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ABSTRACT

Dataset distillation aims to find a small synthetic training set, such that training
on the synthetic data achieves similar performance to training on a larger training
dataset. Early methods solve this by interpreting the distillation problem as a
bi-level optimization problem. On the other hand, disentangled methods bypass
pixel-space optimization by matching data distributions and using generative tech-
niques, leading to better computational complexity in terms of size of both training
and distilled datasets. We demonstrate that by using latent spaces, the empirically
successful disentangled methods can be reformulated as an optimal quantization
problem, where a finite set of points is found to approximate the underlying proba-
bility measure. In particular, we link disentangled dataset distillation methods to the
classical problem of optimal quantization, and are the first to demonstrate consis-
tency of distilled datasets for diffusion-based generative priors. We propose Dataset
Distillation by Optimal Quantization (DDOQ), based on clustering in the latent
space of latent diffusion models. Compared to a similar clustering method D4M,
we achieve better performance and inter-model generalization on the ImageNet-1K
dataset using the same model and with trivial additional computation, achieving
SOTA performance in higher image-per-class settings. Using the distilled noise
initializations in a stronger diffusion transformer model, we obtain competitive or
SOTA distillation performance on ImageNet-1K and its subsets, outperforming
recent diffusion guidance methods.

1 INTRODUCTION

Training powerful neural networks requires a large amount of data, and thus induces high computa-
tional requirements. Dataset distillation (DD) targets this computational difficulty by changing the
data, as opposed to other parts of training such as optimization or architecture (Wang et al., 2018).
The DD objective consists of finding a synthetic training set, such that training a neural network on
the synthetic data yields similar performance.

There are several closely related notions of reducing computational load when training new models
on datasets. Core-set methods find a subset of training data (as opposed to synthetic data) that
achieve good training performance (Mirzasoleiman et al., 2020; Feldman, 2020). Model distillation,
sometimes known as knowledge distillation, aims to train a smaller model that predicts the output
of a larger model (Gou et al., 2021; Polino et al., 2018). Importance sampling methods accelerate
training by weighting training data, finding examples that are more influential for training (Paul et al.,
2021). For more detailed surveys on dataset distillation methods and techniques, we refer to (Yu
et al., 2023; Sachdeva & McAuley, 2023).

1.1 BI-LEVEL FORMULATION OF DATASET DISTILLATION

Denote a training set (more generally, distribution of training data) by T , and the expected and
empirical risks (test and training loss) by R and L respectively, evaluated for some parameter θ.
The goal of DD is to find a synthetic dataset S (of given size) minimizing the test loss discrepancy
(Sachdeva & McAuley, 2023):

S = argmin
S

∣∣∣∣R(argmin
θ
L(S))−R(argmin

θ
L(T ))

∣∣∣∣ . (1)
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This formulation is computationally intractable. Approximations include replacing the minimum
discrepancy objective with maximum test performance, replacing the learning algorithm Φ with
an inner neural network optimization problem, and solving the outer minimization problem using
gradient methods. Common heuristic relaxations to the bi-level formulation (1) include meta-learning
(Wang et al., 2018; Deng & Russakovsky, 2022), distribution matching (Zhao & Bilen, 2023), and
trajectory matching (Cazenavette et al., 2022). Other methods include neural feature matching (Zhou
et al., 2022; Loo et al., 2022) and the corresponding neural tangent kernel methods (Nguyen et al.,
2021; 2020), representative matching (Liu et al., 2023b), and group robustness (Vahidian et al., 2024).
For better scaling, Cazenavette et al. (2022); Moser et al. (2024) consider using generative priors
such as GANs to generate more visually coherent images, increasing performance and replacing the
need for optimization with a neural network inversion task.

While the bi-level formulation follows naturally from the qualitative problem statement of dataset
distillation, there are two main drawbacks, namely computational complexity and model architec-
ture dependence. The dimensionality of the underlying optimization problems limit the applicability
on large scale datasets, which are particularly useful for computationally limited applications. For
example, the ImageNet-1K dataset consists of 1.2M training images, totalling over 120GB of memory
(Deng et al., 2009). The full dataset ImageNet-21K consists of over 14M images and takes up around
1.2TB of memory, which is generally infeasible to train expert models on, and makes backpropagation
through network training steps impossible.

1.2 DISENTANGLED AND DIFFUSION METHODS

Yin et al. (2023) is the first work to “disentangle” the bi-level optimization framework into three
separate problems, named Squeeze, Recover and Relabel (SRe2L). In particular, the inner neural
network optimization problem is replaced with matching statistics of batch-normalization layers.
Curriculum Data Augmentation (CDA) uses adaptive training to get more performance (Yin & Shen,
2024). Liu et al. (2023a) considers optimizing images such that neural network features are close to
Wasserstein barycenters of the training image features. Sun et al. (2024) proposes Realistic Diverse
and Efficient Dataset Distillation (RDED), which replaces the latent clustering objective with a
patch-based adversarial objective. Su et al. (2024) considers clustering directly in the latent space of
a latent diffusion model (LDM) (Rombach et al., 2022), named Dataset Distillation via Disentangled
Diffusion Model (D4M). This avoids backpropagation when distilling and has constant memory
usage with respect to images per class (IPC), a direct advantage over the linear memory scaling of
optimization-based methods. Recent state-of-the-art methods consider fine-tuning diffusion models
to have better statistics (Gu et al., 2024), and guiding the diffusion to maximize the influence of the
distilled points (Chen et al., 2025), similarly to active learning.

