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ABSTRACT

Molecular conformation optimization is crucial to computer-aided drug discovery
and materials design. Traditional energy minimization techniques rely on iterative
optimization methods that use molecular forces calculated by a physical simulator
(oracle) as anti-gradients. However, this is a computationally expensive approach
that requires many interactions with a physical simulator. One way to accelerate
this procedure is to replace the physical simulator with a neural network. Despite
recent progress in neural networks for molecular conformation energy prediction,
such models are prone to errors due to distribution shift, leading to inaccurate
energy minimization. We find that the quality of energy minimization with neu-
ral networks can be improved by providing optimization trajectories as additional
training data. Still, obtaining complete optimization trajectories demands a lot
of additional computations. To reduce the required additional data, we present
the Gradual Optimization Learning Framework (GOLF) for energy minimiza-
tion with neural networks. The framework consists of an efficient data-collecting
scheme and an external optimizer. The external optimizer utilizes gradients from
the energy prediction model to generate optimization trajectories, and the data-
collecting scheme selects additional training data to be processed by the physical
simulator. Our results demonstrate that the neural network trained with GOLF
performs on par with the oracle on a benchmark of diverse drug-like molecules
using significantly less additional data.

1 INTRODUCTION

Numerical quantum chemistry methods are essential for modern computer-aided drug discovery
and materials design pipelines. They are used to predict the physical and chemical properties of
candidate structures (Matta & Boyd, 2007; Oglic et al., 2017; Tielker et al., 2021). Ab initio property
prediction framework for a specific molecule or material could be divided into three main steps
as follows: (1) find a low-energy conformation of a given atom system, (2) compute its electron
structure with quantum chemistry methods, and (3) calculate properties of interest based on the
latest. The computational cost of steps (1) and (2) is defined by the specific physical simulator
(oracle O) varying from linear to exponential complexity w.r.t the number of atoms or electrons in
the system (Sousa et al., 2007). Overall, the more accurate the oracle is, the more computationally
expensive its operations become.
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The traditional approach to the problem of obtaining low-energy molecular conformations is to
run an iterative optimization process using physical approximations, such as those provided by the
Density-functional theory (DFT) methods (Kohn & Sham, 1965), as they are reasonably accurate.
However, for large molecules, even a single iteration may take up several hours of CPU-compute
(Gilmer et al., 2017). Therefore, it is crucial to develop alternative approaches (such as Neural
Network-based) that reduce the computational complexity of iterative optimization.

The recent growth in computational power led to the emergence of molecular databases with com-
puted quantum properties (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014; Isert et al., 2022;
Khrabrov et al., 2022; Jain et al., 2013). For example, nablaDFT (Khrabrov et al., 2022) consists
of more than 5 × 106 conformations for around 106 drug-like molecules. This data enabled deep
learning research for many molecule-related problems, such as conformational potential energy and
quantum properties prediction with Neural Network Potentials (NNP) (Chmiela et al., 2017; Schütt
et al., 2017; Chmiela et al., 2018; 2020; Schütt et al., 2021; Shuaibi et al., 2021; Gasteiger et al.,
2020; 2021; Chmiela et al., 2023), and conformational distribution estimation (Simm & Hernández-
Lobato, 2019; Xu et al., 2021; Ganea et al., 2021; Xu et al., 2022; Jing et al., 2022; Shi et al.,
2021; Luo et al., 2021). Naturally, there have been several works that utilize deep learning to tackle
the problem of obtaining low-energy conformations. One approach is to reformulate this task as a
conditional generation task (Guan et al., 2021; Lu et al., 2023); see Section 2 for further details.
Another solution is to train an NNP to predict the potential energy of a molecular conformation and
use it as a force field for relaxation (Unke et al., 2021). Assuming the NNP accurately predicts the
energy, its gradients can be used as interatomic forces (Schütt et al., 2017). Such a technique allows
for gradient-based optimization without a physical simulator, significantly reducing computational
complexity.

In this work, we aim to improve the training of NNPs for obtaining low-energy conformations. We
trained NNPs on the subset of nablaDFT dataset (Khrabrov et al., 2022) and observed that such
models suffer from the distribution shift when used in the optimization task (see Figure 1). To alle-
viate the distribution shift and improve the quality of energy minimization, we enriched the training
dataset with optimization trajectories (see Section 4) generated by the oracle. Our experiments
demonstrate that it requires more than 5× 105 additional oracle interactions to match the quality of
a physical simulator (see Table 1). These models trained on enriched datasets are used as baselines
for our proposed approach.

In this paper, we propose the GOLF — Gradual Optimization Learning Framework for the training
of NNPs to generate low-energy conformations. GOLF consists of three components: (i) a genuine
oracle OG , (ii) an optimizer, and (iii) a surrogate oracle OS that is computationally inexpensive.
TheOG is an accurate but computationally expensive method used to calculate ground truth energies
and forces, and we consider a setting with a limited budget on OG interactions. The optimizer (e.g.,
Adam (Kingma & Ba, 2014) or L-BFGS (Liu & Nocedal, 1989)) utilizes NNP gradients to produce
optimization trajectories. The OS determines which conformations are added to the training set.
We use Psi4 (Smith et al., 2020), a popular software for DFT-based computations, as the OG , and
RDKit’s (Landrum et al., 2022) MMFF (Halgren, 1996) as theOS . The NNP training cycle consists
of three steps. First, we generate a batch of optimization trajectories and evaluate all conformations
with OS . Then we select the first conformation from each trajectory for which the NNP poorly
predicts interatomic forces w.r.t. OS (see Section 5), calculate its ground truth energy and forces
with the OG , and add it to the training set. Lastly, we update the NNP by training on batches
sampled from initial and collected data. We train the model until we exceed the computational
budget for additional OG interactions. We show (see Section 6.2) that NNPs trained with GOLF
on the nablaDFT (Khrabrov et al., 2022) perform on par with OG while using 50x less additional
data compared to the straightforward approach described in the previous paragraph. We also show
similar results on another diverse dataset of drug-like molecules called SPICE (Eastman et al., 2023).
We publish1 the source code for GOLF along with optimization trajectories datasets, training, and
evaluation scripts.

