

000 001 MENTALBLACKBOARD : EVALUATING SPATIAL VISUALIZATION 002 VIA MATHEMATICAL TRANSFORMATIONS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT 010

011 Spatial visualization is the mental ability to imagine, transform, and manipulate the spatial charac-
012 teristics of objects and actions. This intelligence is a part of human cognition where actions and
013 perception are connected on a mental level. Do state-of-the-art Vision-Language Models (VLMs)
014 also exhibit this ability? To explore this, we develop MentalBlackboard, an open-ended spatial
015 visualization benchmark for Paper Folding and Hole Punching tests within two core tasks: predic-
016 tion and planning. Our prediction experiments reveal that models mostly overpredict the final hole
017 numbers and struggle with applying symmetrical transformations, even when they predict the se-
018 quence of unfolding steps correctly. The backward folding process (folding the paper away from
019 the camera/observer), which leads to limited vision, reduces the accuracy of spatial arrangement
020 construction for certain models. Rotations, which alter the orientation of the unfolding actions, in-
021 troduce a significant challenge for models to understand the physical orientation of the paper. The
022 planning task, in which models are required to identify the sequence of folds that match the final
023 hole pattern, shows models' limitations in analyzing symmetrical relations and creating the multi-
024 stage symmetry process. In the task of generalization, which does not require spatial visualization,
025 models reason through the visual analogies involving two visual examples of the same paper-folding
026 process, along with a distinct spatial property and text-based hole information. Although the best-
027 performing model, o3, achieves a peak performance of 71.6% in transferring spatial data, it only
028 obtains 25% accuracy on text-based prediction tasks. Claude Opus 4.1 achieves the highest plan-
029 ning score with 10%. The field-wise performance shows that models struggle more with locating
030 and orienting the holes.

031 1 INTRODUCTION 032

033 Spatial thinking is an essential component of nonverbal intelligence, allowing the brain to perform cognitive tasks such
034 as imagining, altering structures, and shifting perspectives. This ability is directly connected with the success of the
035 Science, Technology, Engineering, and Mathematics (STEM) fields (Wai et al., 2009). Visualizing the 2D structure as
036 a 3D transformation in space is a required tool to mentally design new systems. Engineers typically utilize a highly
037 developed spatial visualization capability (Maresch & Sorby, 2021) to solve spatial-geometric problems. Similarly, in
038 mathematics, spatial reasoning is employed to comprehend space, visualize objects and their associations, and tackle
039 problems (Woolcott, 2020). This skill is critical for grasping the complicated and abstract concepts in mathematics
040 (Clements & Battista, 1992; Pirie & Kieren, 1994).

041 Spatial visualization represents one of the object-centered spatial abilities, which involves intricate spatial manipu-
042 lations within the object's borders (Harris et al., 2023). The *Paper Folding Test (PFT)* (Ekstrom et al., 1976), one
043 of the multi-stage spatial visualization tasks, involves a series of paper-folding actions followed by a hole-punching
044 step. It challenges participants to identify the spatial arrangements of the resulting holes after mentally unfolding the
045 paper. This mental folding task is connected to multiplicative and algebraic processes (Empson & Turner, 2006) and
046 inherently contains symmetry transformation (Uttal et al., 2024). While reflections across the crease line are connected
047 with spatial relations, the final appearance of holes depicts the structural transformation (Harris & Lowrie, 2024).

048 Although spatial visualization plays a significant role in mathematical thinking (Medina Herrera et al., 2024), its eval-
049 uation in state-of-the-art vision-language models (VLMs) remains relatively underexplored, especially compared to
050 other spatial reasoning tasks such as spatial perception (Hu et al., 2022), spatial relations (Wiebrock et al., 2000), and
051 navigation & mapping (Gupta et al., 2017). Many spatial benchmarks often rely on a multiple-choice format (Zeno
052 et al., 2025; Yang et al., 2025b) that requires selecting the correct answer from a provided solution set. However,
053 this approach reveals only accuracy and does not elucidate the reasons for incorrect responses. In addition, relying
on limited answer options can fail to evaluate the underlying reasoning abilities; rather, it could expose alternative

strategies to solve the problem such as elimination (discarding options that do not match the stimulus features), perceptual matching (scanning the similarities between options and stimulus components) or working backward (testing each option to find the best fit) (Snow, 1980).

In response to these challenges, we introduce MentalBlackboard: an open-ended spatial visualization benchmark that employs PFT within two core tasks: prediction and planning. Prediction integrates PFT to rotation transformations and implements a folding-unfolding strategy for the solution. This approach requires mental transformation steps to identify the hole configurations, which demands a high cognitive load to measure the visualization process Harris et al. (2013), Preuss et al. (2024). The planning task aims to interpret the final unfolded paper and determine the folds and initial holes to reach the identical result. Both tasks require visual perception to understand the concept, visuospatial working memory to track multiple folds and punches while processing, sequential reasoning to understand the ordered folds/unfolds, and spatial visualization to imagine and manipulate objects. Task examples are shown in Figure 2.

Our contributions and observations are summarized below:

- We introduce MentalBlackboard, a large-scale, open-ended benchmark to evaluate VLMs' spatial visualization skills with prediction and planning tasks. We develop an automated data creation pipeline to dynamically generate the 3D animation of the tasks.
- We evaluate state-of-the-art VLMs on MentalBlackboard tasks, showing up to 25% accuracy in text-based prediction and 10% planning tasks. We identify the main challenges through the analysis of the open-ended evaluation results.
- We conduct additional ablation studies to assess spatial information transfer and the impact of backward folding on prediction performance.

2 RELATED WORK

Spatial Visualization. Spatial visualization ability requires multi-stage mental processes, which makes it a complex task to perform. It includes various tasks in which mathematical transformations are applied in different way (Harris et al., 2023). While PFT (Ekstrom et al., 1976) implements symmetrical processes and manipulation of the object, the Mental Rotation Task (MRT) (Shepard & Metzler, 1971) focuses on rotation without transforming the object, which does not fulfill the definition of visualization (Fehringer, 2020); therefore, it is categorized between spatial visualization and spatial relations (Pellegrino et al., 1984). Another 2D to 3D conversion task similar to PFT is the Surface Development Test (Ekstrom et al., 1976), which involves imagining how a flat shape folds into a 3D object but does not require tracking the spatial components. To assess the intelligence of visualization, these pen-and-paper tasks have been typically utilized. Recent spatial visualization benchmarks, such as Ramakrishnan et al. (2025), Jia et al. (2025), Li et al. (2025b), and Stogiannidis et al. (2025), address some of these tasks with valuable but limited perspectives. These benchmarks contain multiple spatial reasoning tasks, including spatial visualization (SV). Each SV task relies on a distinct underlying transformation: MRT emphasizes mental rotation, whereas PFT centers on mirror symmetry. The memory use and tracking of actions also show differences for each task. In contrast, the MentalBlackboard dataset focuses on one task (PFT), which was revised to include both symmetry and rotation transformations, along with a memory requirement. Beyond the extra mental process, this task differs from the other PFT tasks in Table 1 in terms of its large scale, multi-dimensional structure, and open-ended evaluation methodology, which enables exploring the reasons behind the failure cases. Unlike Mind the Gap, which restricts tasks to at most two folds and prohibits combining diagonal with other fold types (Stogiannidis et al., 2025), MentalBlackboard introduces high cognitive complexity by supporting up to four folds (excluding rotation), and generating 12K unique configurations with an automated pipeline. This complexity arises from the increased number of combinations of folds, especially those involving diagonal folds, which lead to asymmetry, occlusion, and abstract non-perceptual matching (Kyllonen et al., 1984; Burte et al., 2019).

Spatial Reasoning Benchmarks. Spatial reasoning requires the understanding and inference from the spatial data, actions, and their relations in space. It contains diverse tasks that measure distinct properties of the spatial reasoning process. While benchmarks like Visual Spatial Reasoning (VSR) (Liu et al., 2023), Clevr (Johnson et al., 2016), SpatialSense (Yang et al., 2019), SpatialVLM (Chen et al., 2024) and VSI-Bench (Yang et al., 2024) focus on relations between spatial arrangements in diverse environments, GOAT-Bench (Harris et al., 2023), Navi2Gaze (Zhu et al., 2024), and VLABench (Zhang et al., 2024) target spatial orientation and navigation. Several datasets, such as ALFRED (Shridhar et al., 2020), AGQA (Grunde-McLaughlin et al., 2021), and NExT-QA (Xiao et al., 2021), address spatio-temporal tasks, where models need to reason about both spatial relationships and temporal dynamics across sequences of events or visual inputs. However, MentalBlackboard differentiates itself by focusing on multi-stage mental manipulations utilizing symmetry and rotation transformations. It challenges models to track the actions, to understand the physical dynamics of the object, and to perform a series of mental actions. This high cognitive load

positions our proposed MentalBlackboard as a distinct benchmark for evaluating the spatial visualization ability of the VLMs.

Vision-Language Models Vision-Language Models (VLMs) have made significant progress across perceptual understanding, reasoning, and language tasks. The integration of effective linguistic ability and visual perception enables the performance of multimodal tasks such as visual question answering (Goyal et al., 2017; Marino et al., 2019), image captioning (Chen et al., 2015; Sharma et al., 2018; Plummer et al., 2015), visual grounding (Yu et al., 2016), and visual reasoning (Suhr et al., 2019; Hudson & Manning, 2019). This multimodality increases interest in assessing the VLM’s capability in complex reasoning tasks. The MentalBlackboard pushes the boundaries of the models’ spatial reasoning intelligence, mainly focusing on the multi-stage manipulation in the 2D to 3D conversion task.

Table 1: Comparison of spatial reasoning datasets and their SV tasks on cognitive processes, size, space, and evaluation approach. Meanings of the abbreviations: Symmetry = Does the task involve mental transformation based on symmetry?, Memory = Does the task in datasets require tracking actions?, Rotation = Does mental rotation exhibit in the task?, MC = multiple-choice, MPFB = Minnesota Paper Form Board, SBST = Santa Barbara Solid Test Cohen & Hegarty (2012), R-Cub-Vis = R-Cube Visualization Short Test, CUR-MA = Cube Unfolding and Reconstruction and Mental Animation, VP-MRT = Visual Penetration and Mental Rotation Task. If a dataset includes multiple SV tasks that obtain different mental operations, their results are concatenated with a plus symbol.

	Symmetry	Memory	Rotation	Size	Dimension	Evaluation	SV Tasks
SPACE (Ramakrishnan et al., 2025)	✗	✗	✓	172/50 (visual)	2D	MC	MRT + MPFB (Likert & Quasha, 1941)
STARE (Li et al., 2025b)	✗	✗	✓	320	2D	Yes/No	Cube Folding
Mind the Gap (Stogiannidis et al., 2025)	✓+✗	✓+✗	✗+✓	200/400	2D	MC	PFT + MRT
BSA (Xu et al., 2025)	✗	✗+✓	✓	90	2D	MC	SBST + R-Cube-Vis (Fehringer, 2020)
Omni Spatial (Jia et al., 2025)	✓+✗	✓+✗	✗+✓	< 245	2D	MC	PFT + MRT
SpatialViz-Bench (Wang et al., 2025a)	✓+✗+✗	✓+✗+✓	✗+✓+✓	1180	2D	MC	PFT + VP-MRT + CUR-MA
MentalBlackboard (ours)	✓	✓	✓	> 1M	2D, 3D	Open-ended	PFT (included rotation)

3 MENTALBLACKBOARD

The MentalBlackboard benchmark is developed to evaluate the spatial visualization intelligence of state-of-the-art large language models across two core tasks: prediction and planning. This benchmark challenges models to process the sequence of visual actions or the results of actions and apply the symmetry and rotation transformations to the three-dimensional object multiple times, regarding the task. The implementation of an open-ended evaluation framework provides both accuracy and error analysis for the failure cases. The dynamic structure of the creation process enables a large-scale dataset of over 12,000 unique configurations without implementing rotations. Figure 1 displays the dataset creation pipeline of MentalBlackboard.

3.1 BENCHMARK CONSTRUCTION

Environment Setup. The Blackboard dataset employs a paper-folding and hole-punching test structure. To develop a physically dynamic system that implements both symmetry and rotation in a three-dimensional environment, we utilized the VPython platform. However, building the paper structure and applying the various creasing points is challenging due to the physical limitations of the objects in the environment. To execute diagonal foldings without any physical violations, we divide the paper into 32 triangles, which limits the number of possible folding steps to five.

Dataset Configuration. The Blackboard benchmark is generated utilizing the PFT approach through a series of folding actions followed by a hole punching process. We identify eight fold types: horizontal, vertical, diagonal, and their directions, and three rotation angles: 90, 180, and 270 degrees. The spatial attributes of each hole include its location, orientation, geometric shape, and size. To generate the hole to be punched in the paper, we select a combination of nine distinct shapes, two size options, four orientations, and 32 defined positions.

In this benchmark, each problem begins with a square flat paper that presents a 2D plane within 3D space, featuring two sides: front and back. The crease line for each fold is computed by dividing the region in half in accordance with the folding type, ensuring a symmetric folding process. To eliminate physically infeasible folding sequences, multiple validation rules are introduced, which preserve the integrity of the paper mesh during folding; see Appendix D for details. Once the initial fold is completed, the part of the paper transitions to a folded state, and the next folding step is applied to the remaining paper regions. The folded segments can be stacked above or below the rest of the paper,

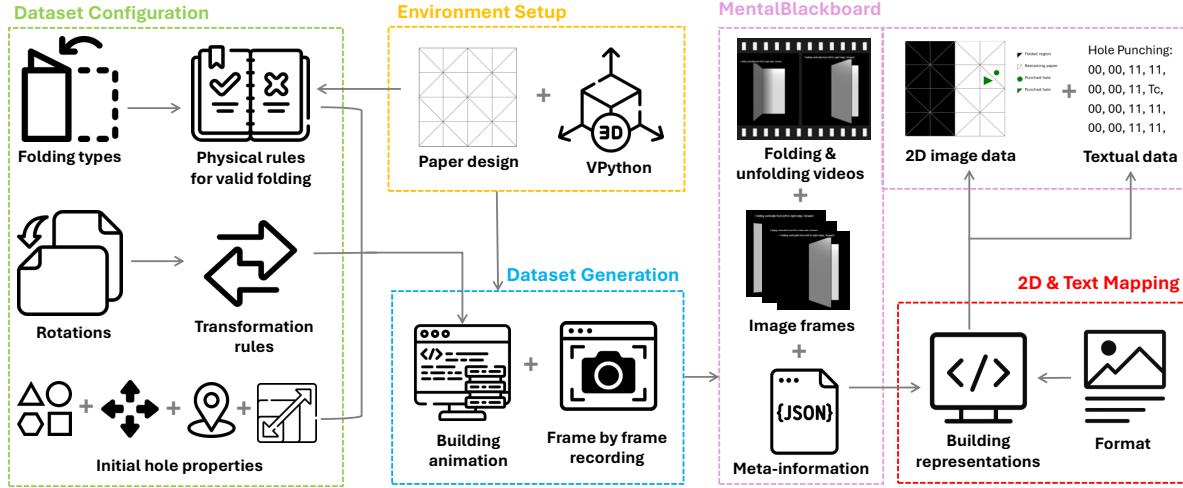


Figure 1: The MentalBlackboard creation pipeline, which consists of environment setup, dataset configuration, dataset generation, and 2D and text mapping.

depending on whether the fold is *forward* (toward the camera/observer) or *backward* (away from the camera/observer). The rotation is applied after the folding action(s), which reorients prior folds by altering the direction of the crease line. To analyze the physical transformations that occur after rotation, we generated transformation rules that define the impact of the rotation angle on the type and direction of folding (see Appendix D for details). During unfolding, these rules provide physical awareness of the oriented paper and ensure that the paper mesh does not experience physical deformation or self-intersection.

Dataset Generation. To construct the 3D folding paper animations, predetermined folding and rotation types are combined, and the combinations are validated to determine whether the structure is physically applicable to the paper design. A total of nine unique folding step configurations are generated, five of which include rotation (see Appendix C). To determine the initial hole data for the punching action, we randomly select the size, location, shape, and direction information from the identified sets. To animate the unfolding actions, we apply the reverse direction and order of the folding actions. However, if the task implements rotation, the transformation rules (see Appendix D) are applied to the paper to identify the physical orientation of the paper layout and alteration of the creasing line. VPython renders animations in-browser; therefore, each video frame is captured via automated screenshots and then converted into videos. Besides folding & unfolding frames and videos, the metadata of each task has been saved in a JSON file.

2D & Text Mapping. To observe the performance difference between diverse modalities, we design a 2D image and a textual representation of the folding, punching, and unfolding processes. The image format utilizes the identical paper design with animation and employs colors, black, white, and green, to depict the folded part, the remaining region of paper, and punched holes, respectively. The text-based format utilizes symbols: 0, 1, and encoding letters to represent folded, unfolded, and hole shapes. Because of the limitations of letter symbols, direction information is not applied to the text mapping. Unlike other formats, text mapping implements a grid structure, and each cell consists of two values: left and right triangles. The structure of textual expression is depicted as [row,column,tri].

3.2 TASKS OF MENTALBLACKBOARD

Prediction. The prediction task tests the models' reasoning and implementation process about how to reach the result when initial data is provided. The sequence of folding actions, the numbered paper design, and initial hole information (shape, size, direction, and location), are provided with the model. The task aims to understand the folding actions, reason about how to unfold the paper by applying symmetry-related transformations, and find the resulting holes. The models need to consider the physical effect of the rotation transformations and decide the unfolding steps accordingly. The task is designed with three spatial encodings: text, 2D image, and video. The example prediction task with distinct representations is shown in Figure 2.

