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ABSTRACT

Multi-contrast magnetic resonance imaging (MRI) provides complementary
anatomical and pathological information, yet certain contrasts are often missing
due to scan time, motion artifacts, or protocol variability. We present SiMAE, a
masked autoencoder (MAE) operating in latent space that synthesizes arbitrary
missing contrasts. MAE naturally fits conditional synthesis by reconstructing
masked content from visible context in a single-pass, while latent space training
enables semantic reconstruction, suppresses pixel space grid artifacts, and is com-
putationally efficient. SiMAE employs a multi-contrast tokenizer with a shared
encoder that maps each contrast into a common latent space and a joint decoder
that outputs all contrasts simultaneously by aggregating cross-contrast cues. We
train latent MAE with a two-phase curriculum: (i) pre-training with random token
masking to learn general anatomical context, and (ii) fine-tuning with random con-
trast masking to specialize the model for missing-contrast synthesis. We introduce
a subject token, regularized by a subject-identity separation (SIS) loss, that serves
as a compact representation capturing anatomical identity and subject-specific fea-
tures. The subject token is withheld from the decoder to impose an information
bottleneck that encourages context-driven, token-level reconstruction. We further
estimate uncertainty by repeatedly masking tokens and resynthesizing to gener-
ate uncertainty maps that highlight low-confidence regions. On BraTS 2021 and
ADNI datasets, SiMAE achieves state-of-the-art synthesis quality and preserves
fine anatomy and pathology.

1 INTRODUCTION

Multi-contrast magnetic resonance imaging (MRI) is widely used in both clinical practice and re-
search as different imaging contrasts (e.g., T1-w, T2-w, FLAIR) accentuate distinct tissue properties
and pathologies, providing complementary views of the same anatomy (Wu et al., 2010; Dickinson
et al., 2013). Integrating these perspectives enables a more comprehensive understanding of a pa-
tient’s condition (Zhang et al., 2021; Rao et al., 2022; Byeon et al., 2025). However, in real-world
practice, not all MR sequences are acquired for every patient (Kronberg et al., 2022). Some contrasts
may be missing due to long scan times, patient motion or discomfort, or variations in imaging proto-
cols across institutions (Hollingsworth, 2015; Zaitsev et al., 2015; Lustig et al., 2007). Such missing
modalities complicate radiological assessment and can degrade the performance of algorithms that
expect complete inputs (Chan et al., 2020).

A practical remedy is missing-modality imputation, i.e., synthesizing absent contrasts from available
ones. Early work explored one-to-one translation (Dar et al., 2019; Yu et al., 2019), then many-to-
one fusion for a designated target (Yurt et al., 2021; Jiang et al., 2023), and more recently many-
to-many synthesis that reconstructs multiple contrasts from arbitrary inputs (Chartsias et al., 2017;
Sharma & Hamarneh, 2019; Meng et al., 2024). Generative adversarial networks (GANs) (Good-
fellow et al., 2014) and diffusion models (Song et al., 2020; Ho et al., 2020) have been widely
adopted, yet each method presents some limitations. GAN-based methods often train unstably and
can exhibit mode collapse, which degrades anatomical fidelity (Bau et al., 2019; Dhariwal & Nichol,
2021). Diffusion-based methods deliver high fidelity but require many denoising iterations per im-
age, resulting in slow inference. Moreover, maintaining strict anatomical consistency across modal-
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Figure 1: Multi-contrast MRI synthesis with missing contrasts. We compare Ground Truth (GT)
and outputs from MM-GAN (Sharma & Hamarneh, 2019) (GAN), APT (Shin et al., 2025) (Diffu-
sion), and our SiMAE. Arrows indicate regions with differences. Per-scan inference time is mea-
sured on an A100 GPU.

ities while integrating their diverse characteristics remains challenging for generative models (Jiang
et al., 2023).

In this study, we introduce SiMAE, a masked autoencoder (He et al., 2022) (MAE) that operates in
latent space for multi-contrast MRI synthesis. MAE predicts masked content from visible context,
which aligns with our goal of synthesizing a missing MRI contrast from the available contrasts. By
moving reconstruction to latent space, the task shifts from pixel inpainting to semantic completion
of latent tokens, improving efficiency and suppressing the grid artifacts seen with pixel-based MAE
(Appx. 8). Compared to diffusion-based models, which require many iterative steps, SiMAE pro-
duces a result in a single-pass, making it much faster for inference while maintaining stable training.
As shown in Fig. 1, SiMAE is 150× faster than APT, which is a diffusion-based model.

The multi-contrast tokenizer maps each input contrast into a shared latent space, and the model
aggregates cross-contrast cues to simultaneously generate all contrasts. We train the latent MAE
in two-phase curriculum. Curriculum training first learns general anatomy and then specializes to
missing-contrast synthesis. In phase 1, we use random token masking to build contextual under-
standing, and in phase 2, we use random contrast masking so the model learns to recover absent
contrasts from the available ones. We further introduce a subject token and regularize it with a
subject-identity separation (SIS) loss so that subject tokens from different subjects are well separated
in the embedding space, yielding a subject representation and improving the encoder’s representa-
tional quality. We prepend a subject token for identity modeling and deliberately withhold it from the
latent decoder. This imposes an information bottleneck that separates identity summarization from
reconstruction, guiding the decoder to rely on visible token context for detail recovery. Finally, we
estimate uncertainty by measuring how much the outputs change when latent tokens are repeatedly
masked and resynthesized, producing maps that highlight low-confidence regions without auxiliary
networks or ensembles. On BraTS 2021 and ADNI datasets, the proposed method achieves state-of-
the-art PSNR and SSIM, preserves fine anatomy and pathology, and provides uncertainty maps that
support clinical interpretability. Overall, our contributions are as follows:

• We propose SiMAE, a latent masked autoencoder equipped with a multi-contrast tokenizer,
enabling high-quality semantic reconstruction, effective artifact suppression, and improved
computational efficiency.

• We introduce a subject token, regularized by subject-identity separation (SIS) loss, to form
a compact subject representation. The token is withheld from the decoder, enforcing an
information bottleneck that promotes context-driven, token-level reconstruction.

• We produce uncertainty maps of synthesized output via iterative latent masking and resyn-
thesis, highlighting low-confidence regions without extra networks or ensembles.

