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ABSTRACT

Hypernetwork has recently emerged as a promising technique to generate per-
sonalized models in federated learning (FL). However, existing works tend to
treat each client equally and independently — each client contributes equally to
learning the hypernetwork, and their representations are independent in the hy-
pernetwork. Such an independent treatment ignores topological structures among
different clients, which are usually reflected in the heterogeneity of client data
distribution. In this work, we propose Panacea, a novel FL framework that can in-
corporate client relations as a graph to facilitate learning and personalization using
graph hypernetwork. Empirically, we show Panacea achieves state-of-the-art per-
formance in terms of both accuracy and speed on multiple benchmarks. Further,
Panacea improves the robustness by leveraging the client relation graph. Specif-
ically, it (1) generalizes better to the novel clients outside of the training and (2)
is more resilient to label-flipping attacks, which is also proved by our theoretical
analysis.

1 INTRODUCTION

With the rise of the Internet of Things (IoT), a massive amount of data is being collected from geo-
graphically distributed sources, including mobile phones, wearable sensors, and other IoT devices.
This data is highly informative and can be used for various AI-based applications, including pre-
dicting health events such as the risk of heart attacks AbdulRahman et al. (2020). To optimize these
devices’ storage and computational capabilities, storing data locally and pushing more computation
to IoT devices is preferred. Additionally, privacy-preserving AI is imperative to comply with data
privacy regulations like GDPR Voigt & Von dem Bussche (2017). Federated Learning (FL) has
emerged as a popular paradigm for training statistical models over distributed devices/clients while
keeping the training data local Kairouz et al. (2021).

In typical federated learning, each client/device holds a dataset for local training, and a server ag-
gregates gradients from clients for global model updates McMahan et al. (2017). A unique global
model can then be applied to all clients McMahan et al. (2017); Mothukuri et al. (2021). How-
ever, this paradigm might be sub-optimal in practice, as the clients’ data distributions are usually
heterogeneous. To address this issue, personalized federated learning (PFL) is proposed to train a
personalized local model for each client while each client can still leverage the knowledge from
other clients in the federation Tan et al. (2022). However, there is a key challenge in PFL: How to
enable beneficial collaborative training while preserving the uniqueness of the clients yet achieving
communication efficiency.

A promising approach to balance information sharing and uniqueness preservation among clients is
Personalized Federated Hypernetworks (pFedHN) Shamsian et al. (2021). Hypernetworks Ha et al.
(2017) are neural networks that generate model parameters for another set of deep neural networks.
In pFedHN, a multi-layer perceptron (MLP) hypernetwork takes the local client’s representation
as input and generates personalized model weights corresponding to each client. By providing a
mapping from the clients’ embedding space to the clients’ model parameter space, pFedHN achieves
a better generalization for clients that were unseen during training.

Despite providing a principled approach to personalized model learning, pFedHN has limitations. It
treats every client equally and independently, ignoring the potential relations of data heterogeneity
across the clients. Specifically, each client’s representation and corresponding local gradients are
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Figure 1: Illustration of Panacea. The framework has two components 1) a graph hypernetwork consisting of a
GNN encoder that embeds clients based on their relationships, and an MLP that generates local model weights
based on the embeddings; 2) a graph generator that reconstructs the client relation graph to preserve the clients’
uniqueness. Local models and hypernetwork parameters are jointly optimized using alternating optimization.

regarded as independent data samples for learning the hypernetwork. However, the clients’ data
distributions are often interdependent, which often forms a graph where each client is a node, and
the links reflect the data distribution dependency between clients. More importantly, such a graph
is naturally accessible in real-world applications with IoT networks. For example, in road network
traffic forecasting in the Bay Area, sensors measuring traffic speed can be modeled as nodes, with
physical proximity between two sensors as a link Li et al. (2018). By modeling the clients’ rela-
tions as a graph, achieving more effective knowledge sharing among the clients in the federation is
possible.

This paper presents Panacea, a novel framework for personalized federated learning based on hyper-
networks. The framework comprises a graph neural network (GNN) module and a graph generator.
The GNN module takes the client representation and their relationships as input to generate local
model weights. To preserve the “uniqueness” of different clients, we introduce a graph generator
that distinguishes discrepancies among clients in the federation. The graph generator uses the en-
coding of the local model weights, i.e., client embeddings, to reconstruct the client relation graph.
With a GNN module and a graph generator, Panacea enables (1) effective knowledge sharing among
clients, even when two clients have low similarities, i.e., distant neighbors in the relation graph, (2)
avoids negative influence between clients with significant distribution discrepancies while ensuring
personalization performance.