Planning. This task evaluates whether the model can reach the goal by reasoning through multiple steps. The final unfolded paper image with textual hole information is provided to the model, and the model is requested to find the

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

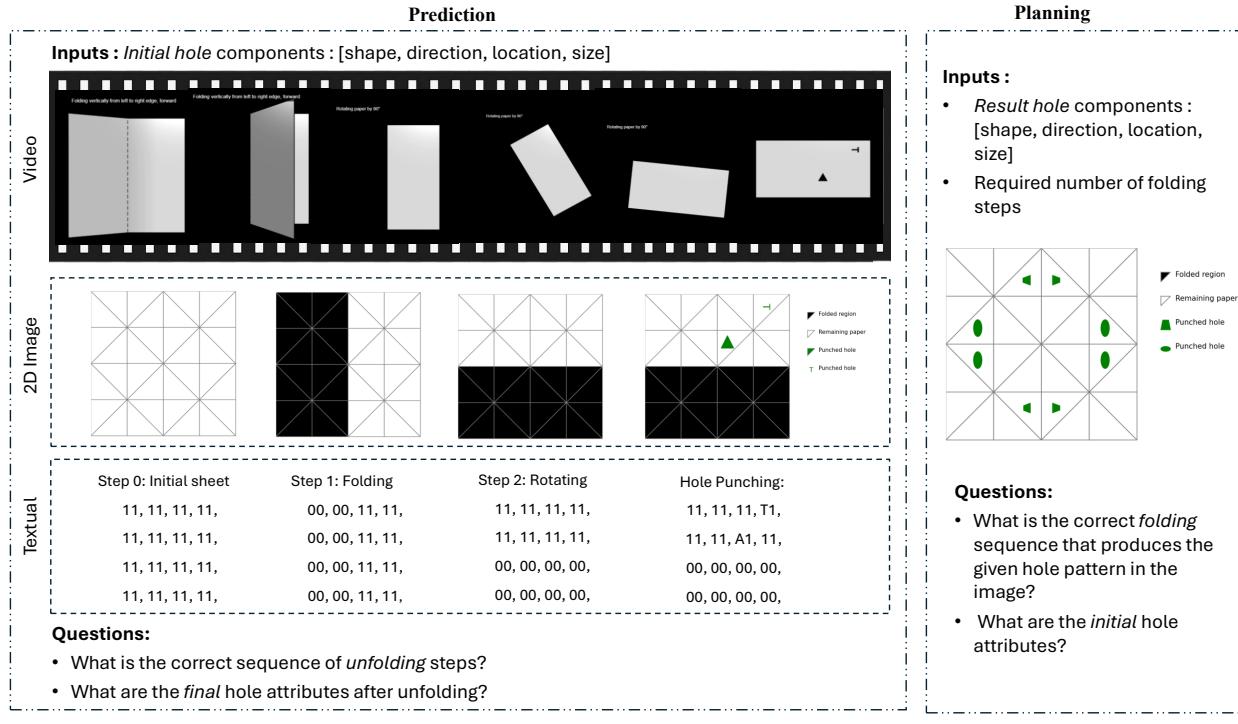


Figure 2: Examples of a prediction task and a planning task.

sequence of folding actions and initial hole information. To prevent models from selecting trivial one-step solutions, we also provide the required number of folding steps to reach the final result. This task does not include rotation actions and limits the maximum number of initial holes to two. Figure 2 also shows a planning task example.

4 EVALUATION SETUP

MentalBlackBoard Test Dataset. To evaluate spatial visualization in the prediction task, we generated three types of representations: (1) video (MP4 or image frames), (2) 2D abstract images, and (3) text descriptions designed for large language models (LLMs). A total of 900 prediction problems were created for the video format and 315 for the other formats. The task consists of 9 distinct configurations, with 5 involving rotation (see Appendix C). The statistics of the prediction task in terms of used fold types, position of the initial holes, and shape of the holes are illustrated in Figure 3. The unfolding types are identical to the fold types. On the other hand, the planning task utilizes a 2D image representation and includes 400 questions applied in 4 distinct structures, *excluding rotation*. In both tasks, only forward folding (toward the camera/observer) is applied.

Benchmark Models. We evaluate open-sourced and proprietary models. For video-based prediction, we evaluated Claude Opus 4.1 (Anthropic, 2025b), o3 (OpenAI, 2025b), GPT-5.1 (OpenAI, 2025a) LLaVa-OneVision (Li et al., 2025a), and Qwen-VL 2.5 (7B) (Bai et al., 2025), and combined them with Claude 4 (Anthropic, 2025a), GPT-4o (OpenAI, 2024), Gemma-3-12B (Team et al., 2025), and InternVL3-5-8B (Wang et al., 2025b) to evaluate planning and image-based prediction tasks. For text-based evaluation, same proprietary models were used alongside DeepSeek-R1 (Guo et al., 2025), NVIDIA Nemotron-Nano-9B (Basant et al., 2025), and Qwen3-8B (Yang et al., 2025a).

Metrics. The scoring process relies on comparisons between ground truth and model-generated text-based outputs. The performance of each task is evaluated using Exact Match, which checks whether all components of the models' answer exactly match the ground truth and computes the percentage of correct predictions. We utilize this metric to assess whether models successfully complete all folding/unfolding steps and generate the correct hole attributes for each problem. To capture cases where models predict the result partially correctly, we include a custom Partial Accuracy metric. Since the results involve multiple holes and their components, we include a penalty for predicting more holes than the correct answer. Given the number of ground truth G , the number of the prediction result P , and

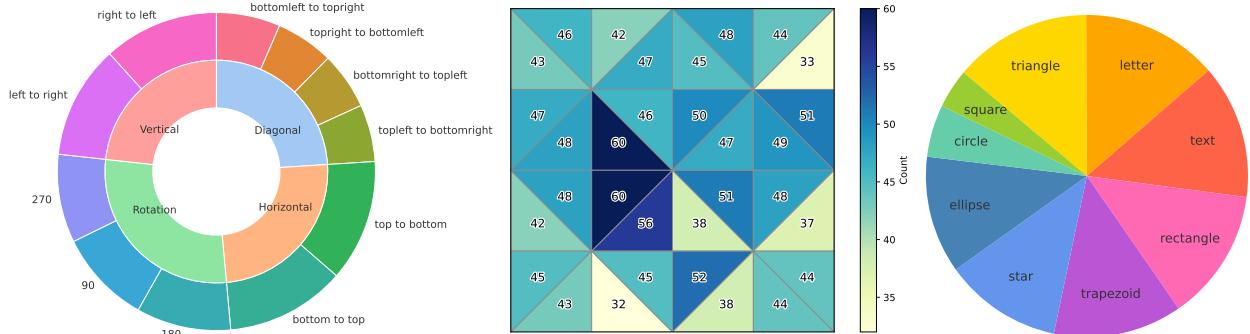


Figure 3: Benchmark statistics of the prediction task. (a) The distribution of the folding and rotation types across four main tasks and eleven sub-tasks. (b) The visualization of the initial hole locations in the paper design. The darker cells represent paper regions with a higher number of punched locations. (c) The distribution of the initial hole shapes across nine categories. Square and circle shapes are excluded from rotation tasks, as their appearance is not affected by rotations.

the number of the matched data M , which refers to the count of cases when prediction results exactly match with ground truth data, the final score is calculated as:

$$\text{PartialAccuracy} = \frac{M}{G + \max(0, P - G)}$$

The scoring method is implemented at two levels: per problem and per hole component. The field-based evaluation measures the correctness of each attribute, size, direction, location, and shape individually, without considering the accuracy of other hole properties in the problem. On the other hand, overall partial accuracy checks all the components of the hole. While field-based partial accuracy provides how many times each attribute is predicted accurately in the problem, overall partial accuracy calculates how many holes are predicted correctly.

Table 2: Model performances across video-based, 2D image-based, and text-based prediction tasks. Metrics are grouped into exact match accuracy, custom score, hole count errors, unfolding accuracy, and hole attribute accuracy. Dashes (—) indicate that the field was not evaluated for that model. Top scores are shown in purple, low scores in red.

Model	Exact Match (%)	Overall Partial Accuracy (%)	Hole Count Errors (%)		Unfolding Accuracy (%)		Field-wise Partial Accuracy (%)			
			Extra	Missing	Exact	Steps	Shape	Size	Location	Direction
Video-Based Prediction										
Qwen2.5-VL	0.00	14.29	0.00	100	3.78	16.99	22.44	23.39	17.95	21.93
Claude Opus 4.1	1.22	18.60	57.00	8.22	16.33	38.66	53.87	53.98	29.69	36.50
Claude 4	1.56	19.99	44.11	6.11	16.89	29.44	66.92	67.00	32.72	41.52
LLaVA-One Vision	0.00	19.03	0.00	100	2.78	12.69	25.49	25.95	20.32	25.41
GPT-4o	0.33	9.97	66.56	12.78	0.78	26.02	45.65	45.96	22.23	28.66
GPT-5.1	1.00	18.62	34.44	12.67	18.78	37.64	67.78	68.19	30.04	44.73
o3	8.00	28.22	32.56	10.78	24.33	44.13	67.87	68.05	41.53	47.44
2D Image-Based Prediction										
GPT-4o	0.32	12.32	47.62	18.73	4.13	16.56	60.15	60.65	22.80	36.43
Gemma-3-12B	0.00	13.25	15.24	76.19	4.44	18.81	35.38	34.20	17.76	28.20
LLaVA-One Vision	0.00	18.60	0.00	100	1.59	9.40	25.38	25.65	19.14	24.78
GPT-5.1	0.32	18.66	30.48	22.54	5.71	22.65	70.13	70.90	28.11	45.55
Claude 4	0.95	19.97	41.59	17.78	8.57	27.55	62.62	62.85	29.68	40.57
Claude Opus 4.1	2.54	20.93	44.44	8.57	8.25	26.75	61.13	61.13	31.46	41.59
o3	10.48	29.41	29.84	19.37	20.95	35.39	61.70	61.70	41.01	46.51
Text-Based Prediction										
Nemotron-Nano-9B	0.00	16.56	4.76	92.06	1.27	16.82	26.99	27.30	17.89	—
GPT-4o	0.32	20.42	48.89	18.10	3.81	18.41	60.25	60.29	22.81	—
Qwen3-8B	0.32	15.45	8.57	83.17	3.49	19.21	31.78	32.40	16.54	—
DeepSeek-R1	0.32	14.74	1.59	96.19	2.54	17.48	23.67	25.01	16.14	—
GPT-5.1	3.17	25.51	39.05	26.67	6.35	22.78	62.84	63.01	28.71	—
Claude 4	12.38	30.90	48.25	6.03	12.06	34.44	58.84	59.17	34.49	—
Claude Opus 4.1	17.46	33.75	46.35	7.30	15.24	30.73	60.77	60.77	38.20	—
o3	25.07	47.13	48.25	7.94	25.40	48.74	67.40	67.51	49.58	—

324

5 EVALUATION RESULTS

325

326

327 A preliminary test has been conducted on a couple of proprietary models to analyze whether they understand the
 328 content of the visual and textual input used in the prediction and planning tasks. The questions and results are provided
 329 in Appendix B. For evaluations prompts, please refer to Appendix G. A human performance test was also conducted
 330 to reveal the gap between the models and human participants. The results are provided in the Appendix E.1.

331

332

333

5.1 PREDICTION

334

335

336 We evaluate the spatial visualization ability of current models on the prediction task with three formats. Table 2
 337 presents the exact match and partial scores, count errors on result holes, and unfolding accuracy based on both exact
 338 and order-sensitive matching. Our evaluation shows that open-source models, which achieve a maximum of 4.4%
 339 accuracy on exact fold matching, are not able to reverse the symmetrical folding actions to unfold the papers, despite
 340 clear instructions in the text prompt. InternVL3 is not able to complete the task because of the struggle to establish
 341 multistep logical reasoning. Also, the high accuracy of open-source models on the missing hole error demonstrates
 342 that they struggle to create the spatial objects in the paper space. Partial accuracy on hole properties (below 35%)
 343 indicates that capturing spatial attributes is another challenge for open-source models.

344

345 Although there is a performance gap between baseline proprietary models and open-source models, the best-
 346 performing model, **o3**, **achieved 25% exact match accuracy**. While they produce fewer errors on missing result
 347 holes, they generate a high number of extra holes. Possible reasons are: (1) generating more unfolding steps than the
 348 solution; (2) calculating the symmetry without considering physical conditions where the punched area on the top layer
 349 does not contain underlying folded layers beneath it, such as a diagonal fold from top right to bottom left, followed
 350 by a vertical fold from left to right; or (3) applying the symmetry wrongly by computing more spatial relations based
 351 on the crease line. The extra holes reduce the accuracy of the partial score as they are being penalized in the metric
 352 computation. The partial accuracies of the proprietary models are above 53% for shape and size, which are easier to
 353 predict than others. Location and direction are identified with transformations. The low partial accuracy scores show
 354 that symmetry is a challenging task for models. The contrast between component-based and overall scores reveals that
 355 the model often captures individual properties but struggles to combine them into a fully coherent prediction.

356

357

358

359

360 The performance gap between the exact match unfolding
 361 score and the step-based unfolding score, which matches
 362 the correct position of the unfolding types in the solution
 363 set, implies that **models struggle with sequential rea-**
 364 **soning (comprehending the sequence of folds) and vi-**
 365 **suospatial working memory (following a series of fold**
 366 **actions)**. The low exact match accuracy, despite the cor-
 367 rect sequence of unfold types, reveals that models fail to
 368 implement symmetry transformation. Figure 4 displays
 369 the performance loss of o3 models during the unfolding
 370 process in nine distinct configurations where the rota-
 371 tion action is included in Groups 5 to 9 (see Appendix
 372 C). When the number of folds increases, the difficulty of
 373 the problem rises directly. Additionally, a combination
 374 of folds and rotations decreases both unfolding and hole
 375 prediction accuracies. This result shows that **rotation**
 376 **creates a physical challenge to the models, where they**
 377 **need to understand the orientational and directional**
 378 **alteration of the paper design**. Among the different
 379 input tasks, the models perform better on text-based pre-
 380 diction. Although o3 and Claude Opus 4.1 achieve com-
 381 parable accuracy in exact unfolding for video and text
 382 predictions, they diverge in their exact match scores.
 383 Because of the limitation of encoding letters, the text-based
 384 structure does not include a direction feature, which reduces the difficulty level of the problem. Although three
 385 representations produce similar field-wise accuracy, the overall partial accuracy of the text-based task is around 1.5 times
 386 higher than that of the other tasks. The result demonstrates that textual representation mitigates the mental trans-
 387 formation process with a symbolic format.

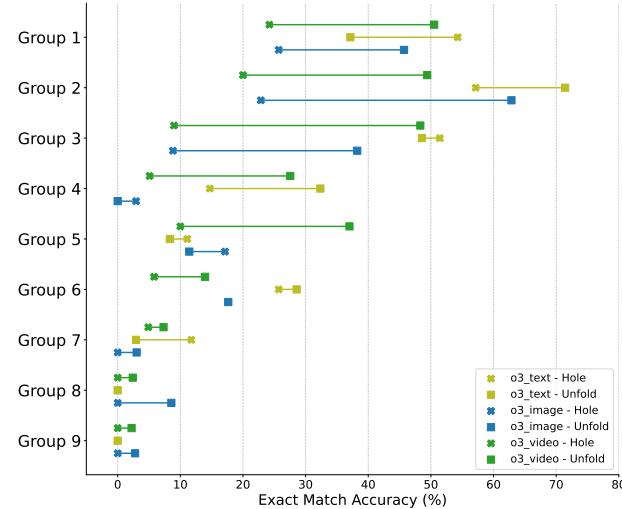


Figure 4: Group-wise comparison of the best-performing o3 models with exact match of holes and unfolding steps.

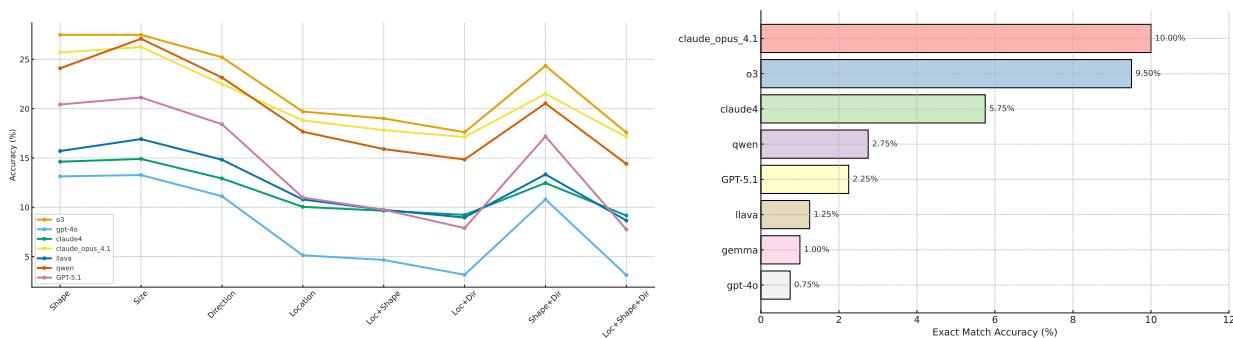


Figure 5: Performance of the models on the planning task: (a) partial accuracy per field; (b) exact match accuracy of baseline models.

5.2 PLANNING

For the planning task, a model is asked to provide a series of folds and initial hole properties as the outcome. Since the problem can be solved by using various folding combinations and hole data, we execute the configurations on models' responses on the 3D animation system, which we developed to generate the MantalBlackboard dataset. Each run generates the final hole attributes that belong to the models' planning task. The resulting holes are evaluated to determine whether the holes generated by the model matches the actual outcome. To prevent the simple one-fold planning results, we restrict models to generate the requested count of folds with up to two initial holes. **Claude Opus 4.1 is the best-performing model of the planning task with 10%**, followed by o3, which obtains 9.5% exact match accuracy (see Figure 5). In this task, we observe a high count of missing holes on proprietary models as opposed to the prediction task (see Table 2). Possible reasons are: (1) model preference for fewer steps than the required count in order to obtain a simple solution; (2) a lack of physical awareness of cases where, after multiple steps, the top layer covers the empty area; (3) ordering the physically impossible folds for the paper structure; and (4) failure to mentally simulate folding actions correctly. As a result of the count of hole errors, the partial accuracies of the fields are lower than the prediction task, below 25%. In the planning task, calculating the correct positions of the holes is the primary challenge, followed by determining the direction. The result in Figure 5 reveals that models fail to locate the initial holes, which results in generating a different hole pattern than the solution. Analysis on each task configuration demonstrates that most of the models perform better on one-fold planning problems, except for o3, which achieves better on two-fold planning, the same as the prediction task 2. The complexity level boosts when the number of folding steps increases, which shows that models mentally process a limited number of series of actions.

6 DISCUSSION

6.1 DO VLMs TRANSFER SPATIAL INFORMATION?

To measure the models' spatial knowledge transfer ability, we create a generalization task, which includes 240 questions in a 2D-image format and three configurations: one-fold, two-folds, and one-fold-one-rotation. The task employs visual analogical reasoning framework with two sequential sets of images. The initial set consists of folding and punching through ordered images, and the result of the unfolded paper. The second set contains identical folding actions but different hole data. The objective is to understand the relationship between the two cases and deduce the spatial components of the resulting holes from the second set. To reach the correct hole pattern, models do not need to unfold the paper and apply knowledge about symmetry; rather, they need to understand the spatial relations among scenarios. The task consists of four categories: size, location, direction, and shape. For each analogy question, only *one type* of hole information is altered at a time. Unlike prediction and planning, the generalization task does not require spatial visualization; it assesses the transfer skills of spatial data. An example of the task is given in Figure 6.