• We demonstrate state-of-the-art performance of SiMAE on multi-contrast MRI datasets
(BraTS and ADNI), with both quantitative gains and qualitative fidelity, supported by un-
certainty estimation results and comprehensive ablation studies.

2 RELATED WORKS

Multi-Contrast MRI Synthesis Missing-modality synthesis has evolved from one-to-one transla-
tion (Dar et al., 2019; Yu et al., 2019) to many-to-one translation (Yurt et al., 2021; Jiang et al., 2023)
and, more recently, many-to-many models that handle arbitrary input–output sets (Chartsias et al.,
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Figure 2: Overview of SiMAE framework. SiMAE consists of a shared pixel encoder that tok-
enizes all contrast images in latent space, latent encoder and decoder for reconstruct tokens in latent
space, and a multi-contrast pixel decoder that transforms tokens to all contrasts simultaneously.
Training follows a two-phase curriculum with random token masking and random contrast masking.
At inference, when one or more contrasts are missing, SiMAE directly synthesizes the complete set
of contrasts in a single-pass.

2017; Sharma & Hamarneh, 2019; Meng et al., 2024). GANs have been widely used across these set-
tings (Goodfellow et al., 2014), including MM-GAN (Sharma & Hamarneh, 2019), ResViT (Dalmaz
et al., 2022), MMT (Liu et al., 2023), and HF-GAN (Cho et al., 2024), but adversarial training can
be unstable and prone to mode collapse, harming anatomical fidelity (Bau et al., 2019; Dhariwal &
Nichol, 2021). Diffusion models mitigate instability and deliver strong fidelity (Song et al., 2020; Ho
et al., 2020; Kazerouni et al., 2022); recent variants add joint synthesis with modality masks (Meng
et al., 2024), mutual learning (Dayarathna et al., 2025), frequency-guided schedules (Xiao et al.,
2024), or anatomy-aware priors (Shin et al., 2025). Nevertheless, diffusion requires many denoising
steps per image, slowing inference. Our approach instead performs single-pass inference in a latent
space while aggregating cross-contrast cues within one model.

Self-supervised Learning Self-supervised Learning (SSL) is a dominant paradigm for learning
feature representations from large-scale unlabeled data (Gui et al., 2024). Masked image modeling
(MIM) learns by predicting masked content from visible context (Bao et al., 2021; Xie et al., 2022);
MAE (He et al., 2022) with a ViT backbone (Dosovitskiy et al., 2020) is a strong instance typically
used for pre-training encoders. We repurpose masked modeling for generation by doing masking
and recovery in a contrast-integrated latent space, reframing pixel-patch inpainting as semantic com-
pletion of latent tokens. Contrastive learning is another major SSL method (Chopra et al., 2005; He
et al., 2020; Chen et al., 2020; Oord et al., 2018), including negative-free variants (Chen & He, 2021;
Grill et al., 2020). A positive-free regularizer, dispersive loss (Wang & He, 2025), keeps only the
repulsion term and has improved generative models such as DiT and SiT (Peebles & Xie, 2023; Ma
et al., 2024). SIS follows the same dispersion-only principle but targets only the subject token to
enforce subject-wise separation, rather than promoting generic feature diversification.

Uncertainty Estimation in Medical Image Synthesis For medical image synthesis to be clini-
cally trustworthy, it should not only generate realistic images but also provide a reliable estimate of
its own confidence, as deep networks can hallucinate or remove pathology (Xie et al., 2012; Ben Yed-
der et al., 2021). In MRI reconstruction, Bayesian inference (Narnhofer et al., 2021), Monte Carlo
sampling (Edupuganti et al., 2020), and model ensembles (Zhou, 2025) are common approaches.
For multi-contrast synthesis, uncertainty estimation remains underexplored: MU-Diff (Dayarathna
et al., 2025) uses attention masks to indicate confidence, but there is no analysis. Inspired by MAE-
DAY (Schwartz et al., 2024), we quantify output variability by repeatedly masking latent tokens of
the target contrast, resynthesizing, and aggregating the differences into uncertainty maps, requiring
no auxiliary networks or ensembles.
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3 MULTI-CONTRAST MRI SYNTHESIS

Our framework, SiMAE, operates in a latent space with continuous-valued tokens, similarly to
MAR (Li et al., 2024). A multi-contrast tokenizer uses a shared encoder to map each contrast to
per-contrast latent tokens in a common latent space. A joint decoder attends over the concatenated
latent tokens to synthesize all contrasts simultaneously. On these tokens, SiMAE learns to complete
missing content from visible context. In addition, we introduce a subject token, withhold it from
the decoder, and regularize this token with a SIS loss. This design enables direct many-to-many
synthesis and supports uncertainty estimation by repeatedly masking latent tokens and quantifying
variability across resynthesized outputs. An overview of the training framework is shown in Fig. 2.

3.1 TOKENIZER

We train a multi-contrast tokenizer as a KL-regularized autoencoder following LDM (Rombach
et al., 2022). Training minimizes the reconstruction loss with a KL penalty on the approximate pos-
terior and a GAN loss (Goodfellow et al., 2014). We adopt continuous latents to avoid the quantiza-
tion errors that degrade reconstruction quality (Fan et al., 2024). The only difference from a standard
KL-regularized autoencoder is that the multi-contrast decoder takes the concatenated tokens as input
and outputs all contrasts simultaneously. After convergence, the multi-contrast tokenizer is frozen.

3.2 MASKED AUTOENCODER IN LATENT SPACE

Given latent tokens Z from the tokenizer, we add positional embeddings (Vaswani et al., 2017) and
process the sequence with a ViT-style Transformer (Dosovitskiy et al., 2020). Let M be a binary
mask over the token grid and M̄ = 1−M . The latent encoder consumes only the visible tokens (i.e.,
M ⊙ Z). Then, we concatenate the encoded visible tokens with the learnable mask tokens at the
masked positions for the decoder input. Our latent decoder with the same architecture as the encoder
predicts the full set of tokens Ẑ. The reconstruction loss is computed only on masked positions:

LRecon =
∥∥ M̄ ⊙ (Z − Ẑ)

∥∥
1
. (1)

During training, we vary the masking pattern and ratio, enabling the model to recover both local
details and larger missing regions.