In summary, this paper makes the following contributions. First, we propose a novel personal-
ized federated learning framework, called Panacea, that leverages the inherent relationships among
clients to encourage effective knowledge sharing while preserving each client’s uniqueness. Sec-
ond, unlike other methods that incur extra communication costs, Panacea requires no additional
communication due to the introduced graph hypernetwork. Third, we conduct extensive empirical
studies on many synthetic and real-world datasets across various learning tasks, demonstrating that
Panacea outperforms prior state-of-the-art federated learning algorithms. Furthermore, we show
that Panacea improves the robustness of the system in two ways: (1) better generalization to novel
clients outside of the training and (2) more resilience to malicious clients, as demonstrated by both
experiments and theoretical analysis.

2 RELATED WORK

Federated learning with hypernetworks. The most related prior work is pFedHN Shamsian et al.
(2021) which uses hypernetworks to generate personalized model weights. The major difference
between our work and pFedHN is that we further incorporate client interdependency. We will show
that leveraging the client relation graph, Panacea can boost the performance of PFL from various
aspects, including better generalizability to unseen clients and robustness to malicious clients using
label-flipping attacks – a representative attacks in federated learning settings Fung et al. (2020).
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Federated learning with graphs. Several prior works do federated learning with graphs. Most
of them focus on graph learning problems on graph-structured data Meng et al. (2021); He et al.
(2021). For example, FedGraphNN He et al. (2021) provides an open-source FL system for GNNs,
which enables federated training over various GNNs. Meng et al. Meng et al. (2021) proposes a
GNN-based federated learning architecture that attempts to capture complex spatial-temporal data
dependencies among multiple participants. The closest to us is SFL Chen et al. (2022), which also at-
tempts to leverage graphs to boost the performance of personalized federated learning. SFL naively
updates the client weights by averaging over its neighbors. In contrast, we generalize hypernetwork-
based approach with a graph learning module equipped with a generator, which can incorporate
the relational graph of clients for generating local model weights. Following the standard FL set-
ting, we do not require all clients to participate in each round. More importantly, with a dedicated
graph reconstruction component, our approach exhibits better performance, particularly robustness
in adversarial settings.

3 PROPOSED FRAMEWORK: PANACEA

3.1 PROBLEM FORMULATION AND NOTATIONS

Our objective is to train personalized models collaboratively for a set of T clients, each with its
unique local dataset. Each client t 2 T has a distribution Pt on Xt ⇥ Yt. Since the local data distri-
butions Pt 2 T differ, it’s natural to fit a single model to each data distribution. We assume that each
client has access to |Dt| IID data points drawn from Pt, and client t’s local dataset can be represented
as Dt = {(x(t)

j , y(t)j )}|Dt|

j=1 . The relationship among clients/devices is described by a graph with the
adjacency matrix A = [Auv], where u and v index the clients in the graph. Let `t : Y ⇥ Y ! R+

describe the loss function corresponding to client t, and Lt(✓t) = 1
|Dt|

P
j `t(xj , yj ; ✓t) is client

t’s average loss over its personal training data, where ✓t denotes the model weights of client t. The
loss function varies for different tasks, e.g., cross-entropy is commonly used for classification while
mean square error is preferred for forecasting. The goal is to solve the following optimization
problem:

⇥⇤
2 argmin

⇥

1

|T |

|T |X

t=1

E(x,y)⇠Pt
[`t(xj , yj ; ✓t)] . (1)

During training, the optimization is carried out on finite training samples as follows:

argmin
⇥

1

|T |

|T |X

t=1

Lt(✓t) :=
1

|T |

|T |X

t=1

1

|Dt|

|Dt|X

j=1

`t(xj , yj ; ✓t), (2)

where ⇥ = {✓t}Tt=1 are the set of personalized model parameters for all clients.

Remark. In this paper, we assume the existence and accessibility of a client relation graph that
reflects the similarity of local models. we argue such an assumption is practical in many real-world
scenarios. For example, in news recommender systems Liu et al. (2010), clients are mobile phones
containing user data, which can be connected as a graph via social networks. Intuitively, neighbors
on the social network will have similar usage patterns of phones. For the cases where the graph
naturally exists but is unobserved, we leave it to future work that might incorporate relation inference
models Peng et al. (2020) into our framework to estimate the graph during federated learning.