The evaluation results in Figure 7 demonstrate the performance gap between proprietary and open source models on spatial transfer ability. In this task, models tend to underpredict holes rather than overpredict. While o3 accurately solves 71% of the spatial generalization problems, followed by Claude Opus 4.1 and Claude 4 with around 63% and GPT-5.1 with 59.58%, InternVL3, an open-source model, achieves 25% exact match accuracy. Our observations reveal that models implement shape and size arrangements more easily than direction and location. Since the folds between the two cases are identical, models do not need to mentally transform the paper, which explains why the scores are

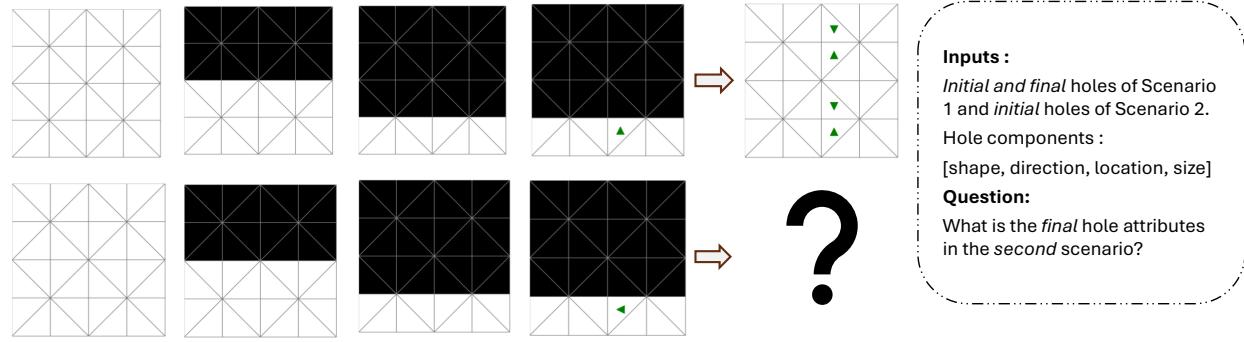


Figure 6: An example of a generalization task employs a visual analogical reasoning framework, which requires making an inference from the first scenario to identify the missing part in the second scenario

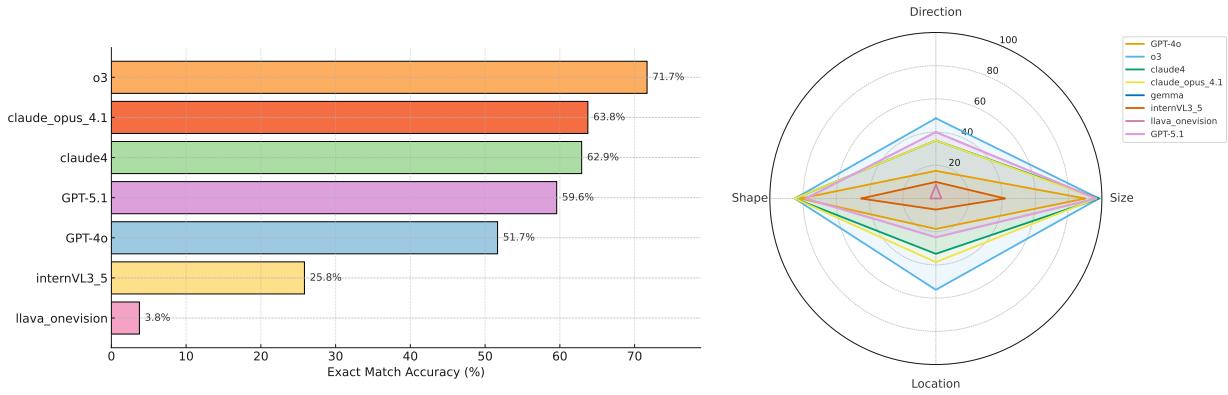


Figure 7: Performance of the models on the generalization task: (a) exact match accuracy of baseline models; (b) the accuracy of the models for each category.

higher than in prediction and planning tasks. However, they still need to calculate the direction and position of the final holes by creating a relation to the result of the first case. Single property change at a time reveals that models mentally rotate the spatial data better in the absence of series symmetry transformations.

6.2 HOW DO REPRESENTATIONS INFLUENCE PERFORMANCE?

To discover the impact of textual representation on solving the PFT problem, we re-evaluated model performance on 2D image-based and video-based tasks after removing the direction attribute. Since the 2D image and text-based test sets share identical examples, any difference in performance directly reflects how textual representation influences model behavior in PFT prediction. The video-based dataset, however, includes 900 PFT problems. To include video-based prediction results in the comparison, we extracted the corresponding subset of questions from the text-based cases, resulting in 315 prediction examples per modality.

Five models, o3, Claude 4, Claude Opus 4.1, GPT-5, and GPT-4o, were evaluated across all modalities, and their results were re-analyzed without considering the direction attribute, see Table 3. The findings reveal that textual representations generally yield higher exact-match accuracy than visual formats, except for GPT-4o. Both o3 and Claude Opus 4.1 perform better at the 2D image prediction task compared to video-based evaluations. Notably, Claude Opus 4.1 shows a significant accuracy drop, decreasing from 17.46% on text-based tasks to 4.44% on image-based tasks. Similarly, Claude 4 demonstrates a 10% decrease between text and image-based prediction. But both models show comparable performance between image and video tasks. While GPT-4o shows nearly identical performance across all modalities (0.32%), GPT-5.1 exhibits small variations, with 3.17% accuracy on text and 1.27% on image and video tasks. These results indicate that the Claude models exhibit a substantial performance gap between text-based and visual evaluations.

486
487
488 Table 3: Model Performance across Text, Video, and 2D Image Tasks
489
490

Models	2D Image		Text		Video	
	Exact Match (%)	Overall Score (%)	Exact Match (%)	Overall Score (%)	Exact Match (%)	Overall Score (%)
o3	19.05	39.39	25.07	47.13	15.87	40.60
Claude Opus 4.1	4.44	28.53	17.46	33.75	2.86	26.00
Claude 4	2.86	27.44	12.38	30.90	2.22	27.18
GPT-4o	0.32	20.40	0.32	20.42	0.32	17.58
GPT-5.1	1.27	25.62	3.17	25.51	1.27	26.37

494
495
496 6.3 HOW DOES BACKWARD FOLDING AFFECT PERFORMANCE?
497

498 The prediction task is performed on forward folding actions, where the folded part of the paper is seen in the video.
499 However, when we change our perspective and do not see the folding actions fully, does it affect the spatial visualization
500 performance? To answer this question, we create a backward prediction task, including 180 video questions with
501 9 configurations. We implement the same fold types as the prediction task, but the direction of each fold is reversed
502 (away from the camera/observer). To ensure consistency, we adopt the same paper structure, viewpoint, and shadow
503 rendering as forward folding. The camera parameters, including position and zoom, remain unchanged. Consequently,
504 upon completion, both methods yield identical paper visuals and operate within the same action space and spatial rep-
505 resentation of holes. The unfolding accuracies shown in Table 17 demonstrate that models o3 and Claude Opus 4.1
506 visually perceive the backward foldings as similar to the forward foldings in the 2D prediction task. However, they
507 tend to generate more extra holes than in the forward task. Some models, such as Claude Opus 4.1, exhibit a substantial
508 decline in performance when predicting exact unfolding steps in the backward prediction setting, leading to reduced
509 exact match accuracy. This indicates that the model is influenced by view-dependent representations, struggling to
510 identify the unfoldings when the perspective of the folding action is reversed.

511 7 CONCLUSION
512

513 We introduce MentalBlackboard, a large-scale spatial reasoning benchmark designed to assess the spatial visualiza-
514 tion ability of current VLMs within prediction and planning tasks. Although many models transfer the spatial data
515 with an accuracy of above 51%, their prediction and planning performance do not exceed 25% and 10%, respectively,
516 which shows that the mental transformation requires a high level of cognitive load. Our evaluations reveal that models
517 struggle to predict the correct sequence of unfolding actions, indicating limited sequential reasoning and visuospatial
518 working memory. Including the mental rotation in the process shows that models lack understanding of the physical
519 alteration in the unfolding method. Although the unfolding steps are predicted accurately, their performance drops
520 during the symmetry process. Also, visualizing backward unfolding introduces another challenge to the mental trans-
521 formation process for some models. The outcomes of the planning tasks demonstrate that models struggle to perform
522 reverse engineering, which requires understanding the mirror effect on the final hole pattern and imagining the folding
523 actions in sequence. MentalBlackboard reveals the limitations of current VLMs with high-level cognitive tasks. We
524 hope it will contribute to solving the bottlenecks of VLMs for advanced spatial visualization intelligence. Particularly,
525 for R&D groups building next-generation large-scale multimodal and Video GenAI systems, MentalBlackboard pro-
526 vides one more critical perspective: training models to perform complex 2D-to-3D mental transformations, a capability
527 essential for reliable embodied reasoning, robotics, and high-fidelity video generation.

540
541 **ETHICS STATEMENT**542 This research poses no ethical issues because it utilizes pre-existing, publicly accessible models without requiring any
543 subjective assessments. The study adheres fully to the ethical standards established by the ICLR Code of Ethics.
544545
546 **REPRODUCABILITY STATEMENT**547 The benchmark was generated based on the details provided in Appendices C and D. The study's execution can be
548 facilitated by referring to the details in Appendix G. Additionally, we plan to make the data and code freely available
549 under an open-access license, along with detailed instructions that allow the reproducibility of the experiment results,
550 upon acceptance of the paper. The research strictly follows the ICLR Reproducibility Requirements.
551552
553 **REFERENCES**

554 Anthropic. Claude 4 (opus & sonnet). <https://www.anthropic.com/news/clause-4>, 2025a. Proprietary
555 model.

556 Anthropic. Claude opus 4.1. <https://www.anthropic.com/news/clause-opus-4-1>, 2025b. Propri-
557 etary model.

558 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun
559 Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

560 Aarti Basant, Abhijit Khairnar, Abhijit Paithankar, Abhinav Khattar, Adi Renduchintala, Adithya Renduchintala,
561 Aditya Malte, Akhiad Bercovich, Akshay Hazare, Alejandra Rico, et al. Nvidia nemotron nano 2: An accurate
562 and efficient hybrid mamba-transformer reasoning model. *arXiv preprint arXiv:2508.14444*, 2025.

563 Heather Burte, Nora S. Newcombe, and Thomas F. Shipley. Knowing when to fold 'em: Spatial strategy use varies
564 with skill in a virtual paper-folding task. *Cognitive Research: Principles and Implications*, 4(1):41, 2019. doi:
565 10.1186/s41235-019-0187-4. URL <https://doi.org/10.1186/s41235-019-0187-4>.

566 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh, Leonidas Guibas,
567 and Fei Xia. Spatialvlm: Endowing vision-language models with spatial reasoning capabilities, 2024. URL <https://arxiv.org/abs/2401.12168>.

568 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.
569 Microsoft coco captions: Data collection and evaluation server. *arXiv preprint arXiv:1504.00325*, 2015.

570 Douglas H. Clements and Michael T. Battista. Geometry and spatial reasoning. In D. A. Grouws (ed.), *Handbook of
571 Research on Mathematics Teaching and Learning*, pp. 420–464. Macmillan, New York, NY, 1992.

572 C. A. Cohen and M. Hegarty. Inferring cross sections of 3d objects: A new spatial thinking test. *Learning and
573 Individual Differences*, 22(6):868–874, 2012. doi: 10.1016/j.lindif.2012.05.007.

574 R. B. Ekstrom, J. W. French, H. H. Harman, and D. Dermen. *Manual for Kit of Factor-Referenced Cognitive Tests*.
575 Educational Testing Service, Princeton, NJ, 1976.

576 Susan B. Empson and Erin E. Turner. The emergence of multiplicative thinking in children's solutions to prob-
577 lems involving equal groups. *Educational Studies in Mathematics*, 62(3):273–295, 2006. doi: 10.1007/s10649-006-9017-4. URL <https://doi.org/10.1007/s10649-006-9017-4>.

578 Benedict C. O. F. Fehringer. Spatial thinking from a different view: Disentangling top-down and bottom-up processes
579 using eye tracking. *Open Psychology*, 2(1):138–212, 2020. doi: 10.1515/psych-2020-0105.

580 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa matter: Elevating
581 the role of image understanding in visual question answering. In *CVPR*, 2017.

582 Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Agqa: A benchmark for compositional
583 spatio-temporal reasoning, 2021. URL <https://arxiv.org/abs/2103.16002>.

584 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
585 Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv
586 preprint arXiv:2501.12948*, 2025.

594 Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive mapping and
 595 planning for visual navigation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 596 pp. 2616–2625, 2017.

597

598 Danielle Harris and Tom Lowrie. Insights from paper folding: Spatial visualization processes and their link to math-
 599 ematics. In *Spatial Cognition XIII: 13th International Conference, Spatial Cognition 2024, Dublin, Ireland, June*
 600 *25–28, 2024, Proceedings*, pp. 3–18, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-031-63114-6. doi:
 601 10.1007/978-3-031-63115-3_1. URL https://doi.org/10.1007/978-3-031-63115-3_1.

602 Danielle Harris, Tom Lowrie, and Mary Hegarty. Spatial reasoning in context: The role of context in spatial reasoning
 603 task performance. *Frontiers in Education*, 8:1120684, 2023. doi: 10.3389/feduc.2023.1120684. URL <https://doi.org/10.3389/feduc.2023.1120684>.

604

605 Hana Harris, Kathy Hirsh-Pasek, and Nora S. Newcombe. Mental folding and mental rotation: Two routes to spatial
 606 transformation. *Cognitive Processing*, 14(2):105–115, 2013. doi: 10.1007/s10339-013-0544-6.

607

608 Ping Hu, Saeed Boorboor, Shreeraj Jadhav, Joseph Marino, Seyedkoosha Mirhosseini, and Arie E Kaufman. Spatial
 609 perception in immersive visualization: A study and findings. In *2022 IEEE international symposium on mixed and*
 610 *augmented reality adjunct (ISMAR-adjunct)*, pp. 369–372. IEEE, 2022.

611 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional
 612 question answering. In *CVPR*, 2019.

613

614 Mengdi Jia, Zekun Qi, Shaochen Zhang, Wenyao Zhang, Xinqiang Yu, Jiawei He, He Wang, and Li Yi. Omnispatial:
 615 Towards comprehensive spatial reasoning benchmark for vision language models. *ArXiv*, abs/2506.03135, 2025.
 616 URL <https://api.semanticscholar.org/CorpusID:279119987>.

617 Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick.
 618 Clevr: A diagnostic dataset for compositional language and elementary visual reasoning, 2016. URL <https://arxiv.org/abs/1612.06890>.

619

620 Patrick C. Kyllonen, David F. Lohman, and Richard E. Snow. Reasoning ability is (little more than) working-memory
 621 capacity?! *Intelligence*, 8(4):389–433, 1984.

622

623 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li,
 624 Ziwei Liu, and Chunyuan Li. LLaVA-onevision: Easy visual task transfer. *Transactions on Machine Learning*
 625 *Research*, 2025a. ISSN 2835-8856. URL <https://openreview.net/forum?id=zKv8qULV6n>.

626

627 Linjie Li, Mahtab Bigverdi, Jiawei Gu, Zixian Ma, Yinuo Yang, Ziang Li, Yejin Choi, and Ranjay Krishna. Unfolding
 628 spatial cognition: Evaluating multimodal models on visual simulations. *ArXiv*, abs/2506.04633, 2025b. URL
 629 <https://api.semanticscholar.org/CorpusID:279243208>.

630

631 Rensis Likert and W. H. Quasha. *Minnesota Paper Form Board Test*. Psychological Corporation, New York, 1941.

632

633 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. *Transactions of the Association for*
 634 *Computational Linguistics*, 11:635–651, 2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00566. URL https://dx.doi.org/10.1162/tacl_a_00566.

635

636 Guenter Maresch and Sheryl Sorby. Perspectives on spatial thinking. *Journal for Geometry and Graphics*, 25:271–293,
 637 12 2021.

638

639 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question answering
 640 benchmark requiring external knowledge. In *CVPR*, 2019.

641

642 Linda Margarita Medina Herrera, Saúl Juárez Ordóñez, and Sergio Ruiz-Loza. Enhancing mathematical education
 643 with spatial visualization tools. In *Frontiers in Education*, volume 9, pp. 1229126. Frontiers Media SA, 2024.

644

645 OpenAI. Gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024. Proprietary model.

646

647 OpenAI. Gpt-5.1. <https://platform.openai.com/docs/models/gpt-5.1>, 2025a. Large language
 648 model.

649

650 OpenAI. Openai o3. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025b. Propri-
 651 etary model.

648 James W. Pellegrino, Robert Glaser, and Michael D. Patterson. Understanding spatial ability. In R. J. Sternberg (ed.),
 649 *Cognitive styles and learning strategies*, pp. 225–260. Cambridge University Press, 1984.
 650

651 Susan Pirie and Thomas Kieren. Growth in mathematical understanding: How can we characterise it and how can
 652 we represent it? *Educational Studies in Mathematics*, 26(2–3):165–190, 1994. doi: 10.1007/BF01273662. URL
 653 <https://doi.org/10.1007/BF01273662>.

654 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazebnik.
 655 Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In *ICCV*,
 656 2015.

657 Karl Preuss, Mingyuan Zhang, Vinod Menon, Stephen M. Kosslyn, and Zhong-Lin Chen. Identifying cognitive
 658 processes and neural substrates of spatial transformation in a mental folding task. *eScholarship, University of*
 659 *California*, 2024. URL <https://escholarship.org/uc/item/92p2z4p7>.

660 Santhosh Kumar Ramakrishnan, Erik Wijmans, Philipp Krahenbuehl, and Vladlen Koltun. Does spatial cognition
 661 emerge in frontier models?, 2025. URL <https://arxiv.org/abs/2410.06468>.

662 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed,
 663 image alt-text dataset for automatic image captioning. In *ACL*, 2018.

664 Roger N. Shepard and Jacqueline Metzler. Mental rotation of three-dimensional objects. *Science*, 171(3972):701–703,
 665 1971. doi: 10.1126/science.171.3972.701.

666 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
 667 and Dieter Fox. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks. In *The IEEE*
 668 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020. URL <https://arxiv.org/abs/1912.01734>.

669 Richard E. Snow. Aptitude and instructional methods. In Richard E. Snow and Marshall J. Farr (eds.), *Aptitude,
 670 Learning, and Instruction: Volume 1—Cognitive Process Analyses*, pp. 394–474. Lawrence Erlbaum Associates,
 671 Hillsdale, NJ, 1980.

672 Ilias Stogiannidis, Steven McDonagh, and Sotirios A. Tsaftaris. Mind the gap: Benchmarking spatial reasoning in
 673 vision-language models, 2025. URL <https://arxiv.org/abs/2503.19707>.

674 Alane Suhr, Sheng Zhou, Ally Zhang, Huajun Smith, and Yoav Artzi. A corpus for reasoning about natural language
 675 grounded in photographs. In *ACL*, 2019.

676 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
 677 Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. *arXiv preprint
 678 arXiv:2503.19786*, 2025.

