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ABSTRACT

In this paper, we propose a simple but powerful parameter-efficient fine-tuning
(PEFT) framework designed for unified single object trackers. Our framework is
built upon two novel components: a Memory-Aware Compression Prompt (MCP)
module and Dynamic State Fusion (DSF) modules. MCP effectively compresses
memory features into memory-aware prompt tokens, which are deeply interacted
with the input sequence throughout the entire backbone, significantly enhancing
model performance while maintaining a stable computational load. DSF comple-
ments the discrete memory features by capturing the continuous dynamic state of
the target, progressively introducing the updated dynamic state features from shal-
low to deep layers of the tracker, while also preserving high operational efficiency.
MCP effectively overcomes the limitations of previous trackers that rely on only a
few frames when introducing memory, which significantly increases input length
and computational cost. It also addresses the insufficient fusion problem in ex-
isting memory-prompting methods. DSF remedies the lack of dynamic feature
about continuous target variation in prior PEFT methods. Based on the MCP and
DSF modules, we propose Uni-MDTrack, a tracker that supports tracking across
five modalities. Experimental results across 10 datasets spanning five modalities
demonstrate that Uni-MDTrack achieves state-of-the-art performance, with only
30% of parameters requiring training. Furthermore, both MCP and DSF exhibit
excellent generality, functioning as plug-and-play components that can boost the
performance of various trackers. Code will be released for further research.

1 INTRODUCTION

Modern SOT methods (Ye et al., 2022; Zhu et al., 2023; Cai et al., 2024; Hong et al., 2024; Lin
et al., 2025) adopt one-stream paradigm, leveraging Transformer-based backbones (Dosovitskiy
et al., 2021) to process both the template and search region simultaneously using self-attention.
Despite the strong capacity for template-search region feature extraction and relation modeling, one-
stream trackers incur substantial training costs, demanding large-scale datasets and extensive train-
ing epochs. Consequently, a growing number of methods adopt RGB-based trackers trained from
scratch as the pre-trained foundation model, and focus on boosting performance through parameter-
efficient fine-tuning (PEFT).

The first category of PEFT methods augments RGB foundation trackers with auxiliary modalities
such as infrared, depth, event, or language, by extracting and integrating features into foundation
trackers via lightweight trainable modules (Zhu et al., 2023; Hou et al., 2024; Hu et al., 2025; Wu
et al., 2024). However, after fine-tuning, such models can no longer maintain high performance
RGB-only tracking. Meanwhile, with the expansion of multimodal visual tracking data scales, uni-
fied trackers, such as SUTrack (Chen et al., 2025) and FlexTrack (Tan et al., 2025), which are
directly trained on various modality datasets, can support tracking in all modalities and achieves
state-of-the-art performance in multimodal tracking. Therefore, given the emergence of foundation
trackers with unified multimodal tracking capabilities, our work focuses more on the second category
of PEFT methods: enhancing the foundation model by introducing additional lightweight trainable
modules, particularly enhancing the spatio-temporal context modeling capability (Lin et al., 2025;
Cai et al., 2024; 2025), as shown in Figure 1.
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Figure 1: Comparison of PEFT strategies for enhancing spatio-
temporal modeling in a foundation tracker. (a) Introducing mem-
ory features and fusing them before the prediction head. (b) Tem-
poral propagation tokens and auxiliary templates. (c) Our approach:
Memory compression prompts for the entire model, combined with
multi-level dynamic state integration.

Prior typical work (Cai et al., 2024)
demonstrates that providing a foun-
dation tracker with spatio-temporal
features leads to significant per-
formance gains, and introduces
a memory-based prompt module,
which achieves substantial perfor-
mance improvements while keep-
ing the backbone network frozen,
as shown in Figure 1(a). How-
ever, memory-based methods up-
date the memory at fixed frame in-
tervals, and cannot effectively han-
dle drastic, short-term target vari-
ations. And the memory features
are not introduced until the predic-
tion head, which results in a lack of
deep fusion with the search region
features.

SPMTrack (Cai et al., 2025)
achieves the current state-of-the-art performance on RGB-based tracking by fine-tuning with
TMoE and temporal propagation token, as shown in Figure 1(b), while uniformly sampling several
auxiliary templates from historical frames to incorporate long-term memory. Many from-scratch
training methods also adopt auxiliary templates and temporally propagated token. However, these
components have inherent limitations. The propagated token interacts with both the template and
search region tokens simultaneously, which leads to a significant portion of its attention being
focused on the template area, making it function more as a template enhancer rather than a repre-
sentation of continuous state changes of the target. Furthermore, the sparsely sampled auxiliary
templates neglect a vast amount of contextual information and risk introducing distractors, while
substantially increasing computational costs due to the extended input length. These limitations
motivate our question: How to deeply integrate rich memory and robust dynamic features of the
target into a foundation tracker in a parameter-efficient manner?

To address the above issues, in this paper, we propose a prompt module based on memory com-
pression tokens (MCP) and a dynamic state fusion module based on State-Space Models (DSF). As
shown in Figure 1(c), similar to memory-based methods, MCP also maintains a memory bank. The
key distinction lies in that MCP employs dynamic queries to compress memory bank into a fixed
set of memory-aware tokens. By concatenating these tokens to the input sequence, MCP achieves
deep interaction between memory, template and search region features with a minimal increase in
sequence length, thereby preserving computational efficiency. Meanwhile, memory-aware tokens
also alleviate the problem of limited contextual information contained in temporal propagated to-
kens. DSF performs continuous updates of the target state based on a State Space Model (SSM).
DSF only uses search region features to update the state to ensure sufficient capture of the dynamic
changes of the target. Moreover, DSF employs a multi-level shallow-to-deep fusion strategy, inte-
grating dynamic state feature throughout the backbone.

Based on our proposed MCP and DSF modules, we present Uni-MDTrack, a novel tracker that
demonstrates remarkable training efficiency by fine-tuning only the MCP, DSF, and prediction head.
We use data across 5 modalities for training: RGB, RGB-T, RGB-D, RGB-E, and RGB-Language.
Training under 30% of its parameters for only 50 epochs, Uni-MDTrack achieves state-of-the-art
performance on 10 datasets including LaSOT (Fan et al., 2019), TrackingNet (Muller et al., 2018),
VisEvent (Wang et al., 2024), and Depthtrack (Yan et al., 2021b). Moreover, our proposed MCP and
DSF modules demonstrate excellent generalization ability, acting as plug-and-play enhancements
that effectively elevate the performance of diverse trackers.