Our contributions can be summarized as follows:

• We study the task of conformational optimization and find that NNPs trained on existing
datasets are prone to the distribution shift, leading to inaccurate energy minimization.

1https://github.com/AIRI-Institute/GOLF
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• We propose a straightforward approach to deal with the distribution shift by enriching the
training dataset with optimization trajectories (see Figure 1). Our experiments show that
additional 5× 105 conformations make the NNP perform comparably with the DFT-based
oracle OG on the task of conformational optimization.

• We propose a novel framework (GOLF) for data-efficient training of NNPs, which includes
a data-collecting scheme along with an external optimizer. We show that models trained
with GOLF perform on par with the physical simulator on the task of conformational opti-
mization using 50x less additional data than the straightforward approach.

2 RELATED WORK

Conformation generation Several recent papers have proposed different approaches for predict-
ing molecule’s 3D conformers. Xu et al. (2021) utilize normalizing flows to predict pairwise dis-
tances between atoms for a given molecular structure with subsequent relaxation of the generated
conformation. Ganea et al. (2021) construct the molecular conformation by iteratively assembling
it from smaller substructures. Xu et al. (2022); Wu et al. (2022); Jing et al. (2022); Huang et al.
(2023); Fan et al. (2023) address the conformational generation task with diffusion models (Sohl-
Dickstein et al., 2015). Other works employ variational approximations (Zhu et al., 2022; Swanson
et al., 2023), and Markov Random Fields (Wang et al., 2022). We evaluate these approaches in
Section 6.1. Despite showing promising geometrical metrics, such as Root-mean-square deviation
of atomic positions (RMSD), on the tasks reported in the various papers, these models perform
poorly in terms of geometry and potential energy on the optimization task. In most cases, additional
optimization with a physical simulator is necessary to get a valid conformation.

Geometry optimization Guan et al. (2021); Lu et al. (2023) frame the conformation optimization
problem as a conditional generation task and train the model to generate low-energy conformations
conditioned on RDKit-generated (or the randomly sampled from the pseudo optimization trajectory)
conformations by minimizing the RMSD between the corresponding atom coordinates. As RMSD
may not be an ideal objective for the conformation optimization task (see Section 6.1), we focus on
accurately predicting the interatomic forces along the optimization trajectories in our work.

Additional oracle interactions Zhang et al. (2018) show that additional data from the oracle may
increase the energy prediction precision of NNP models. Following this idea, Kulichenko et al.
(2023) propose an active learning approach based on the uncertainty of the energy prediction to
reduce the number of additional oracle interactions. The main limitation of this approach is that it
requires training a separate NNP ensemble for every single molecule. Chan et al. (2019) parametrize
the molecule as a set of rotatable bonds and utilize the Bayesian Optimization with Gaussian Process
prior to efficiently search for low-energy conformations. However, this method requires using the
oracle during the inference, which limits its applications. The OC2022 (Tran* et al., 2022) provides
relaxation trajectories for catalyst-adsorbate pairs. However, no in-depth analysis of the effects of
such additional data on the quality of optimization with NNPs is provided.

To sum up, we believe it necessary to explore further the ability of NNPs to optimize molecular
conformations according to their energy. Our experiments (see Section 6) show that additional
oracle information significantly increases the optimization quality. Since this information may be
expensive, we aim to reduce the number of additional interactions while maintaining the quality on
par with the oracle.

3 NOTATION AND PRELIMINARIES

We define the conformation s = {z,X} of the molecule as a pair of atomic numbers z =
{z1, . . . , zn}, zi ∈ N and atomic coordinates X = {x1, . . . ,xn},xi ∈ R3, where n is the number
of atoms in the molecule. We define the oracleO as a function that takes conformation s as an input
and outputs its potential energy Eoracle

s ∈ R and interatomic forces F oracle
s ∈ Rn×3 : Eoracle

s ,F oracle
s =

O(s). To denote the ground truth interatomic force acting on the i-th atom, we use F oracle
s,i . We use

different superscripts to denote energies and forces calculated by different physical simulators. For
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example, we denote the RDKit’s MMFF-calculated energy as EMMFF
s and the Psi4-calculated energy

as EDFT
s .

We denote the NNP for the prediction of the potential energy of the conformation parametrized by
weights θ as f (s;θ) : {z,X} → R. Following (Schütt et al., 2017; Schütt et al., 2021), we derive
forces from the predicted energies:

Fi(s;θ) = −
∂f (s;θ)

∂xi
, (1)

where Fi ∈ R3 is the force acting on the i-th atom as predicted by the NNP. We follow the standard
procedure (Schütt et al., 2017; Schütt et al., 2021; Gasteiger et al., 2020; Musaelian et al., 2022) and
train the NNP to minimize the MSE between predicted and ground truth energies and forces:

L(s, Eoracle
s ,F oracle

s ;θ) = ρ∥Eoracle
s − f (s;θ)∥2 + 1

n

n∑
i=1

∥∥F oracle
i,s − Fi(s;θ)

∥∥2 , (2)

where L(s, Eoracle
s ,F oracle

s ;θ) is the loss function for a single conformation s, and ρ is the hyperpa-
rameter accounting for different scales of energy and forces.