679 David H. Uttal, Katherine McKee, Niall Simms, Mary Hegarty, and Nora S. Newcombe. How can we best assess
 680 spatial skills? practical and conceptual challenges. *Journal of Intelligence*, 12(1):1–17, 2024. doi: 10.3390/
 681 *jintelligence*12010002. URL <https://doi.org/10.3390/jintelligence12010002>.

682 Jonathan Wai, David Lubinski, and Camilla P. Benbow. Spatial ability for stem domains: Aligning over 50 years of
 683 cumulative psychological knowledge solidifies its importance. *Journal of Educational Psychology*, 101(4):817–835,
 684 2009. doi: 10.1037/a0016127.

685 Siting Wang, Luoyang Sun, Cheng Deng, Kun Shao, Minnan Pei, Zheng Tian, Haifeng Zhang, and Jun Wang.
 686 Spatialviz-bench: Automatically generated spatial visualization reasoning tasks for mllms, 2025a. URL <https://arxiv.org/abs/2507.07610>.

687 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin Jing, Shen-
 688 glong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal models in versatility, reasoning, and
 689 efficiency. *arXiv preprint arXiv:2508.18265*, 2025b.

690 Sylvia Wiebrock, Lars Wittenburg, Ute Schmid, and Fritz Wysotski. Inference and visualization of spatial relations. In
 691 *Spatial Cognition II: Integrating Abstract Theories, Empirical Studies, Formal Methods, and Practical Applications*,
 692 pp. 212–224. Springer, 2000.

702 Geoff Woolcott. A multi-level conceptual framework for integrated STEM education. *International Journal of*
 703 *STEM Education*, 7(1):11, 2020. doi: 10.1186/s40594-020-00210-1. URL <https://doi.org/10.1186/s40594-020-00210-1>.

704

705 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa:next phase of question-answering to explaining
 706 temporal actions, 2021. URL <https://arxiv.org/abs/2105.08276>.

707

708 Wenrui Xu, Dalin Lyu, Weihang Wang, J. Feng, Chen Gao, and Yong Li. Defining and evaluating visual language
 709 models' basic spatial abilities: A perspective from psychometrics. *ArXiv*, abs/2502.11859, 2025. URL <https://api.semanticscholar.org/CorpusID:276408495>.

710

711 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
 712 Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025a.

713

714 Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in space: How
 715 multimodal large language models see, remember and recall spaces. *arXiv preprint arXiv:2412.14171*, 2024. URL
 716 <https://arxiv.org/abs/2412.14171>.

717

718 Kaiyu Yang, Olga Russakovsky, and Jia Deng. Spatialsense: An adversarially crowdsourced benchmark for spatial
 719 relation recognition, 2019. URL <https://arxiv.org/abs/1908.02660>.

720

721 Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen Chen, Haodong
 722 Duan, Xiangyu Yue, et al. Mmsi-bench: A benchmark for multi-image spatial intelligence. *arXiv preprint
 723 arXiv:2505.23764*, 2025b.

724

725 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context in referring
 726 expressions. In *ECCV*, 2016.

727

728 Giselle Zeno, Nour Jedidi, and Steven Gomez. Choosingright'from wrong: A closer look at selection bias in spa-
 729 tial multiple-choice questions in large multimodal models. In *Proceedings of the Computer Vision and Pattern
 730 Recognition Conference*, pp. 535–544, 2025.

731

732 Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue Yin, Zuxuan Wu, Yu-
 733 Gang Jiang, and Xipeng Qiu. Vlabench: A large-scale benchmark for language-conditioned robotics manipulation
 734 with long-horizon reasoning tasks, 2024. URL <https://arxiv.org/abs/2412.18194>.

735

736 Jun Zhu, Zihao Du, Haotian Xu, Fengbo Lan, Zilong Zheng, Bo Ma, Shengjie Wang, and Tao Zhang. Navi2gaze:
 737 Leveraging foundation models for navigation and target gazing, 2024. URL <https://arxiv.org/abs/2407.09053>.

738

739 A USING LLMs

740 In this study, we utilized the LLMs in two ways: code debugging and improving writing at the sentence level. While
 741 applying the physical dynamics of the folding and unfolding actions on the 3D animation space in the VPython
 742 environment, we encounter some difficulties, such as arranging the lighting of folded paper, which enables better
 743 visual perception during the actions. Another difficulty was creating the paper design, which can be folded. When
 744 merging the triangle objects as a component of the paper, we encounter implementation issues. To debug the code and
 745 similar issues, we utilized LLMs. In paper writing, we employed LLMs for grammar checking.

746 B PRELIMINARY TEST

747 To test whether the models understand the content of the benchmark data, we created preliminary test cases for each
 748 input: single image, series of images, video, and text. For each input data, a varying number of questions are prepared
 749 to measure the models' conceptual understanding. While the input of Test 1 consists of multiple punched holes (around
 750 8) and their relations in a single image, Test 3 includes a series of images depicting actions with a couple of marks. In
 751 total, four test cases and 37 questions are generated.

752 **Test 1: Single 2D image understanding (Planning)**

753 Given the image (see Figure 2), answer the following questions:

754 1- How many triangles are shown?

756 2- How many marks with green color are present in the image?
 757 3- What is/are the shape of mark(s) shown in green color in the image?
 758 4- If you count the triangles starting from 1, what is/are the location number of mark(s) in the image?
 759 5- What is/are the angle of the marks(s) in counterclockwise (in degree)?
 760 6- How many unique marks are presented in the image?

761 **Test 2: Video understanding** (Prediction)
 762 Given the video, answer the following questions:

763 1- How many sequence of actions are present in the video? (folding, rotation)
 764 2- What are the actions presented in the video in order? (folding, rotation)
 765 3- How many marks with black color are present in the video?
 766 4- What is/are the shape of mark(s) shown in black color in the video?
 767 5- Is \langle mark \rangle to the left of \langle mark \rangle in the video?

768 **Test 3: Series of 2D image understanding** (Prediction and Generalization)
 769 Given the sequence of images, answer the following questions:

770 1- How many images are given as input?
 771 2- In the first image, how many triangles shown?
 772 3- How many marks with green color are present in the last image?
 773 4- What is/are the shape of mark(s) shown in green color in the last image?
 774 5- Are the marks in the left half of the structure?
 775 6- Are the marks in the right half of the structure?
 776 7- Is \langle mark \rangle to the left of \langle mark \rangle in the last image?
 777 8- Is \langle mark \rangle to the below of \langle mark \rangle in the last image?
 778 9- If you count the triangles starting from 1, what is/are the location number of green mark(s) in the last image?
 779 10- What is/are the angle of the green marks(s) in counterclockwise (in degree)?
 780 11- In image 2, the count of black triangles are more than the count of white triangles?
 781 12- What is the action taken to go from image 1 to image 2 (folding types, rotations / nothing)
 782 13- From image 1 to image 2, is the object rotated or not?
 783 14- From image 2 to image 3, what is the absolute rotation angle of the object?

784 **Test 4: Textual content understanding** (Prediction)

785 Given a text input, the marks are represented by letters. The paper starts as a 4x4 grid of square cells. Each square
 786 is divided into two triangles. Each triangle is identified using a location object: [row, column, tri]. Row and col are
 787 0-based indices, starting from the top-left corner of the grid. tri = 0 refers to the first and tri = 1 refers to the second
 788 triangle in the square. Punched holes are marked using letters:

789 'circle': 'C',
 790 'ellipse': 'E',
 791 'star': 'S',
 792 'triangle': 'A',
 793 'trapezoid': 'Z',
 794 'letter': 'T',
 795 Answer the following questions.

796 1- What is the size of the text array?
 797 2- How many steps shown in the text?
 798 3- What are the letters representing marks?
 799 4- What is the (row, column, tri) location of the mark(s)?

810 5- In the Step 2, the count of 1 are more than the count of 0?
 811 6- Are the marks in the left half of the grid?
 812 7- Are the marks in the right half of the grid?
 813 8- Is $\langle \text{mark} \rangle$ to the left of $\langle \text{mark} \rangle$ in the array?
 814 9- Is $\langle \text{mark} \rangle$ to the below of $\langle \text{mark} \rangle$ in the array?
 815 10- What is the action taken to go from Step 1 to Step 2 (folding types, rotations / nothing)
 816 11- From Step 1 to Step 2, is the object rotated or not?
 817 12- From Step 1 to Step 2, what is the absolute rotation angle of the object?

821 **Results.** We evaluate proprietary models, Claude 4, GPT-4o, GPT-5, Gemini 2.5, and o3 on preliminary test cases,
 822 whose results are given in Tables 4, 5, 6, and 7. The outcomes of Test 1 display that models fully understand the paper
 823 design by counting its components, mostly counting the marks, and recognizing the marks’ shapes with minor errors.
 824 However, predicting the position and direction of the marks introduces a challenge for models, except for o3. While
 825 they correctly calculate these properties for some objects, others can be misplaced. Since they capture the spatial
 826 information for a considerable number of marks, the process can be difficult for models.
 827

828 In the video content understanding Test 2, some models capture the sequence of actions, but have a limited understand-
 829 ing of actions, such as incorrect folding direction or rotation degree. On the other hand, they successfully recognize
 830 marks and their shape in video content. The evaluation of a series of images shows that models are able to capture the
 831 structure of paper in an abstract representation without fault. The counts and shapes of the marks as well as the rela-
 832 tion between them are successfully captured by the models. They recognize the folding and rotating actions between
 833 images and provide the accurate rotation angle. However, models struggle to calculate the location and direction of
 834 marks. Due to the miscalculations of o3 and GPT-4o, the positioning results are close to 1. The results of the text-
 835 based format in Test 4 demonstrate similar success in concept understanding. The locations are expressed differently
 836 in the textual representation as row, column, and tri (i.e., which triangle in that location). Although models correctly
 837 calculate the row and column, they fail to decide tri, the triangle in which the mark lies, which reduces the positioning
 838 of the mark.

839 To remedy the low performance of locating marks and predicting directions, we include the textual spatial data of each
 840 hole mark in the prompts. Although the shapes of the hole marks are mostly recognized by the models, the calculation
 841 of the direction and location of the initial marks is not required. Additionally, to make the positioning process easier,
 842 we provide the image for visual tasks that displays the numbers for each component of the paper, see Figure 8. For
 843 textual location, we describe the value of tri with spatial arrangements, such as left and right in the prompts.

844 Table 4: Single image results – accuracy (%).

846 Test 1	Claude 4	GPT-4o	o3
847 Q1	100	100	100
848 Q2	42	87	88
849 Q3	42	71	83
850 Q4	27	50	92
851 Q5	13	56	75
852 Q6	38	38	50

845 Table 5: Video content results – accuracy (%).

846 Test 2	Claude 4	GPT-4o	o3
847 Q1	50	25	100
848 Q2	25	50	88
849 Q3	100	100	100
850 Q4	100	100	100
851 Q5	100	100	100

855

C DATASET DETAILS

856 We select three types of paper folding: horizontal, vertical, and diagonal, and three rotation degrees: 90, 180, and 270
 857 to utilize in the dataset. In total, eight fold types are used to create the test problems. As a spatial property, we identify
 858 the size, shape, direction, and location. While size consists of two options: small and large, the shapes, selected
 859 from the VPython platform, includes nine elements: circle, square, triangle, trapezoid, star, letter, text, ellipse, and
 860 rectangle. Directions including degrees of 0, 90, 180, and 270 are used in a counterclockwise way. For the location
 861 of the hole, the paper is divided into 32 areas, as illustrated in Figure 8. The dataset configurations are created by
 862 combining these folds and rotations. A total of nine distinct structures, five of which include rotation, are generated to
 863 create the folding actions; see Figure 8.

864 Table 6: Series of image content results – accuracy (%).
865

866 Test 3	867 Claude 4	868 GPT-4o	869 o3
870 Q1	871 100	872 100	873 100
874 Q2	875 100	876 100	877 100
878 Q3	879 100	880 100	
881 Q4	882 100	883 100	
884 Q5	885 100	886 100	
887 Q6	888 100	889 100	
890 Q7	891 100	892 100	
893 Q8	894 100	895 100	
896 Q9	897 33	898 16	899 25
900 Q10	901 42	902 16	903 33
904 Q11	905 0	906 50	907 100
908 Q12	909 100	910 100	911
912 Q13	913 100	914 100	915
916 Q14	917 50	918 100	919

Table 7: Textual content results – accuracy (%).

Test 4	Claude 4	GPT-4o	o3
Q1	100	100	100
Q2	100	100	100
Q3	100	100	100
Q4	50	0	100
Q5	100	100	100
Q6	100	100	100
Q7	100	50	100
Q8	50	50	50
Q9	100	100	100
Q10	50	50	100
Q11	50	100	100
Q12	50	50	100

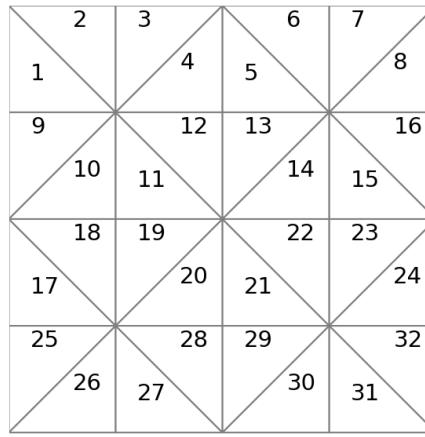


Figure 8: Paper design with numbered locations.

D RULES

Folding rules. The design of the paper is the key to executing the combination of actions. To utilize the diagonal folds in our dataset, we create a paper structure with 32 triangles. However, some combinations of folds can be infeasible for the current design. Therefore, we create rules that validate the sequence of folding actions regarding the physical structure of the paper. The rules are as follows:

- 1- No more than two horizontal folds in total.
- 2- No more than two vertical folds in total.
- 3- No more than two diagonal folds in a sequence.
- 4- A diagonal fold is allowed as the first step.
- 5- A diagonal fold (when not following a diagonal) must come after a combination of one horizontal fold and one vertical fold, or vice versa.
- 6- A diagonal fold is not allowed, if there is more than one horizontal or vertical fold before it.
- 7- If there are already two horizontal folds and two vertical folds, then only a restricted set of diagonal types is allowed.
- 8- Only two of the four diagonal folds are allowed when a second diagonal fold follows the first diagonal fold.
- 9- The same two diagonal folding directions never come consecutively.

918 Table 8: Configuration of the MentalBlackboard benchmark. F means a type of paper folding, while R indicates a type
 919 of rotation.

921 Row	922 Count of Steps	923 Rotation	924 Number of Structure	925 Action Types
926 Group1	927 One	928 ✗	929 16	930 F
931 Group2	932 Two	933 ✗	934 160	935 FF
936 Group3	937 Three	938 ✗	939 1408	940 FFF
941 Group4	942 Four	943 ✗	944 10752	945 FFFF
946 Group5	947 Two	948 ✓	949 48	950 FR
951 Group6	952 Three	953 ✓	954 768	955 FRF
956	957	958	959	960 FFR
961	962	963	964	965 FRFR
966	967	968	969	970 FFRF
971	972	973	974	975 FRFF
976	977	978	979	980 FFFR
981	982	983	984	985 FFRFR
986	987	988	989	990 FRFFR
991	992	993	994	995 FFRFR
996	997	998	999	999 FFRFRFR

939
 940 10- After two diagonal folds, exactly one horizontal and one vertical move must follow, or vice versa.

941
 942 **Folding rules with rotation.** If the folding configuration includes rotation action, the validation rules change accord-
 943 ingly. The sequence of action starts with two steps (one fold and one rotation). The rules on rotation actions are as
 944 follows:

945
 946 1- No rotation is allowed at the first step.
 947 2- Consecutive rotations are not allowed.
 948 3- Diagonal folds are only allowed at the first position.
 949 4- A maximum of three folds in total.
 950 5- If three folds are used, the first must be diagonal.
 951 6- Must have one to three rotations.

952
 953 **Transformation rules.** Implementation of rotations after folds affects the previous folding actions and changes the
 954 crease line during the unfolding process. Instead of re-rotating the paper during unfolding, we require models to under-
 955 stand the physical alteration on the folding line and the orientation of the paper. To predict the unfolding accurately,
 956 models should comprehend the impact of the rotation on folding direction and the folding type. The degree of rotation
 957 determines whether the folding type or its direction will change during the unfolding process. While 90- and 270-
 958 degree rotations change the folding type from one to another, 180-degree rotation leads to the same fold but a different
 959 direction. Tables 9, 10, and 11 show the results of how rotation degrees alter folds during the unfolding process.

960
 961 Table 9: Rotation 90°- counterclockwise

963 Folding	964 Unfolding
965 horizontal top to bottom	966 vertical right to left
967 horizontal bottom to top	968 vertical left to right
969 vertical left to right	970 horizontal top to bottom
971 vertical right to left	972 horizontal bottom to top
973 diagonal top left to bottom right	974 diagonal top right to bottom left
975 diagonal top right to bottom left	976 diagonal bottom right to top left
977 diagonal bottom left to top right	978 diagonal top left to bottom right
979 diagonal bottom right to top left	980 diagonal bottom left to top right

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 10: Rotation 180°- counterclockwise

Folding	Unfolding
horizontal top to bottom	horizontal top to bottom
horizontal bottom to top	horizontal bottom to top
vertical left to right	vertical left to right
vertical right to left	vertical right to left
diagonal top left to bottom right	diagonal top left to bottom right
diagonal top right to bottom left	diagonal top right to bottom left
diagonal bottom left to top right	diagonal bottom left to top right
diagonal bottom right to top left	diagonal bottom right to top left

Table 11: Rotation 270°- counterclockwise

Folding	Unfolding
horizontal top to bottom	vertical left to right
horizontal bottom to top	vertical right to left
vertical left to right	horizontal bottom to top
vertical right to left	horizontal top to bottom
diagonal top left to bottom right	diagonal bottom left to top right
diagonal top right to bottom left	diagonal top left to bottom right
diagonal bottom left to top right	diagonal bottom right to top left
diagonal bottom right to top left	diagonal top right to bottom left

E EXPERIMENT RESULTS

E.1 HUMAN PERFORMANCE

We evaluated human performance on prediction, planning, and generalization tasks using the Amazon Mechanical Turk platform. We generated sample cases from at most two steps, rotation included PFT problems (Groups 1, 2, and 5). Each human participant answered 4 different questions (video prediction, 2D prediction, text-based prediction, and planning). A total of 64 distinct questions and 16 answers for each category were presented to participants. Human participants were tasked to predict the result of unfolding paper for the prediction task and identify the folding actions for the planning task. The results were collected and merged as JSON files and evaluated against the ground truths. For comparison of human and model performance, we selected two reasoning models, o3 and Claude Opus 4.1. Since human performance is limited in complexity, we retrieved the model results only for groups 1, 2, and 5, and then calculated their average. The table below shows the results. In general, the models achieve higher accuracy for simpler scenarios compared to those that involve several combined folding steps. Across different prediction modalities, human performance remains consistent, 75%; however, the models' performance is highest for textual, then 2D, and lowest for video-based modalities. For the planning task, humans perform similar results to the prediction task, but models struggle to create a sequence of actions with correct hole information. The evident gap in visual prediction between human participants and models indicates that current models have not yet achieved human-level spatial visualization.