To summarize, our contributions are as follows: (1) We propose a prompt module based on mem-
ory compression tokens (MCP) and a dynamic state fusion module based on SSMs (DSF) to effi-
ciently and robustly introduce target spatio-temporal context features and continuous dynamics. (2)
We propose Uni-MDTrack, a novel tracker that efficiently and deeply integrates the features from
MCP and DSF modules, while retaining only 30% of the trainable parameters. (3) Experimental
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results demonstrate that Uni-MDTrack achieves state-of-the-art performance on 10 datasets across
five modalities. Furthermore, our proposed MCP and DSF modules can be used as plug-and-play
components to effectively enhance the performance of various other models.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNED TRACKERS

Most current trackers adopt one-stream paradigm (Ye et al., 2022; Cui et al., 2022; Wu et al., 2023;
Chen et al., 2022). However, one-stream trackers demand significantly more training steps and em-
ploy large backbones such as ViT-L (Dosovitskiy et al., 2021), leading to a substantial training costs.
Thanks to abundant RGB data and the class-agnostic nature of the SOT task, trackers possess strong
generalization capabilities. Consequently, a growing body of research has shifted towards PEFT
to enhance the performance of existing trackers. PEFT methods can be broadly divided into two
categories. The first category introduces auxiliary modalities to supplement an RGB-based founda-
tion tracker (e.g. RGB-D, RGB-T, RGB-E). ProTrack (Yang et al., 2022), ViPT (Zhu et al., 2023),
and SeqTrackV2 (Chen et al., 2023a) incorporate lightweight modules to extract features from the
auxiliary modality while keeping the backbone of the foundation tracker frozen. SDSTrack (Hou
et al., 2024) and OneTracker (Hong et al., 2024) simultaneously fine-tunes foundation tracker and
a fusion module to extract modality-enhanced features. However, these approaches still demon-
strate weaker performance than unified multi-modal foundation trackers trained from scratch, such
as SUTrack (Chen et al., 2025) and FlexTrack (Tan et al., 2025). The second category of fine-tuning
methods focus on strengthening the capabilities of the tracker itself, particularly spatio-temporal
context modeling abilities. HIPTrack (Cai et al., 2024) introduces historical features by training his-
torical prompt network. LoRAT (Lin et al., 2025) maintains a strong generalization by fine-tuning
DINOv2 (Oquab et al., 2024). SPMTrack (Cai et al., 2025) further incorporates TMoE, auxiliary
templates, and temporal propagation tokens for fine-tuning. Given the current landscape of unified
multi-modal foundation trackers, the second category of PEFT methods offers better generality. Our
method also falls into the second category.

2.2 TRACKERS WITH SPATIO-TEMPORAL CONTEXT.

Methods such as STARK (Yan et al., 2021a), MixFormer (Cui et al., 2022), and TrDiMP (Wang
et al., 2021a) samples several historical frames as auxiliary templates. However, sparsely sampled
frames overlook rich context and are prone to introduce distractors. Auxiliary templates also sig-
nificantly increase the input sequence length, leading to an increase in computational overhead.
Previous methods such as HIPTrack (Cai et al., 2024), to ensure computational efficiency, only fuse
memory features with search region features after the backbone network, and additionally design a
dedicated memory feature encoder. This results in more complex network architectures and insuf-
ficient fusion between memory features and search region features. In contrast, our MCP module
compresses rich memory pool information into a fixed number of sparse memory tokens through
elegant memory queries. This approach controls input sequence length and maintains computa-
tional efficiency while preserving rich memory information. Additionally, it enables deep fusion
between memory tokens and search region features within the backbone network. Other methods
like ODTrack (Zheng et al., 2024), SPMTrack (Cai et al., 2025) and AQATrack (Xie et al., 2024)
introduce temporal propagated tokens across consecutive frames. MambaLT (Li et al., 2025), Tem-
Track (Xie et al., 2025), and STTrack (Hu et al., 2025) further collect temporal propagation tokens
from multiple search regions and collectively enhance them using SSMs like Mamba (Gu & Dao,
2023). However, the limitation is that the propagation tokens attend to both the template and the
search region, leading to the template diverting the attention of propagation tokens away from the
search region and hinders the effective expression of target dynamic variations. The enhancement
applied to these tokens also primarily serves to strengthen template features as well. Other methods
like MambaVT (Lai et al., 2025) and MCITrack (Kang et al., 2025) utilize Mamba as an implemen-
tation of the trainable backbone, utilizing SSM’s linear computational complexity to extend context
length. However, these approaches require designing complex scanning algorithms, linear SSMs
are also not guaranteed to outperform Transformers under the same sequence length (Merrill et al.,
2024). In contrast, our DSF module serves a fundamentally different purpose. Unlike previous SSM
methods that require designing complex scanning sequences and methodologies, DSF continuously
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Figure 2: The Overall framework of Uni-MDTrack. Uni-MDTrack can uniformly process data from various
modalities, and consists of unified modality embedding layer, feature extraction network and prediction head.

utilizes new frame search region features to update target states and employs these states as supple-
mentary information for the backbone network. The key focus of the DSF module is to demonstrate
that continuously updated dynamic target states can serve as efficient and effective complements to
the backbone network, rather than being constrained to specific model designs. Furthermore, rather
than re-architecting or replacing backbone layers, we inject memory and dynamic states with MCP
and DSF in a lightweight adapter manner, eliminating the need of full-parameter training. To the
best of our knowledge, we are the first to leverage SSM as a PEFT technique in the field of SOT.

3 METHOD

3.1 OVERALL ARCHITECTURE

As illustrated in Figure 2, we present Uni-MDTrack, a novel tracker built upon a prompt module
based on memory-aware compression token (MCP) and a dynamic state fusion module based on
SSMs (DSF), which supports tracking across five modalities: pure RGB, RGB-D, RGB-E, RGB-T,
and RGB-Language. The overall architecture follows a one-stream paradigm, primarily consisting
of a unified modality embedding layer, a feature extraction network based on HiViT (Zhang et al.,
2023), and two prediction heads for target prediction and modality prediction. Throughout the
model, the backbone remains frozen, with only MCP, DSF, and the prediction head serving as the
main modules involved in training.

Specifically, input images from different modalities are first processed through the unified patch
embedding module to generate a unified representation embedding. Positional embeddings and
token type embeddings are then added to the unified representation embeddings. For text encoding
in RGB-Language tracking tasks, we pre-extract the [cls] token as the text embedding using the
pretrained text encoder from CLIP-L (Radford et al., 2021). All embedded tokens are fed into the
feature extraction network. Within the feature extraction network, the memory-aware compression
tokens output by MCP are first concatenated with the input tokens and input into the backbone. The
backbone processes all tokens simultaneously, while performing fusion with dynamic state features
via DSF from shallow to deep layers. Finally, we employ a center-based prediction head (Ye et al.,
2022) to predict the tracking result , while a task recognition head (Chen et al., 2025) is used to
predict the modality of the current input, thereby better assisting the model in capturing task-specific
features.
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3.2 UNIFIED MODALITY EMBEDDING

We adopt the same unified patch embedding module as (Chen et al., 2025). The unified patch
embedding layer modifies the conventional patch embedding by extending the input dimension of
linear projection layer from 3 to 6. RGB images are denoted as XRGB ∈ RH×W×3, while depth,
thermal, and event images are collectively referred to as DTE. We replicate DTE images into 3-
channel images and normalize each pixel value to the range of [0, 255] to obtain XDTE ∈ RH×W×3.
We then construct a 6-channel input by concatenating the RGB and DTE image along the channel
dimension to obtain X ∈ RH×W×6. For RGB and RGB-language tasks that do not include DTE
images, we duplicate the RGB channels to form the required 6-channel input X . Through the
unified patch embedding process, template and search region images are transformed into respective
token sequences T ∈ RNT×d and S ∈ RNS×d. All tokens T and S are then added with positional
embeddings soft token type embeddings following (Chen et al., 2025). For the RGB-Language
tracking, the text feature token is projected through a small linear layer to obtain L ∈ R1×d. All
tokens are concatenated and fed into the feature extraction network.