3.3 SUBJECT TOKEN

Subject token for identification. We prepend a learnable subject token to the encoder input to
serve as a compact embedding of the subject’s identity and anatomy-specific features, as in Fig. 2.
The subject token participates in self-attention as latent tokens, thereby aggregating global informa-
tion while broadcasting identity-related signals back to local tokens through attention. We experi-
mented with using multiple subject tokens (e.g., 1, 4, 8, . . . ) and found a sweet spot at 1-4 tokens;
adding many tokens tends to slightly degrade the identity representation and reconstruction quality
(Appx. 13). Thus, we use a single subject token by default for simplicity and efficiency.

Information bottleneck. Crucially, the subject token is withheld from the decoder. This creates
an information bottleneck that prevents shortcutting via a subject-identity summary and compels
the model to rely only on visible token context for reconstruction. This asymmetric design places
identity modeling on the encoder side while keeping the decoder context-driven. Ablations show
that passing the subject token to the decoder weakens detail recovery (Sec. 5.2).

3.4 OBJECTIVES

Subject-identity separation. To encourage the model to distinguish between different subjects, we
introduce a subject-identity separation (SIS) loss on the subject token. SIS encourages tokens from
different subjects to occupy well-separated regions of the embedding space, thereby strengthening
subject recognition and improving the encoder’s representational quality. Let si denote the encoded
subject token for the i-th scan in a batch. We adopt a dispersion-only objective that pushes subject
tokens apart:

LSIS = logEi,j [exp (−D (si, sj) /τ)] , (2)
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Figure 3: Uncertainty map estimation. After synthesizing the missing contrast, we repeatedly
mask its latent tokens and resynthesize the image N times. The pixel-wise variations across these
resyntheses are aggregated to produce the uncertainty map.

where D is a dissimilarity function and τ is a temperature hyperparameter. In our experiments we
use squared ℓ2 distance, D (si, sj) = ∥si − sj∥22. This loss is computed once per batch, applied
directly to the subject tokens, and introduces no extra parameters. The SIS loss ensures that subject
tokens become distinct for each individual, capturing unique anatomical identities. In Sec. 5.2, we
verify that subject tokens form subject-wise clusters, indicating subject-identity.

Total loss. Given a subject with C contrasts, denote Xi = {x(1)
i , . . . , x

(C)
i }. The shared encoder

maps each x
(c)
i to latent tokens z(c)i in a common latent space. For a batch, we write Z = {Zi}ni=1

with Zi = [ si ; z
(1)
i , . . . , z

(C)
i ], where si is the prepended subject token. The total training

objective is
L(Z) = EZi∈Z [LRecon (Zi)] + λLSIS(Z), (3)

where λ is a weighting hyperparameter. Since the reconstruction loss provides alignment targets for
training, the SIS term focuses on repelling subject tokens from each other.

Curriculum training. We adopt a two-phase training curriculum that differs only in the masking
pattern while keeping the architecture fixed. In phase 1, pre-training for anatomical context uses
random token masking across the latent tokens regardless of contrast. We mask a random subset of
tokens and train the model to reconstruct only the masked tokens from the visible ones. This en-
courages the model to leverage surrounding tokens and cross-contrast cues, learning overall context
such as global layout, relative structure, intra-/inter-contrast relationships.

Then, in phase 2, fine-tuning for contrast synthesis applies random contrast masking, which masks
all latent tokens corresponding to one or more contrasts. During fine-tuning, we turn off the SIS
loss (λ = 0). This matches the test-time scenario and strengthens the model’s ability to synthesize
arbitrary missing contrast from the available inputs. Despite its simplicity, the two-phase curriculum
training effectively improves performance. Notably, training with both masking strategies mixed in
one-phase performed worse than two-phase, highlighting the benefit of first learning general context
then specializing (Sec. 5.2).

4 UNCERTAINTY ESTIMATION

We estimate uncertainty by perturbing the latent tokens of the target synthesized contrast and mea-
suring output variability across resyntheses. See Fig. 3 for framework of uncertainty map. First,
we synthesize an initial synthesis of the missing contrast, denoted as S0, using the trained SiMAE.
We then reencode S0 together with the available inputs through the shared encoder to obtain latent
tokens. Next, we apply N random masks to the tokens corresponding to S0 with masking ratio m
and run the synthesis pipeline to obtain a set of resynthesized images, {S1, . . . , SN}. Finally, the
uncertainty map U is computed by taking pixel-wise absolute differences between S0 and each Si,
filtering each difference map with a Gaussian kernel g (kernel size 7, σ = 1.4), and averaging:

U =
1

N

N∑
i=1

(|S0 − Si| ∗ g) . (4)

The uncertainty maps highlight regions where predictions are unstable. Masking in latent space
creates perturbations of the model’s internal process for the target contrast. Regions that are well-
constrained remain stable across resyntheses, whereas ambiguous structures (e.g., lesion rims and
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Table 1: Quantitative results of the comparison study on BraTS and ADNI.

BraTS ADNI
FLAIR T1-w T1Gd T2-w Average T1-w T2-w PD Average

Method
PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

MM-GAN
23.35
0.882

25.13
0.925

20.40
0.869

24.93
0.920

23.45
0.899

20.40
0.784

23.61
0.820

24.50
0.826

22.84
0.810

HiNet
24.36
0.898

23.50
0.923

23.64
0.886

26.10
0.930

24.40
0.909

20.14
0.793

23.97
0.838

24.44
0.833

22.85
0.821

ResViT
23.72
0.871

24.13
0.914

23.71
0.877

26.30
0.928

24.47
0.898

19.62
0.768

23.95
0.833

24.65
0.827

22.74
0.809

ADM
21.58
0.833

22.79
0.887

23.03
0.868

22.84
0.855

22.56
0.861

16.53
0.659

21.37
0.767

22.31
0.795

20.07
0.740

SynDiff
21.98
0.846

23.74
0.924

24.49
0.856

25.17
0.916

23.85
0.886

20.40
0.794

22.83
0.813

24.75
0.821

22.66
0.809

M2DN
23.83
0.870

24.00
0.923

22.65
0.899

24.66
0.901

23.79
0.898

19.59
0.773

22.99
0.777

23.99
0.801

22.19
0.784

APT
25.52
0.920

25.88
0.942

24.54
0.903

27.44
0.951

25.85
0.929

20.82
0.804

24.56
0.854

24.48
0.849

23.29
0.836

SiMAE
26.49
0.916

27.18
0.944

29.00
0.929

28.61
0.943

27.82
0.933

26.69
0.814

28.85
0.855

29.07
0.892

28.20
0.854

GT MM-GAN HiNet ResViT ADM SynDiff M2DN APT SiMAE

FLAIR

T1-w

T1Gd

T2-w

T1-w

T2-w

PD

Figure 4: Qualitative results of comparison study on BraTS and ADNI. The top four rows are from
BraTS, while the bottom three rows from ADNI. Major differences are highlighted by red boxes.