While dataset distillation has had extensive experimental effort, few theoretical justifications or
computable formalizations exist in the literature. Sachdeva & McAuley (2023) proposes a high-level
formulation based on minimizing the difference in test loss between learning on the full dataset versus
the synthetic dataset. Kungurtsev et al. (2024) considers dataset distillation as dependent on the
desired inference task (typically classification with cross-entropy loss for image data), interpreting
trajectory matching as a mean-field control problem. In this work, we address convergence in
measure space using disentangled methods, demonstrating consistency and convergence of the
distilled datasets.

We summarize the contributions of this work as follows.

1. Disentangled dataset distillation can be theoretically justified using classical notions of
optimal quantization and Wasserstein distance. Motivated by the empirical usage of cluster-
ing in latent spaces, we show in Theorem 1 that optimal quantizations induce convergent
approximations of gradients of population risk. Furthermore, Corollary 1 shows the approxi-
mation rate is given by O(K−1/d), where d is the dimension of the latent space and K is
the number of quantization points. This motivates the usage of a low-dimensional latent
space to model the data distribution.

2. We propose Dataset Distillation by Optimal Quantization (DDOQ) in Algorithm 1, a DD
algorithm based on clustering in a low-dimensional latent space. Compared to a recent
disentangled method D4M, our proposed method has a smaller Wasserstein distance between
the distilled latent points and latent data distribution, indicating better approximation.
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3. We algorithmically compare our proposed method with D4M and various common disen-
tangled baselines on the ImageNet-1K dataset using the same generative diffusion model
backbone, demonstrating significantly better classification accuracy at varied IPC bud-
gets and better cross-architecture generalization. To demonstrate the potential of DDOQ,
we additionally use the stronger diffusion transformer (DiT) backbone, used in recent
diffusion-based methods. We provide a central comparison with SOTA disentangled and
diffusion-based distillation methods, yielding competitive or better results than existing
SOTA methods on ImageNet-1K and its subsets.

This work is structured as follows. Section 2 covers related background and convergence results, in-
cluding optimal quantization and diffusion models. Theorem 1 in Section 3 demonstrates consistency
of the optimal quantizers when passed through diffusion-based generative priors to the image space,
and motivates adding automatically-learned weights in the prototyping phase. Section 3.1 details the
data distillation pipeline in a sequential manner, from distillation to training new models using the
computed weights. Section 4 contains experiments of our proposed method against the previously
SOTA D4M method as well as other recent SOTA baselines on the large-scale ImageNet-1K dataset.

2 BACKGROUND

Define P2(Rd) to be the set of probability measures on Rd with finite second moment, not necessarily
admitting a density with respect to the Lebesgue measure. We useW2 to denote the Wasserstein-2
distance between two probability distributions in P2(Rd) (Santambrogio, 2015).

2.1 OPTIMAL QUANTIZATION

For a probability measure µ ∈ P2(Rd), an optimal quantization (or vector quantization) at level K is
a set of points {x1, ..., xK} ⊂ Rd such that the µ-averaged Euclidean distance to the quantized points
is minimal. This can be formulated as the minimizer of the (quadratic) distortion, defined as follows.
Definition 1 (Quadratic distortion). For a quantization grid (x1, ..., xK) ∈ (Rd)K , the corresponding
Voronoi cells are

Ci = {y ∈ Rd | ∥y − xi∥ = min
j
∥y − xj∥}, i = 1, ...,K. (2)

Given a measure µ ∈ P2(Rd), the (quadratic) distortion function G = Gµ takes a tuple of points
(x1, ..., xK) and outputs the average squared distance to the set:

G : (x1, ..., xK) 7→
∫
Rd

min
i
∥x− xi∥2 µ(dx) = EX∼µ[min

i
∥X − xi∥2]. (3)

We will write GK,µ to mean the distortion function at level K, i.e. with domain (Rd)K , and drop the
subscripts where it is clear. An optimal quantization is a minimizer of G.

Note that the assumption that µ ∈ P2(Rd) has finite second moments implies that the quadratic
distortion is finite for any set of points, and that an optimal quantization exists (Pagès, 2015). We
note that the optimal quantization weights are uniquely determined by the quantization points. This
gives equivalence of the distortion minimization problem to the Wasserstein minimization problem,
when restricted to measures of finite support (Pagès, 2015).
Proposition 1. Suppose we have a quantization x = {x1, ..., xK}. Assume that the (probability) mea-
sure µ is null on the boundaries of the Voronoi cells µ(∂Ci) = 0. Then the measure ν that minimizes
the Wasserstein-2 distance (14) and satisfies supp ν ⊂ {x1, ..., xK} is νK =

∑K
i=1 µ(Ci)δ(xi).

Moreover, the optimal coupling is given by the projection onto the centroids.

Proof. Deferred to Section C.2.

In other words, finding points that minimize the quadratic distortion is equivalent to finding a K-
finitely supported (probability) measure, minimizing the Wasserstein-2 distance to the underlying
measure.

3
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Remark 1. The case where the approximating measure is a uniform Dirac mixture is called the
Wasserstein barycenter problem (Cuturi & Doucet, 2014). The Wasserstein barycenter has higher
error than the optimal quantization, but it admits an easily computable dual representation.

