token to com-
pare training strategy. “Random token masking” applies
random token-level masks throughout training. “Random
contrast masking” excludes all tokens of one or more con-
trasts to mirror the contrast missing setting. “Random to-
ken + contrast masking” randomly selects one of the two
masking for each iteration. For a fair comparison the to- ; N
tal training epoch is kept constant across one-phase and . s
two-phase setups. The two-phase training curriculum, / ’ N
which involves pre-training with random token mask- i TN,

ing followed by fine-tuning with random contrast mask- e e <.
ing, achieves the best performance. Using both masking P
schemes within one phase results in performance poorer v
than using one scheme. Moreover, random token mask-
ing outperforms random contrast masking even though
the latter matches the inference configuration, suggesting
that learning broad contextual relationships among tokens  Figure 7: t-SNE visualization of subject
provides a stronger foundation for contrast-specific syn-  tokens, colored by subject. Cases that

thesis. fail clustering are with dashed lines.

w/o SIS loss

“d

6 CONCLUSION

We present SIMAE, a framework for multi-contrast MRI synthesis that combines a multi-contrast
tokenizer with a latent masked autoencoder. The subject token, regularized by SIS and withheld from
the decoder to impose an information bottleneck, improves encoder representations and promotes
detail-faithful reconstruction. SIMAE also produces uncertainty maps via iterative latent masking
that align with ground truth error and highlight low-confidence regions. Ablations show that a two-
phase curriculum, consisting of random token masking for context followed by random contrast
masking for specialization, outperforms one-stage training. SIMAE achieves state-of-the-art results
on BraTS and ADNI. Future directions include using the uncertainty map to refine uncertain regions
through resynthesis or loss reweighting. We also plan to extend the approach to full 3D and other
imaging modalities, as well as mixed-modality settings.

Limitations. SIMAE is an assistive tool and synthesized contrasts should be interpreted with qual-
ified expert oversight. As shown in Appx. failure cases include boundary smoothing, contrast-
appearance shifts, and small-lesion hallucinations. Uncertainty maps may also be incorrect, so they
should be regarded as supplementary indicators rather than ground truth and used with caution.
Ethics Statement. This work uses publicly available, de-identified MRI datasets (BraTS 2021,
ADNI) collected under institutional review and participant consent by the dataset curators.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this work, the authors used OpenAI’s GPT-5 in order to improve language
and readability. After using this tool/service, the authors reviewed and edited the content as needed,
taking full responsibility for the content of the publication.

B IMPLEMENTATION DETAILS.

All experiments were conducted on NVIDIA A100 GPUs. We follow LDM (Rombach et al., [2022)
to train multi-contrast tokenizer to encode each MR image into 16 x 16 continuous tokens, and
the multi-contrast decoder takes the concatenated latent tokens. SIMAE uses 10 transformer blocks
with width 768 in both latent encoder and latent decoder. We train with the AdamW
(learning rate Se-4, weight decay 0.02, 81 = 0.9, B2 = 0.95), batch size 128,
and maintain an exponential moving average of parameters with momentum 0.9999. During pre-
training, we train for 1,000 epochs and apply a 100-epoch linear Ir warmup (Goyal et al, 2017),
followed by a constant (Peebles & Xie| 2023) Ir schedule, and we sample a masking ratio in [0.2,
0.8] for random token masking. Fine-tuning runs for 50 epochs without SIS loss. The SIS loss
weight A = 0.5 and the temperature 7 = 0.5 are selected via the ablation in Appx.[T9]

C SUPPLEMENTARY EXPERIMENTAL RESULTS

Unless noted, we use the same model capacity, training budget, and data preprocessing for in all
experiments.

C.1 LATENT-BASED MAE Vvs. PIXEL-BASED MAE

GT SiMAE Pixel-based MAE GT SiMAE Pixel-based MAE

Figure 8: Qualitative comparison of MAE in latent space (SIMAE) vs. pixel space. Pixel-based
MAE shows grid-like artifacts.

Fig. [§] compares qualitative results from a latent space MAE (SIMAE) and a pixel space MAE.
To equalize computational cost, the pixel-based MAE patchifies each 256 x256 image into 16x16
patches, and SIMAE uses a tokenizer stride that produces the same 16x16 latent tokens. We keep
encoder/decoder depth and width, masking ratio, epochs, and training curriculum identical. Pixel
space training consistently exhibits grid-like artifacts and boundary softening, whereas latent space
training suppresses checkerboard patterns and preserves tissue interfaces.