To collect the ground truth optimization trajectories (see Section 4), we use the OPTIMIZE method
from Psi-4 and run optimization until convergence. Optimizer Opt (L-BFGS, Adam, SGD-
momentum) utilizes the forces F (s;θ) ∈ Rn×3 to get NNP-optimization trajectories s0, . . . , sT ,
where s0 is the initial conformation:

st+1 = st + αOpt(F (st;θ)). (3)

Here, α is the optimization rate hyperparameter, and T is the total number of NNP optimization
steps.

In this work, we use NNPs trained on different data. To train the baseline model f baseline(·;θ), we
use the fixed subset of nablaDFT D0 (see Appendix D for more details). It consists of approxi-
mately 10000 triplets of the form

{
s, EDFT

s ,F DFT
s

}
. The D0 can be extended with the ground truth

optimization trajectories obtained with Psi-4 to get datasets denoted according to the total num-
ber of additional conformations: Dtraj-10k,Dtraj-100k, and so on. The resulting NNPs are dubbed
f traj-1k(·;θ), f traj-10k(·;θ), and so on respectively. We call the models trained with GOLF (see Sec-
tion 5) fGOLF-1k(·;θ), fGOLF-10k(·;θ), etc.

To evaluate the quality of optimization with NNPs, we use a fixed subset of the nablaDFT dataset
Dtest, that shares no molecules with D0. For each conformation s ∈ Dtest we perform the opti-
mization with the OG to get the ground truth optimal conformation sopt and its energy EDFT

sopt
. The

quality of the NNP-optimization for st ∈ s0, . . . , sT is evaluated with the percentage of minimized
energy:

pct(st) = 100% ∗
EDFT

s0 − EDFT
st

EDFT
s0 − EDFT

sopt

. (4)

By aggregating pct(st) over s ∈ Dtest, we get the average percentage of minimized energy at step t:

pctt =
1

|Dtest|
∑

s∈Dtest

pct(st); (5)

Another metric is the residual energy in state st: Eres(st). It is calculated as the delta between EDFT
st

and the optimal energy:

Eres(st) = EDFT
st − EDFT

sopt
; (6)

Similar to pctt, this metric can also be aggregated over the evaluation dataset:

Eres
t =

1

|Dtest|
∑

s∈Dtest

Eres(st). (7)
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Figure 1: Mean squared error (MSE) of energy and forces prediction for NNPs trained
on D0,Dtraj-10k,Dtraj-100k,Dtraj-500k. To compute the MSE, we collect NNP-optimization trajec-
tories of length T = 100 and calculate the ground truth energies and forces on steps t =
1, 2, 3, 5, 8, 13, 21, 30, 50, 75, 100. Solid lines indicate the median MSE, and the shaded regions
indicate the 10th and the 90th percentiles. Both the x-axis and y-axis are log scaled

Generally accepted chemical precision is 1 kcal/mol (Helgaker et al., 2004). Thus, another impor-
tant metric is the percentage of conformations for which the residual energy is less than chemical
precision. We consider optimizations with such residual energies successful:

pctsuccess =
1

|Dtest|
∑

s∈Dtest

I [Eres(sT ) < 1] . (8)

4 CONFORMATION OPTIMIZATION WITH NEURAL NETWORKS

Energy prediction models such as SchNet, DimeNet, and PaiNN can achieve near-perfect quality on
tasks of energy and interatomic forces prediction when trained on the datasets of molecular confor-
mations (Schütt et al., 2017; Gasteiger et al., 2020; Schütt et al., 2021; Ying et al., 2021; Shuaibi
et al., 2021; Gasteiger et al., 2021; Batzner et al., 2022; Musaelian et al., 2022). In theory, the
gradients of these models can be utilized by an external optimizer to perform conformational opti-
mization, replacing the computationally expensive physical simulator. However, in our experiments
(see Section 6), this scheme often leads to suboptimal performance in terms of the potential energy
of the resulting conformations. We attribute this effect to the distribution shift that naturally occurs
during the optimization: As most existing datasets (Isert et al., 2022; Khrabrov et al., 2022; East-
man et al., 2023; Nakata & Maeda, 2023) do not contain conformations sampled from optimization
trajectories, the accuracy of prediction deteriorates as the conformation changes along the optimiza-
tion process. The lack of such conformations in the training can result in either divergence (initial
potential energy is lower than the final potential energy) of the optimization or convergence to a
conformation with higher final potential energy than the optimization with the oracle.

To alleviate the distribution shift’s effect, we propose enriching the training dataset for NNPs with
the ground truth optimization trajectories obtained from the OG . To illustrate the effectiveness of
our approach, we conduct a series of experiments. First, we train a baseline model f baseline(·;θ) on
a fixed subset D0 of small molecules from the nablaDFT dataset. The D0 (|D0| ≈ 10000) contains
conformations for 4 000 molecules, with sizes ranging from 17 to 35 atoms, and the average size
of 32.6. Then we train NNPs f traj-(·;θ) on enriched datasets Dtraj-10k,Dtraj-100k,Dtraj-500k, containing
approximately 104, 105, 5× 105 additional conformations respectively. The additional data consists
of ground truth optimization trajectories obtained from the OG . Then, we evaluate the NNPs
by performing the NNP-optimization on all conformations in Dtest (|Dtest| ≈ 20000, contains ≈
10 000 molecules) and calculating the MSE between ground truth and predicted energies and forces.
We use the L-BFGS as Opt due to its superior performance compared to other optimizers (see
Appendix B). We run the optimization with an NNP for a fixed number of steps T = 100 as we
observe that this number is sufficient for the optimization to converge (see Figure 3). Figure 1
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Table 1: Optimization metrics for NNPs trained on enriched datasets

NNP f baseline f traj-10k f traj-100k f traj-500k

pctT (%) ↑ 77.9± 21.3 95.1± 7.6 96.2± 8.6 98.8± 7.6

Eres
T (kcal/mol) ↓ 8.6 2.0 1.5 0.5

pctsuccess(%) ↑ 8.2 37.0 52.7 73.4

illustrates the effect of the distribution shift on f baseline(·;θ) (the prediction error increases as the
optimization progresses) and its gradual alleviation with the addition of new training data.