The quantizer can be shown to have nice approximation properties when taking expectations of
functions. A prototypical example for DD would have f be the gradient of a neural network with
respect to some loss function. This implies that a data distribution µ and its quantization ν induce
similar training dynamics.
Proposition 2. Let f : Rd → R be an L-Lipschitz function. For a probability measure µ ∈ P2(Rd)

that assigns no mass to hyperplanes, and a quantization x = (x1, ..., xk), let ν =
∑K

i=1 µ(Ci)δ(xi)
be the corresponding Wasserstein-optimal measure with support in x, as in Proposition 1. The
difference between the population risk Eµ[f ] and the weighted empirical risk Eν [f ] is bounded as

Eµ[f ]− Eν [f ] ≤ LG(x)1/2. (4)

Proof. Deferred to Section C.3.

2.1.1 SOLVING THE OPTIMAL QUANTIZATION PROBLEM

To find an optimal quantizer, we use the competitive learning vector quantization (CLVQ) algorithm
(Ahalt et al., 1990). This arises directly from gradient descent on the quadratic distortion. The
gradient of the distortion has a representation in terms of µ-centroids of the corresponding Voronoi
cells, given explicitly in Section C.5.

The CLVQ algorithm is presented in the appendix as Algorithm 2. It consists of iterating: (i)
sampling from µ, (ii) computing the nearest cluster centroid, and (iii) updating the cluster centroid
with weighted average. CLVQ is equivalent to the mini-batch k-means method when the stepsizes
γi are chosen to be the reciprocals of the number of points per-cluster (Sculley, 2010; Pedregosa
et al., 2011). We can thus interpret mini-batch k-means as finding a local minima of the optimal
quantization problem.

The CLVQ algorithm produces points x = (x1, ..., xK), but it remains to compute the associated
weights approximating the measures of the Voronoi cells µ(Ci) as in Proposition 1. This can be done
in an online manner within the same iterations (Pagès, 2015).
Proposition 3 (Bally & Pagès 2003, Prop. 7). Assume that the measure µ ∈ P2+η(Rd) for some
η > 0, and that it assigns no mass to hyperplanes. Assume further that the grids x(t) produced by
CLVQ converge to a stationary grid x∗, i.e. ∇G(x∗) = 0, and that the step-sizes satisfy

∑
γk = +∞

and
∑
γ1+δ
k <∞ for some δ > 0. Then,

1. The companion weights wk converge almost surely to the limiting weights µ(C∗
k);

2. The moving average of the empirical quadratic distortion converges to the limiting distortion:

1

t

t∑
k=1

min
1≤i≤K

∥Xk − x(k)i ∥
2 → G(x∗).

Using these weights, we target the problem of approximating optimal quantizers, rather than the
Wasserstein barycenter problem. The addition of the weights reduces the distortion in the latent space.
In the following section, we show that this reduced distortion carries over to the image space, which
leads to better training fidelity as given using Proposition 2.

2.2 SCORE-BASED DIFFUSION

To connect the quantization error on the latent space with the quantization error in the image space,
we need to consider properties of the latent-to-image process. In particular, we focus on score-based
diffusion models, seen as discretizations of particular noising SDEs (Song et al., 2020). Consider the
following SDE, where W is a standard Wiener process:

dx = f(x, t) dt+ g(t) dW . (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The reverse of the diffusion process is given by the reverse-time SDE (Haussmann & Pardoux, 1986),
where the density of x at time t > 0 is given by pt,

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t)dW̄ , (6)

and W̄ is a reverse time Wiener process. For an increasing noising schedule σ(t) or noise-scale β(t),
the variance-exploding SDE (VESDE, or Brownian motion) and variance-preserving SDE (VPSDE,
or Ornstein–Uhlenbeck process) are given respectively by

dx =

√
d[σ2(t)]

dt
dW and dx = −1

2
β(t)x dt+

√
β(t) dW . (7)

These SDEs are related to early diffusion models. Specifically, VPSDE corresponds to denoising
score matching with Langevin dynamics (Song & Ermon, 2019), and VESDE to denoising diffusion
probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Using this particular structure, we
may obtain convergence results as seen in the next section. We note that by time-rescaling, we may
assume without loss of generality that the noising schedule is linear σ2(t) = t or the noise-scale is
constant β(t) = 1.

The goal in question: given Wasserstein-2 convergence of the marginals ν(k)T → µT , we wish to

derive a bound on expectations E
ν
(k)
δ

[f ]
?−→ Eµδ

[f ], for some small fixed δ ∈ (0, T ) and f : Rd → R
satisfying some regularity conditions. In other words, we wish to show that generative diffusion
preserves closeness of data distributions. Such a bound would directly link to training neural networks
with surrogate data, e.g. by taking f to be the gradient of a loss function with respect to some network
parameters.
Remark 2. Having δ = 0 may not be well defined because of non-smoothness and blowup of the
score at time 0 for singular measures (Pidstrigach, 2022; Yang et al., 2023).
Remark 3. Working with weak convergence is necessary due to the singular empirical measures.
Pidstrigach (2022) demonstrates that the backward SDE process satisfies a data-processing inequality,
showing that the f -divergence after backwards diffusion is at most the f -divergence at marginal
time T . However, f -divergences require absolute continuity of the compared marginal with respect
to the underlying diffused distribution, which is equivalent to absolute continuity with respect to
the Lebesgue measure by the Hörmander condition. This rules out singular initializations such as
empirical measures, which arise in dataset distillation.