This result is expected: pixel-based MAE is originally proposed for self-supervised representation
learning rather than high-fidelity image synthesis, so patch-wise reconstruction can imprint the sam-
pling grid. In contrast, SIMAE predicts latent tokens, and the multi-contrast decoder acts as a learned
image prior that maps these tokens back to image space with spatially coherent structure. As a re-
sult, small token-level errors are smoothed in decoding, reducing artifacts. While this may not be
an exact comparison, moving the reconstruction to latent space reduces grid artifacts and preserves
fine anatomy more effectively.
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Table 5: SIS vs. contrastive with different dissimilarity functions on BraTS.

FLAIR T1-w T1Gd T2-w Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 26.39 0911 26.67 0940 29.04 0.928 28.43 0.940 27.63 0.930
SIS (¢2) 2649 0916 27.18 0943 29.00 0.929 28.61 0.943 27.82 0.933
Contrastive (¢2) 26.18 0910 26.60 0.938 28.86 0.927 28.22 0.937 27.47 0.928
SIS (cosine) 26.06 0914 27.02 0942 28.88 0.929 28.86 0.943 27.70 0.932

Contrastive (cosine) 25.44 0907 26.64 0939 2885 0927 28.18 0.937 27.28 0.928

Table 6: SIS vs. contrastive with different dissimilarity functions on ADNI.

T1-w T2-w PD Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 25.87 0.796 28.03 0.840 28.21 0.881 27.37 0.839
SIS (¢2) 26.69 0.814 28.85 0.855 29.07 0.892 28.20 0.854
Contrastive (¢2) 2545 0.786 27.75 0.835 28.05 0.879 27.09 0.833
SIS (cosine) 26.43 0.810 28.89 0.855 28.99 0.890 28.10 0.852

Contrastive (cosine) 25.82 0.794 27.92 0.838 28.07 0.879 27.27 0.837

C.2 COMPARISON WITH CONTRASTIVE LOSS

We compare a contrastive loss (Oord et al., 2018]) with SIS loss. Following Grill et al.| (2020); Wang
& Isola (2020); Wang & He|(2025), we write objective

EConlrasl = D(Z,‘, Zj)/T + IOg Z eXp(—D(Zi, Zj)/T> 5 )]
J

where (2;, z;") denotes a positive pair and (z;, 2;) denotes any pair of samples (positive pair &

all negative pairs). We use the negative cosine similarity for dissimilarity function: D(z;, z;) =
Z:Zj

R

for the same scan.

In our experiments, positive pairs are constructed by varying the latent-masking pattern

Tab. [5)and Tab. [6]show that adding a contrastive loss degrades results relative to the baseline for both
dissimilarity functions (cosine and /5). Whereas SIS loss consistently improves performance; among
dissimilarities, ¢, outperforms cosine. A contrastive loss forces the subject token from two masked
views of the same scan to be nearly identical. This suppresses view-specific signal that should
instead be captured by local tokens for accurate reconstruction. The reconstruction loss already
provides the alignment target, so extra alignment is redundant and discards useful information. SIS
keeps only a dispersion term, enlarging inter-subject distances without interference.

C.3 UNCERTAINTY MAP

Fig. [9]illustrates uncertainty estimation results. We resynthesize the target contrast multiple times
with random latent masking and aggregate the resulting differences to produce an uncertainty map.
Top-20% uncertainty masks align with top-20% GT error regions, indicating that iterative latent
masking captures intrinsic ambiguity of the synthesis task.

Number of resyntheses N and masking ratio m. Tab.[/|shows accuracy and AUROC for differ-
ent combinations of (N, m) on BraTS. With N=32 fixed and m varied, both average metrics peak
at m=0.8. With m=0.8 fixed and N varied, accuracy and AUROC improve up to N = 32, after
which they show only minimal improvement. As NN increases, computation grows accordingly, so
we set N=32 as the default.