3.3 FEATURE EXTRACTION NETWORK

Our feature extraction framework is built upon HiViT (Zhang et al., 2023). The feature ex-
traction network first concatenates the input tokens with the memory-aware compression token
M ∈ RNM×d output by the MCP module, resulting in token sequence Z ∈ RN×d input to the
backbone. The backbone network processes the sequence and continuously integrates dynamic state
features from DSF modules. The final output sequence O ∈ RN×d of the feature extraction network
is used for the final target prediction. Meanwhile, output tokens corresponding to search region, de-
noted as OS , are added to the memory bank in MCP, as well as update the state in DSF modules.

3.3.1 MEMORY-AWARE COMPRESSION PROMPT MODULE (MCP)

The design of MCP is guided by two principles. First, introduce memory features at the input
of the backbone, thereby enabling deep interaction with the template and search region features.
Second, effectively compress memory features, thus maintaining a stable computational load for
the overall model. Based on the above principles, we propose a dynamic query-based resampling
approach for memory feature compression. Specifically, as shown in Figure 3(a), given the features
Fm ∈ RNmb×d stored in the memory bank, MCP contains a total of NM trainable query tokens
q ∈ RNM×d, which perform dynamic querying and adaptive aggregation on Fm via these query
tokens. The process can be formally described as follows:

Q = Linearq(RMSNormq(q))

K,V = Split(Linearkv(RMSNormkv(Fm)))

Attn = Softmax[
Q ·K√

d
+ALiBi(Fm)]

M1 = Linearo(Attn · V ) + q

M2 = FFN(RMSNorm(M1)) +M1

(1)

where Attn ∈ RNM×Nmb is the attention weight, M2 ∈ RNM×d is the memory features after
query aggregation. For clarity, Equation 1 presents a simplified single-head attention formulation,
although our actual implementation employs a multi-head mechanism. We also introduce an atten-
tion bias term ALiBi(Fm) ∈ RNmb (Press et al., 2022), which provides Fm with extrapolatable
positional information. ALiBi not only allows for significantly larger memory during inference but
also effectively prioritizing recent memories over older, visually similar ones and mitigating the lin-
gering effects of potential distractors. We encodes position at the frame level; assuming a token F i

m
originates from the jth frame in the memory bank, its corresponding bias is −mh×|j−Nmb|, where
h is the index of attention head, and each head is associated with a unique slope mh = 2

−8
h . To

prevent unbounded memory growth during inference, when the number of tracked frames exceeds
L, we uniformly sample the search region tokens of L frames from the tracked frames to serve as
the memory bank. After obtaining the memory feature M2, we further use a self-attention module
and a FFN layer to enhance it and output the final memory-aware compression tokens M .
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Figure 3: Detail structure of our proposed Memory-Aware Compression Prompt module (MCP) and Dynamic
State Fusion module (DSF).

Analysis of the Impact of ALiBi and Increasing Memory Length During Inference. Let the
current query be qt and the memory bank contain keys (ki) indexed by i ∈ M. The attention scores

are defined as: at,i =
q⊤t ki√

d
+ β∆(i, t) where ∆(i, t) is the relative distance, and β < 0 is ALiBi

slope. Thus, the cross-attention logit and softmax weight are pt,i = eat,i∑
j∈M eat,j . Considering a

simplified case where feature similarities are negligible (q⊤t ki ≈ q⊤t kj = 0), the relative attention
weight between two memories i and j depends solely on their distance: pt,i

pt,j
= exp

(
β[∆(i, t) −

∆(j, t)]
)
. If memory i is more recent than j (i.e., ∆(i, t) < ∆(j, t)), then pt,i > pt,j . This provides

a clean, explainable mechanism for prioritizing recent observations.

Assume the model is trained with a memory length K, but tested with length L > K. The total
attention mass contributed by the unseen ”tail” (memories beyond distance K) is bounded by a ge-
ometric series: Masstail =

∑L
k=K+1 e

βk <
∑∞

k=K+1 e
βk = eβ(K+1)

1−eβ
. To ensure the trained model’s

attention distribution remains valid during inference, we require this tail mass to be negligible (less
than a threshold η). Solving eβ(K+1)

1−eβ
≤ η for K yields: K ≳ ln(1/η)

|β| − 1. This result implies
that the effective memory horizon is of order O(1/|β|). Consequently, extending the memory bank
at test time adds only an exponentially small tail to the distribution, ensuring that our MCP module
extrapolates robustly.

3.3.2 DYNAMIC STATE FUSION MODULE (DSF)

Analysis of The Limitations of SSMs in Long-Sequence Extrapolation. Formally, the hidden
state update in Mamba is defined as: Ht = Āt ⊙ Ht−1 + B̄t ⊙ Xt, where Āt represents the
channel-wise decay factors, and each element in Āt ∈ (0, 1). A key structural constraint lies in the
parameterization of Āt: ∆t = Softplus(Xt), Āt = exp(∆t ⊙ A), with A < 0 being a learnable
matrix. Consequently, every dimension of Āt is strictly less than 1. By unrolling the recurrence,
the contribution of an early token Xj to the output at position i is proportional to the cumulative

product of decay factors: αi,j ∝
(∏i

k=j+1 Āk

)
⊙ B̄j . Leveraging Āk = exp(∆k⊙A), this product

collapses into a unified exponential term:
∏i

k=j+1 Āk = exp
[(∑i

k=j+1 ∆k

)
⊙A

]
. Since A < 0

and ∆k > 0, there exists a constant c > 0 such that the magnitude of influence decays exponentially
with distance:

∥∥∥∏i
k=j+1 Āk

∥∥∥ ≤ exp
(
− c (i − j)

)
. This derivation leads to a direct conclusion:

the influence of early tokens vanishes exponentially as the distance i − j increases. While this
decay may be manageable within the training length Ltrain, it becomes catastrophic during inference
when extrapolating to Ltest ≫ Ltrain. Therefore, directly using an SSM as the backbone and simply
extending the context length—as done in prior methods—will inevitably diminish the influence of
earlier tokens. This is precisely why we employ an SSM-like structure only within DSF to model
dynamic features, rather than introducing long-term memory.