Table 1 presents optimization metrics pctT , E
res

T ,pctsuccess for T = 100. Note that the potential
energy surfaces of molecules often contain a large number of local minimas (Tsai & Jordan, 1993).
Due to this fact and the noise in the predicted forces, the NNP-optimization can converge to a bet-
ter local minimum than the OG , resulting in the optimization percentage greater than a hundred:
pct(sT ) > 100% (see Appendix H for examples). This explains the range of values in Table 1
and the violin plots in Figure 2. We say that the NNP matches the optimization quality of OG if
its average residual energy Eres

T is less than the chemical precision. Table 1 shows that it takes
approximately 5 × 105 additional oracle interactions to match the optimization quality of the OG .
However, it takes on average 590 CPU-seconds to perform a single DFT calculation for a conforma-
tion fromD0 with the ωB97X-D/def2-SVP level of theory on our cluster with a total of 960 Intel(R)
Xeon(R) Gold 2.60Hz CPU-cores (assuming there are 240 parallel workers each using four threads).
This amounts to approximately 9.36 CPU-years of compute for 5× 105 additional conformations.

5 GOLF

Motivated by the desire to reduce the amount of additional data (and compute) required to match
the optimization quality of the OG , we propose the GOLF. Following the idea of Active Learn-
ing, we want to enrich the training dataset with conformations where the NNP’s prediction quality
deteriorates. We propose to select such conformations by identifying pairs of consecutive confor-
mations st, st+1 in NNP-optimization trajectories, for which the potential energy does not decrease:
EDFT

st < EDFT
st+1

. This type of error indicates that the NNP poorly predicts forces in st, so we add this
conformation to the training dataset.

Algorithm 1 GOLF
Require: training dataset D0, genuine oracle OG , surrogate oracle OS , optimizer Opt, optimiza-

tion rate α, NNP f (·;θ), number of additional OG interactions K, timelimit T , update-to-data
ratio U

1: Initialize the NNPf (·;θ) with the weights of the baseline NNP model
2: Set D ← Copy(D0), set t← 0
3: Sample s ∼ D, and calculate its energy with OS : Eprev ← EMMFF

s
4: repeat
5: s′ ← s+ αOpt(F (s;θ)) ▷ Get next conformation using NNP
6: Calculate new energy with the OS : Ecur ← EMMFF

s′

7: if Ecur > Eprev or t ≥ T then ▷ Incorrect forces predicted in s, or T reached
8: Calculate EDFT

s ,F DFT
s = OG (s)

9: D add←−−
{
s, EDFT

s ,F DFT
s

}
▷ Add new data to D

10: Train f (·;θ) on D using Eq. 2 U times
11: Set t← 0
12: Sample s ∼ D, and calculate its energy with OS : Eprev ← EMMFF

s
13: else
14: s← s′

15: Eprev ← Ecur

16: t← t+ 1
17: end if
18: until |D| − |D0| < K
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However, this scheme requires estimating the energy for all conformations in generated NNP-
optimization trajectories, which makes it computationally intractable. To cope with that, we employ
a computationally inexpensive surrogate oracle OS to determine which conformations to evaluate
with the OG and add to the training set. Although the energy estimation provided by the OS is less
accurate, such simplification allows us to efficiently collect the additional training data and success-
fully train the NNPs. We chose the RDKit’s (Landrum et al., 2022) MMFF (Halgren, 1996) as the
OS due to its efficiency. In our experiments, it takes 120 microseconds on average on a single CPU
core to evaluate a single conformation with MMFF, which is about 5 × 106 times faster than the
average DFT calculation time.

Algorithm 1 describes the GOLF training procedure. We start with an NNP f (·;θ) pretrained on
the D0. We calculate a new optimization trajectory on every iteration using forces from the current
NNP and choose a conformation from this trajectory to extend the training set. Then, we update the
NNP on batches sampled from the extended training set D. This approach helps the NNP learn the
conformational space by gradually descending towards minimal conformations.

6 EXPERIMENTS

We evaluate NNPs and baseline models on a subset of nablaDFT Dtest, |Dtest| = 19477, containing
conformations for 10273 molecules. The evaluation dataset Dtest shares no molecules with either
D0 or additional training data. We use PaiNN (Schütt et al., 2021) for all NNP experiments. First,
we train a baseline NNP f baseline(·;θ) on D0 for 5 × 105 training steps. To train f traj-(·;θ) we first
initialize the weights of the network with f baseline(·;θ) and then train it on the corresponding dataset
(Dtraj-10k,Dtraj-100k,Dtraj-500k) concatenated with D0 for additional 5 × 105 training steps. The only
exception is the f traj-500k(·;θ), which is trained for 106 training steps due to a larger dataset.

To train the fGOLF-(·;θ) models, we select the total number of additional OG interactions K and
adjust the update-to-data ratio U to keep the total number of updates equal to 5×105. For example, if
K is set to 104, we perform U = 50 updates for each additional conformation collected (see line 10
of Algorithm 1). The Algorithm 1 describes a non-parallel version of GOLF with a single OG . To
parallelize the OG calculations (line 8), we use a batched version of the Algorithm 1, where a batch
of NNP-optimization trajectories is generated and then processed by a large number of parallel DFT
oracles.