3.2 OUR FRAMEWORK

Pipeline overview. Our Panacea framework is composed of a GNN encoder, an MLP, and a graph
generator, as shown in Fig. 1. The GNN encoder, denoted as E(·; e), takes the client’s initial em-
bedding and the client relationship (i.e., the adjacency matrix A) as input. It generates informative
client embeddings Z after multiple GNN propagation steps. The MLP, M(·; m), generates local
model weights ✓t for each client t based on the client embeddings. Finally, a graph generator D(·)
preserves the local preferences of each client by reconstructing the graph relation of the clients.

Training objective for the server. In Panacea, the GNN encoder and the MLP together is consid-
ered as the graph hypernetwork denoted as GH(·; ) = M(·; m)�E(·; e), where  = { e, m}.
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To learn the hypernetwork, Panacea optimize the following objective:
min
 e, m

LGH(E,M) + �dLd(D,E), (3)

where LGH(E,M) is the graph hypernetwork loss and Ld(D,E) is the graph reconstruction loss,
and �d is the weight to balance these two terms. Note that the graph generator D is only involved
during training to encourage the hypernetwork to preserve clients’ uniqueness.

Graph hypernetwork. We use h(L)
t to denote the embedding of client t at the L’s layer of the GNN

encoder. Given client initial embedding h(0)
t and the graph relation of the clients A, the graph hyper-

network outputs the local model weights for client t via GH(h(0)
t ,A; ). Collaboratively, the graph

hypernetwork learns a family of personalized local models for clients {GH(h(0)
t ,A; )|t 2 T }. To

train it, we use the mean squared error between the hypernetwork predicted model parameters and
the local model parameters gathered from the clients’ local updates in this communication round
which denoted as ✓t. Formally, the graph hypernetwork loss is the following,

LGH =
1

2|T |

|T |X

t=1

||✓t � GH(h(0)
t ,A; e, m)||22. (4)

Graph generator. We train the graph generator using a graph reconstruction loss. Specifically,
we realize it with an inner-product operator, which admits the client embeddings as the input and
reconstructs the graph relation of clients. The intuition is that good client embeddings should be
able to preserve the “affinity” between clients. Therefore, they can inform us of the graph relation of
clients. We independently sample client indices u and v from the marginal client index distribution
p(c) and compute the reconstruction loss as,

Ld =Eu,v⇠p(c)[�Auv log �(ẑ
|
uẑv)� (1�Auv) log(1� �(ẑ|uẑv))], (5)

where zu = E(hu; e) is the embedding of client u, ẑu is the transformation of zu with the MLP
and �(x) = 1

1+exp�x is the sigmoid function.

Training objective for the clients. Each client i is aim to reduce its own local task. Under the
constrain that the local model’s parameters are generated by the hypernetwork, we can formulate
the learning objective of all clients as the following,

argmin
⇥

1

|T |

|T |X

t=1

Lt(✓t) = arg min
⇥={GH(ht,A; e, m)}t

1

|T |

|T |X

t=1

1

|Dt|

|Dt|X

j=1

`t(xj , yj ; ✓t). (6)

Essentially, the goal of personalized federated learning is to enable each client to benefit from knowl-
edge available from other clients to get a better approximation for their local model parameters ✓t
— each client in the federation obtains a solitary model that can have a better generalization ability
to unseen samples.

Joint optimization of ⇥ and  . By sharing the graph hypernetwork parameters, Panacea can
enforce effective knowledge sharing among the clients in the federation. However, jointly optimizing
formula (3) and formula (6) can be difficult due to the non-convexity of each term. Specifically, both
graph hypernetwork and local models are deep neural networks. Thus optimizing them are non-
convex problems. In addition, there is no explicit and stable supervision signal for learning the graph
hypernetwork parameters  , as ⇥ is dynamically changing in each communication round before
convergence. To facilitate the joint optimization of (3) and (6), we leverage following observations:

Observation 1: With a fixed hypernetwork  , the updates over ⇥ only depend on the local dataset
{Dt}t2 T as illustrated in formula (6).

Observation 2: The gradient of the hypernetwork  only depends on ⇥ rather than on the client
dataset {Dt}

T

t=1, as shown in formula (3), (4), and (5).