3 DATASET DISTILLATION AS OPTIMAL QUANTIZATION

Our main result Theorem 1 gives consistency of dataset distillation for a score-based diffusion prior
in the image space. Later, we use this in Section 3.1 to present DDOQ as a modification of the
D4M method. By simply changing the clustering objective from a Wasserstein barycenter to an
optimal quantization by adding weights, we can effectively reduce the Wasserstein distance to the
data distribution.
Theorem 1. Consider the VESDE/Brownian motion or the VPSDE/Ornstein–Uhlenbeck process

dx = dW or dx = −1

2
x dt+ dW . (8)

For any initial data distribution µ ∈ P2(Rd) with compact support bounded byR > 0, the backwards
diffusion process is well posed. Suppose that there are two distributions µT , νT at time T that undergo
the reverse diffusion process (with fixed initial reference measure µ) up to time t = δ ∈ (0, T ) to
produce distributions µδ, νδ. There exists a (universal explicit) constant C = C(δ, T,R, d) ∈
(0,+∞) such that if f : Rd → Rn is an L-Lipschitz function, then the difference in expectation
satisfies

∥Eµδ
[f ]− Eνδ

[f ]∥ ≤ CLW2(µT , νT ). (9)

In dataset distillation terms, f will typically be replaced by the gradient of a loss function. The above
result suggests that a distilled image dataset can be given by passing a distilled latent dataset through
the generative reverse SDE process. Moreover, when training a neural network on a distilled dataset
given by optimal quantization, the gradients on the distilled dataset and full training dataset at each

5
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Algorithm 1: Dataset Distillation by Optimal Quantization (DDOQ)
Data: Training data and labels (T ,L), pre-trained encoder-decoder pair (E ,D), text encoder τ ,

latent diffusion model Ut, target IPC count K
/* Step 1: encode */

1 Initialize latent points Z = E(T );
/* Step 2: cluster */

2 Compute and save k-means cluster centers z(L)
k and cluster counts v(L)

k , k = 1, ...,K, L ∈ L;
3 Compute weights w(L)

k ← v
(L)
k /

∑
j v

(L)
j ;

/* Step 3: decode */
4 Compute class embeddings emb = τ(L), L ∈ L;
5 Compute and save class distilled images SL = {x(L)

k = D ◦ Ut(z(L)
k , emb) | k = 1, ...,K};

Result: Distilled images S =
⋃

L∈L SL
6 To train a new network fθ:

Data: Labels y for training data x ∈ S, loss function ℓ : (x, y, θ)→ R
/* Step 4: Train new model (Validation) */

7 Train network using loss function minθ
∑

(x,y,w) w · ℓ(x, y, θ)

Table 1: Wasserstein-2 distances of the distilled latents compared to the encoded training data on
classes of ImageNet-1K. We observe the weighting drops the Wasserstein-2 distance significantly.

Test class 0 1 2 Avg reduction

IPC 10 D4M 49.67 51.14 47.16 −15.7%DDOQ 42.97 42.71 39.14

IPC 50 D4M 47.34 49.10 45.28 −16.1%DDOQ 40.41 41.01 37.53

step will automatically be similar. This bypasses the heuristics needed in bi-level DD formulations,
and avoids fine-tuning or generation-time guidance of the diffusion models.

Theorem 1 combined with the asymptotic rates of Graf & Luschgy (2000) gives convergence rates as
the number of quantization points increases. We note that this can be further be combined with the
convergence of optimal quantization rates of empirical measures such as Theorem 3 in Section C.4.
In particular, the next result shows that as the number of points increases, we have convergence to the
underlying data distribution in image space, giving consistency.

Corollary 1. Suppose µ ∈ P2(Rd) has compact support and is diffused through either the Brownian
motion or Ornstein–Uhlenbeck process up to time T to produce marginal µT . Let ν(K)

T be optimal
quantizers of µT at level K for K ∈ N. For fixed δ ∈ (0, T ), let ν(K)

δ denote the corresponding
backwards diffusion at time T − δ. Then, for any L-Lipschitz function f and as K →∞,

∥Eµδ
[f ]− E

ν
(K)
δ

[f ]∥ = LO(K−1/d). (10)

3.1 PROPOSED METHOD: DATASET DISTILLATION BY OPTIMAL QUANTIZATION

We have seen that clustering gives a consistent approximation to the latent distribution. Using the
generative diffusion model and Theorem 1, we obtain a consistent approximation to the original
data distribution in the image space. We now propose Dataset Distillation by Optimal Quantization
(DDOQ). We detail the steps in text below and summarize in Algorithm 1.

Suppose we are given a latent diffusion model (LDM), i.e. a (conditional) encoder-decoder pair and a
diffusion model on the latent space (Rombach et al., 2022). Let K be the target number of images
per class. Constructing and using the distilled dataset consists of the following steps in sequence.

6
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10 2

10 1

Figure 1: Example distilled images of the “jeep” class in ImageNet-1K along with their k-means
weights below. There are little to no qualitative features that can be used to differentiate the low and
high weighted images, mainly due to the high fidelity of the diffusion model. However, the weights
are indicative of the distribution of the training data in the latent space of the diffusion model.

1. Encoding. We use the encoder of the LDM to map training samples from the image space to
the latent space, giving empirical samples from the SDE marginal µT . This is done per-class
in the context of classification.

2. Clustering. We then use the CLVQ (mini-batch k-means) algorithm on these samples to
compute the K centroids and corresponding weights, as in Proposition 3. This gives an
empirical distribution ν(K)

T that approximates µT . Equivalently, it consists of tuples of
points and weights (xi, wi)

K
i=1, such that ν(K)

T =
∑

i wiδ(xi) ≈ µT .