To evaluate NNPs, we use them to generate optimization trajectories s0, . . . , sT , T = 100 for all
s ∈ Dtest. We then calculate EDFT at steps t = {1, 2, 3, 5, 8, 13, 21, 30, 50, 75, 100}, as calculating in
every step is computationally expensive. Having calculated EDFT

sT for all s ∈ Dtest, we can compute
pct(sT ), E

res(st), s ∈ Dtest along with pctt, E
res

t,pctsuccess. In all our experiments, we use the
L-BFGS as Opt, except for Appendix B, where we test the effect of different external optimizers
on the model’s performance. We run the optimization with an NNP for a fixed number of steps
T = 100 as we observe that this number is sufficient for the optimization to converge (see Figure 3).
We report the optimization quality of RDKit’s MMFF as a non-neural baseline. If EDFT

sT > EDFT
s0 ,

we say that the optimization has diverged and do not take such conformations into account when
computing pctt, E

res
t, pctsuccess. We denote the percentage of diverged optimizations as pctdiv. We also

report well-known metrics COV and MAT (Xu et al., 2021). More information on these metrics can be found
in Appendix F. We present all metrics in Table 2.

6.1 GENERATIVE BASELINES

To compare our approach with other NN-based methods, we adapt ConfOpt (Guan et al., 2021), Torsional
diffusion (TD) (Jing et al., 2022), and Uni-Mol+ (Lu et al., 2023) for the task of conformational optimization.
The training dataset is composed of a single conformation for each of 4000 molecules in D0. We first optimize
geometry for each conformation with OG and then train the generative models to map initial conformations
to final conformations from corresponding optimization trajectories. Table 2 reports the best metrics for each
model type. Refer to Appendix G for an in-depth discussion of results. The training details and metrics for all
the variants of the models are also reported in Appendix G.
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Table 2: Optimization and recall-based metrics. We set δ = 0.5Å when computing the COV. We
use bold for the best value in each column.

Methods pctT (%)↑ pctdiv(%)↓ Eres
T (kc/mol) ↓ pctsuccess (%) ↑ COV(%)↑ MAT (Å)↓

RDKit 85.5± 8.8 0.6 5.5 4.1 54.9 0.61

TD 23.8± 19.8 61.4 33.8 0.0 10.0 1.42
ConfOpt 39.1± 22.8 71.1 27.9 0.2 25.0 1.13
Uni-Mol+ 54.6± 20.4 8.1 18.6 0.2 56.3 0.53

f baseline 77.9± 21.3 7.5 8.6 8.2 58.8 0.55
f rdkit 93.0± 11.6 4.4 2.8 35.4 63.8 0.51
f traj-10k 95.1± 7.6 4.5 2.0 37.0 63.3 0.52
f traj-100k 96.2± 8.6 2.8 1.5 52.7 65.6 0.49
f traj-500k 98.8± 7.6 2.0 0.5 73.4 67.0 0.48

fGOLF-1k 97.3± 5.1 3.9 1.1 62.9 71.0 0.42
fGOLF-10k 98.8± 5.0 3.0 0.5 77.3 71.2 0.42
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(b) Distribution of pct(sT ) for NNPs on SPICE

Figure 2: Violin plots of the percentage of optimized energy pct(sT ) calculated for various NNPs
on Dtest and DSPICE

test . Blue marks denote the mean percentage of optimized energy pctT , the 10th,
and the 90th quantile.

6.2 NNPS TRAINED ON NABLADFT DATASET

To illustrate the performance of various NNPs trained on molecules from the nablaDFT dataset (Khrabrov et al.,
2022), we plot the distribution of pct(sT ) using a violin plot (see Figure 2a). To highlight the data efficiency
of the proposed GOLF framework, we report fGOLF-1k(·;θ), as well as our primary model fGOLF-10k(·;θ). To
demonstrate the significance of our proposed data-collecting scheme, we compare the NNPs trained with GOLF
against an NNP trained on Drdkit = {sMMFF

Opt }s∈D0 , which is composed of the optimal conformations obtained
by the OS .

As shown in Figure 2a and in Table 2, the NNPs benefit from additional training data and outperform the
baseline in terms of all optimization metrics. The pctT and pctsuccess gradually increase with the amount of
additional training data both for f traj-(·;θ) and fGOLF-(·;θ) models. However, the NNPs trained with GOLF
require significantly less additional training data: fGOLF-1k(·;θ) outperforms f traj-100k(·;θ), while using 100

times less data; our main model, fGOLF-10k(·;θ) outperforms f traj-500k(·;θ) in terms of pctsuccess, while using 50
times less data. NNPs trained with GOLF also outperform f rdkit(·;θ), which shows the importance of enriching
the dataset with conformations based on the proposed Active Learning-inspired data collecting scheme.
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6.3 NNPS TRAINED ON SPICE DATASET

To demonstrate the generalization ability of our approach, we perform a similar set of experiments on another
diverse dataset of small molecules called SPICE (Eastman et al., 2023). Namely, we select a subset DSPICE

0 (see
Appendix E for detailed description) from the SPICE dataset to be roughly the same size as D0 and trained
a baseline model f baseline

SPICE (·;θ). We then use the same DFT-based oracle OG to get ground truth optimization
trajectories and obtain enriched training datasets DSPICE

traj-10k, DSPICE
traj-100k, DSPICE

traj-220k. Finally, we train f traj-
SPICE(·;θ) mod-

els and fGOLF-10k
SPICE (·;θ) model. All the models are evaluated on DSPICE

test dataset (|DSPICE
test | = 17724) that shares

no molecules with DSPICE
0 . The results are in Figure 2b and Table 3. It should be noted that the hyperparame-

ters used in these experiments were not specifically optimized for the SPICE dataset, suggesting potential for
further improvements in the metrics with tailored adjustments.