tissue interfaces) produce larger variability. Our approach requires no additional parameters, auxil-
iary networks or retraining. It can also be extended straightforwardly to scenarios with two or more
missing contrasts.
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AUROC: 0.845 Acc: 0.833

AUROC: 0.925 Acc: 0.871

GT Synth GT Error Map Uncert. Map GT Error Mask Uncert. Mask

Figure 5: Uncertainty estimation: Ground Truth (GT), Synthesis, GT Error Map, Uncertainty Map,
GT Error Mask (top 20%), Uncertainty Mask (top 20%).

5 EXPERIMENTS

Datasets. We evaluate on BraTS 2021 (Baid et al., 2021) and Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) datasets. BraTS comprises 2,040 multi-parametric brain tumor MRI cases
with T1-weighted (T1-w), post-contrast T1-weighted (T1Gd), T2-weighted (T2-w), and T2 Fluid-
Attenuated Inversion Recovery (FLAIR) volumes collected across multiple institutions, reflecting
variation in imaging protocols and equipment. All images are resized to 256 × 256 and processed
as 2D slices. We allocate 80% of the subjects for training; the test set contains 200 slices from 50
randomly selected subjects. ADNI includes 837 MRI scans from both cognitively unimpaired and
Alzheimer’s Disease (AD) patients. The dataset includes T1-w, T2-w, and Proton Density (PD) se-
quences, resized to 256 × 256. We use 80% of the data for training; the test set contains 150 slices
from 30 randomly selected subjects.

Evaluations. We compared our method with seven recent methods for multi-contrast MR image
synthesis: three GAN-based approaches (MM-GAN (Sharma & Hamarneh, 2019), HiNet (Zhou
et al., 2020), and ResViT (Dalmaz et al., 2022)) and four diffusion-based approaches (ADM (Dhari-
wal & Nichol, 2021), SynDiff (Özbey et al., 2023), M2DN (Meng et al., 2024), and APT (Shin et al.,
2025)). We report Peak Signal-to-Noise Ratio (PSNR) (Wang et al., 2004) and Structural Similarity
(SSIM). Unless otherwise noted, all experiments compare the single-contrast missing scenarios, in
which the model synthesizes one missing modality based on the available others, and report averaged
results.

Implementation details. We use the standard ViT (Dosovitskiy et al., 2020) as our backbone. We
perform pre-training for 1,000 epochs and fine-tune for 50 epochs without SIS loss. By default, the
SIS loss weight λ is 0.5, and the temperature τ is 0.5. More details can be found in Appx. B.

5.1 MAIN RESULTS

Quantitative Results. In Tab. 1, SiMAE achieves the best average performance on both datasets.
On BraTS, SiMAE attains the highest PSNR for all four targets. For SSIM, it ranks first or second
across all targets, with particularly strong gains on T1Gd, where both PSNR and SSIM improve
by a large margin. On ADNI, SiMAE achieves the best results for every target on both metrics;
PSNR gains are substantial, and SSIM improves notably on PD. Overall, SiMAE offers consistent
improvements in both PSNR and SSIM across all contrasts, without modality-specific trade-offs.

Qualitative Results. Fig. 4 shows qualitative comparisons with other methods. In BraTS, our
synthesis results better preserve fine anatomy and tumor morphology, with fewer artifacts relative to
competing models. In ADNI, SiMAE recovers subtler anatomical cues, including the cortical distor-
tions characteristic of AD. Across datasets, our method exhibits visually consistent and anatomically
plausible syntheses. More results are in Appx. 10.

Uncertainty Map. We evaluate the reliability of the uncertainty maps by comparing them to the
ground truth (GT) error. The GT error map is the absolute difference between the synthesis and the

7
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Table 2: Random missing-modality results on BraTS, comparing SiMAE against APT.
Input SiMAE (PSNR/SSIM) APT (PSNR/SSIM)

FLAIR T1-w T1Gd T2-w FLAIR T1-w T1Gd T2-w FLAIR T1-w T1Gd T2-w
✓ - 26.16/0.918 27.96/0.913 26.86/0.912 - 23.54/0.914 21.20/0.869 21.67/0.904

✓ 25.31/0.899 - 28.54/0.923 27.36/0.930 23.54/0.893 - 22.22/0.883 25.62/0.931
✓ 24.90/0.887 25.67/0.921 - 26.81/0.913 22.25/0.869 24.27/0.912 - 23.24/0.898

✓ 24.91/0.887 25.83/0.929 28.38/0.918 - 23.40/0.893 23.93/0.925 23.17/0.889 -
✓ ✓ - - 28.83/0.926 28.38/0.940 - - 24.26/0.899 27.06/0.948
✓ ✓ - 26.67/0.934 - 28.10/0.931 - 24.74/0.930 - 23.03/0.924
✓ ✓ - 26.97/0.939 28.47/0.924 - - 24.50/0.938 21.14/0.886 -

✓ ✓ 25.85/0.904 - - 27.80/0.935 24.08/0.898 - - 26.52/0.939
✓ ✓ 26.15/0.912 - 28.99/0.928 - 26.40/0.923 - 23.30/0.896 -

✓ ✓ 26.17/0.909 26.65/0.940 - - 25.26/0.914 25.11/0.935 - -

GT image. Both the GT error map and the predicted uncertainty map are thresholded at their top
20% values to form binary masks. We then compute pixel-wise accuracy between these two masks.
Treating the GT error mask as the reference label, we also compute the Area Under the Receiver
Operating Characteristic Curve (AUROC) using uncertainty map. All metrics are computed within
the brain region only.
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Figure 6: Accuracy and AUROC for the uncer-
tainty map are plotted against masking ratio and
the number of resyntheses.