DSF is conceived to meet two fundamental requirements: possessing enough capacity for capturing
continuous target state dynamics, and enabling deep integration with the backbone. To achieve this,
we deploy separate DSF modules at several hierarchical level of the backbone for state representation
and updates. This multi-level approach provides a comprehensive view of the target dynamics while
enabling deep integration with the backbone features. As shown in Figure 3(b), DSF module consists
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of three key components: an input fusion layer, a dynamic state layer based on SSM, and an output
fusion layer. The input fusion and output fusion layer respectively integrate the output target states
feature F of dynamic state layer with the input Zi of the ith backbone layer and output Oj of the jth
layer, enabling us to freely configure both the quantity of DSF modules and the specific backbone
layers with which they interact. The dynamic state layer utilizes only the search region features
OS ∈ RNS×d from the output of feature extraction network to perform state update, excluding
the influence of the template or other tokens, thereby allowing the model to specifically capture the
dynamics of the target itself. As shown in Figure 3(b), the overall process of dynamic state layer can
be formally described as:

I = RMSNorm(OS)

G = SiLU(Linearg(I))

S1 = SiLU[Conv(Linearc(I))]

S = SSM(S1)

F = OS + Linear(G⊙ S)

(2)

The overall process follows a gated structure, where G ∈ RNS×ds represents the gating values, and
ds is the inner dimension of the dynamic state layer. S1 ∈ RNS×ds is the input to the SSM after a
linear projection and convolution-based activation, and S ∈ RNS×ds is the output of the SSM. An
element-wise multiplication of G with S, followed by a linear layer, restores the dimensionality to
d, yielding F ∈ RNS×d. The state update and output of the SSM can be formally described as:

∆,B,C = Split(Linear(S1))

Ā = exp(∆A),

B̄ = (∆A)−1(exp(∆A)− I) · (∆B)

h(t) = Āh(t− 1) + B̄S1,

S = Ch(t) +DS1

(3)

where A and D are learnable parameters, I is the identity matrix, and the entire process adheres to
the discrete-time formulation of SSM. h(t) denotes the hidden state at time t, with h(0) initialized
as a zero matrix. The SSM uses the current feature S1 to update h(t) and generate the dynamic state
S of the target. After obtaining F from the dynamic state layer, as shown in Figure 3(b), the input
fusion layer is designed based on cross attention, integrates F with Zi to produce the new input
Zi′ of the ith backbone layer. The output fusion layer maintains an identical structure to the input
fusion layer, integrating F with Oj to produce the new output Oj′

of the jth backbone layer.

3.4 PREDICTION HEAD

The prediction head encompasses two tasks: target prediction and input modality classification.
For target prediction, we first extract search region features OS from the output O of the feature
extraction network and feed OS into the center-based prediction head (Ye et al., 2022). For input
modality classification, we apply global average pooling to the output OS and apply an MLP for
classification.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model settings.

We propose two versions of our tracker, Uni-MDTrack-B and Uni-MDTrack-L. Uni-MDTrack-B
employs a template size of 112× 112 and a search region size of 224× 224, while Uni-MDTrack-
L uses 196 × 196 and 384 × 384, respectively. The cropping factors for the template and search
region are 2.0 and 4.0 for both versions. Uni-MDTrack-B and Uni-MDTrack-L adopt HiViT-B and
HiViT-L (Zhang et al., 2023) as backbones, respectively, and are initialized with the same weights as
SUTrack-B and SUTrack-L (Chen et al., 2025). MCP module outputs a total of 16 memory-aware
compression tokens, and the number of attention heads is kept consistent with backbone. We employ
a total of four DSF modules. For Uni-MDTrack-B, we divide its last 24 backbone layers into four
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equal segments, and for Uni-MDTrack-L, we do the same for its last 40 layers. The dynamic state
features are then fused with the input and output of each of these four segments.

Table 1: Comparison of our method with other trackers using
parameter-efficient training method in terms of total parameters,
trainable parameters, and computational complexity.

Method Trainable Params(M) FLOPs(G)Params(M)
Uni-MDTrack-B 27.1 88.2 27.9

HIPTrack (Cai et al., 2024) 34.1 120.4 66.9
LoRAT-B384 (Lin et al., 2025) 13.0 99.1 97.0
SPMTrack-B (Cai et al., 2025) 29.2 115.3 -

Uni-MDTrack-L 54.9 287.4 257.4

Table 1 details the parameter and
computational overhead of our mod-
els. Compared with other methods
that use PEFT to enhance model ca-
pabilities, our method has a signifi-
cant advantage in computational cost
while introducing a comparable num-
ber of additional training parameters.

Datasets. Following SUTrack (Chen
et al., 2025), our method utilizes the
training sets from LaSOT (Fan et al., 2019), GOT-10K (Huang et al., 2019), COCO (Lin et al.,
2014), TrackingNet (Muller et al., 2018), VastTrack (Peng et al., 2024b), TNL2K (Wang et al.,
2021b), DepthTrack (Yan et al., 2021b), VisEvent (Wang et al., 2024), and LasHeR (Li et al., 2022)
for training. During training, in each batch sampling step, the probability ratios used for sampling
from each dataset are set to 2:2:2:2:2:2:1:1:1. We sample 7 frames per step, with the first 2 frames
serving as templates and the latter 5 as search frames. For the image dataset COCO, we replicate
single images multiple times to simulate sequential data.

Training and Optimization. Our method is implemented based on PyTorch 2.3.1 and trained on
4 NVIDIA A100 GPUs. We set the batch size to 64 per GPU for Uni-MDTrack-B and 16 for Uni-
MDTrack-L. Both version are trained for 50 epochs, with 100,000 frame sequences sampled from
all datasets in each epoch. We employ the AdamW (Loshchilov & Hutter, 2019) optimizer with an
initial learning rate of 2e-4 for both stages, which is decreased to 2e-5 after 40 epochs. The weight
decay is set to 1e-4 throughout the training process.

Loss Function. For target prediction, consistent with OSTrack (Ye et al., 2022), we employ Gen-
eralized IoU (Rezatofighi et al., 2019) Loss and L1 Loss to supervise bounding box prediction, and
Focal Loss (Lin et al., 2017) to supervise target center point prediction. Additionally, we use Cross-
Entropy Loss to compute the modality prediction loss. The loss weights for the above components
are set to 2.0, 5.0, 1.0, and 1.0, respectively.

Inference. Consistent with SUTrack (Chen et al., 2025), we use 2 templates input. DSF module
performs continuous state updates per frame during tracking, and the memory bank of MCP contains
a total of 50 frames of uniformly sampled historical search region features.

4.2 COMPARISONS WITH THE STATE-OF-THE-ART METHODS

Table 2: State-of-the-art comparison on RGB-T tracking dataset LasHeR, RGB-E tracking dataset VisEvent,
and RGB-D tracking dataset DepthTrack. The best three results are highlighted in red, blue and bold, respec-
tively.