The above observations suggests that it is natural to use alternating optimization approach Smith
et al. (2017) to jointly solve formula (3) and formula (6) for learning the personalized models and
graph hypernetwork parameters. Specifically, using the chain rule, we can have the gradient of  e

and  m from formula (3), (4), and (5):
r e {LGH + �dLd} = r eLGH + �dr eLd = (r e✓t)

|
r✓tLGH + �dr eLd; (7)
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r m {LGH + �dLd} = r mLGH = (r m✓t)
|
r✓tLGH. (8)

Algorithm 1 Panacea
Require: ↵ — learning rates, ⌘ — client learn-

ing rate, R — number of rounds, Kc, Ks —
number of local rounds for clients and server.

Ensure: Personalized models {✓1, ✓2, · · · , ✓T },
and a graph hypernetwork model  .

1: for each communication round i 2 [R] do
2: sample a subset of clients St ⇢ [T ]
3: for each client t 2 St do
4: ✓t = GH(h(0)

t ,A; ), and ✓̃t = ✓t
5: for each local step k 2 [Kc] do
6: sample a mini-batch B ⇢ Dt

7: ✓̃t = ✓̃t � ⌘r✓̃t
Lt(B)

8: end for
9: 4✓t = ✓̃t � ✓t

10: end for
11: for each local step k 2 [Ks] do
12:  e =  e � ↵r e✓

|
t 4✓t � ↵�dr eLd

13:  m =  m � ↵r m✓
|
t 4✓t

14: end for
15: end for
16: Return the personalized models {✓̃t}t2T , and

the graph hypernetwork model  .

From formula (7), we can observe that only the
first term of gradient  e needs the local up-
dates from the client. Therefore, we can sim-
ply use a general update rule (r e✓

|
t )4✓t to

approximate the first term of  e, i.e., 4 e =
(r e✓

|
t )4✓t, where 4✓t denotes the change of

client t’s model parameters after a round of lo-
cal updates. For the second term Ldt , it does
not need the gradients from the client; there-
fore, easily computable on the server side. Sim-
ilarly, the gradient update of  m can be ap-
proximated based on the update rule: 4 m =
(r m✓

|
t )4✓t. Extensive literature has shown

the benefits of performing multiple local op-
timization steps per communication round in
terms of both convergence rate and final accu-
racy McMahan et al. (2017); Shamsian et al.
(2021). Thus, in Panacea, we perform multiple
local updates. Kc and Ks steps for the client
models and the hypernetowrk at server.

Algorithm 1 demonstrates the detailed proce-
dure of our proposed framework for learning
the graph hypernetworks and the personalized
local models for the clients. In each commu-
nication round, the clients download the latest
personalized models from the server, then use local SGD to train Kc local steps to update the local
model weights. After that, each client will upload their model updates to the server. Accordingly,
the server will train Ks local steps to update the hypernetwork parameters. Note that, similar to
pFedHN, our Panacea incurs no additional communication cost compared with traditional FL meth-
ods, like FedAvg McMahan et al. (2017) (detailed analysis is in Appendix B).

3.3 THEORETICAL ANALYSIS

In this section, we analyze the linear case of Panacea and compare it with the pFedHN to emphasize
the benefit of introducing the client relation graph. All proofs are delayed into Appendix A.

Notations. We have n clients. For each client i, data xi 2 Rd with a dimension d follows a
standard Gaussian distribution xi ⇠ N (0, Id) and labels yi are generated by a ground truth lin-
ear model with a parameter ✓⇤i , i.e., yi = x>

i ✓
⇤

i . We use ⇥⇤ = [✓⇤1 , · · · , ✓
⇤

n] to denote all ground
truth parameters. For a model with parameter ⇥ = [✓1, · · · , ✓n], its expected risk at client i is
R(✓i) := E(xi,yi)(yi � x>

i ✓i)
2 = k✓⇤i � ✓ik2F . The averaged expected risk across clients is

R(⇥) := 1
nR(✓i) = 1

nk⇥
⇤
� ⇥k

2
F . pFedHN generate models via a linear hypernetwork with a

latent dimension k and parameters W 2 Rd⇥k and V := [v1, · · · , vn] 2 Rk⇥n which denote the
weight of hypernetwork and the client embeddings respectively. The client parameters are generated
by applying the hypernetwork to each client embedding, i.e., ⇥ = WV . It is typically assumed that
d > n > k. Our Panacea uses a GNN as the hypernetwork leading to the following decomposi-
tion of ⇥ as ⇥ = WL(· · ·W2(W1(V G̃))G̃ · · · G̃) where L is the number of GNN layers and in lth
layer,Wl is per node transformation and G̃ is aggregation operation. For simplicity, we use mean
aggregation, i.e., [G̃]i,j = 1

N(i)+11[j2N(i)[{i}] where N(i) := {j|Aij = 1} is neighborhood of
node i in the graph. We can express ⇥ in a compact form via ⇥ = WVG where W = WL · · ·W1

and G = G̃L.