Fig. 6 shows accuracy and AUROC versus mask-
ing ratio and number of resyntheses. First, fixing
the number of resyntheses to N = 32, we vary the
masking ratio m applied to the latent tokens of
the initially synthesized target S0. Performance
peaks at m = 0.8, yielding the highest mask ac-
curacy and AUROC. Second, fixing m = 0.8, we
vary N . AUROC increases gradually with N , but
gains taper while computation grows linearly, so
we set N = 32 for all experiments. Detailed val-
ues are in Appx. 7.

Fig. 5 visualizes our uncertainty estimation re-
sults on BraTS. High uncertainty regions are lo-
cated particularly along lesion and tissue bound-
aries with large synthesis errors. This indicates
that the uncertainty map highlights structures
with low confidence that are indeed difficult to
reconstruct. More results are in Appx. 9.

5.2 ABLATION STUDIES

Scenarios of Random Missing Modalities. We further evaluate robustness when two or more
contrasts are missing. In Tab. 2, SiMAE outperforms APT in most random-missing scenarios, par-
ticularly in terms of PSNR. As the number of available inputs decreases, the performance of both
methods drops, but the gap in favor of SiMAE widens, indicating more effective use of cross-contrast
context. These results indicate that SiMAE scales reliably from the single-missing setting to more
challenging multi-missing scenarios with consistent improvements over a diffusion-based model.
Results on ADNI are in Appx. 8.

Subject Token Design and SIS Loss. Tab. 3 shows the effect of the subject token, the information
bottleneck, and SIS loss. Adding the subject token alone underperforms the baseline, indicating
that when the token is available to the decoder it acts as a shortcut and weakens context model-
ing. Withholding the token from the decoder improves performance by creating an information
bottleneck, which supports our claim that forcing the decoder to rely on visible, token-level evi-
dence rather than summarized subject-identity is more effective. Applying SIS loss to the subject
token yields enhanced results by making embeddings more distinct and thus strengthening the en-
coder’s representation. The full design achieves the best results on both datasets, which indicates
that subject-aware encoding and context-only decoding are effective.
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Table 3: Ablation study on subject token (S.T.), infor-
mation bottleneck (I.B.), and SIS loss.

BraTS ADNI
S.T. I.B. SIS PSNR SSIM PSNR SSIM

Baseline 27.63 0.930 27.37 0.839
✓ 27.12 0.928 27.26 0.837
✓ ✓ 27.70 0.932 27.67 0.846
✓ ✓ 27.59 0.930 28.05 0.849

SiMAE ✓ ✓ ✓ 27.82 0.933 28.20 0.854

Table 4: Training strategy with the base-
line model. (RTM: Random Token Mask-
ing, RCM: Random Contrast Masking)

BraTS ADNI
Strategy PSNR SSIM PSNR SSIM
RTM 26.91 0.927 27.11 0.838
RCM 26.34 0.919 27.09 0.837
RTM+RCM 25.87 0.915 26.32 0.819
RTM→RCM 27.63 0.930 27.37 0.839

w/o SIS loss

w/ SIS loss

Figure 7: t-SNE visualization of subject
tokens, colored by subject. Cases that
fail clustering are with dashed lines.

Fig. 7 visualizes the subject tokens with t-SNE (Maaten &
Hinton, 2008). For each subject, we plot four slices. With
SIS loss, all cases form compact, well-separated clus-
ters, indicating stronger subject-wise separability. With-
out SIS loss, some cases exhibit partial intermingling,
which indicates weaker separation. This supports that
SIS loss tightens within-subject cohesion while increas-
ing between-subject separation.

One-phase vs. Two-phase Training. In Tab. 4, we
use the baseline model without a subject token to com-
pare training strategy. “Random token masking” applies
random token-level masks throughout training. “Random
contrast masking” excludes all tokens of one or more con-
trasts to mirror the contrast missing setting. “Random to-
ken + contrast masking” randomly selects one of the two
masking for each iteration. For a fair comparison the to-
tal training epoch is kept constant across one-phase and
two-phase setups. The two-phase training curriculum,
which involves pre-training with random token mask-
ing followed by fine-tuning with random contrast mask-
ing, achieves the best performance. Using both masking
schemes within one phase results in performance poorer
than using one scheme. Moreover, random token mask-
ing outperforms random contrast masking even though
the latter matches the inference configuration, suggesting
that learning broad contextual relationships among tokens
provides a stronger foundation for contrast-specific syn-
thesis.

6 CONCLUSION

We present SiMAE, a framework for multi-contrast MRI synthesis that combines a multi-contrast
tokenizer with a latent masked autoencoder. The subject token, regularized by SIS and withheld from
the decoder to impose an information bottleneck, improves encoder representations and promotes
detail-faithful reconstruction. SiMAE also produces uncertainty maps via iterative latent masking
that align with ground truth error and highlight low-confidence regions. Ablations show that a two-
phase curriculum, consisting of random token masking for context followed by random contrast
masking for specialization, outperforms one-stage training. SiMAE achieves state-of-the-art results
on BraTS and ADNI. Future directions include using the uncertainty map to refine uncertain regions
through resynthesis or loss reweighting. We also plan to extend the approach to full 3D and other
imaging modalities, as well as mixed-modality settings.
Limitations. SiMAE is an assistive tool and synthesized contrasts should be interpreted with qual-
ified expert oversight. As shown in Appx. 11, failure cases include boundary smoothing, contrast-
appearance shifts, and small-lesion hallucinations. Uncertainty maps may also be incorrect, so they
should be regarded as supplementary indicators rather than ground truth and used with caution.
Ethics Statement. This work uses publicly available, de-identified MRI datasets (BraTS 2021,
ADNI) collected under institutional review and participant consent by the dataset curators.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this work, the authors used OpenAI’s GPT-5 in order to improve language
and readability. After using this tool/service, the authors reviewed and edited the content as needed,
taking full responsibility for the content of the publication.

B IMPLEMENTATION DETAILS.