Method Source LasHeR VisEvent DepthTrack

SR(%) PR(%) AUC(%) P (%) F-Score(%) Re(%) PR(%)
Uni-MDTrack-B Ours 61.2 76.7 64.2 81.0 65.9 66.3 66.2
Uni-MDTrack-L Ours 62.1 77.9 65.7 81.8 67.4 67.2 67.6

FlexTrack (Tan et al., 2025) ICCV25 62.0 77.3 64.1 81.4 67.0 66.9 67.1
SUTrack-B224 (Chen et al., 2025) AAAI25 59.9 74.5 62.7 79.9 65.1 65.7 64.5
SUTrack-L384 (Chen et al., 2025) AAAI25 61.9 76.9 63.8 80.5 66.4 66.4 66.5

STTrack (Hu et al., 2025) AAAI25 60.3 76.0 61.9 78.6 63.3 63.4 63.2
SeqTrackV2-B256 (Chen et al., 2023a) Arxiv23 55.8 70.4 61.2 78.2 63.2 63.4 62.9

UnTrack (Wu et al., 2024) CVPR24 53.6 66.7 58.9 75.5 61.2 61.0 61.3
SDSTrack (Hou et al., 2024) CVPR24 53.1 66.5 59.7 76.7 61.4 60.9 61.9

OneTracker (Hong et al., 2024) CVPR24 53.8 67.2 60.8 76.7 60.9 60.4 60.7
ViPT (Zhu et al., 2023) CVPR23 52.5 65.1 59.2 75.8 59.4 59.6 59.2

To better compare with mainstream RGB trackers, we additionally trained a pure RGB tracker
MDTrack-B, which is implemented based on SPMTrack-B (Cai et al., 2025). The prediction head
of MDTrack-B no longer introduces modality prediction. Similarly, we divided all 12 layers of the
model into 4 equal parts to fuse DSF modules, and trained it only on LaSOT, GOT-10K, Track-
ingNet, and COCO with identical training configurations.
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Table 3: State-of-the-art comparison on RGB visual tracking datasets LaSOT, TrackingNet and LaSOText. The
best three results are highlighted in red, blue and bold, respectively.

Method Source LaSOT TrackingNet LaSOText

AUC(%) PNorm(%) P (%) AUC(%) PNorm(%) P (%) AUC(%) PNorm(%) P (%)
Unified Trackers

Uni-MDTrack-B Ours 74.7 84.9 82.6 86.1 90.8 85.9 54.3 65.7 62.4
Uni-MDTrack-L Ours 76.1 85.7 84.3 88.0 92.1 89.1 55.2 66.3 62.8

SUTrack-B224 (Chen et al., 2025) AAAI25 73.2 83.4 80.5 85.7 90.3 85.1 53.1 64.2 60.5
SUTrack-L384 (Chenet al., 2025) AAAI25 75.2 84.9 83.2 87.7 91.7 88.7 53.6 64.2 60.5
RGB-based Trackers

MDTrack-B Ours 75.6 85.1 83.8 86.4 90.6 86.2 54.8 65.6 62.1
SPMTrack-B (Cai et al., 2025) CVPR25 74.9 84.0 81.7 86.1 90.2 85.6 - - -

ARPTrack256 (Liang et al., 2025) CVPR25 72.6 81.4 78.5 85.5 90.0 85.3 52.0 62.9 58.7
MCITrack-B (Kang et al., 2025) AAAI25 75.3 85.6 83.3 86.3 90.9 86.1 54.6 65.7 62.1
MambaLCT384 (Li et al., 2025) AAAI25 73.6 84.1 81.6 85.2 89.8 85.2 53.3 64.8 61.4
LoRAT-B378 (Lin et al., 2025) ECCV24 72.9 81.9 79.1 84.2 88.4 83.0 53.1 64.8 60.6
AQATrack384 (Xie et al., 2024) CVPR24 72.7 82.9 80.2 84.8 89.3 84.3 52.7 64.2 60.8

ARTrackV2-B384 (Bai et al., 2024) CVPR24 73.0 82.0 79.6 85.7 89.8 85.5 52.9 63.4 59.1
HIPTrack (Cai et al., 2024) CVPR24 72.7 82.9 79.5 84.5 89.1 83.8 53.0 64.3 60.6

ODTrack-B (Zheng et al., 2024) AAAI24 73.2 83.2 80.6 85.1 90.1 84.9 52.4 63.9 60.1
ARTrack384 (Wei et al., 2023) CVPR23 72.6 81.7 79.1 85.1 89.1 84.8 51.9 62.0 58.5

SeqTrack-B384 (Chen et al., 2023b) CVPR23 71.5 81.1 77.8 83.9 88.8 83.6 50.5 61.6 57.5
OSTrack384 (Ye et al., 2022) ECCV22 71.1 81.1 77.6 83.9 88.5 83.2 50.5 61.3 57.6

LaSOT (Fan et al., 2019) is an RGB-based tracking dataset constructed for long-term tracking. As
shown in Table 3, our approach achieves significant improvement compared to SUTrack-B224 (+1.5
AUC) and SUTrack-L384 (+0.9 AUC). MDTrack-B also achieves significant improvement compared
to SPMTrack-B (+0.7 AUC) and outperforms all RGB Trackers based on ViT-B (Dosovitskiy et al.,
2021).

LaSOText (Fan et al., 2019) is an RGB-based tracking dataset that has no overlaps with LaSOT (Fan
et al., 2021). As shown in Table 3, our method significantly outperforms SUTrack and MDTrack-B
achieves the best performance among RGB trackers.

TrackingNet (Muller et al., 2018) is an RGB-based large-scale tracking dataset. As shown in Table
3, our method outperforms SUTrack (Chen et al., 2025), and MDTrack-B outperforms other RGB
trackers.

UAV123, OTB2015 and NfS (Mueller et al., 2016; Wu et al., 2015; Kiani Galoogahi et al., 2017)
are RGB-based datasets. We conduct evaluations on the 30 FPS version of NfS. As shown in Table
5, our method significantly outperforms SUTrack-B384 with a larger resolution.

TNL2K (Wang et al., 2021b) is an RGB-Language tracking dataset. Each video is accompanied
by natural language description. As shown in Table 4, our method also significantly outperforms
SUTrack-B224 (+2.6 AUC) and SUTrack-L384 (+2.5 AUC). Our approach outperforming existing
state-of-the-art methods by a significant gap.

Table 4: The performance of our method and other
state-of-the-art trackers on RGB-Language Tracking
dataset TNL2K. The best three results are highlighted
in red, blue and bold.

Method AUC(%) PNorm(%) P (%)
Uni-MDTrack-B 67.6 85.2 73.2
Uni-MDTrack-L 70.4 87.4 77.4

SUTrack-B224 (Chen et al., 2025) 65.0 - 67.9
SUTrack-L384 (Chen et al., 2025) 67.9 - 72.1
MCITrack-B (Kang et al., 2025) 62.9 - -
LoRAT-B378 (Lin et al., 2025) 59.9 - 63.7

ODTrack-L (Zheng et al., 2024) 61.7 - -
ARTrackV2-L384 (Bai et al., 2024) 61.6 - -

CiteTracker (Li et al., 2023) 57.7 - 59.6
VLT (Guo et al., 2022) 53.1 - 53.3

Table 5: The performance of our method and
other state-of-the-art trackers on UAV123, NfS and
OTB2015 in terms of AUC metrics. The best three
results are highlighted in red, blue and bold.

Method UAV123 NfS OTB2015
Uni-MDTrack-B 71.0 70.2 73.6

SUTrack-B384 (Chen et al., 2025) 70.4 69.3 -
HIPTrack (Cai et al., 2024) 70.5 68.1 71.0

ARTrackV2-B (Bai et al., 2024) 69.9 67.6 -
ODTrack-L (Zheng et al., 2024) - - 72.4
ARTrack384 (Wei et al., 2023) 70.5 66.8 -

SeqTrack-B384 (Chen et al., 2023b) 68.6 66.7 -
MixFormer-L (Cui et al., 2022) 69.5 - -

DepthTrack (Yan et al., 2021b) is an RGB-Depth tracking dataset. As shown in Table 2, our method
achieves state-of-the-art performance on DepthTrack.