Table 3: Optimization metrics for NNPs trained on DSPICE
0

NNP f baseline f traj-10k f traj-100k f traj-220k fGOLF-10k

pctT (%) ↑ 90.4± 12.0 93.4± 10.0 94.3± 9.4 93.9± 9.6 94.2± 8.9

pctdiv(%) ↓ 4.7 6.8 2.4 2.4 3.2

Eres
T (kcal/mol) ↓ 3.6 2.4 2.1 2.3 2.1

pctsuccess(%) ↑ 19.7 37.4 44.2 41.6 40.9

6.4 LARGE MOLECULES

Finally, we test the ability of our models to generalize to unseen molecules of bigger size. To do that, we collect
a dataset DLM (LM for Large Molecules) of 2000 molecules from the nablaDFT dataset. Sizes of molecules in
DLM range from 36 atoms to 57 atoms with an average size of 41.8 atoms.

Table 4: Optimization metrics for NNPs trained on D0

NNP f baseline f traj-500k fGOLF-10k

pctT (%) ↑ 77.7± 19.7 97.4± 6.7 97.7± 4.1

pctdiv(%) ↓ 5.1 1.9 2.7

Eres
T (kcal/mol) ↓ 9.6 1.1 1.0

pctsuccess(%) ↑ 4.8 58.2 61.4

As it can be seen in Table 4, the fGOLF-10k(·;θ) matches the quality of ground truth optimization (Eres
T < 1),

the only downside being a lower pctsuccess compared to results in Table 2. We hypothesize that this percentage
can be increased by adding a small amount of larger molecules to D0 but leave this for future work.

7 CONCLUSION

In this work, we have presented a new framework called GOLF for molecular conformation optimization learn-
ing. We show that additional information from the physical simulator can help NNPs overcome the distribution
shift and increase their quality on energy prediction and optimization tasks. We thoroughly compare our ap-
proach with several baselines, including recent conformation generation models and an inexpensive physical
simulator. Using GOLF, we achieve state-of-the-art performance on the optimization task while reducing the
number of additional interactions with the physical simulator by a factor of 50 compared to the naive approach.
The resulting model matches the DFT methods’ optimization quality on a diverse set of drug-like molecules.
In addition, we find that our models generalize to bigger molecules unseen during training. We consider the
following two directions for future work. First, we plan to adopt the proposed approach for molecular dynam-
ics simulations. Second, we plan to account for molecular environments such as a solvent or a protein binding
pocket.
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A EXPERIMENTAL SETUP

Our implementation of GOLF is based on Schnetpack2.0 (Schütt et al., 2023). Namely, we use
Schnetpack2.0’s implementation of PaiNN and the data processing pipeline. All the experiments were
carried out on a cluster with 2 Nvidia Tesla V100 and 960 Intel(R) Xeon(R) Gold 2.60Hz CPU-cores, and the
total computational cost is ≈ 80 CPU-years and ≈ 1900 GPU-hours.

To train fGOLF-*(·;θ), we use a batched version of Algorithm 1 that simultaneously generates several NNP-
optimization trajectories with the same NNP and calculates energies and forces using “number of parallel OG ”
DFT-workers running in parallel. We use a smaller value of “number of parallel OG ”= 48 for fGOLF-1k(·;θ)
to reduce the number of correlated samples in the replay buffer. To prevent the biasing of the model towards
newly collected conformations, we sample 10% of each mini-batch from the initial training dataset D0 during
training.

We list all the hyperparameters in Table 5. When evaluating the NNPs on new molecules, we do not employ
the OS to terminate the optimization trajectory and instead use a fixed timelimit Teval = 100.

Table 5: Hyperparameter values for GOLF-10k.

GOLF-10k

NNP hyperparameters

Backbone PaiNN
Number of interaction layers 3
Cutoff radius 5.0 Å
Number of radial basis functions 50
Hidden size (n atom basis) 128

Training hyperparameters

Number of parallel OG 120
Batch size 64
Optimizer Adam
Learning rate scheduler CosineAnnealing
Initial learning rate 1× 10−4

Final learning rate 1× 10−7

Gradient clipping value 1.0
Weight coefficient ρ 1× 10−2

Total number of training steps 5× 105

Number of additional GO interactions K 10000
Update-to-data ratio U 50
Timelimit Ttrain 100
Timelimit Teval 100

Conformation optimizer hyperparameters

Conformation optimizer L-BFGS
Optimization rate α 1.0
Max number of iterations in the inner cycle 5

B EXTERNAL OPTIMIZERS

The external optimizer Opt is a crucial component of GOLF, as it generates the NNP-optimization trajectories
from which we sample the additional training data. To test the effect of the external optimizer on the training
and the evaluation of NNPs, we conduct a series of experiments with SGD (Robbins & Monro, 1951) with mo-
mentum, Adam (Kingma & Ba, 2014), and L-BFGS (Liu & Nocedal, 1989). We use the same optimizer for the
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Figure 3: pctt and pcttdiv, t = 1, 2, 3, 5, 8, 13, 21, 30, 50, 75, 100. Shaded regions indicate the 10th
and the 90th percentiles of the pct(st), s ∈ Dtest distribution. The x-axis is log-scaled.

Table 6: Hyperparameter values for GOLF with different external optimizers.