3. Decoding/Image synthesis. Given the clustered centroids in the latent space, the generative
part of the LDM is employed to reconstruct images. This comprises the image component
of the distilled dataset. The weights of the latent points are assigned directly to the weights
of the corresponding generated image.

4. Training new models. Training a network fθ from scratch requires: distilled images x,
some corresponding labels y, and the weights w to each image. For a loss function ℓ(x, y, θ)
such as cross-entropy or KL divergence, the loss for each sample is weighted by w. The
complete loss function is given by

min
θ

∑
(x,y,w)

w · ℓ(x, y, θ).

Compared with D4M, we include weights when training a new network in the final step, justified by
considering the expectation of network gradients with respect to the training and distilled distributions.
As seen in Table 1, the inclusion of the weights significantly decreases the Wasserstein distance of
the distilled points to the data distribution, when tested on classes of ImageNet-1K.

We note that there is flexibility in the choice of label y when training a new model. For example,
the soft-label synthesis of D4M or RDED employs another pre-trained classifier Ψ, such as a
ResNet. Using this, the soft-labels are given by y = Ψ(x), as opposed to one-hot encodings of the
corresponding classes.

4 EXPERIMENTS

We compare with two different latent diffusion architectures, namely the original latent diffusion
model utilizing UNets (Rombach et al., 2022), then the stronger diffusion transformer (DiT) architec-
ture (Peebles & Xie, 2023). We first use the LDM to compare the pure algorithmic differences of
DDOQ with D4M and related baselines. Then, we use DiT to demonstrate the potential of DDOQ
compared to newer state-of-the-art baselines.

4.1 UNET BACKBONE

To validate the proposed DDOQ algorithm, we directly compare with the previous state-of-the-art
disentangled methods D4M (Su et al., 2024) and RDED (Sun et al., 2024) on the ImageNet-1K
dataset. Baseline figures are reported as given in their respective works. For low IPC, we also
report the TESLA method, which is a SOTA bi-level method based on MTT (Cui et al., 2023), but

7
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Table 2: Comparison of top-1 classification performance on the ImageNet-1K dataset at various IPCs.
We observe that the proposed DDOQ outperforms the clustering-based method D4M, due to the
addition of weights to the synthetic data. The maximum performance for all methods should be 69.8
as the soft labels are computed using a pre-trained ResNet-18 model. In particular, we achieve a 30%
reduction in error gap using ResNet-101 at IPC 200.

IPC Method ResNet-18 ResNet-50 ResNet-101 IPC Method ResNet-18 ResNet-50 ResNet-101

10

TESLA 7.7 - -

50

SRe2L 46.8±0.2 55.6±0.3 60.8±0.5

SRe2L 21.3±0.6 28.4±0.1 30.9±0.1 CDA 53.5 61.3 61.6
RDED 42.0±0.1 - 48.3±1.0 RDED 56.5±0.1 - 61.2±0.4

D4M 27.9 33.5 34.2 D4M 55.2 62.4 63.4
DDOQ 33.1±0.60 34.4±0.99 36.7±0.80 DDOQ 56.2±0.07 62.5±0.24 63.6±0.13

100

SRe2L 52.8±0.3 61.0±0.4 62.8±0.2

200

SRe2L 57.0±0.4 64.6±0.3 65.9±0.3

CDA 58.0 65.1 65.9 CDA 63.3 67.6 68.4
D4M 59.3 65.4 66.5 D4M 62.6 67.8 68.1

DDOQ 60.1±0.15 65.9±0.15 66.7±0.06 DDOQ 63.4±0.08 68.0±0.05 68.6±0.08

Table 3: Generalization performance of D4M and the proposed DDOQ method for different soft-label
teachers and student architectures at IPC 50. We observe that DDOQ has uniformly better cross-
architecture generalization for convolutional teacher and student architectures, and slightly worse
performance for student models using the transformer architecture Swin-T.

Teacher Network Student Network

ResNet-18 MobileNet-V2 EfficientNet-B0 Swin-T

ResNet-18 D4M 55.2 47.9 55.4 58.1
DDOQ 56.2 52.1 58.0 57.4

MobileNet-V2 D4M 47.6 42.9 49.8 58.9
DDOQ 47.7 45.6 52.5 56.3

Swin-T D4M 27.5 21.9 26.4 38.1
DDOQ 28.5 24.1 29.3 36.0

is unscalable past IPC=10. RDED achieves strong results for low IPC using its aggregated images
and special training schedule, while CDA improves upon SRe2L using time-varying augmentation.
For consistency, soft labels are computed using the pre-trained PyTorch ResNet-18 model, and new
ResNet-{18,50,101} models are trained using the distilled data. We provide a direct comparison of
the distilled data performance in Table 2 for the IPCs K ∈ {10, 50, 100, 200}. Variances for DDOQ
are averaged over five models trained on the same distilled data.

We observe that while RDED is very powerful in the low IPC setting due to the patch-based distilled
images, which effectively gives the information of 4 (down-sampled) images in one training sample.
However, the gap quickly reduces for IPC 50, getting outperformed by the clustering-based D4M and
proposed DDOQ methods with more powerful models like ResNet-101. Results for IPC 100/200 are
not available online for RDED and we omit them due to computational restriction.

The proposed DDOQ algorithm is uniformly better than D4M, with the most significant increase in
the low IPC setting. Moreover, DDOQ surpasses all the compared SOTA disentangled DD methods
for IPC 100 and 200. For a low number of quantization points, the gap in Wasserstein distance
of the Wasserstein barycenter and the optimal quantizer to the data distribution may be large. As
indicated in Theorem 1, a lower Wasserstein distance means more faithful gradient computations on
the synthetic data, which may explain the higher performance with minimal algorithmic change, as
well as implicitly allowing for gradient matching as in existing bi-level methods.