Optimum. As observed in the original paper of pFedHN, learning a linear hypernetwork by mini-
mizing the expected risk R(⇥) / k⇥⇤

�⇥k
2
F with ⇥ = WV is equivalently to solving the rank k

approximation of the matrix ⇥⇤. Thus the optimum is achieved when it learns the top k PCA com-
ponents, i.e., ⇥⇤

k = Pdiag(�1, · · · ,�k, 0, · · · , 0)Q> where Pdiag(�1, · · · ,�n)Q> is the singular
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value decomposing (SVD) of ⇥⇤. Theorem 3.1 shows that panacea, although using a GNN, has the
same optimum as long as the graph is not generated, i.e., rank(G̃) = n.

Theorem 3.1. Optimization min⇥=WVG R(⇥) has an unique minimum ⇥⇤

k, if rank(G̃) = n.

Robustness. In the following, we show leveraging extra knowledge of the client relations can bring
us a gain of robustness. To facilitate the analysis, we will assume the ground truth model param-
eters can be decomposed via ⇥⇤ = W ⇤V ⇤ where W ⇤

2 Rd⇥k is the ground truth hypernetwork
with elements i.i.d from N (0, 1) and V ⇤

2 Rk⇥n is the ground truth client embeddings satisfies (1)
Consistency: be consistent with the graph structure as V ⇤G ' V ⇤ and (2) Gaussianity: each entry
has a Gaussian marginal N (0, 1). For the algorithms, we assume the initialization of the model hy-
pernetwork, W0 and client embeddings, V0 both have i.i.d Gaussian entries N (0, 1). For the attack
setting, label flip attack is originally defined in the context of classification and gives zero gradient
in expectation since the label is randomly flipped. For simplicity, we assume the attacked client
provides no gradient during training. Further, say m clients (client 1 to m) are attacked. We call
↵ := m

n < 1, the attack ratio. Further, we restrict our analysis in a not too strong attack where
n � m � k implying the possibility of recovering the optimal hypernetwork with the remaining
unattacked clients. Thus both pFedHN and Panacae will learns W ⇤ (under an equivalence of orthog-
onal transform). So we will only analyze to optimization of clients’ embeddings V . Optimization
with the unattacked clients is equivalent to minimize the loss Ruatk(⇥) = 1

nk(⇥
⇤
�⇥)(m+1):nk

2
F

where we use the subscripts (m+ 1) : n to denote m+1’th to n’th columns of the matrix. Let ⇥̂mlp

and ⇥̂gnn be the learned model via pFedHN and Panacea, i.e., ⇥̂mlp 2 argmin⇥=W⇤V Ruatk(⇥)
and ⇥̂gnn 2 argmin⇥=W⇤V G Ruatk(⇥).

Theorem 3.2. For pFedHN, in expectation, its risk is E[R(⇥̂mlp)] = 2dk↵.

Theorem 3.3. For Panacea, E[R(⇥̂gnn)] =
2dk
n k(I �G(m+1):nG

†

(m+1):n)G1:mk
2
F .

Lemma 3.1. Denote r(G,m) := k(I � G(m+1):nG
†

(m+1):n)G1:mk
2
F which is the distance of G’s

first m columns to the span of the rest columns of G. We have 0  r(G,m)  m. Further, the
upperbound is achieved, iff G1:m = I1:m and G>

1:mG(m+1):n = 0. The lowerbound is achieved iff
col(G1:m) ⇢ col(G(m+1):n).

Based on the theorems, we make a few remarks: ∂ Panacea has a smaller expected risk than
pFedHN, i.e., E[R(⇥̂gnn)]  E[R(⇥̂mlp)], due to the fact that r(G,m)  m from lemma 3.1. ∑
pFedHN’s loss is linearly scale with the attack ratio ↵ while Panacea does not. ∏ Instead, Panacea’s
risk is related to the graph structure. We discuss two extreme cases: (1) Empty graph with no edges
which is totally non-informative. Then G becomes the identity I which leads to Panacea degener-
ate to pFedHN with E[R(⇥̂gnn)] = E[R(⇥̂mlp)]; (2) Clique graph with all nodes are connected,
which is highly informative, since knowing one client’s embedding equals to knowing all of them.
Thus we can always fully recover the client embeddings from the unattacked ones. Mathematically,
G = 1

n11
> which leads r(G,m) = 0 for any m < n implying E[R(⇥̂gnn)] = 0 from Theorem 3.3.