GOLF-LBFGS GOLF-Adam GOLF-SGD-momentum
Training hyperparameters

Total number of training steps 2× 105 2× 105 2× 105

Update-to-data ratio U 20 20 20
Timelimit T (training) 100 200 200
Timelimit T (evaluation) 100 500 500

Conformation optimizer hyperparameters

Conformation optimizer L-BFGS Adam SGD
Optimization rate α 1.0 5× 10−3 5× 10−3

Max number of iterations in the inner cycle 5 – –
Momentum – – 0.9

training and the evaluation of NNPs. We dub the resulting models as fGOLF-10k-SGD(·;θ), fGOLF-10k-Adam(·;θ) and
fGOLF-10k-LBFGS(·;θ) respectively. As the pytorch implementation of L-BFGS includes an inner cycle with up
to 5 (empirically chosen hyperparameter) NNP evaluations, we run fGOLF-10k-Adam(·;θ) and fGOLF-10k-SGD(·;θ)
for 500 steps instead of 100 for fGOLF-10k-LBFGS(·;θ). We train such models for 2 × 105 training steps instead
of 5 × 105 to save computational resources. We provide training hyperparameters for fGOLF-10k-*(·;θ) with
different external optimizers in Table 6 and omit hyperparameters identical to those in Table 5. Such a num-
ber of training steps is enough to show the superiority of the L-BFGS external optimizer compared to other
optimizers.

As it can be seen in Figure 3, fGOLF-10k-LBFGS(·;θ) outperforms other optimizers in terms of pctT . However,
fGOLF-10k-Adam(·;θ) performs better in terms of pctdiv. We hypothesize that fGOLF-10k-Adam(·;θ) can be tuned to
match the optimization quality of fGOLF-10k-LBFGS(·;θ), while retaining close-to-zero pctdiv, but leave this for
future work.

C MSE FOR GOLF

To further show that fGOLF-10k(·;θ) and f traj-500k(·;θ) perform similarly, we evaluate the prediction quality of
fGOLF-10k(·;θ) along the NNP-generated trajectories and plot the MSE for predicted energies and forces in
Figure 4.

D NABLADFT DATASET

Throughout this work, we use several subsets of nablaDFT (Khrabrov et al., 2022) dataset. The nablaDFT
dataset is based on the Molecular Sets (MOSES) dataset, which is a diverse subset of the ZINC dataset, con-
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Figure 4: Mean squared error (MSE) of energy and forces prediction for NNPs trained on D0

and Dtraj-500k, and NNP trained with GOLF. To compute the MSE, we collect NNP-optimization
trajectories of length T = 100 and calculate the ground truth energies and forces in steps
t = 1, 2, 3, 5, 8, 13, 21, 30, 50, 75, 100. Solid lines indicate the median MSE, and the shaded re-
gions indicate the 10th and the 90th percentiles. Both the x-axis and y-axis are log scaled

taining approximately one million drug-like molecules with atoms C, N, S, O, F, Cl, Br, and H. For each
molecule from the dataset, the authors ran the conformation generation method Wang et al. (2020) from the
RDKit software Landrum et al. (2022). Next, they clustered the resulting conformations with the Butina clus-
tering method Barnard & Downs (1992). Lastly, they selected the smallest number of clusters that cover at
least 95% of conformations and used their centroids as a set of conformations for a given molecule. This pro-
cedure has resulted in 1 to 62 unique conformations for each molecule, with 5 340 152 total conformations in
the full dataset. Finally, these conformations were evaluated with a DFT-based oracle. The baselines and GOLF
models are trained on the train set D0: a subset of nablaDFT, which contains 4 000 molecules and ≈10 000
conformations ( 2.5 conformations per molecule). The test set Dtest contains ≈ 10 000 different molecules and
19 447 conformations. Optimization trajectories for f traj-(·;θ) were obtained with a DFT-based oracle by opti-
mizing conformations from the train set. The average length of a trajectory is ≈ 100 steps. Finally, generative
baselines were trained to map conformations from D0 to their optimal counterparts.

E SPICE DATASET

Another dataset that is used in our work is SPICE (Eastman et al., 2023). It is a subset of the PubChem
dataset (Kim et al., 2023) and contains a diverse set of drug-like molecules. The total number of molecules in
SPICE is 14644. The dataset contains 25 high-energy conformations and 25 low-energy near-optimal con-
formations per molecule. Molecules contain the following atoms: C, N, S, O, F, Cl, Br, I, P, and H. To
cross-validate models trained on SPICE and nablaDFT, we filtered out molecules containing I and P atoms.
This procedure resulted in 13 231 filtered molecules. To make the training setup consistent with nablaDFT,
we selected ≈ 3500 molecules and ≈ 9500 conformations for the SPICE training set DSPICE

0 . The training
set only contains the high-energy conformations, as we observed that training on near-optimal conformations
leads to instabilities. The test set DSPICE

test includes ≈ 7000 molecules and ≈ 18000 conformations. The test
set contains both high-energy and low-energy conformations in equal parts. Note that initially, DSPICE

test was
supposed to match the size of Dtest but the DFT-based optimization for some molecules did not converge, so we
excluded them from the test set. Similar to Section D, optimization trajectories were obtained with a DFT-based
oracle by optimizing conformations from DSPICE

0 . The only difference is that we used optimization in spher-
ical coordinates instead of Cartesian. The change of coordinates resulted in shorter optimization trajectories
(around 25 steps on average). The biggest trajectories dataset for SPICE DSPICE

traj-220k thus only contains ≈220 000
conformations.