Table 3 shows the generalization performance of the distilled latent points. The PyTorch pre-
trained MobileNet-V2 and Swin-T networks are used to create the soft labels. We then evaluate the
distilled images and soft labels with three convolutional architectures and the Swin-T transformer
architecture. We observe that DDOQ is not only able to generalize to different model architectures,
but also uniformly outperforms D4M on all convolutional student architectures. The slightly worse
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Table 4: Comparisons on ImageWoof and ImageNette using the ResNetAP-10 architecture, and
ImageNet-1K using ResNet-18. DDOQ-DiT outperforms the guided diffusion methods at low IPC
and is competitive at higher IPC, namely outperforming the compared methods on ImageNet-1K.

Dataset IPC DiT DiT-IGD Minimax Minimax-IGD DDOQ-DiT Full

ImageWoof 10 39.0±0.9 41.0±0.8 39.6±1.2 43.3±0.3 48.8±2.0 87.250 55.8±1.1 62.7±1.2 59.8±0.8 65.0±0.8 65.4±0.7

ImageNette 10 62.8±0.8 66.5±1.1 63.2±1.0 65.3±1.1 68.2±0.9 94.650 76.9±0.5 81.0±1.2 78.2±0.7 82.3±1.1 79.8±0.8

ImageNet-1K 10 39.6±0.4 45.5±0.5 44.3±0.5 46.2±0.6 53.0±0.2 69.850 52.9±0.6 59.8±0.3 58.6±0.3 60.3±0.4 62.7±0.1

performance of DDOQ when using a transformer architecture for the student may be due to more
precise hyperparameter tuning requirements.

To illustrate the weights, Figure 1 plots ten example images from the “jeep” class when distilled
using K = 10 IPC. We observe that there is a very large variance in the weights v(L)

k

/∑K
j=1 v

(L)
j ,

indicating the presence of strong clustering in the latent space. Nonetheless, there is no qualitative
evidence that the weights indicate “better or worse” training examples, rather indicating the structure
in the latent space.

4.2 DIT BACKBONE

To compare the potential of DDOQ, we use a stronger generative model, namely the diffusion
transformer (DiT) (Peebles & Xie, 2023). This architecture achieves uniformly better sample quality
compared to the LDM used in the previous section, in terms of Inception Score and Fréchet inception
distance. We denote the method with DiT backbone as DDOQ-DiT.

We compare with the SOTA DD methods based on diffusion guidance, namely Minimax (Gu et al.,
2024) and Influence Guided Diffusion (IGD) (Chen et al., 2025), which both use DiT. These methods
guide the decoding process using some fine-tuning or batch statistics. In contrast, DDOQ-DiT directly
modifies the initialization in the latent space. In addition, we compare with samples directly generated
with DiT from random initializations, labelled ‘DiT’. We compare on ImageNet-1K, as well as the
10-class subsets ImageNette and ImageWoof. The baseline figures are taken from Chen et al. (2025)
which report higher numbers than Gu et al. (2024).

Table 4 demonstrates that we significantly outperform the diffusion-guidance based methods on the
full ImageNet-1K, as well as DDOQ-DiT with the UNet backbone. Moreover, we are competitive-
with or better than the baselines on the 10-class subsets, namely outperforming in the low IPC setting
and in the more difficult ImageWoof subset. Moreover, the stronger diffusion model significantly
benefits the low IPC ImageNet-1K setting, increasing ResNet-18 test accuracy from 33.1 to 53.0.

5 CONCLUSION

This work proposes DDOQ, a dataset distillation method based on optimal quantization. Inspired
by optimal quantization and Wasserstein theory, we theoretically demonstrate consistency of the
distilled datasets in Theorem 1 when using standard diffusion-based generative models to generate
the synthetic data. Experiments show the proposed method is competitive or better than SOTA on
large-scale ImageNet experiments.

We have presented theoretical justification for one framework of dataset distillation. Future work could
include sharper bounds in Theorem 1 that exploit the sub-Gaussianity of the diffused distributions or
manifold hypothesis. Other interesting directions could be relating the weightings of the synthetic data
to the hardness of learning the data, such as in (Joshi & Mirzasoleiman, 2023), further increasing the
performance using different training regimes such as curriculum learning, or extending the theoretical
analysis to inexact score matching. Possible empirical work could investigate correlations between
the weights and influence (Pruthi et al., 2020).
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REPRODUCIBILITY

Source code for the experiments will be released after the review period.
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A DETAILS ON HEURISTIC BI-LEVEL DISTILLATION

1. (Meta-learning.) This uses the assumption that more data produces better results, replacing
the risk matching objective with a risk minimization objective and removing the dependence
on T (Wang et al., 2018; Deng & Russakovsky, 2022). The learning algorithm ΦS = ΦS(θ0)
with initial parameter θ0 is given by unrolling gradient steps θt+1 = θt − η∇LS(θt). The
distilled dataset minimizes the training loss as trained on the distilled set up to T iterations:

argmin
S

Eθ0∼pθ
[LT (θT )] . (11)

2. (Distribution matching.) Inspired by reproducing kernel Hilbert spaces and the empirical
approximations using random neural network features, Zhao & Bilen (2023) proposes an
alternate distillation objective that is independent of target loss. The minimization objective
is

argmin
S

Eθ∼pθ
∥ 1

|T |
∑
x∈T

ψθ(x)−
1

|S|
∑
x∈S

ψθ(x)∥2, (12)

where ψθ are randomly initialized neural networks. This can be intuitively interpreted as
matching the (first moment of) neural network features over the synthetic data.