4 EMPIRICAL STUDIES

We evaluate Panacea and all baseline methods across various tasks from different application do-
mains.

1) Synthetic data for classification. FL is a synthetic binary classification for federated learn-
ing. We borrow the synthetic data distribution from a prior domain adaptation work Xu et al.
(2021). For each client t, a 2-dimensional unit vector [at, bt] was randomly generated as the
client embedding, and the angle of the unit vector was represented as !t = arcsin( btat

). Posi-
tive samples (x, 1, t) and negative samples (x, 0, t) are sampled from two different 2-dimensional
Gaussian distributions, N (µt,1, I) and N (µt,0, I), respectively, where µt,1 = [!t

⇡ at,
!t
⇡ bt] and

µt,0 = [�!t
⇡ at,�

!t
⇡ bt]. Then we construct the client relation graph with a Bernoulli distribu-

tion, i.e., Auv ⇠ Bern(0.5auav +0.5bubv +0.5). The generation process ensures that the datasets
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of all clients are non-IID and the adjacent clients in the graph have similar decision boundaries for
classification.

2) Car image data for classification. Comprehensive Cars (CompCars) Yang et al. (2015) con-
tains 136,726 images of cars with labels including 4 car types (MPV, SUV, sedan, and hatchback),
5 viewpoints (front (F), rear (R), side (S), front-side (FS), and rear-side (RS)), and years of man-
ufacture (YOMs, ranging from 2009 to 2014). We follow the data splitting from Xu et al. (2021),
and each client has car images only from one viewpoint and one YOM. The task is to predict the
car type based on the image. Two clients are connected if either their viewpoints or YOMs are
identical/nearby. For example, client A and B are connected if A’s YOM is 2009, and B’s is 2010.

3) State network temperature data for regression. TPT-48 is a real-world dataset for temperature
prediction. It contains the monthly average temperature over 48 contiguous states in the US from
2008 to 2019. We use the data processed by Washington Post WP 1. The task is to forecast the
next 6 months’ temperature given the previous first six months’ temperature. Due to the diverse
geographical environments, the collected temperature datasets from various states are inherent non-
IID. The geographically adjacent states form links in the graph.

4) Road network traffic data for forecasting. PEMS-BAY and METR-LA are two real-world
datasets for traffic forecasting Li et al. (2018); Xu et al. (2021). The task is to predict the traffic
speed in the following 12 steps of each sequence given the first 12 steps. Each sensor/loop-detector
realizes the node for these two traffic datasets, and the adjacent sensors/detectors form links in the
graph. In particular, the relational graph was constructed based on the distance of the clients Meng
et al. (2021). More dataset details are in Appendix C.

4.1 EXPERIMENT SETTINGS

Baselines. We compare Panacea against various personalized federated learning (PFL) approaches.
Our baselines include Hypernetwork-based methods: pFedHN Shamsian et al. (2021), which treats
each client equally and independently and realizes the hypernetwork with a MLP. Graph-based
methods: SFL Chen et al. (2022) that enhance personalization by using graph relation and doing
information aggregation from nearby clients. Standard FL methods: 1) FedAvg McMahan et al.
(2017), the classical federated learning algorithm based on federated averaging; 2) Per-FedAvg Fal-
lah et al. (2020b) that personalizes client models via meta-learning; 3) pFedMe T Dinh et al. (2020)
that improves personalization by adding a regularization term in the objective function; FedAvg-
finetune Collins et al. (2021) that realizes personalization by incorporating fine-tuning over feder-
ated averaging.

Implementations. Our framework consists of three modules: a GNN encoder, an MLP, and a graph
generator (see Figure 1 in Sec. 3). For evaluation, we use a 3-layer GNN encoder with hidden
dimension 100 and a 3-layer MLP for generating local model parameters. The graph generator
is instantiated with an inner-product operator. To illustrate the necessity of incorporating the graph
generator module, we evaluate a variant of our framework with the GNN encoder and the MLP mod-
ule only, called Panacea-GN. The client embedding dimension was fixed to 100 for all datasets. For
the baselines, we use the public original implementations. More details can be found in Appendix D.