LasHeR (Li et al., 2022) is an RGB-Thermal short-term tracking dataset with high-diversity. As
shown in Table 2, our method achieves current best performance and shows a remarkable boost in
terms of PR.
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VisEvent (Wang et al., 2024) is an RGB-Event tracking dataset. As shown in Table 2, our method
achieves state-of-the-art performance, demonstrating significantly higher performance than SU-
Track (Chen et al., 2025). Uni-MDTrack-B can achieve even better results than SUTrack-L384.

4.3 ABLATION STUDY

The Importance of MCP and DSF. In Table 6, based on Uni-MDTrack-B, we conduct ablation
studies on the two core components of our method: MCP and DSF. Results demonstrates that both
our proposed MCP and DSF modules individually contribute to significant tracking performance
improvements. MCP proves more critical for long-term (LaSOT) and infrared (LasHeR) tracking,
whereas DSF generally has a greater impact on the remaining datasets.

Comparison with Other PEFT Methods. Table 7 presents a comparative analysis of our method
against two prominent PEFT methods: HIPTrack and SPMTrack. To ensure a fair and controlled
comparison, all methods are trained on the same foundation model DropTrack (Wu et al., 2023),
which is a variant of the well-established OSTrack (Ye et al., 2022), featuring an enhanced initial-
ization strategy. Our method achieved a more significant performance improvement with only 50
epochs of training.

Table 6: Ablation studies on MCP and DSF mod-
ules. Experiments are conducted on LaSOT (evalu-
ated by AUC), LasHeR (SR), VisEvent (AUC) and
DepthTrack (F-Score).

# MCP DSF LaSOT LasHeR VisEvent DepthTrack ∆
1 ✘ ✘ 73.2 59.9 62.7 65.1 0
2 ✘ ✔ 73.8 60.4 63.6 65.7 +0.65
3 ✔ ✘ 74.1 60.6 63.3 65.3 +0.6
4 ✔ ✔ 74.7 61.2 64.2 65.9 +1.3

Table 7: A performance comparison of existing track-
ers and their integration with our method on LaSOT
test set.

Method AUC(%) PNorm(%) P (%)
DropTrack 71.8 81.8 78.1

DropTrack w/ Ours 73.1 82.7 79.7
DropTrack w/ HIP 72.7 82.9 79.5

DropTrack w/ Temporal Token 72.0 81.9 78.4

Generalization Ability of Our Method. The results across Tables 2, 3, and 7 collectively demon-
strate the remarkable generalization ability and effectiveness of our proposed MCP and DSF mod-
ules. Our method consistently delivers substantial performance gains when applied to three distinct
excellent trackers, proving performance gain in both pure RGB and unified multi-modal tracking
scenarios.

Table 8: Ablation study on different number of memory-aware compression tokens.
Number 8 16 32 64
LaSOT 74.2 74.7 74.7 74.6
LasHeR 60.5 61.2 61.3 61.3
VisEvent 63.8 64.2 64.2 64.3

DepthTrack 65.5 65.9 65.9 66.1
∆ -0.5 0 +0.03 +0.08

The Number of Memory-Aware Compression Token. Table 8 explores the impact of the number
of memory-aware compression tokens based on Uni-MDTrack-B. While performance increases with
more tokens, it eventually saturates. We thus selected 16 as a balanced choice.

5 CONCLUSION

This paper presents a simple, efficient PEFT method for single object tracking, centered on two
modules: Memory-Aware Compression Prompt module (MCP) and Dynamic State Fusion module
(DSF). These modules achieve a deep fusion of memory features and continuous dynamic state of
the target, enhancing tracking performance while preserving efficiency. Based on the MCP and DSF
modules, we design Uni-MDTrack, which supports five modalities and achieves new state-of-the-
art performance as an unified tracker by training 30% of its parameters. Crucially, both MCP and
DSF demonstrate strong generalizability, functioning as effective plug-and-play enhancements for
various trackers. We hope this work encourages more low-cost, high-efficiency research in single
object tracking.
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USAGE OF LLM

During the writing process, we use LLMs only to assist in checking English spelling and grammar,
as well as to standardize academic writing.

APPENDIX

In the supplementary material, Section A further reports the experimental results of our method,
including results on other datasets and more ablation experiments, to further verify the effectiveness
of Uni-MDTrack and our proposed method. Section B provides more detailed success curves on
the overall LaSOT dataset and its subsets, as well as the overall precision curve. Section C demon-
strates the visualization performance comparisons of various trackers in complex scenarios, while
presenting more qualitative analyses of our method.

A A. MORE RESULTS AND FURTHER ANALYSIS

A.1 PERFORMANCE ON GOT-10K

The reason we do not include the test results for GOT-10k (Huang et al., 2019) in the main paper is
that previous trackers, when tested on GOT-10k, are typically trained only on the GOT-10k dataset
itself (Cai et al., 2025; Bai et al., 2024; Wei et al., 2023; Ye et al., 2022; Fu et al., 2022). Since
our proposed Uni-MDTrack is a tracker that supports all modalities and is trained on datasets from
multiple modalities, a direct comparison with previous methods on GOT-10k would not be fair.
Therefore, we have provided the results of our method in Table A of the supplementary material for
reference.

Table A: The performance of our method and other state-of-the-art trackers on RGB-based Tracking dataset
GOT-10k. The best three results are highlighted in red, blue and bold.

Method AO(%) SR0.5(%) SR0.75(%)
Uni-MDTrack-B 81.1 91.8 81.2

SUTrack-B224 (Chen et al., 2025) 77.9 87.5 78.5
SPMTrack-B (Cai et al., 2025) 76.5 85.9 76.3

MCITrack-B (Kang et al., 2025) 77.9 88.2 76.8
ARPTrack256 (Liang et al., 2025) 77.7 87.3 74.3
MambaLCT384 (Li et al., 2025) 76.2 86.7 74.3
LoRAT-B378 (Lin et al., 2025) 73.7 82.6 72.9

A.2 MORE ABLATION STUDY ON DSF

The Number of DSF Modules. Our standard model employs four DSF modules, with each DSF
module uniformly fusing target dynamic state features into the input and output of certain layers
in the backbone network. In Table B, we attempted to introduce different numbers of DSF mod-
ules based on Uni-MDTrack-B, respectively. We still divided its last 24 layers into equal parts.
The results show that using 4 DSF modules achieves the best performance; more DSF modules
will introduce additional parameters, and 50 epochs of training may not be sufficient to fully train
these modules. Meanwhile, due to time constraints, we do not conduct further experiments on Uni-
MDTrack-L, so we adopt the same settings as Uni-MDTrack-B.