3. (Trajectory matching.) For a fixed network architecture, this method aims to match the
gradient information of the synthetic and true training datasets from different initializations
(Cazenavette et al., 2022). The heuristic is that similar network parameters will give
similar performance. In addition, the gradients are allowed to be accelerated by matching
a small number of synthetic training steps with a large number of real data training steps:
for N ≪ M steps, the Matching Training Trajectory (MTT) objective is (with abuse of
notation):

argmin
S

Eθ0∼pθ

T−M∑
t=1

∥θSt+N − θTt+M∥2

∥θTt+M − θTt ∥2
, (13)

where θTt+1 = θTt − η∇LT (θ
T
t ), θSt+i+1 = θSt+i − η∇LS(θ

S
t+i), θ

S
t+0 = θTt .

Practical computational approximations include pre-training a large number of teacher
networks from different initializations.

B ADDITIONAL DEFINITIONS

The Wasserstein-2 distance is defined as

W2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫∫
Rd×Rd

∥x− y∥2 dγ(x, y)
)1/2

, (14)

where Γ(µ, ν) denotes the set of all couplings, i.e. joint probability measures on Rd × Rd with
marginals µ and ν.
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C OPTIMAL QUANTIZATION

C.1 ADDITIONAL BACKGROUND

Optimal quantizers converge in Wasserstein distance at a rate Θ(K−1/d) to their respective distribu-
tions as the number of particles K increases (Graf & Luschgy, 2000). Moreover, any limit point of
the optimal quantizers is an optimal quantizer of the limiting distribution (Pollard, 1982). Moreover,
it can be shown that if a sequence of distributions converges in Wasserstein distance µn → µ, then so
do the errors in quantization for a fixed quantization level (Liu & Pagès, 2020, Thm. 4).

C.2 PROOF OF PROPOSITION 1

Proposition 4. Suppose we have a quantization x = {x1, ..., xK}. Assume that the (probability)
measure µ is null on the boundaries of the Voronoi clusters µ(∂(Ci)) = 0. Then the measure
ν that minimizes the Wasserstein-2 distance (14) and satisfies supp ν ⊂ {x1, ..., xK} is νK =∑K

i=1 µ(Ci)δ(xi). Moreover, the optimal coupling is given by the projection onto the centroids.

Proof. For any coupling γ ∈ Γ(ν, µ) between ν and µ, we certainly have that∫∫
∥x− y∥2 dγ(x, y) ≥

∫∫
dist(x, y)2 dγ(x, y) =

∫
dist(x, y)2dµ(y).

where the first inequality comes from definition of distance to a set (γ-a.s.) and the support condition
on ν, and the equality from the marginal property of couplings. The final term is attained when ν
has the prescribed form: the coupling is c(xi, y) = 1y∈Ci and the corresponding transport map is
projection onto the set x (defined µ-a.s. from the null condition). This shows a lower bound of (14)
that is attained.

C.3 PROOF OF PROPOSITION 2

Theorem 2. Let f : Rd → R be an L-Lipschitz function. For a probability measure µ ∈ P2(Rd) that
assigns no mass to hyperplanes, and a quantization x = (x1, ..., xk), let ν =

∑K
i=1 µ(Ci)δ(xi) be

the corresponding Wasserstein-optimal measure with support in x, as in Proposition 1. The difference
between the population risk Eµ[f ] and the weighted empirical risk Eν [f ] is bounded as

|Eµ[f ]− Eν [f ]| ≤ LG(x)1/2. (15)

Proof. Since µ assigns no mass to hyperplanes, we may decompose into Voronoi cells.∣∣∣∣∫
Rd

f dµ−
∫
Rd

f dν

∣∣∣∣ =
∣∣∣∣∣
K∑
i=1

∫
Ci

f(x)− f(xi) dµ(x)

∣∣∣∣∣
≤

K∑
i=1

∫
Ci

L∥x− xi∥ dµ(x)

= L

∫
Rd

min
i
∥x− xi∥ dµ(x)

≤ L
(∫

Rd

min
i
∥x− xi∥2 dµ(x)

)1/2

= LG(x)1/2.
The first equality comes from definition of ν, and the inequalities from the Lipschitz condition and
Hölder’s inequality respectively.

For a given quantization x or quantization level K, the quadratic distortion thus satisfies respectively:

G(x)1/2 = inf {W2(ν, µ) | probability measures ν, supp ν ⊂ x} ; (16)
argmin
x, |x|=K

G(x) = argmin {W2(ν, µ) | probability measures ν, | supp ν| ≤ K } . (17)
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C.4 CONVERGENCE OF OPTIMAL QUANTIZATION

The following result gives a convergence rate, assuming slightly higher regularity of the underlying
probability measure.

Proposition 5 (Liu & Pagès (2020)). Let η > 0, and suppose µ ∈ P2+η(Rd). There exists a universal
constant Cd,η ∈ (0,+∞) such that for every quantization level,

e∗K,µ ≤ Cd,η · σ2+η(µ)K
−1/d, (18)

where σr(µ) = mina∈Rd Eµ[∥x− a∥r]1/r.

The following non-asymptotic result considers the convergence of optimal quantizers for a sequence
of probability measures, converging in the Wasserstein sense.