F DISTRIBUTION MATCHING METRICS

Consider the evaluation of the NNP on the dataset Dtest. Let Sg = {sT }s∈Dtest denote the set of all final
conformations in the NNP-optimization trajectories, and Sr =

{
sDFT
Opt

}
s∈Dtest

denote the set of all ground truth
optimal conformations obtained by the GO. To measure the difference between s ∈ Sg and s̃ ∈ Sr , we use
the GetBestRMSD in the RDKit package and denote the root-mean-square deviation as RMSD(s, s̃). The
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recall-based coverage and matching scores are defined as follows:

COV(Sg, Sr) =
1

|Sr|
|{s ∈ Sr | RMSD(s, s̃) < δ,∃s̃ ∈ Sg}| ;

MAT (Sg, Sr) =
1

|Sr|
∑
s∈Sr

min
s̃∈Sg

RMSD(s, s̃).
(9)

COV is number of conformations in Sr that are “reasonably” close (RMSD < δ) to some conformation from
Ss. MAT is the average over all s ∈ Sr RMSD to the closest conformation from Sg . Note that both COV
and MAT are not ideal metrics for the optimization task because they do not consider the energy of the final
conformation.

G GENERATIVE BASELINES

Table 7: Energy and Recall-based scores. We set δ = 0.5Å when computing the COV.

Methods pctT (%)↑ pctdiv(%)↓ COV(%)↑ MAT (Å)↓
Mean Mean

TD 24.04± 21.3 54.1 12.53 1.284
ConfOpt 33.36± 22.0 92.5 24.08 1.004
Uni-Mol+ -∗ -∗ 13.49 1.25

TDpr 25.63± 21.4 46.9 11.25 1.33
ConfOptpr 36.48± 23.0 84.5 19.88 1.05
Uni-Mol+pr 69.9± 23.1 23.2 15.29 1.23

Uni-Mol+init 54.92± 20.5 8.0 63.41 0.44
Uni-Mol+pr+init 62.20± 17.2 2.8 68.79 0.407

* The energy-based metrics for the Uni-Mol+ model are not reported due to the problems with energy compu-
tation.

In this section, we provide additional details considering the training of generative baselines and the corre-
sponding metrics (see Table 7). We consider three architectures designed for conformation generation (Energy-
inspired molecular conformational optimization (ConfOpt) (Guan et al., 2021), Torsional diffusion (TD) (Jing
et al., 2022), and Uni-Mol+ (Lu et al., 2023)) and adapt them to the task of geometry optimization. For the
first two models, we follow the same setup proposed in the corresponding papers and train models to generate
optimal conformations from the ones generated by RDKit. In the case of Uni-Mol+, we compare two setups: i)
the model is trained to generate optimal conformations conditioned on geometries from RDKit; ii) the model is
trained to generate optimal conformations conditioned on non-optimal conformations from nablaDFT. We add
a subscript init in the latter case. Moreover, we also experiment with starting the training with randomly ini-
tialized weights and pretrained checkpoints. We use a checkpoint obtained on the PCQM4MV2 dataset (Nakata
& Maeda, 2023) in the case of Uni-Mol+ and on the GEOM-DRUGS dataset (Axelrod & Gomez-Bombarelli,
2022) otherwise. We add a subscript pr for pre-trained models.

To save computational resources, all the models from Table 7 were evaluated on a subset of Dtest that we
call Dsmall

test (|Dsmall
test | = 2044). Our findings are as follows: ConfOpt and TD models perform much worse on

the energy optimization task in our setup than on the tasks reported in the corresponding papers. Uni-Mol+
performs on par with NNP baselines but worse than the models trained on additional data. We suspect that the
reason for such behavior of TD is the small amount of data and the necessity to model a discrete distribution
over the optimal geometries instead of the whole conformational space. The TD authors also report that the
resulting conformations differ by a large margin in terms of energies and other quantum chemical properties
from the reference conformations and require additional optimization with the simulator. We hypothesize that
in the case of ConfOpt, the main problems are the choice of architecture and the fact that the model generates
optimal conformations from SMILES and does not use initial geometries.

In Table 7, we observe that i) all generative baselines benefit in terms of pctdiv from using pre-trained weights.
Even though the pre-training was done using data generated by DFT-based methods with different levels of the-
ory than in nablaDFT; ii) starting from non-optimal conformations from nablaDFT greatly benefits all metrics
for Uni-Mol+, indicating that a reasonable initial conformation is crucial for generative baselines.
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Figure 5: Visualization of final conformations obtained by various models, the 2D view of the
molecule, and the reference optimal conformation obtained with the OG .

H FINAL CONFORMATIONS COMPARISON

To highlight the difference in the quality of conformation optimization, we visualize final conformations for
ConfOpt, Torsional Diffusion, Uni-Mol+, and our best-performing model (GOLF-10k) with py3Dmol (Rego &
Koes, 2015). In Figure 5, we provide visualizations for 4 molecules from the test set Dtest. We also provide the
2D visualization of the molecule obtained with RDKit and a visualization of the reference optimal conformation
obtained with the OG .

Molecules 1 and 3 are an example of the case where the conformation optimization with GOLF-10k converges
to the same local minima as OG : the RMSD to the reference conformation is close to zero, while the pct100
is close to 100%. It is also hard to spot any visual differences. On the other hand, molecules 2 and 4 illustrate
the case where the conformation optimization with GOLF-10k converges to the different local minima: RMSD
is larger than zero, but the pct100 is 100% or even greater than 100% in case of the molecule 4. The visual
difference between the resulting conformations is prominent.

Negative values for the pct100 are often caused by distorted distances between atoms in cycles (ConfOpt
optimization for molecules 3 and 4). Low positive values of pct100 generally indicate conformations with
correct distances between atoms but incorrect dihedral angles between different parts of the molecule (ConfOpt
optimization for molecule 2, Torsional diffusion for molecule 1, Uni-Mol+ optimization for molecule 2).
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