Table 12: Model performance across different prediction and planning tasks.

Model	Video Prediction	Image Prediction	Text Prediction	Planning
Human	75.00	75.00	75.00	75.00
o3	16.66	21.69	40.56	14.50
Claude Opus 4.1	2.66	5.66	33.01	18.00

E.2 PLANNING

We analyze the performance of the models against each group in the planning task, which does not include rotation. Table 13 shows that the model struggles more when the number of folding steps increases. They can plan one-step

1026 folding tasks better than multiple steps. However, the accuracy of the best-performing model, Cluade Opus 4.1, is
 1027 23%. Another analysis on Table 14 shows the percentage of errors for creating holes. Models tend to generate a lower
 1028 number of holes than expected in the solution.

1030 Table 13: Group-wise performance (% Correct) per model in the planning task.
 1031

1032 Model	1033 One Step (%)	1034 Two Steps (%)	1035 Three Steps (%)	1036 Four Steps (%)
1037 o3	1038 9	1039 20	1040 6	1041 3
1042 GPT-5.1	1043 8	1044 0	1045 0	1046 1
1047 GPT-4o	1048 1	1049 1	1050 1	1051 0
1052 Claude 4	1053 17	1054 4	1055 2	1056 0
1057 Claude Opus 4.1	1058 23	1059 13	1060 4	1061 0
1062 LLaVa-OneVision	1063 3	1064 0	1065 2	1066 0
1067 Gemma	1068 4	1069 0	1070 0	1071 0
1072 Qwen2.5VL	1073 9	1074 1	1075 1	1076 0

1042 Table 14: Percentage of records with extra and missing hole predictions across models in the planning task.
 1043

1044 Model	1045 Extra Holes (%)	1046 Missing Holes (%)
1047 o3	1048 5.25	1049 76.00
1050 GPT-5.1	1051 5.25	1052 81.00
1053 GPT-4o	1054 2.75	1055 88.25
1056 Claude 4	1057 3.25	1058 84.00
1059 Claude Opus 4.1	1060 5.00	1061 73.25
1062 LLaVA OneVision	1063 7.75	1064 81.50
1065 Gemma-3-12B	1066 10.50	1067 64.75
1068 Qwen	1069 11.75	1070 70.75

1055

E.3 GENERALIZATION

1057 The evaluation result of the generalization task in Table 15 demonstrates that most of the open-source models un-
 1058 derpredict the spatial hole information and do not transfer the attributes from the first case to the second one. A
 1059 comprehensive analysis of field-wise accuracy in Table 16 sheds light on possible reasons for the low accuracy scores.
 1060 Identifying the location and direction introduces more difficulty for models than shape and size arrangements.
 1061

1062 Table 15: Extra and missing holes per model in the generalization task.
 1063

1064 Metric	1065 GPT-4o	1066 o3	1067 claude4	1068 claude_opus_4.1	1069 gemma	1070 internVL3_5	1071 llava_onevision	1072 Qwen 2.5-VL
1065 Extra Holes	1066 5	1067 5	1068 5	1069 5	1070 30	1071 2	1072 11	1073 9
1066 Missing Holes	1067 36	1068 29	1069 30	1070 30	1071 35	1072 119	1073 181	1074 100

1068 Table 16: Hole information accuracy per model (field-wise) on the generalization task.
 1069

1071 Model	1072 Shape (%)	1073 Size (%)	1074 Direction (%)	1075 Location (%)
1076 GPT-4o	1077 81.60	1078 84.77	1079 78.55	1080 67.64
1081 o3	1082 83.90	1083 87.04	1084 83.12	1085 82.98
1086 claude4	1087 84.01	1088 87.06	1089 81.85	1090 79.44
1091 claude_opus_4.1	1092 83.25	1093 86.29	1094 80.71	1095 79.82
1096 internVL3_5	1097 60.39	1098 59.69	1099 53.65	1100 52.95
1101 llava_onevision	1102 45.17	1103 51.61	1104 50.00	1105 48.79
1106 gemma	1107 16.22	1108 32.68	1109 29.24	1110 5.90
1111 Qwen 2.5-VL	1112 10.20	1113 16.62	1114 18.08	1115 2.04

1080
1081 E.4 BACKWARD PREDICTION
10821083 The backward prediction task evaluates the models’ ability to reason on a partially seen sequence of folding actions.
1084 Although the structure of the paper does not change, it affects how the action is perceived. The paper is also unfolded
1085 from the unseen part, which introduces a challenge to apply the symmetry transformation, as shown in Table 17.1086
1087 Table 17: Results of the backward prediction task. Step-based unfolding score matches the correct position of the
1088 unfolding types in the solution set
1089

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	Model	1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	Partial Accuracy (%)	1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	Hole Count Errors (%)	1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	Unfolding Accuracy (%)	1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
o3	o3	26.79	41.11	13.33	20.56	34.19		
GPT-5.1	GPT-5.1	20.49	28.89	22.78	12.78	31.63.		
Claude Opus 4.1	Claude Opus 4.1	6.51	70.56	7.22	6.67	26.28		
InternVL3	InternVL3	7.13	0.56	94.97	4.47	7.73		
LLaVA-OneVision	LLaVA-OneVision	5.98	41.34	58.66	0.00	18.27		
Qwen2.5-VL	Qwen2.5-VL	10.19	0.56	99.44	6.15	17.56		

E.5 PREDICTION

The complexity of the prediction task can be categorized according to the number of folding and rotations. When the folding step increases, the requirement of sequential reasoning and visual-spatial memory increases. To evaluate the models’ complexity-wise accuracy, we analyze their video prediction results for each folding structure. From groups 1 to 4, the folds consist of diagonal, vertical, and horizontal folds with an increased number of steps. From 5 to 9 rotations are included in the configuration, and start with two steps to six steps. For the group-wise evaluation, we selected o3 and Claude Opus 4.1 as baseline reasoning models since they perform better than other models. Figure 9 shows a detailed analysis of both models against the group structure. When the number of folds increases, the exact match accuracy of the o3 reduces, and the number of missing holes increases. The combination of folds causes o3 to generate extra holes, making a peak at six-fold, including rotation. Although both missing and extra hole numbers decrease close to zero percent in group 5, where folding is followed by rotation, they increase again with the addition of more steps. The precision of unfolding remains consistent, approximately 42%, up to three folds without rotation, but it declines significantly after rotations. These results reveal that rotation increases the complexity level of the tasks along with the number of folds. In contrast to o3, Claude Opus 4.1 initially produces a substantial number of additional holes (approximately 45%) from group 1 to 5, before escalating the amount to 82% during the six-step folding process. In the two-step rotation task, the number of missing holes decreases quickly, whereas extra holes do not show the same reduction. Both the exact unfold and exact match demonstrate a similar decrease as observed in o3; however, unlike o3, the model fails to solve the task that includes the two-step rotation.

To analyze how models perform on one-step fold types (diagonal, vertical, and horizontal) and rotation included cases, we additionally evaluated selected reasoning models, o3, and Claude Opus 4.1 on both video and text-based prediction tasks. The results on Table 2 show that o3 identifies the unfolding actions of horizontal and vertical folds, but struggles with how to unfold diagonal cases. Although the model figures out almost every unfold, excluding diagonal, only half of these scenarios successfully resulted, mostly because of the wrong calculated direction. When we include rotation to these fold types, the unfolding accuracy drops significantly from 90% to 28% for horizontal and 100% to 37% for vertical. As the rotation changes the orientation of the paper, the model should be aware of the physical dynamics of the paper to identify the new unfolding steps. The decrease in unfolding matches reveals that models do not count the orientational alteration of the paper structure. On the other hand, Claude Opus 4.1 performs better on unfolding diagonal folds (45%) but fails on horizontal cases totally, see Table 18. Although o3 correctly predicts shape and size for almost every case, the Claude Opus 4.1 struggles to identify them except in diagonal cases. Unfolding accuracy is reduced by merging the rotation to the folds, 10% for diagonal and 20% for vertical. In general, Claude Opus 4.1 tends to generate extra holes (excluding diagonal folds), unlike o3.

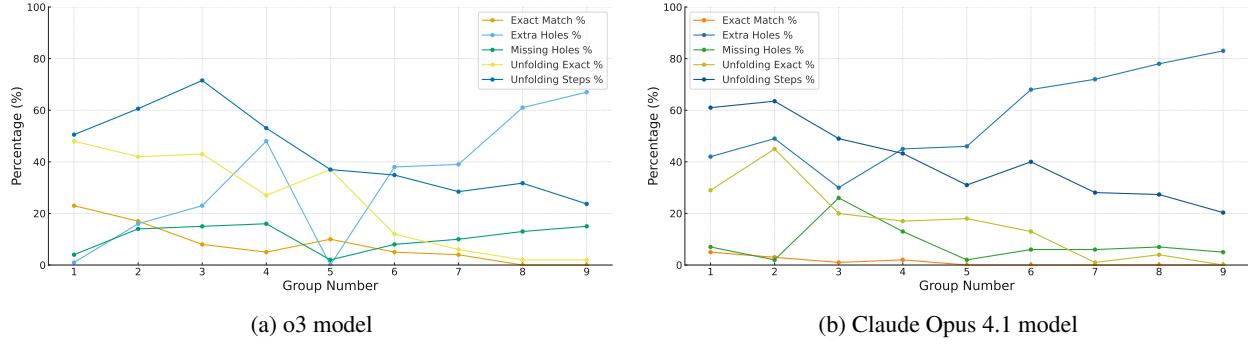


Figure 9: Group-wise evaluation for two models in the video prediction task.

Table 18: Model performances across video-based prediction folds (o3). Metrics are grouped into exact match accuracy, unfolding accuracy, hole count errors, and hole attribute accuracy. D = Diagonal, H = Horizontal, V = Vertical and R = Rotation

o3	Exact Match	Unfolding Exact	Extra Hole (%)	Missing Hole (%)	Shape (%)	Size (%)	Location (%)	Direction (%)
D	0.00	6.25	0.00	8.33	98.6	98.6	52.1	80.0
H	40.91	90.91	4.55	0.00	97.7	97.7	90.9	87.1
V	56.00	100.00	0.00	0.00	100.0	100.0	100.0	89.0
DR	6.25	41.67	0.00	4.17	99.3	99.3	64.2	73.6
HR	10.71	28.57	0.00	0.00	100.0	100.0	69.6	77.4
VR	16.67	37.50	0.00	0.00	100.0	100.0	66.7	83.7

Table 19: Model performances across video-based prediction folds (Claude Opus 4.1). Metrics are grouped into exact match accuracy, unfolding accuracy, hole count errors, and hole attribute accuracy. D = Diagonal, H = Horizontal, V = Vertical and R = Rotation

Claude Opus 4.1	Exact Match	Unfolding Exact	Extra Hole (%)	Missing Hole (%)	Shape (%)	Size (%)	Location (%)	Direction (%)
D	0.00	44.90	0.00	14.29	96.6	96.6	52.0	70.1
H	0.00	0.00	100.00	0.00	31.4	31.9	31.2	29.9
V	20.00	28.00	64.00	0.00	57.0	57.0	48.1	52.5
DR	0.00	33.33	2.08	4.17	97.9	97.9	55.0	64.1
HR	0.00	0.00	96.43	0.00	32.6	32.6	23.6	24.6
VR	0.00	8.33	75.00	0.00	47.9	47.9	34.0	36.5

F QUALITATIVE RESULTS

To qualitatively evaluate the model’s result, we developed a script that reads the models’ JSON outputs and generates a visual representation utilizing the same MentalBlackboard dataset generation environment. This approach allows us to visualize the models’ outputs and compare them with the ground truth, unfolded paper results. These visual assessments help us to identify where models fail in generating the answer.

F.1 PREDICTION

For the prediction task, we examined the cases where models respond correct and incorrect answers. Every example case includes video frames that depict the actions of paper folding and hole punching as the problem description, along with unfolding video frames to demonstrate the solution. Each case also contains the model’s example output figure and the ground truth image.

Figure 10 displays an example of the correct prediction task which employs two-step folding actions. The model o3 accurately predicts the unfolding steps as the same as in video frames and applies the symmetry transformation properly to the hole information (size, shape, location, and direction). As a result, the model’s visual output matches

1188 the ground truth image. However, Figure 11 shows how the model fails when calculating the directions of the hole
 1189 during symmetry actions. The example consists of one-step folding with three punched holes. Although the model
 1190 correctly predicts the unfolding step and calculates the reflection positions of the holes, it fails when calculating the
 1191 direction of one hole.

1192 Another incorrect case is exemplified in Figure 12 where model o3 predicts the unfolding types incorrectly: Diagonal
 1193 from bottom right to top left and diagonal from bottom left to top right. The model partially predicts the results and
 1194 produces missing holes. In other cases, models generate extra holes as results. Figure 13 illustrates the scenario
 1195 of two-step foldings (diagonal and horizontal), but only one of them creates the reflection of the hole (horizontal).
 1196 Although the model, o3, identifies the unfolding steps accurately, it applies the symmetry wrong and produces extra
 1197 holes. In some scenarios, models predict more unfolding steps than the actual condition, which causes extra final
 1198 holes as in Figure 14. Although the example shows two-step folding actions, Claude Opus 4.1 predicts three unfolding
 1199 actions (vertical left to right, horizontal top to bottom, and horizontal top to bottom) and creates four extra holes. The
 1200 physical state of the paper, where the punched area on the top layer does not overlap with any of the underlying folded
 1201 layers, also leads to extra holes. Figure 15 displays the example where Claude Opus 4.1 predicts the unfolding steps
 1202 accurately, but it applies the symmetry wrong.

1203 When rotation is combined with folding action, it changes the direction or type of unfolding actions. While the correct
 1204 scenario of o3 is illustrated in Figure 16, Figure 17 displays the incorrect output of Claude Opus 4.1.

1206 F.2 PLANNING

1207 To examine how the models generate folding combinations in the planning task, we rendered their outputs as
 1208 animations. These animations produce both video and image frames representing folding and unfolding actions. The
 1209 captured frames were then used to visualize the models’ outputs for the planning task. Each qualitative example of
 1210 a planning task contains: the expected final figure, an example of how to solve the task(folding and unfolding video
 1211 frames), the model’s selected folding and unfolding video frames, and the result of the model’s reach after running
 1212 them. If the expected results match with model’s output, then the task is answered accurately; otherwise, it is wrong.

1213 Figure 18 illustrates an example of correctly answered planning task that employs two two-step folding. Although the
 1214 fold types and initial hole information of the model are different than the generated example solution, the expected
 1215 result matches with model’s output. By utilizing the required number of steps and accurate fold-hole integration, o3
 1216 reaches the correct result. Figure 19 displays an incorrect example where o3 generates more holes than expected for
 1217 the task. Since completing the task with a single fold is simpler, some models generate a lower number of steps in
 1218 contradiction to the requested number of folds. For example, in Figure 20, Qwen2.5VL performs a single fold instead
 1219 of two steps and uses four initial holes rather than two. Although the expected outcome is not achieved, the model
 1220 fails even when the results appear to match.

1221 In most cases, models generate missing holes for the planning task. One key reason is that the models fail to compute
 1222 symmetry correctly when there is an empty space beneath the top layer, see Figure 21. In this example, o3 fails to
 1223 account for layer depth when combining a sequence of actions, resulting in a partially correct output. Another reason
 1224 is the model’s physically invalid fold combinations. Figure 22 shows how o3 orders folds that do not match with the
 1225 paper structure in the animation. As a result, the paper becomes distorted and does not place the initial hole on the
 1226 paper. In some cases, models plan to apply the symmetry wrong with placing the hole not on the folded part of the
 1227 paper, as in Figure 23. o3 calculates the initial hole location of the trapezoid inaccurately, and the model generates
 1228 missing holes.

1230 F.3 BACKWARD PREDICTION

1231 To qualitatively evaluate the backward prediction task, we utilize the same configuration as the prediction task. Figure
 1232 24 displays the correct example of the backward prediction task, where o3 predicts the final roles accurately. However,
 1233 Figure 25 illustrates the incorrect task example where o3 fails to apply the symmetry despite exact match unfolding.

1236 F.4 GENERALIZATION

1237 In the generalization task, only one attribute changes between two cases, such as location and direction. The model
 1238 is required to predict the final holes by creating a relationship between cases. Figures 26 and 27 display the correct
 1239 generalization results. In the first example, direction is the transferred attribute, whereas in the second, it is location.
 1240 Figures 28 and 29 show that incorrect examples where the model fails to calculate the directions and location
 1241 accurately.