Table B: Ablation study on different number of DSF modules based on Uni-MDTrack-B.
Number 2 4 6 8
LaSOT 74.3 74.7 74.7 74.6
LasHeR 61.0 61.2 61.4 61.2
VisEvent 63.6 64.2 64.2 64.0

DepthTrack 65.4 65.9 65.9 65.7
∆ -0.43 0 +0.05 -0.13

Which Features to Use for Target State Updates. A core design principle of our method is to
update the state of all DSF modules using only the final search region features. Isolating the state
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Figure A: Comparisons of our proposed Uni-MDTrack with other excellent trackers in the success curve on
LaSOT test split, which includes eleven challenging scenarios such as Low Resolution, Motion Blur, Scale
Variation, etc. We also provide the comparisons of the success and precision curves across the entire LaSOT
test split. Zoom in for better view.

update from template information ensures that the DSF modules are solely dedicated to capturing the
real-time dynamics of the target. Table C presents an ablation study where we validate this design
choice by investigating the impact of using different feature sources for the state update. The second
row of Table C represents using the overall output sequence to perform SSM state updates; the third
row represents using the search region features corresponding to the input of the DSF module’s
input fusion layer to perform updates, i.e., the input for state updates of each DSF module comes
from different intermediate layers of the backbone. The results show that introducing other features
reduces model performance; meanwhile, using intermediate network layer features to update the
target state is not as effective as using the final search region features.

Table C: Ablation studies on which features to use for target state updates in DSF.

# Variants LaSOT LasHeR VisEvent DepthTrack ∆
1 Output Search Feature 74.7 61.2 64.2 65.9 0
2 Output Whole Sequence 74.5 60.9 63.9 65.7 -0.25
3 Input Fusion Sequence 74.5 60.7 64.1 65.6 -0.28

The Impact of Using State Space Model. Our DSF module employs a Mamba-like SSM (Gu &
Dao, 2023). In fact, in addition to state space models, there are many RNN-like structures that
can achieve state updates. As shown in Table D, we also experimented with replacing SSM with a
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Ground Truth Uni-MDTrack (Ours) SUTrack MambaLCT

(a) Qualitative results of three methods when the targets in large scale variations.

#2324 #2360 #2391 #2515 #2548 #2642

#0907 #1035 #1104 #1262 #1313 #2307

Ground Truth Uni-MDTrack (Ours) SUTrack MambaLCT

(b) Qualitative results of three methods when the targets are among similar objects and suffer partial occlusion.
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#0244 #0351 #0527 #0675 #1151 #1378

Ground Truth Uni-MDTrack (Ours) SUTrack MambaLCT

(c) Qualitative results of three methods when the targets have large occlusions and sudden moves.

Figure B: This figure presents a visual comparison among our proposed Uni-MDTrack, MambaLCT256 (Li
et al., 2025) and SUTrack-B (Chen et al., 2025) in the challenges of target among similar objects, undergoes
sudden movements, partial occlusion and scale variation. It demonstrates that our method achieves more effec-
tive and accurate tracking in the aforementioned challenging scenarios. Zoom in for better view.

simple LSTM. The results show that SSM can achieve better performance due to better state update
algorithms, but LSTM is still effective. We also believe that replacing SSM with modern recurrent
units such as RWKV (Peng et al., 2024a) can achieve better performance.

Comparison with Using SSMs as Backbone Layers. Previous methods such as MambaVT (Lai
et al., 2025) and MambaVLT (Liu et al., 2025) predominantly use SSM as the backbone network
implementation, or replace certain layers of the backbone with SSM, fundamentally playing the
same role as other backbone layers while merely utilizing SSM’s linear computational complexity
to extend context length. These approaches also require designing complex scanning algorithms.
But linear SSMs are not guaranteed to outperform Transformers under the same sequence length
(as proven in (Merrill et al., 2024)). We have conducted experiments demonstrating this limitation,
where replacing our DSF module with the same number of encoder layers from MambaVT and
inserting them at regular intervals throughout the backbone network, which results in substantial
performance degradation, as shown in Table E.

Table D: Ablation studies on replacing SSM with other model.

# Variants LaSOT LasHeR VisEvent DepthTrack ∆
1 SSM 74.7 61.2 64.2 65.9 0
2 LSTM 74.4 60.8 63.8 65.7 -0.33
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#0262 #0409 #0458 #0704 #0741 #0754

#1517 #1543 #1631 #1697 #1826 #2303

Ground Truth Uni-MDTrack (Ours) SUTrack STTrack

(a) Qualitative results of three methods on RGB-Depth tasks.

#0040 #0070 #0100 #0286 #0345 #0463

#0009 #0014 #0016 #0026 #0031 #0040

Ground Truth Uni-MDTrack (Ours) SUTrack STTrack

(b) Qualitative results of three methods on RGB-Event tasks.

#0121 #0155 #0359 #0517 #0578 #0616

#0524 #0554 #0589 #0627 #0781 #0822

Ground Truth Uni-MDTrack (Ours) SUTrack STTrack

(c) Qualitative results of three methods on RGB-Thermal tasks.

Figure C: This figure presents a visual comparison among our proposed Uni-MDTrack-B, STTrack (Hu et al.,
2025) and SUTrack-B (Chen et al., 2025) in the challenges of different modalities including RGB-Depth, RGB-
Event and RGB-Thermal tasks. It demonstrates that our method achieves more effective and accurate tracking
in the aforementioned challenging scenarios. Zoom in for better view.

Table E: Ablation studies on leveraging SSMs as backbone layers.

# Variants LaSOT LasHeR VisEvent DepthTrack ∆
1 Ours 74.7 61.2 64.2 65.9 0
2 Backbone Layers 74.0 60.5 63.5 65.4 -0.65

A.3 MORE ABLATION STUDY ON MCP

The Size of Memory Bank. In this paper, we construct the memory bank by sampling the search
region features from n tracked frames, which are selected uniformly and at equal intervals from
all previously tracked frames. By default, we set the number n to 50. In Table F, we further
experiment with different memory bank sizes. When the memory bank size is further increased,
model performance ceases to improve; thus, we select 50 to conserve GPU memory. This may be
due to the limited number of queries and network layers of MCP, which restrict the compression
capability for large memory bank. Additionally, since DSF can capture the short-term dynamic state
changes of the target, MCP is not required to sample more densely.

The Impact of Position Bias Added to Attention Score. When using queries for memory feature
querying and aggregation, we incorporate the ALiBi (Press et al., 2022) positional bias for different
memory frames to maintain the positional awareness of memory frames, enabling the model to pay
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#T1 #T2 #T3

#T1 #T2 #T3

#T1 #T2 #T3

Attention map of the temporal propagating token on the Templates and Search Region in ODTrack Ours

Templates Search Region Search Region

Figure D: Visualization of the attention of the Temporal Propagate Token on the template and search region in
ODTrack, compared with the visualization of the attention between the search region and the Dynamic State
Feature in DSF module of our method.

#567 #568 #569 #570 #571 #572

#135 #136 #137 #138 #139 #140

Figure E: Visualization of the attention map between the search region and the Dynamic State Feature output
by DSF module when the target undergoes scale variation and fast motion.