C.4 ADDITIONAL QUALITATIVE RESULTS
Fig. [I0] presents additional qualitative results on BraTS and ADNI. Red boxes highlight represen-

tative differences around lesion boundaries, tumor area, and the interface between each tissue. Our
model achieves more accurate synthesis and better preserves anatomical details.
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GT Synth GT Error Map Uncert. Map GT Error Mask Uncert. Mask

AUROC: 0.751 Acc: 0.778

AUROC: 0.875 Acc: 0.840

AUROC: 0.674 Acc: 0.750

AUROC: 0.791 Acc: 0.799

AUROC: 0.772 Acc: 0.770

AUROC: 0.886 Acc: 0.837

AUROC: 0.786 Acc: 0.810

Figure 9: Uncertainty estimation: Ground Truth (GT), Synthesis, Error Map, Uncertainty Map, Error
Mask (top 20%), and Uncertainty Mask (top 20%). BraTS (top four rows, FLAIR/T1-w/T1Gd/T2-
w) and ADNI (bottom three rows, T1-w/T2-w/PD).

C.5 ADDITIONAL QUANTITATIVE RESULTS

Scenarios of Random Missing modality on ADNIL.  Tab. [§| shows results on ADNI and SIMAE
outperforms APT in all random missing scenarios. Performance improvement is particularly notice-
able when only PD is available.

Curriculum training results on SIMAE. Tab. [9] and Tab. [I0] show the results of pre-training
and subsequent fine-tuning. From the pre-trained model, fine-tuning with random contrast masking
improves for every contrast on BraTS and ADNI. These improvements corroborate that the fine-
tuning specializes the model for missing contrast synthesis beyond the context learned during pre-
training. Additionally, whether or not SIS loss is applied during fine-tuning, there is no significant
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Table 7: Results of uncertainty estimation for the number of resyntheses /N and masking ratio m on
BraTsS.

FLAIR T1-w T1Gd T2-w Average
N m Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC
32 0.01 0.707 0579 0.686 0.511 0.689 0.539 0.728 0.646  0.702 0.569
32 0.1 0.717 0.608 0.688 0.519 0.694 0540 0.745 0.692 0.711 0.590
32 02 0718 0611 0.691 0.530 0.696 0.541 0.749 0.697 0.713 0.595
32 03 0719 0.611 0.694 0.538 0.698 0.544 0.749 0.698 0.715 0.598
32 04 0719 0.611 0.698 0.547 0.700 0.546 0.749 0.697 0.716 0.600
32 05 0718 0.610 0.701 0.555 0.702 0548 0.749 0.697 0.717 0.603
32 06 0716 0.606 0.705 0.565 0.704 0.551 0.750 0.697 0.719 0.605
32 0.7 0.714 0600 0709 0.574 0.706 0.552 0.752 0.699  0.720 0.606
32 0.8 0.709 0.588 0.713 0.585 0.707 0.550 0.754 0.704  0.721 0.607
32 09 0703 0570 0715 0.594 0.707 0.548 0.756 0.707 0.720 0.605
32 099 0.701 0.553 0.701 0.563  0.712 0.562 0.748 0.691 0.716 0.592
1 08 0700 0.550 0.703 0.555 0.698 0.534 0.728 0.625 0.707 0.566
2 0.8 0705 0567 0.708 0576 0.699 0.536 0.738 0.657 0.712 0.584
4 08 0.707 0576 0.710 0578  0.702 0.544 0.746 0.677 0.716 0.594
8 08 0710 058 0.710 0578 0.706 0.549 0.750 0.690 0.719 0.602
16 08 0.710 0588 0.712 0582 0.706 0.551 0.753 0.698  0.720 0.605
32 08 0.710 0.588 0.713 0.585 0.708 0.551 0.755 0.704 0.722 0.607
64 08 0.710 0.591 0.713 0.585 0.708 0.551 0.755 0.706  0.722 0.608
128 0.8 0.710 0.593 0.713 0.586 0.708 0.551 0.755 0.707 0.722 0.609

Table 8: Random missing-modality results on ADNI, comparing SIMAE against a APT.

Input SiMAE (PSNR/SSIM) APT (PSNR/SSIM)
T1l-w T2-w PD T1-w T2-w PD T1-w T2-w PD
v - 26.92/0.824 26.28/0.863 - 22.56/0.802 22.43/0.799
v 25.56/0.804 - 27.87/0.890 | 20.37/0.798 - 23.98/0.851
V' 123.26/0.720 26.38/0.795 - 17.04/0.663 22.05/0.764 -

difference in performance. Since fine-tuning runs for fewer epochs than pre-training, its impact
appears negligible. In experiments on BraTS, performance is better when sis loss is not applied, so
this is set as the default.