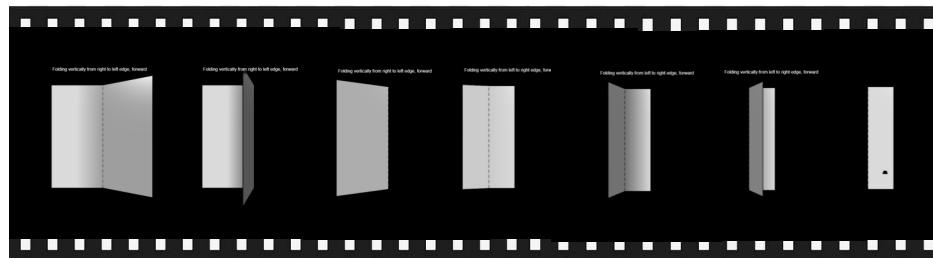
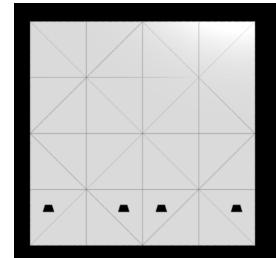
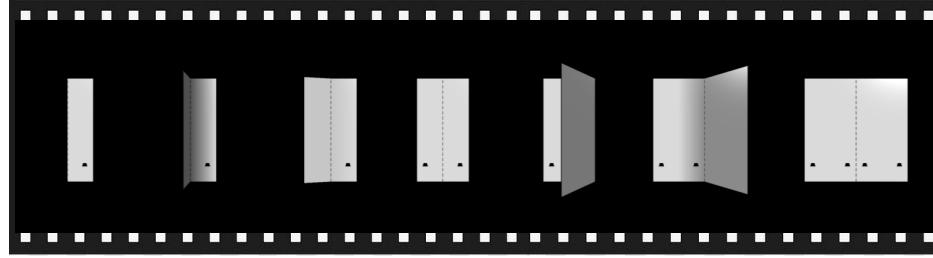
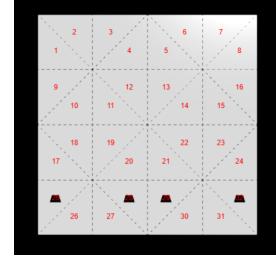
1242
1243
12441245 **Folding :** Vertical right to left, vertical left to right**Model's Response:**1246
1247
1248
1249
1250
1251
1252
12531254 **Unfolding :** Vertical right to left, Vertical left to right**Ground Truth:**1255
1256
1257
1258
1259
1260
1261
1262
1263

Figure 10: An example of a correct model case for the prediction task

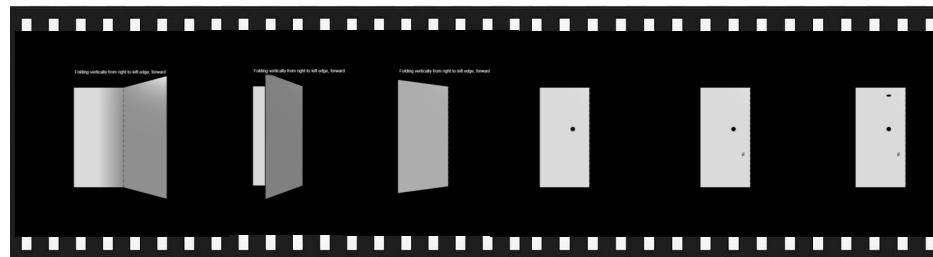
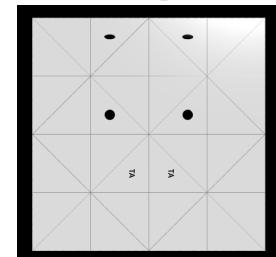
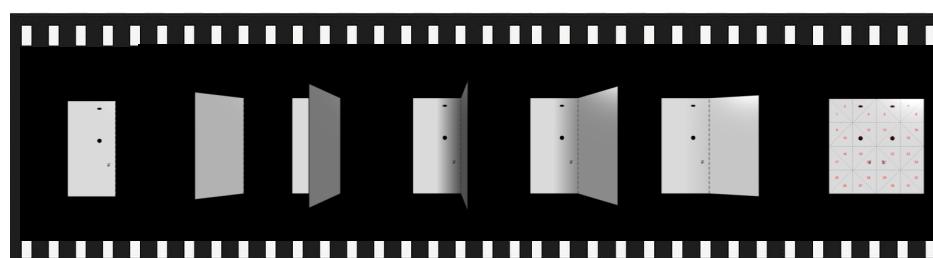
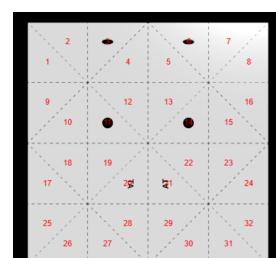
1264
1265
1266
1267
1268
1269
1270
12711272 **Folding :** Vertical right to left**Model's Response:**1273
1274
1275
1276
1277
1278
1279
1280
12811282 **Unfolding :** Vertical left to right**Ground Truth:**1292
1293
1294
1295

Figure 11: An example of an incorrect case where unfolding actions are accurate but the result is incorrect

1296

1297

1298

1299 **Folding :** Diagonal bottom right to top left, Diagonal bottom right to top left

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309 **Unfolding :** Diagonal top left to bottom right, Diagonal top right to bottom left

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

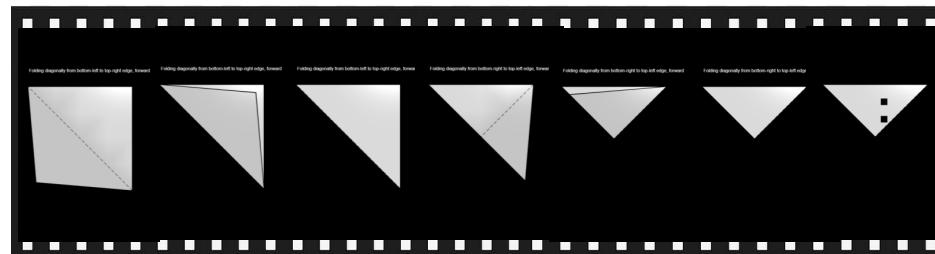
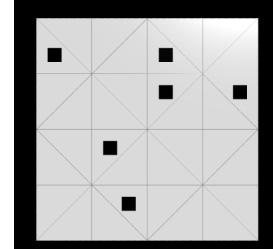
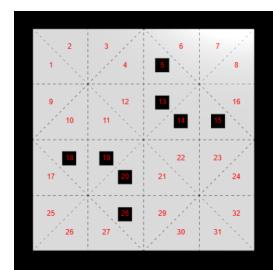
**Model's Response:****Ground Truth:**

Figure 12: An example of an incorrect case where the model creates missing holes

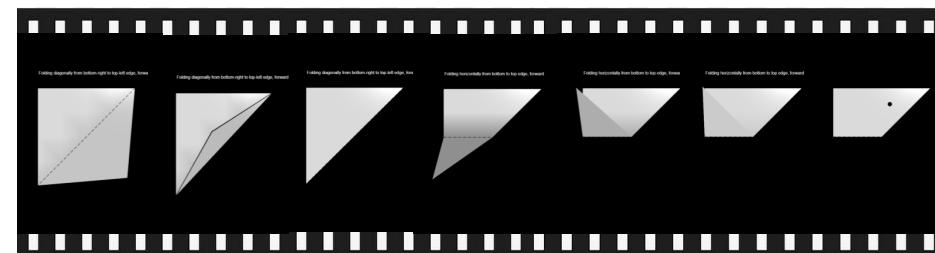
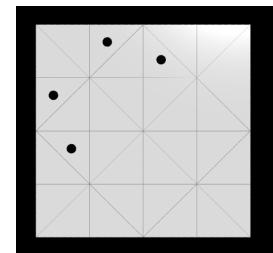
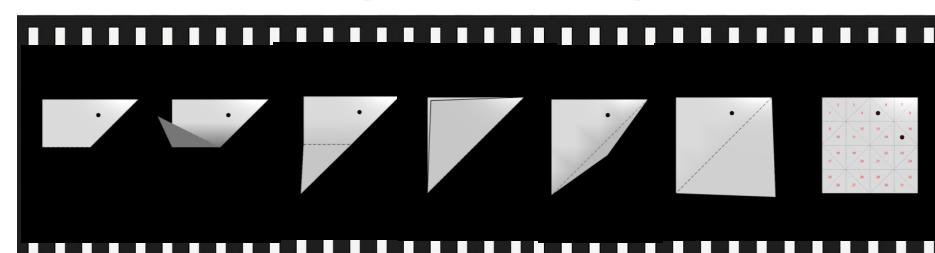
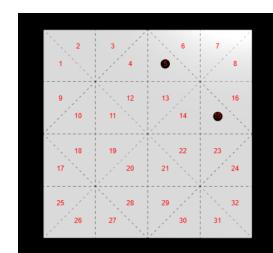
Folding : Diagonal bottom right to top left, Horizontal from bottom to top**Model's Response:****Unfolding :** Horizontal from top to bottom, Diagonal top left to bottom right**Ground Truth:**

Figure 13: An example of an incorrect case where the model creates extra holes despite accurate unfolding steps

1345

1346

1347

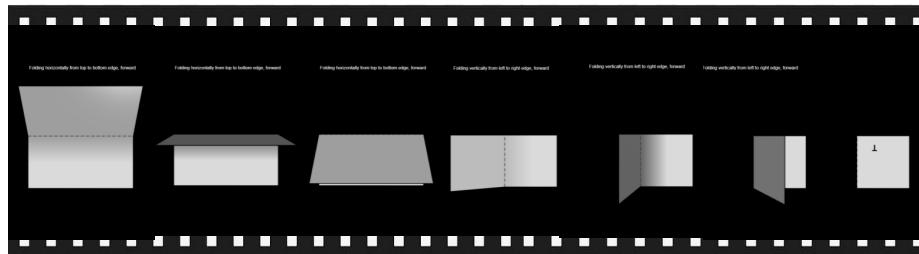
1348

1349

1350

1351

1352

Folding : Horizontal top to bottom, Vertical left to right

1353

1354

1355

1356

1357

1358

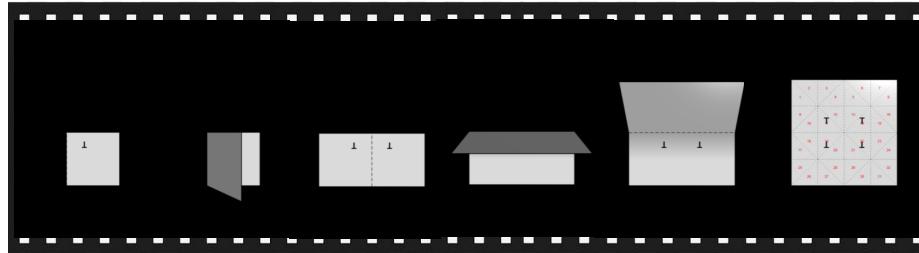
1359

1360

1361

1362

1363

Unfolding : Vertical right to left, Horizontal bottom to top

1364

1365

1366

1367

1368

1369

1370

1371

1372

Figure 14: An example of an incorrect case where the model creates extra holes by predicting more unfolding steps

1373

1374

1375

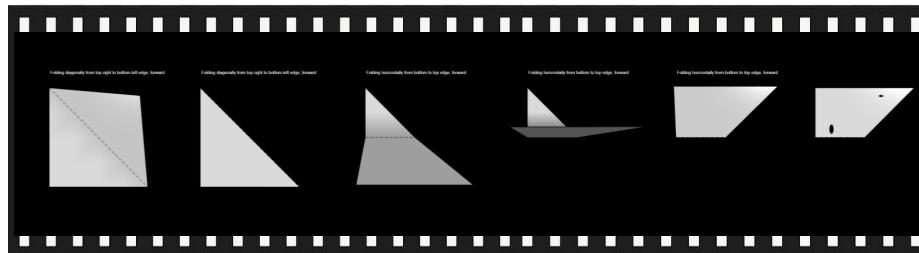
1376

1377

1378

1379

1380

Folding : Diagonal top right to bottom left, Horizontal bottom to top

1381

1382

1383

1384

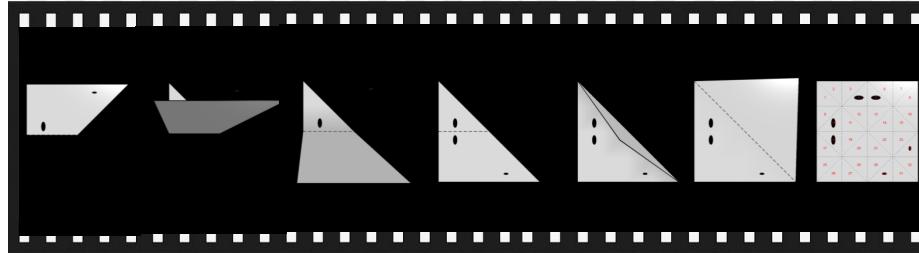
1385

1386

1387

1388

1389

Unfolding : Horizontal top to bottom, Diagonal bottom left to top right

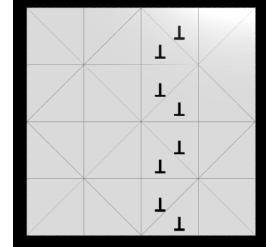
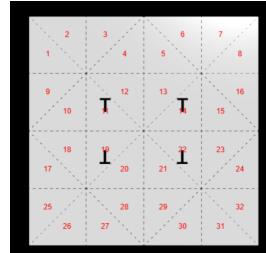
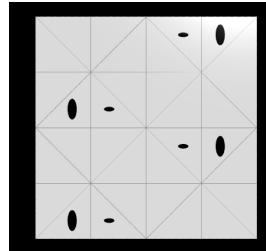
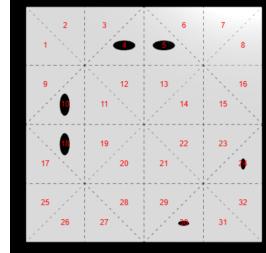
1400

1401

1402

1403

Figure 15: An example of an incorrect case where the model creates extra holes by applying symmetry without considering the physical state of the paper

Model's Response:**Ground Truth:****Model's Response:****Ground Truth:**

1404

1405

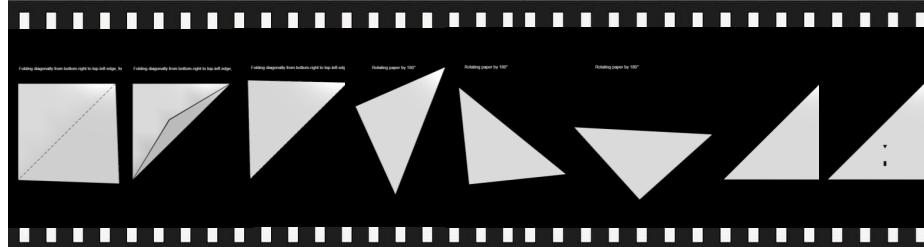
1406

1407 **Folding :** Diagonal bottom right to top left, Rotation 180

1408

1409

1410



1411

1412

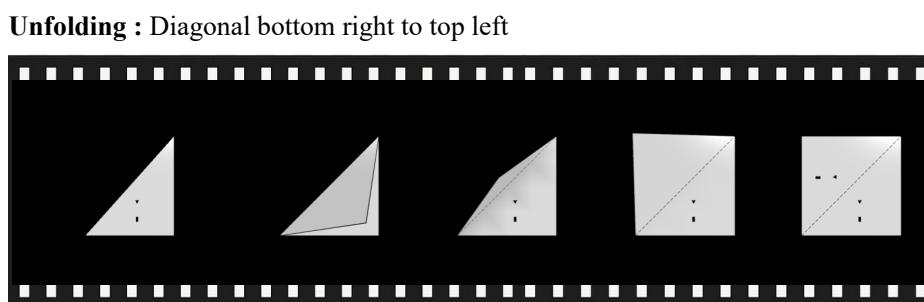
1413

1414

1415

1416

1417



1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

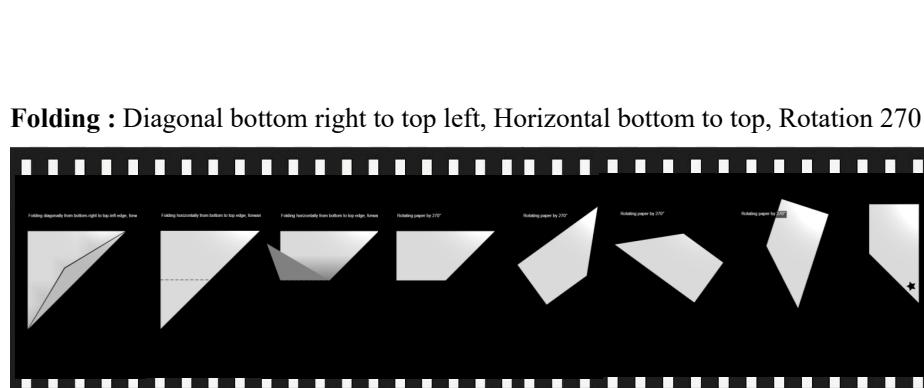
1431

1432

1433

1434

1435



1436

1437

1438

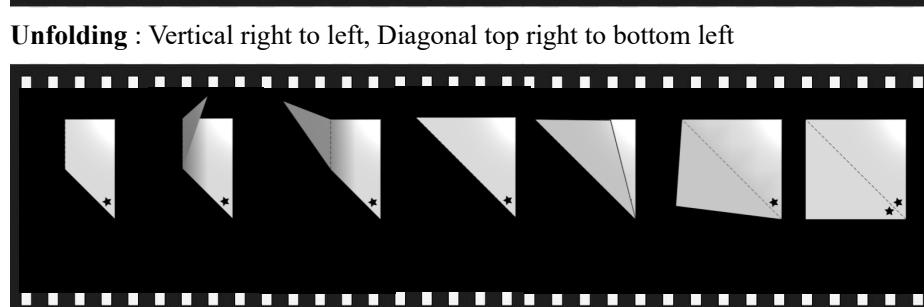
1439

1440

1441

1442

1443



1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

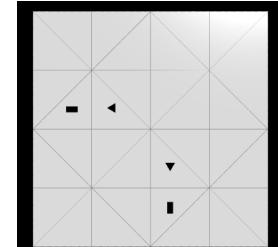
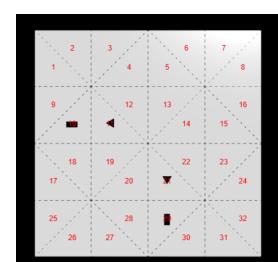
Model's Response:**Ground Truth:**

Figure 16: An example of a correct case where the paper is rotated

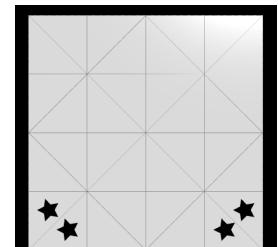
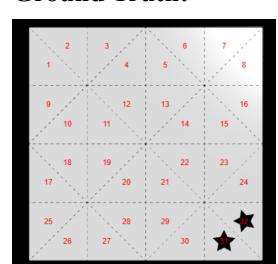
Model's Response:**Ground Truth:**

Figure 17: An example of an incorrect case where the paper is rotated

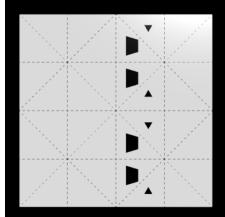
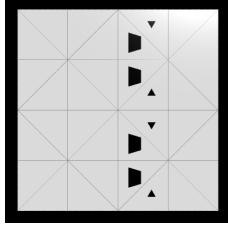
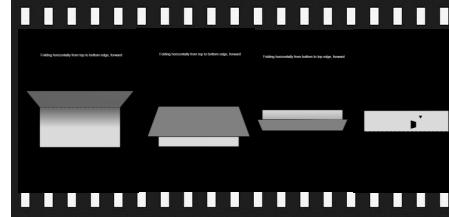
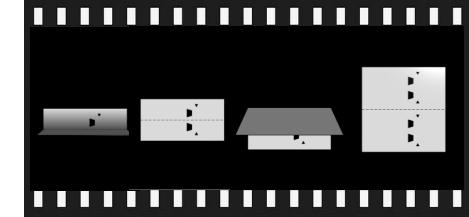
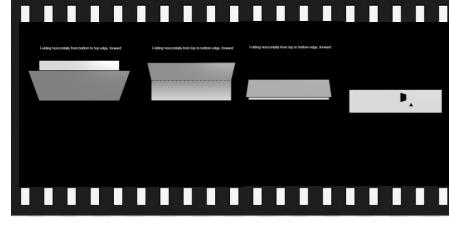
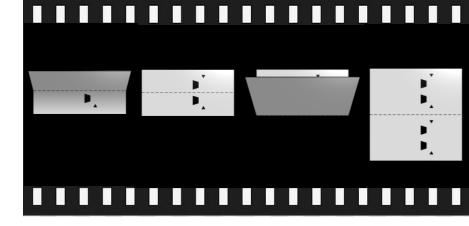
1458
1459
1460
1461
1462**Expected Result:**1463
1464
1465
1466
1467
1468
1469
1470
1471**Model's Output:****Example Folding:****Example Unfolding:****Model's Folding :****Model's Unfolding :**