Evaluation metrics. The evaluation for Panacea is geared towards personalized model perfor-
mance, generalization capability to unseen clients, and robustness to malicious clients under label-
flipping attacks. The evaluating metric of predictive performance varies in different learning tasks.
We evaluate the performance with the classification accuracy of the held-out test set averaged over
all clients for classification tasks and the Mean Square Error (MSE) for regression and forecasting
tasks, respectively. To evaluate the generalization capability to unseen clients, we hold out 20% of
the clients as novel clients and evaluate corresponding model performance, i.e., classification accu-
racy or MSE. We introduce malicious clients under various attack ratios during training to assess
robustness. Specifically, the malicious clients randomly flip the labels of their local data samples for
training. In each round, they report the jamming local-updates to the server, attempting to disrupt
the entire federated training. The attack ratio ranges from 0% to 50%. All the reported results, e.g.,

1The raw data is from the National Oceanic and Atmospheric Administration’s Climate Divisional Database
(nClimDiv) and Gridded 5KM GHCN-Daily Temperature, and Precipitation Dataset (nClimGrid) Vose et al.
(2014).
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Table 1: Predictive performance comparisons over all datasets: we report classification accuracy for the
classification tasks and MSE for the regression and forecasting tasks. Value in bold denotes the best result, and
value with underline denotes the second-best result.

FL-60 (%) CompCars (%) TPT-48 (10�3) METR-LA (10�3) PEMS-BAY (10�3)

FedAvg McMahan et al. (2017) 97.9±9.7 88.2±1.3 2.6±0.9 112.4±43.2 33.5±38.5
FedAvg-finetune 100.0±0.0 90.0±5.8 2.6±1.0 20.0±7.8 13.2±12.9

Per-FedAvg Fallah et al. (2020b) 87.7±24.2 66.0±1.8 2.6±0.9 289.5±89.9 63.7±70.4
pFedMe T Dinh et al. (2020) 100.0±0.0 72.2±0.9 2.5±0.8 315.8±81.3 75.7±126.1

SFL Chen et al. (2022) 73.3±33.7 77.0±7.9 2.9±1.0 73.2±23.0 36.4±27.3
pFedHN Shamsian et al. (2021) 100.0±0.0 85.7±2.1 2.2±0.5 3.2±1.7 3.6±4.9

Panacea-GN 100.0±0.0 89.1±1.2 2.5±0.8 3.2±1.4 1.2±0.4
Panacea 100.0±0.0 88.2±1.2 2.6±0.7 1.0±0.2 0.4±0.4

Table 2: Generalization capability comparisons to novel clients: we report classification accuracy for the
classification tasks and MSE for the regression and forecasting tasks. Value in bold denotes the best result, and
value with underline denotes the second-best result.

FL-60 (%) CompCars (%) TPT-48 (10�3) METR-LA (10�3) PEMS-BAY (10�3)

FedAvg McMahan et al. (2017) 99.2±2.9 86.8±1.7 2.8±1.0 109.7±38.3 30.7±31.7
FedAvg-finetune 100.0±0.0 71.2±12.8 2.8±0.8 19.7±9.7 12.3±6.6

Per-FedAvg Fallah et al. (2020b) 80.8±22.3 66.4±3.1 2.8±1.0 274.8±80.1 59.4±64.2
pFedMe T Dinh et al. (2020) 42.5±37.5 72.0±2.2 3.5±1.5 305.3±83.2 98.5±97.5

SFL Chen et al. (2022) 62.5±37.0 77.5±7.0 3.3±1.2 70.8±24.9 33.7±19.3
pFedHN Shamsian et al. (2021) 82.5±32.8 86.4±3.8 2.5±0.7 3.2±1.5 3.0±2.7

Panacea-GN 100.0±0.0 87.9±1.9 2.6±0.9 3.1±1.2 1.2±0.5
Panacea 100.0±0.0 87.8±1.8 2.8±0.9 1.0±0.3 0.4±0.5

mean and standard deviation, are calculated over five independent runs. As for the data scale, FL-60
has 60 clients for the synthetic binary classification task where each client has 100 samples. TPT-48
has 48 clients and each client has 125 samples. In forecasting tasks, each sensor/detector is treated
as a client; there are 325 clients in PEMS-BAY and 207 clients in METR-LA, respectively. More
statistics of PEMS-BAY and METR-LA are listed in Appendix Table 3. For the image classification
task, there are 30 clients (5 viewpoints × 6 YOMs) and 24,151 images in total. Moreover, all datasets
in each client are randomly split into 80% / 20% for training / testing.