Ablation results on masking ratios. Tab. compares the random token masking ratios on
BraTS. Performance is optimal within the 0.2-0.8 range, so this is selected as the default.

{1 vs. {5 for reconstruction. Tab. compares ¢1 and {5 for Lrecon On BraTS. ¢; yields higher
PSNR and SSIM on every contrast, so we adopt /5.

Number of subject tokens. Tab. [13| varies the number of subject tokens. We find a sweet spot
around 1-4 tokens and adding many tokens slightly degrades performance. This is probably because
a large number of tokens fail to properly reflect the subject-identity and do not provide a beneficial
effect. We set the number of subject tokens to 1 by default.

Ablation: subject token, information bottleneck, SIS loss. Tab.[I4]and Tab[I5|shows the effect
of the subject token, the information bottleneck, and SIS loss. SIMAE achieves the best results on
both datasets, which indicates that subject-aware encoding and context only decoding are effective.

One-phase vs. Two-phase training. Tab. and Tab. [I7] compare one-phase training-random
token masking (RTM), random contrast masking (RCM), and their combination—against two-stage
curriculum training (pre-training with, then fine-tuning with RCM). Curriculum training is best in
all contrasts, supporting the “general context first, contrast-aware specialization later” design.
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Table 9: Results of pre-training and fine-tuning on BraTS$.

FLAIR

T1-w

T1Gd

T2-w

Average

PSNR SSIM

PSNR SSIM

PSNR SSIM

PSNR SSIM

PSNR SSIM

Pre-training

25.71 0.906

2591 0.936

27.89 0.923

26.47 0.934

26.50 0.925

Fine-tuning w/ SIS
Fine-tuning w/o SIS

26.48 0916
26.49 00916

27.11 0.944
27.18 0.944

28.92 0.929
29.00 0.929

28.60 0.943
28.61 0.943

27.78 0.933
27.82 0.933

Table 10: Results of pre-training and fine-tuning on ADNI.

Method

T1-w

T2-w

PD

Average

PSNR SSIM

PSNR SSIM

PSNR SSIM

PSNR SSIM

Pre-training

26.67 0.814

28.85 0.855

28.74 0.892

28.09 0.854

Fine-tuning w/ SIS

26.68 0.814
26.69 0.814

28.85 0.855
28.85 0.855

29.07 0.892
29.07 0.892

28.20 0.854
28.20 0.854

Fine-tuning w/o SIS

Comparison with diffusion-based models. Tab. I8 compares the number of parameters and per-
scan inference time with APT (Shin et al.| 2025), diffusion-based model. Time is computed with a
single A100 GPU. SiMAE has a comparable number of parameters to APT, but its inference speed
is over 150 times faster.

SIS loss hyperparameters. Tab. |19 varies the SIS weight A and temperature 7. Performance on
BraTs is stable within the range, and (A, 7) = (0.5, 0.5) is slightly higher, so it is set as the default.

Failure cases. We show some failure cases in Fig. First, the synthesized image preserves
anatomy but exhibits an incorrect target-contrast appearance. Second, the uncertainty map fails to
flag errors: the synthesis is acceptable but uncertainty estimation has failed. Third, tumors are par-
tially missed and the uncertainty map also fail do not detect them, indicating that the uncertainty map
can under-report failures. These cases promote expert oversight and verification, and underscore that
uncertainty maps are supplementary indicators rather than ground truth.
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Table 11: Results of random masking ratio on BraTS.

FLAIR T1-w T1Gd T2-w Average
Mask ratio PSNR SSIM  PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0.1-0.9 25.57 0.909 26.53 0.940 29.07 0.928 28.77 0.940 27.49 0.929
0.2-0.8  26.39 0911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
0.3-0.7 25.76 0911 26.51 0940 28.86 0.927 2842 0940 27.39 0.929

Table 12: Reconstruction loss comparison (¢1 vs. ¢3) on BraTS.

FLAIR T1-w T1Gd T2-w Average
Loss PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
41 2639 0911 26.67 0940 29.04 0.928 28.43 0.940 27.63 0.930
ly  25.09 0.905 2639 0938 28.46 0925 27.88 0.935 26.96 0.925

Table 13: Results of the number of subject tokens on BraTS.