All experiments were conducted on NVIDIA A100 GPUs. We follow LDM (Rombach et al., 2022)
to train multi-contrast tokenizer to encode each MR image into 16 × 16 continuous tokens, and
the multi-contrast decoder takes the concatenated latent tokens. SiMAE uses 10 transformer blocks
with width 768 in both latent encoder and latent decoder. We train with the AdamW (Loshchilov
& Hutter, 2017) (learning rate 5e-4, weight decay 0.02, β1 = 0.9, β2 = 0.95), batch size 128,
and maintain an exponential moving average of parameters with momentum 0.9999. During pre-
training, we train for 1,000 epochs and apply a 100-epoch linear lr warmup (Goyal et al., 2017),
followed by a constant (Peebles & Xie, 2023) lr schedule, and we sample a masking ratio in [0.2,
0.8] for random token masking. Fine-tuning runs for 50 epochs without SIS loss. The SIS loss
weight λ = 0.5 and the temperature τ = 0.5 are selected via the ablation in Appx. 19.

C SUPPLEMENTARY EXPERIMENTAL RESULTS

Unless noted, we use the same model capacity, training budget, and data preprocessing for in all
experiments.

C.1 LATENT-BASED MAE VS. PIXEL-BASED MAE

Figure 8: Qualitative comparison of MAE in latent space (SiMAE) vs. pixel space. Pixel-based
MAE shows grid-like artifacts.

Fig. 8 compares qualitative results from a latent space MAE (SiMAE) and a pixel space MAE.
To equalize computational cost, the pixel-based MAE patchifies each 256×256 image into 16×16
patches, and SiMAE uses a tokenizer stride that produces the same 16×16 latent tokens. We keep
encoder/decoder depth and width, masking ratio, epochs, and training curriculum identical. Pixel
space training consistently exhibits grid-like artifacts and boundary softening, whereas latent space
training suppresses checkerboard patterns and preserves tissue interfaces.

This result is expected: pixel-based MAE is originally proposed for self-supervised representation
learning rather than high-fidelity image synthesis, so patch-wise reconstruction can imprint the sam-
pling grid. In contrast, SiMAE predicts latent tokens, and the multi-contrast decoder acts as a learned
image prior that maps these tokens back to image space with spatially coherent structure. As a re-
sult, small token-level errors are smoothed in decoding, reducing artifacts. While this may not be
an exact comparison, moving the reconstruction to latent space reduces grid artifacts and preserves
fine anatomy more effectively.
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Table 5: SIS vs. contrastive with different dissimilarity functions on BraTS.

FLAIR T1-w T1Gd T2-w Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 26.39 0.911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
SIS (ℓ2) 26.49 0.916 27.18 0.943 29.00 0.929 28.61 0.943 27.82 0.933
Contrastive (ℓ2) 26.18 0.910 26.60 0.938 28.86 0.927 28.22 0.937 27.47 0.928
SIS (cosine) 26.06 0.914 27.02 0.942 28.88 0.929 28.86 0.943 27.70 0.932
Contrastive (cosine) 25.44 0.907 26.64 0.939 28.85 0.927 28.18 0.937 27.28 0.928

Table 6: SIS vs. contrastive with different dissimilarity functions on ADNI.

T1-w T2-w PD Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 25.87 0.796 28.03 0.840 28.21 0.881 27.37 0.839
SIS (ℓ2) 26.69 0.814 28.85 0.855 29.07 0.892 28.20 0.854
Contrastive (ℓ2) 25.45 0.786 27.75 0.835 28.05 0.879 27.09 0.833
SIS (cosine) 26.43 0.810 28.89 0.855 28.99 0.890 28.10 0.852
Contrastive (cosine) 25.82 0.794 27.92 0.838 28.07 0.879 27.27 0.837

C.2 COMPARISON WITH CONTRASTIVE LOSS

We compare a contrastive loss (Oord et al., 2018) with SIS loss. Following Grill et al. (2020); Wang
& Isola (2020); Wang & He (2025), we write objective

LContrast = D(zi, z
+
i )/τ + log

∑
j

exp(−D(zi, zj)/τ) , (5)

where (zi, z
+
i ) denotes a positive pair and (zi, zj) denotes any pair of samples (positive pair &

all negative pairs). We use the negative cosine similarity for dissimilarity function: D(zi, zj) =

− z⊤
i zj

∥zi∥∥zj∥ . In our experiments, positive pairs are constructed by varying the latent-masking pattern
for the same scan.

Tab. 5 and Tab. 6 show that adding a contrastive loss degrades results relative to the baseline for both
dissimilarity functions (cosine and ℓ2). Whereas SIS loss consistently improves performance; among
dissimilarities, ℓ2 outperforms cosine. A contrastive loss forces the subject token from two masked
views of the same scan to be nearly identical. This suppresses view-specific signal that should
instead be captured by local tokens for accurate reconstruction. The reconstruction loss already
provides the alignment target, so extra alignment is redundant and discards useful information. SIS
keeps only a dispersion term, enlarging inter-subject distances without interference.

C.3 UNCERTAINTY MAP

Fig. 9 illustrates uncertainty estimation results. We resynthesize the target contrast multiple times
with random latent masking and aggregate the resulting differences to produce an uncertainty map.
Top-20% uncertainty masks align with top-20% GT error regions, indicating that iterative latent
masking captures intrinsic ambiguity of the synthesis task.

Number of resyntheses N and masking ratio m. Tab. 7 shows accuracy and AUROC for differ-
ent combinations of (N,m) on BraTS. With N=32 fixed and m varied, both average metrics peak
at m=0.8. With m=0.8 fixed and N varied, accuracy and AUROC improve up to N = 32, after
which they show only minimal improvement. As N increases, computation grows accordingly, so
we set N=32 as the default.

C.4 ADDITIONAL QUALITATIVE RESULTS

Fig. 10 presents additional qualitative results on BraTS and ADNI. Red boxes highlight represen-
tative differences around lesion boundaries, tumor area, and the interface between each tissue. Our
model achieves more accurate synthesis and better preserves anatomical details.
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GT Synth GT Error Map Uncert. Map GT Error Mask Uncert. Mask

AUROC: 0.886 Acc: 0.837

AUROC: 0.786 Acc: 0.810

AUROC: 0.772 Acc: 0.770

AUROC: 0.751 Acc: 0.778

AUROC: 0.875 Acc: 0.840

AUROC: 0.674 Acc: 0.750

AUROC: 0.791 Acc: 0.799

Figure 9: Uncertainty estimation: Ground Truth (GT), Synthesis, Error Map, Uncertainty Map, Error
Mask (top 20%), and Uncertainty Mask (top 20%). BraTS (top four rows, FLAIR/T1-w/T1Gd/T2-
w) and ADNI (bottom three rows, T1-w/T2-w/PD).