#402 #419 #425 #439 #453 #469

#742 #758 #761 #763 #816 #1131

#374 #499 #639 #666 #774 #816

Ground TruthUni-MDTrack (Ours)MambaLCT SUTrack

Figure F: This figure illustrates cases of tracking failure under extremely complex scenarios. When the target
undergoes severe occlusion and fast motion, while heavy background clutter are present, all methods experience
tracking failures. Zoom in for better view.
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Table F: Ablation study on memory bank size of MCP module based on Uni-MDTrack-B.
Number 10 20 50 100
LaSOT 74.3 74.6 74.7 74.6
LasHeR 60.7 61.0 61.2 61.0
VisEvent 63.9 64.0 64.2 64.4

DepthTrack 65.9 66.0 65.9 65.8
∆ -0.3 -0.1 0 -0.05

more attention to newer features when encountering similar historical memories. In Table G, we
experimented with not using positional information and using absolute positional encoding. The
results show that ALiBi performs the best, while absolute positional encoding performs the worst.
This is because we only sample 5 frames as search frames during training, requiring the introduction
of positional encoding with extrapolation capability.

Table G: Ablation studies on position bias added to attention score in MCP.
# Variants LaSOT LasHeR VisEvent DepthTrack ∆
1 ALiBi 74.7 61.2 64.2 65.9 0
2 w/o Position 74.6 61.2 64.0 65.9 -0.08
3 Absolute Position Encoding 74.4 61.0 64.1 65.9 -0.15

Select Strategy of Memory. Our current memory bank selection strategy is to select n frames
uniformly at equal intervals from all previously tracked frames. In addition, we also experimented
with other selection strategies, with the results presented in Table H. We try adding search region
features to the memory bank every 5 frames and 10 frames while using a first-in-first-out (FIFO)
strategy to maintain the memory bank size. The results show that uniform sampling can ensure
longer-term memory and yields significant benefits, especially on long-term tracking datasets such
as LaSOT.

B B. MORE DETAILED RESULTS IN DIFFERENT ATTRIBUTE SCENES ON
LASOT

LaSOT (Fan et al., 2019) is well-known for featuring a diverse range of challenging tracking scenar-
ios, therefore, in Figure A, we provide a more detailed comparison of our proposed Uni-MDTrack-B
with other current excellent trackers MambaLCT256 (Li et al., 2025), LoRAT-B378 (Lin et al., 2025),
HIPTrack (Cai et al., 2024), ARTrackV2 (Bai et al., 2024), and OSTrack (Ye et al., 2022) across var-
ious challenging scenario subsets in LaSOT (Fan et al., 2019). Figure A presents detailed success
curves and AUC scores across individual subsets, along with the success and precision curves on the
entire LaSOT test split. The results demonstrate that our Uni-MDTrack significantly outperforms
these RGB-based trackers both overall and across the vast majority of subsets.

C C. MORE QUALITATIVE RESULTS

C.1 RESULTS ON RGB VISUAL TRACKING

In order to visually highlight the advantages of our method over existing approaches in challeng-
ing scenarios, we provide the detail visualization results in Figure B. All videos are from the test
split of LaSOT. We compare our proposed Uni-MDTrack-B with SUTrack-B(Chen et al., 2025)
and MambaLCT256 (Li et al., 2025) in terms of performance when the target undergoes sudden
movement, deformation, occlusion, and scale variation. All the selected videos are challenging, as
described below:

• Figure B(a) demonstrates the tracking results of three methods when the target suffer from
large scale variations.

• Figure B(b) demonstrates the tracking results of three methods when the targets have partial
occlusions and among similar objects.
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Table H: Ablation studies on memory select strategy.

# Variants LaSOT LasHeR VisEvent DepthTrack ∆
1 Ours 74.7 61.2 64.2 65.9 0
2 FIFO + 5 Interval 74.1 61.1 63.8 65.8 -0.3
3 FIFO + 10 Interval 74.2 61.1 63.9 65.9 -0.23

• Figure B(c) demonstrates the tracking results of three methods when the target suffers sud-
den movement or occlusion.

We observe that in large scale variations (as shown in Figure B(a)), previous trackers struggle to
maintain consistent tracking of the correct target. In contrast, our Uni-MDTrack demonstrates supe-
rior performance in accurately identifying and consistently tracking the target, even in the presence
of sudden movements (as illustrated in Figure B(c)). Additionally, in Figure B(b), Uni-MDTrack
can effectively discriminate the background distractors.

Although our method demonstrates clear advantages over prior approaches, tracking failures can still
occur in extremely challenging scenarios. As shown in Figure F, when the coin is heavily occluded
and surrounded by numerous visually similar distractors, all methods eventually fail; however, our
method is still able to track the target during the initial stage of occlusion. A similar situation arises
in the racing scenario, where the background contains many nearly identical cars that frequently
overlap, making the target extremely difficult to predict. In the volleyball scenario, the ball under-
goes rapid motion, appears small in scale, and is often blurred, which likewise makes prediction
highly challenging. These types of scenes are universally difficult for current tracking models.

C.2 RESULTS ON MULTI-MODAL VISUAL TRACKING

We further provide visualized comparisons of our proposed Uni-MDTrack against other excellent
trackers SUTrack (Chen et al., 2025), and STTrack (Hu et al., 2025) across other modalities includ-
ing RGB-Depth in Figure C(a), RGB-Event in Figure C(b) and RGB-Thermal in Figure C(c). Our
Uni-MDTrack consistently exhibit superior performance on these modalities.

C.3 ATTENTION MAP COMPARISON OF TEMPORAL PROPAGATE TOKEN AND DYNAMIC
STATE FEATURE

In Figure D, we visualized the attention maps for the representative method ODTrack (Zheng et al.,
2024), which uses Temporal Propagate Tokens, and compared the attention maps with our approach.
For ODTrack, since the Temporal Propagate Token, template, and search region tokens are concate-
nated together, we can visualize the attention of the Temporal Propagate Token to the template and
search region to ascertain what information it actually integrates. On the left side of Figure D, we
sum and normalize the attention weights of each layer in ODTrack-B, revealing that a significant
portion of the Temporal Propagate Token’s attention is focused on the templates. This can hinder
the token’s ability to integrate information about target dynamic state changes. On the right side of
Figure D, we visualize the cross-attention map of our search region to the Dynamic State Feature in
DSF, showing that the attention is more focused and precise.

C.4 VISUALIZATION OF THE DYNAMIC STATE FEATURES OUTPUT BY DSF ON THE SEARCH
REGION WHEN THE TARGET UNDERGOES SCALE VARIATION AND FAST MOTION

To further illustrate how the dynamic target state encoded by DSF evolves when the target undergoes
short-term scale variation or fast motion, we select two representative scenarios in which the target
experiences noticeable scale variation and fast movement. As shown in Figure E, we visualize the
averaged cross-attention weights between the outputs of all DSF modules and the search-region fea-
tures. Compared with Figure D, we increase the transparency of the heatmaps and use consecutive
frames to make the target’s motion or appearance changes easier to observe.

From the results in Figure E, for the eagle with unfolding wings, the dynamic features produced
by DSF clearly focus on the motion of the wings as they extend. For the fast-moving airplane, the
dynamic features output by DSF clearly focus on the airplane’s head-to-tail motion direction. When
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the airplane’s head is occluded, the attention map can roughly estimate the head position, and when
the airplane reveals previously occluded parts, DSF can quickly allocate attention to these emerging
regions.
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