# of FLAIR T1-w T1Gd T2-w Average
subject tokens PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 2649 0916 27.18 0944 29.00 0.929 28.61 0.943 27.82 0.933
4 26.63 0916 27.01 0943 28.87 0.929 28.77 0.943 27.82 0.933
8 2625 0912 2693 0941 2897 0.928 28.79 0942 27.74 0.931
16 26.26 0911 27.02 0942 29.00 0929 28.60 0.942 27.72 0.931
32 2640 0915 26.73 0941 28.88 0928 28.78 0.943 27.70 0.932
64 26.55 0916 26.58 0941 28.86 0.928 28.51 0.942 27.63 0.932
128 26.20 0913 2693 0941 28.80 0927 28.72 0941 27.66 0.931

Table 14: Ablation on subject token (S.T.), information bottleneck (I.B.), and SIS loss on BraTS.

FLAIR T1-w T1Gd T2-w Average
S.T. I.B. SIS PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 26.39 0911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
24.60 0905 26.58 0.939 28.89 0.927 2841 0939 27.12 0.928
v 25.99 0913 27.01 0943 2897 0929 2884 0.943 27.70 0.932
26.16 0.909 26.96 0.942 28.60 0.928 28.63 0.942 27.59 0.930
vV v 2649 0916 27.18 0944 29.00 0.929 28.61 0.943 27.82 0.933

ASNRNENEN
\

SiMAE

Table 15: Ablation on subject token (S.T.), information bottleneck (I.B.), and SIS loss on ADNI.

T1-w T2-w PD Average
S.T. I.B. SIS PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 25.87 0.796 28.03 0.840 28.21 0.881 27.37 0.839

25776 0.791 28.02 0.840 27.99 0.880 27.26 0.837

v 26.22 0.805 2832 0.849 28.47 0.885 27.67 0.846
v’ 2632 0805 2875 0.853 29.09 0.890 28.05 0.849

v v 2669 0.814 28.85 0.855 29.07 0.892 28.20 0.854

Table 16: One-stage vs. two-stage training on BraTS. (RTM: Random Token Masking, RCM: Ran-
dom Contrast Masking)

FLAIR T1-w T1Gd T2-w Average
Strategy PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
RTM 2459 0.905 26.09 0.938 28.94 0.927 28.00 0.938 2691 0.927
RCM 25.03 0.894 25.13 0930 27.69 0921 27.49 0.932 26.34 0919

RTM+RCM 2444 0.890 24.88 0928 27.18 0916 2697 0.927 25.87 00915
RTM—RCM  26.39 0911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
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GT MM-GAN HiNet ResViT ADM SynDiff M2DN APT SiMAE

Figure 10: Additional qualitative results on BraTS (top) and ADNI (bottom). Red boxes highlight
the main differences with zoomed images.
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Table 17: One-stage vs. two-stage training on ADNI. (RTM: Random Token Masking, RCM: Ran-
dom Contrast Masking)

Tl-w T2-w PD Average
Strategy PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
RTM 25.79 0.796 27.88 0.838 27.67 0.879 27.11 0.838
RCM 2577 0.803 27.65 0.834 27.86 0.875 27.09 0.837

RTM+RCM 2472 0.770 2699 0.816 27.24 0.871 26.32 0.819
RTM—RCM 25.87 0.796 28.03 0.840 28.21 0.881 27.37 0.839

Table 18: Parameters and inference time vs. diffusion-based baseline.

APT (Shin et al.; [2025)  SiMAE (Ours)
Total parameters 200.3M 213.8M
Inference time 9.06s 0.06s

Table 19: Average PSNR and SSIM under different SIS weight A and temperature 7 on BraTS.

A=025 AX=05 A=05 AX=05 AX=1.0

7T=05 7=025 7=05 7=10 7=1.0
PSNR 27.64 27.74 27.82 27.79 27.78
SSIM 0.932 0.932 0.933 0.932 0.932

GT Synth GT Error Map Uncert. Map

Figure 11: Failure cases. Top: Incorrect target-contrast appearance despite plausible anatomy. Mid-
dle: Local synthesis error not captured by the uncertainty map. Bottom: Missed tumor and poor
uncertainty estimation.
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