Figure 18: An example of a correct case for the planning task

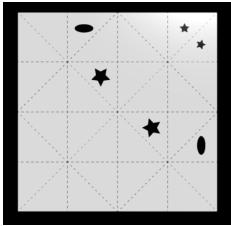
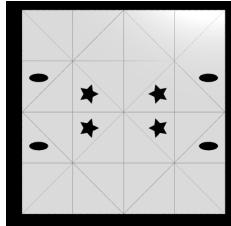
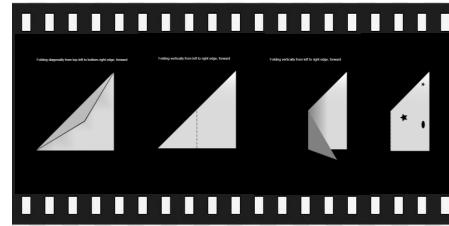
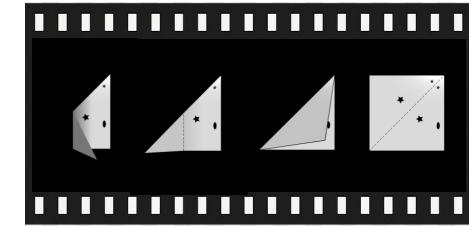
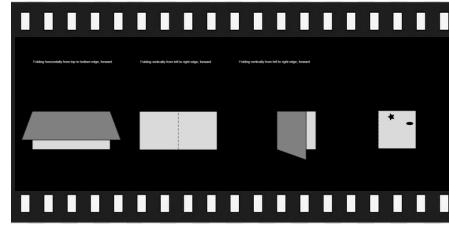
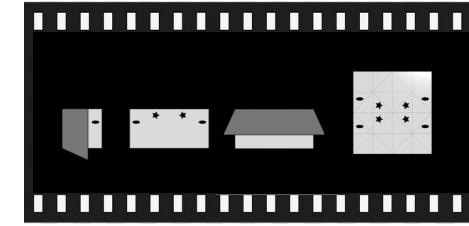
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489**Expected Result:**1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511**Model's Result:****Example Folding:****Example Unfolding:****Model's Folding :****o3's Unfolding :**

Figure 19: An example of an incorrect case where the model creates extra holes

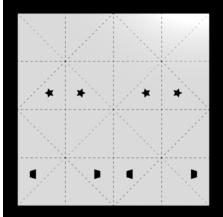
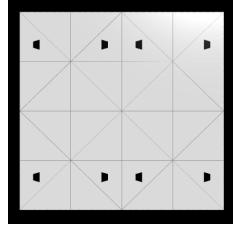
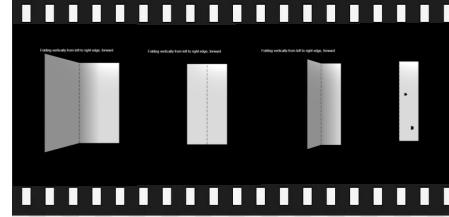
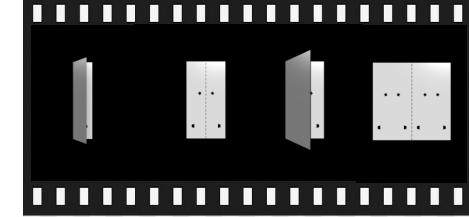
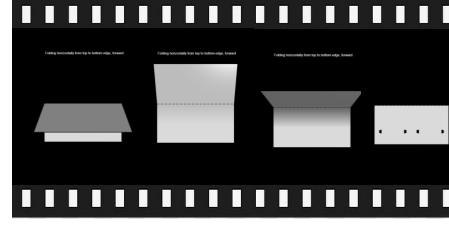
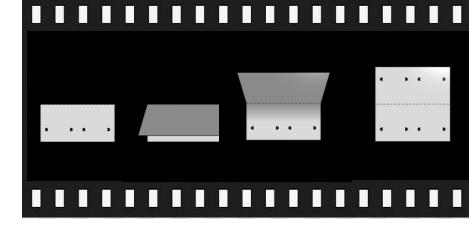
1512
1513
1514
1515
1516**Expected Result:**1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533**Model's Output:**1534
1535
1536
1537
1538
1539
1540
1541
1542
1543**Example Folding:****Example Unfolding:****Model's Folding :****Model's Unfolding :**

Figure 20: An example of an incorrect case where the model folds paper fewer times than required.

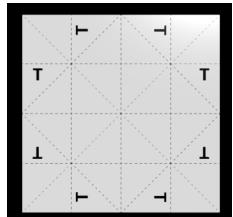
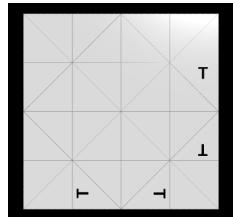
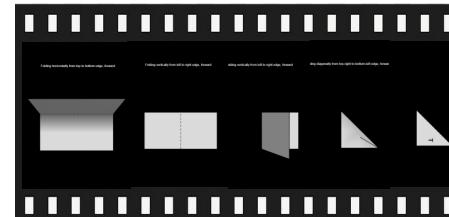
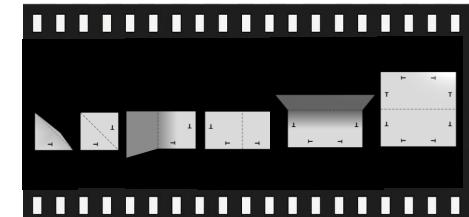
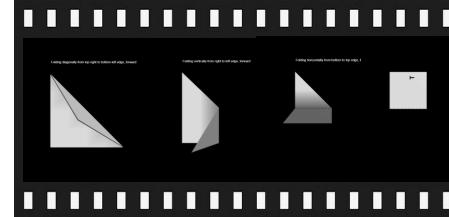
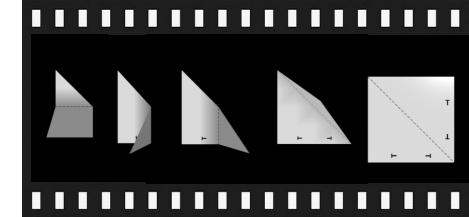
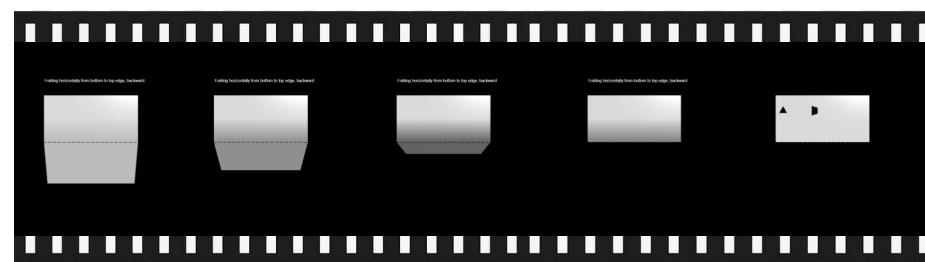
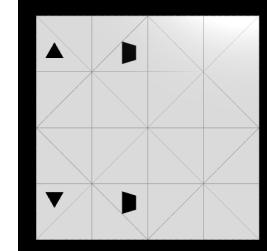
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565**Expected Result:****Model's Result:****Example Folding:****Example Unfolding:****Model's Folding :****Model's Unfolding :**

Figure 21: An example of an incorrect case where the physical dynamics of layer depth are not considered.

1620

1621

1622

Folding : Horizontal bottom to top**Model's Response:**

1623

1624

1625

1626

1627

1628

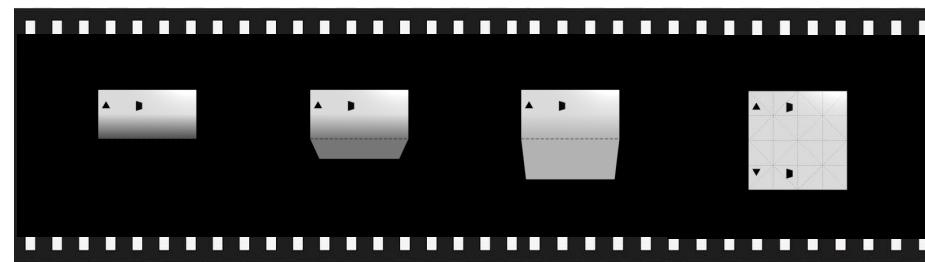
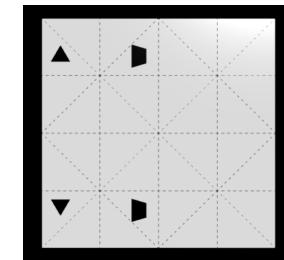
1629

1630

1631

1632

1633

Unfolding : Horizontal top to bottom**Ground Truth:**

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

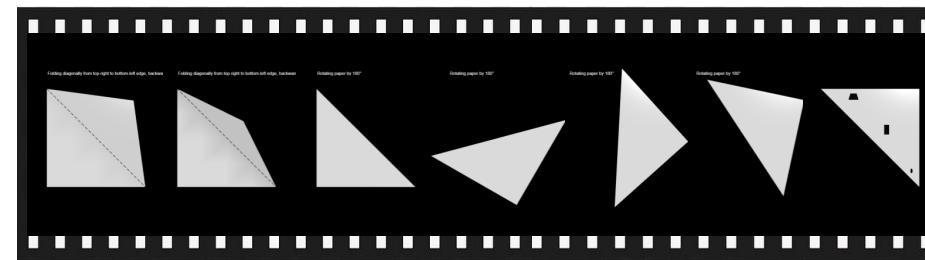
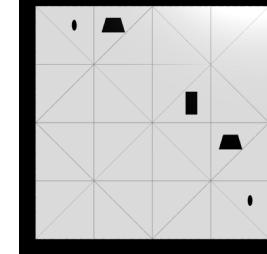
1647

1648

1649

1650

1651

Folding : Diagonal top right to bottom left, Rotation 180**Model's Response:**

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

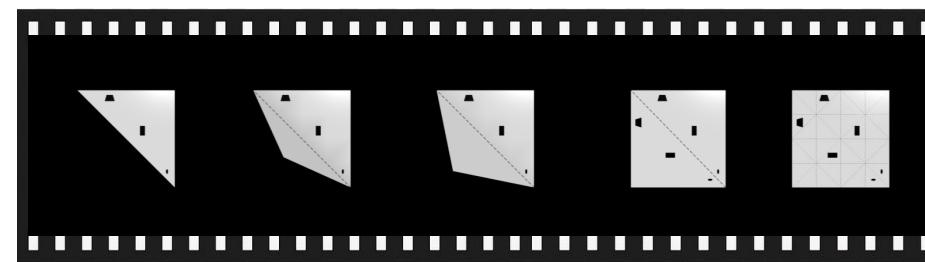
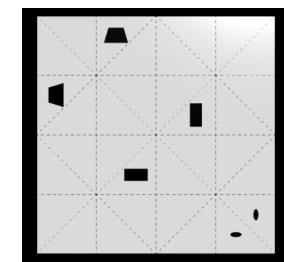
Unfolding : Diagonal top right to bottom left**Ground Truth:**

Figure 24: An example of a correct backward prediction task

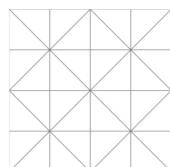
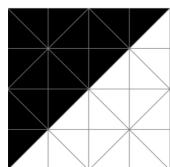
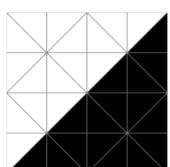
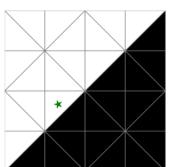
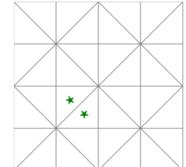
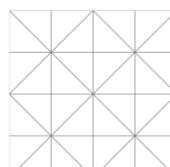
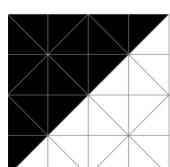
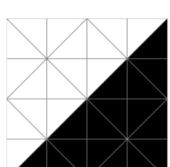
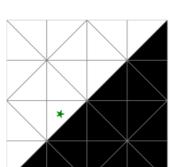
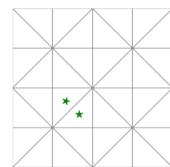
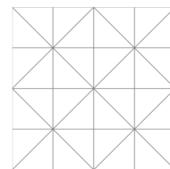
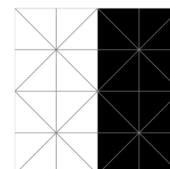
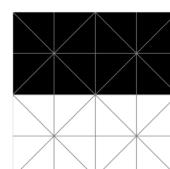
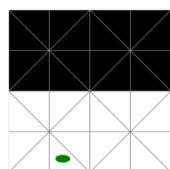
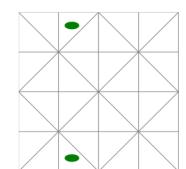
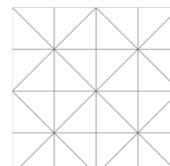
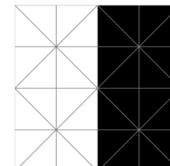
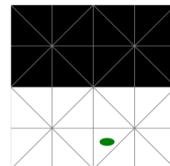
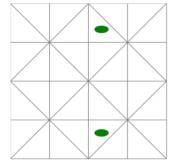
1674
1675
1676**Generalization:** Direction is different**Model's Output:****Ground Truth:**1689
1690

Figure 26: An example of a correct generalization task - direction

1691
1692
1693**Generalization:** Location is different**Model's Output:****Ground Truth:**

1707

Figure 27: An example of a correct generalization task - location

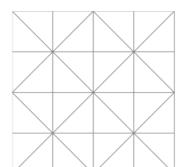
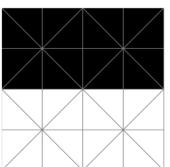
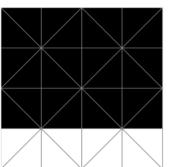
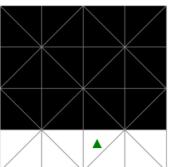
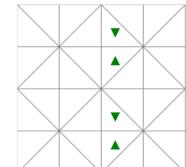
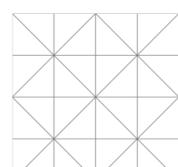
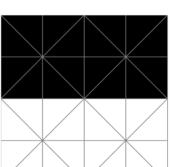
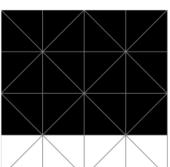
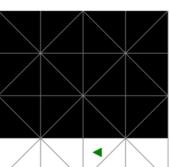
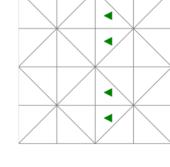
1708
1709
1710
1711**Generalization:** Direction is different**Model's Output:****Ground Truth:**1726
1727

Figure 28: An example of an incorrect generalization task - direction

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748 **Generalization:** Location is different
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

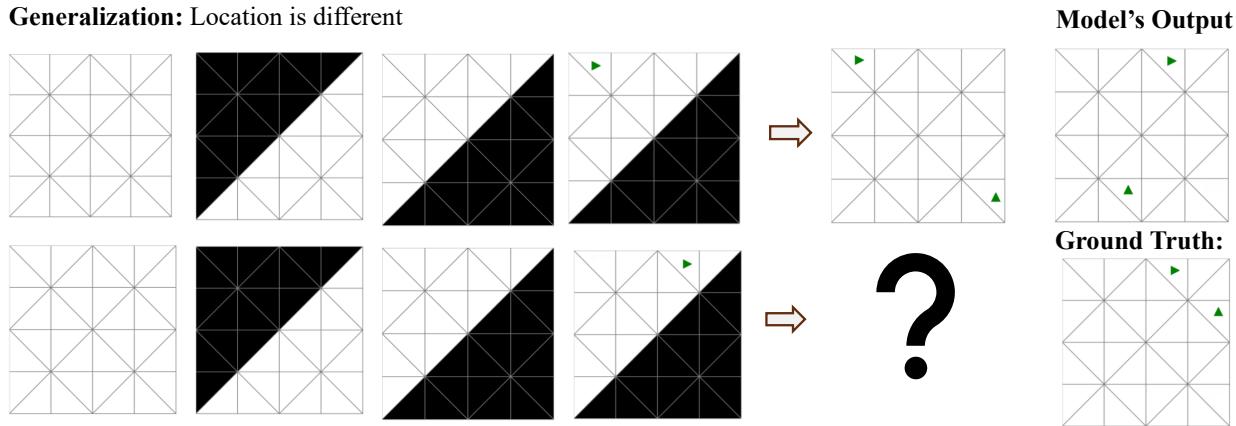


Figure 29: An example of an incorrect generalization task - location

1782 **G PROMPTS**

1783
 1784 We evaluate the models across two distinct tasks using zero-shot prompting. For each task, a variety of prompts with
 1785 comprehensive explanations are crafted, along with response options for the requested fields. The details of the prompt
 1786 template for each task are provided in Figures 30, 31, 32, 33, 34, 35, 36, and 37.
 1787

1788 **Prompt 1: Text-based prediction task**

1789
 1790 You are an AI system with the ability to mentally visualize and manipulate folded paper. The following is a textual representation of a paper
 1791 folding and hole-punching task. The paper starts as a 4x4 grid of square cells. Each square is divided into two triangles. Each triangle is
 1792 identified using a location object: <row>, <column>, <tri>. Row and col are 0-based indices, starting from the top-left corner of the grid.
 1793 Triangles are numbered from left to right within each square. tri = 0 refers to the first (left) triangle, and tri = 1 refers to the second (right) triangle.
 1794
 1795 The paper is folded one or more times according to a defined sequence of images. The paper may also undergo a rotation. Each step in the
 1796 sequence—excluding the initial state and the hole-punching step—represents either a folding or a rotation action. Rotation affects the physical
 1797 orientation of the paper and alters the direction of unfolding. Step 0 represents the original unfolded state. In the representation: 0 indicates a
 1798 folded (hidden) triangle and 1 indicates a visible (unfolded) triangle.
 1799
 1800 After the final fold, one or more holes are punched in the paper. Punched holes are marked using letters:
 1801 'circle': 'C',
 1802 'ellipse': 'E',
 1803 'star': 'S',
 1804 'triangle': 'A',
 1805 'trapezoid': 'Z',
 1806 'letter': 'T',
 1807
 1808 The uppercase letters represent large holes and lowercase letters represent small holes. In the given example, the following hole(s) are
 1809 punched:
 1810 Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees
 1811
 1812 Step 0: initial sheet
 1813 11, 11, 11, 11,
 1814 11, 11, 11, 11,
 1815 11, 11, 11, 11,
 1816 11, 11, 11, 11,
 1817
 1818 Step 1:
 1819 00, 00, 00, 01,
 1820 00, 00, 01, 11,
 1821 00, 01, 11, 11,
 1822 01, 11, 11, 11,
 1823
 1824 Hole Punching:
 1825 00, 00, 00, 01,
 1826 00, 00, 01, 1T,
 1827 00, 0t, 11, 11,
 1828 01, 11, 11, A1,
 1829
 1830 Your task is to mentally unfold the paper step by step. Then, provide: the sequence of unfolding steps, the total number of result holes after
 1831 unfolding and the final position, size, and shape of each resulting hole on the original paper.
 1832
 1833 When determining the unfolding steps, do not reverse the rotation. If there is no rotation, the unfolding actions should be the exact reverse of
 1834 the folding actions, both in order and direction. If there is a rotation, you need to identify the physically accurate unfolding action by accounting
 1835 for the paper's rotated orientation. Here are your choices for unfolding steps:
 1836 H1-F — Fold horizontally from top to bottom
 1837 H2-F — Fold horizontally from bottom to top
 1838 V1-F — Fold vertically from left to right
 1839 V2-F — Fold vertically from right to left
 1840 D1-F — Fold diagonally from top-left to bottom-right
 1841 D2-F — Fold diagonally from top-right to bottom-left
 1842 D3-F — Fold diagonally from bottom-left to top-right
 1843 D4-F — Fold diagonally from bottom-right to top-left
 1844
 1845 Think step-by-step, then provide your answer in the required JSON format.
 1846 {
 1847 "totalNumberOfHoles": <number>,
 1848 "unfoldingTypes": [H1-F | H2-F | V1-F | V2-F | D1-F | D2-F | D3-F | D4-F],
 1849 "resultHoles": [
 1850 "shape": "<circle | ellipse | triangle | star | letter | trapezoid | square | rectangle| text>",
 1851 "size": "<small | large>",
 1852 "direction": "<0 | 90 | 180 | 270>",
 1853 "location": "<row>, <column>, <tri>"]
 1854 }
 1855 }
 1856 }

1857 Figure 30: Text-based prediction prompt.
 1858

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Prompt 2: 2D image-based prediction task

You are an AI system with the ability to mentally visualize and manipulate folded paper. Below is a sequence of 2D image representations depicting a paper folding and hole-punching task. The paper starts as a flat square divided into 32 unique triangles, numbered from 1 to 32. They are numbered in order, starting from the top-left corner and increasing row by row from left to right. Last image shows the number locations.