C.5 ADDITIONAL QUANTITATIVE RESULTS

Scenarios of Random Missing modality on ADNI. Tab. 8 shows results on ADNI and SiMAE
outperforms APT in all random missing scenarios. Performance improvement is particularly notice-
able when only PD is available.

Curriculum training results on SiMAE. Tab. 9 and Tab. 10 show the results of pre-training
and subsequent fine-tuning. From the pre-trained model, fine-tuning with random contrast masking
improves for every contrast on BraTS and ADNI. These improvements corroborate that the fine-
tuning specializes the model for missing contrast synthesis beyond the context learned during pre-
training. Additionally, whether or not SIS loss is applied during fine-tuning, there is no significant
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Table 7: Results of uncertainty estimation for the number of resyntheses N and masking ratio m on
BraTS.

FLAIR T1-w T1Gd T2-w Average
N m Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC
32 0.01 0.707 0.579 0.686 0.511 0.689 0.539 0.728 0.646 0.702 0.569
32 0.1 0.717 0.608 0.688 0.519 0.694 0.540 0.745 0.692 0.711 0.590
32 0.2 0.718 0.611 0.691 0.530 0.696 0.541 0.749 0.697 0.713 0.595
32 0.3 0.719 0.611 0.694 0.538 0.698 0.544 0.749 0.698 0.715 0.598
32 0.4 0.719 0.611 0.698 0.547 0.700 0.546 0.749 0.697 0.716 0.600
32 0.5 0.718 0.610 0.701 0.555 0.702 0.548 0.749 0.697 0.717 0.603
32 0.6 0.716 0.606 0.705 0.565 0.704 0.551 0.750 0.697 0.719 0.605
32 0.7 0.714 0.600 0.709 0.574 0.706 0.552 0.752 0.699 0.720 0.606
32 0.8 0.709 0.588 0.713 0.585 0.707 0.550 0.754 0.704 0.721 0.607
32 0.9 0.703 0.570 0.715 0.594 0.707 0.548 0.756 0.707 0.720 0.605
32 0.99 0.701 0.553 0.701 0.563 0.712 0.562 0.748 0.691 0.716 0.592
1 0.8 0.700 0.550 0.703 0.555 0.698 0.534 0.728 0.625 0.707 0.566
2 0.8 0.705 0.567 0.708 0.576 0.699 0.536 0.738 0.657 0.712 0.584
4 0.8 0.707 0.576 0.710 0.578 0.702 0.544 0.746 0.677 0.716 0.594
8 0.8 0.710 0.589 0.710 0.578 0.706 0.549 0.750 0.690 0.719 0.602
16 0.8 0.710 0.588 0.712 0.582 0.706 0.551 0.753 0.698 0.720 0.605
32 0.8 0.710 0.588 0.713 0.585 0.708 0.551 0.755 0.704 0.722 0.607
64 0.8 0.710 0.591 0.713 0.585 0.708 0.551 0.755 0.706 0.722 0.608

128 0.8 0.710 0.593 0.713 0.586 0.708 0.551 0.755 0.707 0.722 0.609

Table 8: Random missing-modality results on ADNI, comparing SiMAE against a APT.

Input SiMAE (PSNR/SSIM) APT (PSNR/SSIM)
T1-w T2-w PD T1-w T2-w PD T1-w T2-w PD
✓ - 26.92/0.824 26.28/0.863 - 22.56/0.802 22.43/0.799

✓ 25.56/0.804 - 27.87/0.890 20.37/0.798 - 23.98/0.851
✓ 23.26/0.720 26.38/0.795 - 17.04/0.663 22.05/0.764 -

difference in performance. Since fine-tuning runs for fewer epochs than pre-training, its impact
appears negligible. In experiments on BraTS, performance is better when sis loss is not applied, so
this is set as the default.

Ablation results on masking ratios. Tab. 11 compares the random token masking ratios on
BraTS. Performance is optimal within the 0.2–0.8 range, so this is selected as the default.

ℓ1 vs. ℓ2 for reconstruction. Tab. 12 compares ℓ1 and ℓ2 for LRecon on BraTS. ℓ1 yields higher
PSNR and SSIM on every contrast, so we adopt ℓ1.

Number of subject tokens. Tab. 13 varies the number of subject tokens. We find a sweet spot
around 1–4 tokens and adding many tokens slightly degrades performance. This is probably because
a large number of tokens fail to properly reflect the subject-identity and do not provide a beneficial
effect. We set the number of subject tokens to 1 by default.

Ablation: subject token, information bottleneck, SIS loss. Tab. 14 and Tab.15 shows the effect
of the subject token, the information bottleneck, and SIS loss. SiMAE achieves the best results on
both datasets, which indicates that subject-aware encoding and context only decoding are effective.

One-phase vs. Two-phase training. Tab. 16 and Tab. 17 compare one-phase training-random
token masking (RTM), random contrast masking (RCM), and their combination—against two-stage
curriculum training (pre-training with, then fine-tuning with RCM). Curriculum training is best in
all contrasts, supporting the “general context first, contrast-aware specialization later” design.
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Table 9: Results of pre-training and fine-tuning on BraTS.

FLAIR T1-w T1Gd T2-w Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Pre-training 25.71 0.906 25.91 0.936 27.89 0.923 26.47 0.934 26.50 0.925
Fine-tuning w/ SIS 26.48 0.916 27.11 0.944 28.92 0.929 28.60 0.943 27.78 0.933
Fine-tuning w/o SIS 26.49 0.916 27.18 0.944 29.00 0.929 28.61 0.943 27.82 0.933

Table 10: Results of pre-training and fine-tuning on ADNI.