4.2 RESULTS AND DISCUSSION

Averaged predictive performance across clients. Table 1 reports the average accuracy or MSE
across clients. In most cases, our approaches, including Panacea and Panacea-GN exhibit the best
performance compared to other baselines. Among others, pFedHN achieves the second best or
sometimes is on par with ours, demonstrating the optimality of hypernetwork-based approaches.
The gap between our methods and pFedHN shows the validity of introducing graph information
for balancing information sharing and uniqueness preservation among clients in the federation. In
addition, we can observe that Panacea achieves significantly better performance than Panacea-GN
for the forecasting tasks on two road network traffic datasets, indicating the necessity of incorpo-
rating the graph generator module. In contrast, Panacea-GN performs slightly better than Panacea
for the regression task on TPT-48 and image classification on CompCars. It is interesting that per-
formance gap between Panacea and Panacea-GN is related to the number of the clients. TPT-48
and CompCars have smaller number of clients (48 and 30) and show litte gap between Panacea and
Panacea-GN. On the other hands, Panacea is significantly better than Panacea-GN on datasets with
more clients (like from 60 to 325). We hypothesize that when the graph is small, our framework
might overfit to the knowledge of the graph which can hurt the performance of the clients.

Generalization to novel clients. We also conduct experiments to evaluate the generalization capa-
bility of different federated learning algorithms. Specifically, we study an important learning setup
where new clients join. In general, if models are shared across clients, new clients joining in would
require fine-tuning the shared model, such as pFedME and Per-FedAvg. In contrast, it may not need
fine-tuning or retraining in the federated learning framework based on hypernetworks, including
pFedHN and our two methods Panacea and Panacea-GN. To verify the generalization capability of
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(a) FL-60 (b) TPT-48 (c) METR-LA

(d) CompCars (e) CompCars (attack ratio: 30%) (f) CompCars (attack ratio: 40%)
Figure 2: (a)-(e) compare convergence speed and final performance, and (f) compare final performance under
various attack ratios on CompCars (More comparisons under different ratios are shown in Appendix E).

hypernetwork-based approaches, we take the client’s initial embedding as the hypernetwork input
to generate corresponding personalized models without fine-tuning and then evaluate the clients’
averaged predictive performance with local test data. The results are shown in Table 2. We observe
that our methods exhibit the best generalization capability in most cases. pFedHN also outperforms
non-hypernework based methods like pFedMe, Per-FedAvg, and SFL. This can be explained by the
fact that the federated hypernetwork framework essentially learns a meta-model over the distribution
of clients with the proposed hypernetwork, thus having better generalization to novel clients.

The visualization of convergence speed and task performance. Figure 2 (a)-(d) shows the task
performance during training with different personalized federated learning algorithms. We have the
following observations: 1) Both SFL and Per-FedAvg show poor performance in the entire training
process on FL-60; 2) generally, hypernetwork-based approaches, including pFedHN and ours, have
the fastest convergence speed and exhibit comparable performance compared to other baselines;
3) both pFedMe and Per-FedAvg perform poorly on two real-world road network traffic datasets
(PEMS-BAY shows a similar trend as METR-LA, shown in Appendix E); 4) Panacea shows a
slightly faster convergence speed than Panacea-GN, reflecting the importance of training the graph
hypernetwork with the graph generator.

Robustness to malicious clients. We conduct robustness evaluation over two classification tasks
over FL and CompCars, respectively. Figure 2 (e)-(f) depicts the predictive performance of all ap-
proaches under 30% and 40% malicious clients. We can observe that our two methods — Panacea
and Panacea-GN maintain superior performance even under a high attack ratio, verifying their re-
silience to malicious attacks.

5 CONCLUDING REMARKS

We introduced a new federated learning framework called Panacea for generating personalized mod-
els based on federated graph hypernetworks. The core of Panacea is the composition of a graph
hypernetwork and a graph generator. Panacea has several advantages: it is agnostic to the target net-
work architecture, can reinforce the collaboration among adjacent clients and generate personalized
models across various application domains with better predictive performance, enjoys better gen-
eralization capability to unseen clients during training, is more resilient to malicious clients under
label-flipping attacks. Extensive experiments on synthetic and real-world datasets have demon-
strated the rationality and effectiveness of using Panacea, resulting in a new state-of-the-art for
generating personalized models in federated learning settings.
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