The paper is folded one or more times according to a defined sequence of images. The paper may also undergo a rotation. Each image in the sequence—excluding the initial state and the hole-punching step—represents either a folding or a rotation action. Image 1 shows the original, unfolded paper.

In each image:

Black triangles represent folded (hidden) regions of the paper.

White triangles represent visible (unfolded) regions.

Green shapes indicate holes that were punched after the final fold.

In the given example, the following hole(s) are punched:

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

.

.

<IMAGE 1>

<IMAGE 2>

.

.

<IMAGE LOCATION>

Your task is mentally unfold the paper step by step. Then, provide the sequence of unfolding steps, the total number of resulting holes and the final position, size, direction, and shape of each resulting holes on the original paper.

When determining the unfolding steps, do not reverse the rotation. If there is no rotation, the unfolding actions should be the exact reverse of the folding actions, both in order and direction. If there is a rotation, you must account for the paper's new orientation before determining the unfolding action. Rotation transforms the axes of the paper, which means the original fold may now appear in a different direction. You need to identify the physically accurate unfolding action based on how the fold is oriented after rotation. Here are your choices for unfolding steps:

H1-F — Unfold horizontally from top to bottom

H2-F — Unfold horizontally from bottom to top

V1-F — Unfold vertically from left to right

V2-F — Unfold vertically from right to left

D1-F — Unfold diagonally from top-left to bottom-right

D2-F — Unfold diagonally from top-right to bottom-left

D3-F — Unfold diagonally from bottom-left to top-right

D4-F — Unfold diagonally from bottom-right to top-left

Think step-by-step, carefully mentally unfolding the paper. Then provide your answer in the required JSON format.

```
{
  "totalNumberOfHoles":<number>,
  "unfoldingTypes": [H1-F | H2-F | V1-F | V2-F | D1-F | D2-F | D3-F | D4-F],
  "resultHoles": [
    {
      "shape": "<circle | ellipse | triangle | star | letter | trapezoid>",
      "size": "<small | large>",
      "direction": <0 | 90 | 180 | 270>,
      "location": <1-32>
    }
  ]
}
```

Figure 31: 2D image-based prediction prompt.

1890
 1891
 1892

Prompt 3: Video frame-based prediction task

1893 You are an AI system with the ability to mentally visualize and manipulate folded paper. The paper starts as a flat square divided into 32 unique
 1894 triangles, numbered from 1 to 32. These numbers increase row by row from left to right, starting at the top-left corner. The image below shows
 1895 the number locations:
 1896 <IMAGE LOCATION>
 1897 The images below are frames from a 3D animation illustrating a paper folding and hole-punching task. The paper is folded one or more times
 1898 according to a defined sequence of actions. The paper may also undergo a rotation. Each image frame in the sequence—excluding last action
 1899 which is hole-punching step—represents either a folding or a rotation action.
 1900 <VIDEO FRAME 1>
 1901 <VIDEO FRAME 2>
 1902 .
 1903 The holes are depicted as black shapes or marks. In the given example, the following initial holes are punched:
 1904 Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.
 1905 Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.
 1906 .
 1907 .
 1908 Your task is mentally unfold the paper step by step. Then, provide: the sequence of unfolding steps, the total number of resulting holes and the
 1909 final position, size, direction, and shape of each resulting holes on the original paper.
 1910 When determining the unfolding steps, do not reverse the rotation. If there is no rotation, the unfolding actions should be the exact reverse of
 1911 the folding actions, both in order and direction. If there is a rotation, you need to identify the physically accurate unfolding action by accounting
 1912 for the paper's rotated orientation. Here are your choices for unfolding steps:
 1913 H1-F — Unfold horizontally from top to bottom
 1914 H2-F — Unfold horizontally from bottom to top
 1915 V1-F — Unfold vertically from left to right
 1916 V2-F — Unfold vertically from right to left
 1917 D1-F — Unfold diagonally from top-left to bottom-right
 1918 D2-F — Unfold diagonally from top-right to bottom-left
 1919 D3-F — Unfold diagonally from bottom-left to top-right
 1920 D4-F — Unfold diagonally from bottom-right to top-left
 1921 Think step-by-step, then provide your answer in the required JSON format.
 1922 {
 1923 "totalNumberOfHoles": <number>,
 1924 "unfoldingTypes": [H1-F | H2-F | V1-F | V2-F | D1-F | D2-F | D3-F | D4-F],
 1925 "resultHoles": [
 1926 {
 1927 "shape": "<circle | ellipse | triangle | star | letter | trapezoid | square | rectangle| text>",
 1928 "size": "<small | large>",
 1929 "direction": <0 | 90 | 180 | 270>,
 1930 "location": <1-32>
 1931 }
 1932]
 1933 }
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941 Figure 32: Video frame-based prediction prompt.
 1942
 1943

1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

Prompt 4: Video-based prediction task

```

<FOLDING VIDEO>
<IMAGE LOCATION>

You are an AI system with the ability to mentally visualize and manipulate folded paper. Above is the 3D animation depicting a paper folding and hole-punching task. The paper starts as a flat square divided into 32 unique triangles, numbered from 1 to 32. They are numbered in order, starting from the top-left corner and increasing row by row from left to right. The image shows the number locations.

The paper is folded one or more times according to a defined sequence of actions. The paper may also undergo a rotation. Each action in the video sequence—excluding last action which is hole-punching step—represents either a folding or a rotation action. The holes are depicted as black shapes/marks.

The holes are depicted as black shapes or marks. In the given example, the following initial holes are punched:
Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.
Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.
.

.

Your task is mentally unfold the paper step by step. Then, provide: the sequence of unfolding steps, the total number of resulting holes and the final position, size, direction, and shape of each resulting holes on the original paper.

When determining the unfolding steps, do not reverse the rotation. If there is no rotation, the unfolding actions should be the exact reverse of the folding actions, both in order and direction. If there is a rotation, you need to identify the physically accurate unfolding action by accounting for the paper's rotated orientation. Here are your choices for unfolding steps:
H1-F — Unfold horizontally from top to bottom
H2-F — Unfold horizontally from bottom to top
V1-F — Unfold vertically from left to right
V2-F — Unfold vertically from right to left
D1-F — Unfold diagonally from top-left to bottom-right
D2-F — Unfold diagonally from top-right to bottom-left
D3-F — Unfold diagonally from bottom-left to top-right
D4-F — Unfold diagonally from bottom-right to top-left

Think step-by-step, then provide your answer in the required JSON format.
{
  "totalNumberOfHoles":<number>,
  "unfoldingTypes": [H1-F | H2-F | V1-F | V2-F | D1-F | D2-F | D3-F | D4-F],
  "resultHoles": [
    {
      "shape": "<circle | ellipse | triangle | star | letter | trapezoid | square | rectangle| text>",
      "size": "<small | large>",
      "direction": "<0 | 90 | 180 | 270>",
      "location": "<1-32>"
    }
  ]
}

```

Figure 33: Video-based prediction prompt.

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Prompt 5: Video-based backward prediction task

```

<BACKWARD FOLDING VIDEO>
<IMAGE LOCATION>

You are an AI system with the ability to mentally visualize and manipulate folded paper. Above is the 3D animation depicting a paper folding and hole-punching task. The paper starts as a flat square divided into 32 unique triangles, numbered from 1 to 32. These numbers increase row by row from left to right, starting at the top-left corner. The last image shows the number locations.

You are always looking at the front side of the paper and all folding actions in the animation are performed by folding the paper backward. The paper may also undergo rotation, which is applied to the entire sheet and is not dependent on front or back orientation. Each action in the sequence—excluding the final hole-punching step—represents either a backward folding or a rotation. The holes are depicted as black shapes or marks.

In the given example, the following initial holes are punched:
Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.
Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.
.

.

Your task is to mentally unfold the paper step by step, reversing the folds in the correct physical order. Remember that all folds were done backward, so all unfolding actions should also be done by unfolding backward. Provide: the sequence of unfolding steps, the total number of resulting holes and the final position, size, direction, and shape of each resulting holes on the original paper.

When determining the unfolding steps, do not reverse the rotation. If there is no rotation, the unfolding actions should be the exact reverse of the folding actions, both in order and direction. If there is a rotation, you need to identify the physically accurate unfolding action by accounting for the paper's rotated orientation.

Here are your choices for backward unfolding steps:
H1-B — Unfold horizontally from top to bottom
H2-B — Unfold horizontally from bottom to top
V1-B — Unfold vertically from left to right
V2-B — Unfold vertically from right to left
D1-B — Unfold diagonally from top-left to bottom-right
D2-B — Unfold diagonally from top-right to bottom-left
D3-B — Unfold diagonally from bottom-left to top-right
D4-B — Unfold diagonally from bottom-right to top-left

Think step-by-step, then provide your answer in the required JSON format.
{
  "totalNumberOfHoles":<number>,
  "unfoldingTypes": [H1-B | H2-B | V1-B | V2-B | D1-B | D2-B | D3-B | D4-B],
  "resultHoles": [
    {
      "shape": "<circle | ellipse | triangle | star | letter | trapezoid | square | rectangle| text>",
      "size": "<small | large>",
      "direction": "<0 | 90 | 180 | 270>",
      "location": "<1-32>"
    }
  ]
}

```

Figure 34: Video-based backward prediction prompt.

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

Prompt 5: Video frame-based backward prediction task

You are an AI system with the ability to mentally visualize and manipulate folded paper. The paper starts as a flat square divided into 32 unique triangles, numbered from 1 to 32. These numbers increase row by row from left to right, starting at the top-left corner. The image below shows the number locations:

<IMAGE LOCATION>

The images below are frames from a 3D animation illustrating a paper folding and hole-punching task. You are always viewing the front side of the paper. All folding actions in the animation are performed by folding the paper backward. The paper may also undergo rotation, which is applied to the entire sheet and is independent of front/back orientation. Each image frame in the sequence—excluding the final hole-punching step—represents either a backward fold or a rotation.

<VIDEO FRAME 1>

<VIDEO FRAME 2>

.

The holes are depicted as black shapes or marks. In the given example, the following initial holes are punched:

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

.

.

Your task is to mentally unfold the paper step by step, reversing the folds in the correct physical order. Remember that all folds were done backward, so all unfolding actions should also be done by unfolding backward. Provide: the sequence of unfolding steps, the total number of resulting holes and the final position, size, direction, and shape of each resulting holes on the original paper.

When determining the unfolding steps, do not reverse the rotation. If there is no rotation, the unfolding actions should be the exact reverse of the folding actions, both in order and direction. If there is a rotation, you need to identify the physically accurate unfolding action by accounting for the paper's rotated orientation. Here are your choices for backward unfolding steps: Here are your choices for backward unfolding steps:

H1-B — Unfold horizontally from top to bottom

H2-B — Unfold horizontally from bottom to top

V1-B — Unfold vertically from left to right

V2-B — Unfold vertically from right to left

D1-B — Unfold diagonally from top-left to bottom-right

D2-B — Unfold diagonally from top-right to bottom-left

D3-B — Unfold diagonally from bottom-left to top-right

D4-B — Unfold diagonally from bottom-right to top-left

Think step-by-step, then provide your answer in the required JSON format.

```
{
  "totalNumberOfHoles": <number>,
  "unfoldingTypes": [H1-B | H2-B | V1-B | V2-B | D1-B | D2-B | D3-B | D4-B],
  "resultHoles": [
    {
      "shape": "<circle | ellipse | triangle | star | letter | trapezoid | square | rectangle| text>",
      "size": "<small | large>",
      "direction": <0 | 90 | 180 | 270>,
      "location": <1-32>
    }
  ]
}
```

Figure 35: Video frame-based backward prediction prompt.

2106

2107

2108

Prompt 7: 2D image-based planning task

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

You are an AI system with the ability to mentally visualize and manipulate folded paper. In this task, you will work with a paper divided into 32 unique triangles, numbered from 1 to 32. Numbering starts at the top-left corner and continues row by row from left to right. To help you identify triangle positions, refer to the reference image below, which shows the numbered layout of the unfolded sheet:

<IMAGE LOCATION>

Below is an image of a paper that has been fully unfolded after undergoing a series of folds and hole punches. In this image, white triangles represent visible (unfolded) areas, and green shapes indicate the final positions of punched holes after unfolding:

<FINAL IMAGE >

In the given example, the following hole(s) appear in the final unfolded result:

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

.

.

Your task is to determine the sequence of folding actions in the correct order that would produce the given pattern of holes. Then identify the original location, size, direction, and shape of initial hole(s) on the folded paper where the punch(es) were made before unfolding.

You are allowed to punch up to two initial holes on the folded paper. To complete the task, you must use exactly {number} folding steps—no more, no less. Rotation folds are not allowed; only horizontal, vertical, or diagonal folds can be used.

Here are the folding options you may choose from:

H1-F — Fold horizontally from top to bottom

H2-F — Fold horizontally from bottom to top

V1-F — Fold vertically from left to right

V2-F — Fold vertically from right to left

D1-F — Fold diagonally from top-left to bottom-right

D2-F — Fold diagonally from top-right to bottom-left

D3-F — Fold diagonally from bottom-left to top-right

D4-F — Fold diagonally from bottom-right to top-left

Think step-by-step, carefully mentally unfolding the paper. Then provide your answer in the required JSON format.

```
{
  "totalNumberOfHoles":<number>,
  "unfoldingTypes": [H1-F | H2-F | V1-F | V2-F | D1-F | D2-F | D3-F | D4-F],
  "resultHoles": [
    {
      "shape": "<circle | ellipse | triangle | star | letter | trapezoid>",
      "size": "<small | large>",
      "direction": <0 | 90 | 180 | 270>,
      "location": <1-32>
    }
  ]
}
```

Figure 36: Planning prompt.

2160

2161

2162

Prompt 8: 2D image-based generalization task

2163

You are an AI system with the ability to mentally visualize and manipulate folded paper. You will be given a visual analogy task involving sequences of paper folding and hole punching operations. Each analogy consists of two parts: a Reference Task and a Target Task. Both tasks will be presented as step-by-step image sequences showing how the paper is folded and where holes are punched.

2164
2165

The paper is represented as a square divided into 32 uniquely numbered triangles, arranged from top-left to bottom-right, row by row. The image below shows the unfolded sheet with numbered triangles to help you locate hole positions:

2166

<IMAGE LOCATION>

2167

In all images:

2168

Black triangles represent folded (hidden) regions of the paper.

2169

White triangles represent visible (unfolded) regions.

2170

Green shapes indicate holes that were punched after the final fold.

2171

Reference Task

2172

This task provides a reference example that demonstrates how a specific sequence of folds and a hole-punching action lead to a particular pattern of holes on the unfolded paper. A series of images will show the step-by-step folding and punching process, followed by a final image displaying the fully unfolded paper with all resulting hole locations.

2173

Folding and punching sequence:

2174

<IMAGE 1>

2175

<IMAGE 2>

2176

.

2177

Unfolded result:

2178

<FINAL IMAGE>

2179

Initial hole(s) after final fold (before unfolding):

2180

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

2181

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

2182

.

2183

Resulting hole(s) in final unfolded result:

2184

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

2185

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

2186

.

2187

Target Task

2188

This task presents a second sequence of folding and hole punching images, using the same folding sequence as the Reference Task, but without showing the final unfolded result.

2189

Folding and punching sequence:

2190

<IMAGE 1>

2191

<IMAGE 2>

2192

.

2193

Initial hole(s) after final fold (before unfolding):

2194

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

2195

Shape: {shape}, Size: {size}, Location: {location}, Direction: {direction} degrees.

2196

.

2197

The Target Task uses the same folding sequence as Reference Task. However, only one of the following four aspects of the punched hole(s) is different from the Reference Task: location, shape, size and direction. All other attributes remain the same.

2198

Your goal is by using the visual analogy reasoning, analyze how the folds and punch in the Reference Task produced the unfolded result and then apply the same transformation logic to Target Task considering its different hole information. Determine the final location, size, direction, and shape of each resulting hole in the Target Task on the unfolded paper.

2199

Think step-by-step, then provide your answer in the required JSON format.

2200

{

2201

"totalNumberOfHoles":<number>,

2202

"unfoldingTypes": [H1-F | H2-F | V1-F | V2-F | D1-F | D2-F | D3-F | D4-F],

2203

"resultHoles": [

2204

{

2205

"shape": "<circle | ellipse | triangle | star | letter | trapezoid>",

2206

"size": "<small | large>",

2207

"direction": <0 | 90 | 180 | 270>,

2208

"location": <1-32>

2209

}

2210

]

2211

}

Figure 37: Generalization prompt.

2212

2213