T1-w T2-w PD Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Pre-training 26.67 0.814 28.85 0.855 28.74 0.892 28.09 0.854
Fine-tuning w/ SIS 26.68 0.814 28.85 0.855 29.07 0.892 28.20 0.854
Fine-tuning w/o SIS 26.69 0.814 28.85 0.855 29.07 0.892 28.20 0.854

Comparison with diffusion-based models. Tab. 18 compares the number of parameters and per-
scan inference time with APT (Shin et al., 2025), diffusion-based model. Time is computed with a
single A100 GPU. SiMAE has a comparable number of parameters to APT, but its inference speed
is over 150 times faster.

SIS loss hyperparameters. Tab. 19 varies the SIS weight λ and temperature τ . Performance on
BraTS is stable within the range, and (λ, τ) = (0.5, 0.5) is slightly higher, so it is set as the default.

Failure cases. We show some failure cases in Fig. 11. First, the synthesized image preserves
anatomy but exhibits an incorrect target-contrast appearance. Second, the uncertainty map fails to
flag errors: the synthesis is acceptable but uncertainty estimation has failed. Third, tumors are par-
tially missed and the uncertainty map also fail do not detect them, indicating that the uncertainty map
can under-report failures. These cases promote expert oversight and verification, and underscore that
uncertainty maps are supplementary indicators rather than ground truth.
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Table 11: Results of random masking ratio on BraTS.

FLAIR T1-w T1Gd T2-w Average
Mask ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.1–0.9 25.57 0.909 26.53 0.940 29.07 0.928 28.77 0.940 27.49 0.929
0.2–0.8 26.39 0.911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
0.3–0.7 25.76 0.911 26.51 0.940 28.86 0.927 28.42 0.940 27.39 0.929

Table 12: Reconstruction loss comparison (ℓ1 vs. ℓ2) on BraTS.

FLAIR T1-w T1Gd T2-w Average
Loss PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
ℓ1 26.39 0.911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
ℓ2 25.09 0.905 26.39 0.938 28.46 0.925 27.88 0.935 26.96 0.925

Table 13: Results of the number of subject tokens on BraTS.

# of FLAIR T1-w T1Gd T2-w Average
subject tokens PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 26.49 0.916 27.18 0.944 29.00 0.929 28.61 0.943 27.82 0.933
4 26.63 0.916 27.01 0.943 28.87 0.929 28.77 0.943 27.82 0.933
8 26.25 0.912 26.93 0.941 28.97 0.928 28.79 0.942 27.74 0.931

16 26.26 0.911 27.02 0.942 29.00 0.929 28.60 0.942 27.72 0.931
32 26.40 0.915 26.73 0.941 28.88 0.928 28.78 0.943 27.70 0.932
64 26.55 0.916 26.58 0.941 28.86 0.928 28.51 0.942 27.63 0.932

128 26.20 0.913 26.93 0.941 28.80 0.927 28.72 0.941 27.66 0.931

Table 14: Ablation on subject token (S.T.), information bottleneck (I.B.), and SIS loss on BraTS.

FLAIR T1-w T1Gd T2-w Average
S.T. I.B. SIS PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 26.39 0.911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
✓ 24.60 0.905 26.58 0.939 28.89 0.927 28.41 0.939 27.12 0.928
✓ ✓ 25.99 0.913 27.01 0.943 28.97 0.929 28.84 0.943 27.70 0.932
✓ ✓ 26.16 0.909 26.96 0.942 28.60 0.928 28.63 0.942 27.59 0.930

SiMAE ✓ ✓ ✓ 26.49 0.916 27.18 0.944 29.00 0.929 28.61 0.943 27.82 0.933

Table 15: Ablation on subject token (S.T.), information bottleneck (I.B.), and SIS loss on ADNI.

T1-w T2-w PD Average
S.T. I.B. SIS PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 25.87 0.796 28.03 0.840 28.21 0.881 27.37 0.839
✓ 25.76 0.791 28.02 0.840 27.99 0.880 27.26 0.837
✓ ✓ 26.22 0.805 28.32 0.849 28.47 0.885 27.67 0.846
✓ ✓ 26.32 0.805 28.75 0.853 29.09 0.890 28.05 0.849

SiMAE ✓ ✓ ✓ 26.69 0.814 28.85 0.855 29.07 0.892 28.20 0.854

Table 16: One-stage vs. two-stage training on BraTS. (RTM: Random Token Masking, RCM: Ran-
dom Contrast Masking)

FLAIR T1-w T1Gd T2-w Average
Strategy PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
RTM 24.59 0.905 26.09 0.938 28.94 0.927 28.00 0.938 26.91 0.927
RCM 25.03 0.894 25.13 0.930 27.69 0.921 27.49 0.932 26.34 0.919
RTM+RCM 24.44 0.890 24.88 0.928 27.18 0.916 26.97 0.927 25.87 0.915
RTM→RCM 26.39 0.911 26.67 0.940 29.04 0.928 28.43 0.940 27.63 0.930
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Figure 10: Additional qualitative results on BraTS (top) and ADNI (bottom). Red boxes highlight
the main differences with zoomed images.
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Table 17: One-stage vs. two-stage training on ADNI. (RTM: Random Token Masking, RCM: Ran-
dom Contrast Masking)

T1-w T2-w PD Average
Strategy PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
RTM 25.79 0.796 27.88 0.838 27.67 0.879 27.11 0.838
RCM 25.77 0.803 27.65 0.834 27.86 0.875 27.09 0.837
RTM+RCM 24.72 0.770 26.99 0.816 27.24 0.871 26.32 0.819
RTM→RCM 25.87 0.796 28.03 0.840 28.21 0.881 27.37 0.839

Table 18: Parameters and inference time vs. diffusion-based baseline.

APT (Shin et al., 2025) SiMAE (Ours)
Total parameters 200.3M 213.8M
Inference time 9.06s 0.06s

Table 19: Average PSNR and SSIM under different SIS weight λ and temperature τ on BraTS.

λ = 0.25 λ = 0.5 λ = 0.5 λ = 0.5 λ = 1.0
τ = 0.5 τ = 0.25 τ = 0.5 τ = 1.0 τ = 1.0

PSNR 27.64 27.74 27.82 27.79 27.78
SSIM 0.932 0.932 0.933 0.932 0.932

GT Synth GT Error Map Uncert. Map

Figure 11: Failure cases. Top: Incorrect target-contrast appearance despite plausible anatomy. Mid-
dle: Local synthesis error not captured by the uncertainty map. Bottom: Missed tumor and poor
uncertainty estimation.
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