Theorem 3 (Liu & Pagès 2020, Thm. 4). Fix a quantization level K ≥ 1. Let µn, µ ∈ P2(Rd) with
support having at least K points, such thatW2(µn, µ)→ 0 as n→∞. For each n ∈ N, let x(n) be
an optimal quantizer of µn. Then

GK,µ(x
(n))− inf

x
GK,µ(x) ≤ 4e∗K,µW2(µn, µ) + 4W2

2 (µn, µ), (19)

where e∗K,µ = [infx GK,µ(x)]
1/2 is the optimal error.

Remark 4. Convergence to an optimal quantizer is only guaranteed in the case of a log-concave
distribution in one dimension (Kieffer, 1982; Liu & Pagès, 2020). In higher dimensions, convergence
to a stationary (but not optimal) grid is possible (Pages & Yu, 2016; Pagès, 2015).

C.5 GRADIENT INTERPRETATION OF CLVQ

Proposition 6 (Differentiability of distortion Pagès 2015, Prop. 3.1). Let x = (x1, ..., xK) ∈ (Rd)K

be such that the xi are pairwise distinct, and assume that µ(∂Ci) = 0. Then, the quadratic distortion
is differentiable with derivative

∇G(x) =

(
2

∫
Ci(x)

(xi − ξ)µ(dξ)

)
i=1,...,K

, (20)

i.e., the gradient for quantization point xi points away from the µ-centroid of its Voronoi cell.

The gradient step for some step-sizes γk ∈ (0, 1) reads

x(k+1) = x(k) − γk∇G(x(k)), x(0) ∈ Hull(suppµ)K , (21)

where Hull denotes the convex hull. Recalling that the gradient (20) is a µ-expectation over Ci(x),
the corresponding stochastic Monte Carlo version of the above gradient descent yields the CLVQ
algorithm 2:

x(k+1) = x(k) − γk
(
1
Xk∈C

(k)
i
x
(k)
i −Xk

)
1≤i≤K

, Xk ∼ µ. (22)

Note that the computation of this requires the ability to sample from µ, as well as being able to
compute the nearest neighbor ofXk to the quantization set x (equivalent to the inclusionXk ∈ C(K)

i ).

C.6 LLOYD I ALGORITHM

Lloyd I. This consists of iteratively updating the centroids with the µ-centroids, given by the µ-
average of the Voronoi cells. Clearly, if this algorithm converges, then the centroids are equal to
the µ-centroids and the grid is stationary. This is more commonly known as the k-means clustering
algorithm, employed in common numerical software packages such as scikit-learn (Pedregosa
et al., 2011). Convergence of the Lloyd-I algorithm can be found in e.g. (Pages & Yu, 2016).
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Algorithm 2: CLVQ

Data: initial cluster centers x(0)1 , ..., x
(0)
K , step-sizes (γi)i≥0, i← 0

1 Initialize weights w = (w1, ..., wK) = (1/K, ..., 1/K);
2 while not converged do
3 Sample Xi ∼ µ;
4 Select “winner” kwin ∈ argmin1≤k≤K ∥Xi − x(i)k ∥;
5 Update x(i+1)

k ← (1− γi)x(i)k + γiXi if k = kwin, otherwise x(i+1)
k ← x

(i)
k ;

6 Update weights wk ← (1− γi)wk + γi1k=kwin ;
7 i← i+ 1;
8 end

Result: quantization νK =
∑K

k=1 wiδ(x
∗
k)

Algorithm 3: Lloyd I (k-means)

Data: Probability distribution µ with finite first moment, initial cluster centers x(0)1 , ..., x
(0)
K

1 k ← 0;
2 while not converged do
3 Compute Voronoi cells C(k)

i = {y ∈ Rd | ∥x(k)i − y∥ = minj ∥x(k)j − y∥};
4 Replace cluster centers with µ-centroids x(k+1)

i ← (
∫
C

(k)
i
xµ(dx))/µ(C

(k)
i );

5 k ← k + 1;
6 end

D BACKGROUND ON WELL-POSED DIFFUSIONS

Suppose that the true data distribution on the image space is given by µ ∈ P(Rd), assumed to have
bounded support. Then, by the Hörmander condition, the law of a random variable (Xt)t≥0 evolving
under either the VPSDE or the VESDE will admit a density pt(x) for all t > 0 with respect to
the Lebesgue measure, that is smooth with respect to both x and t (Hörmander, 1967). Using the
following proposition, we have well-definedness of the backward SDE (Anderson, 1982; Haussmann
& Pardoux, 1986).
Proposition 7. For the forward SDE (5), assume that there exists some K > 0 such that

1. f(x, t), g(t) are measurable, and f is uniformly Lipschitz: ∥f(x, t)−f(y, t)∥ ≤ K∥x−y∥
for all x, y ∈ Rd;

2. ∥f(x, t)∥+ |g(t)| ≤ K(1 + ∥x∥);

3. The solution Xt of (5) has a C1 density pt(x) for all t > 0, and∫ T

t0

∫
∥x∥<R

∥pt∥2 + ∥∇xpt(x)∥2 < +∞ ∀t0 ∈ (0, T ], R > 0;

4. The score ∇ log pt(x) is locally Lipschitz on (0, T ]× Rd.

Then the reverse process XT−t is a solution of the (6), and moreover, the solutions of (6) are unique
in law.

Now given that the backwards SDE is indeed a diffusion, the data processing inequality uses the
Markov property and states that the divergence after diffusion is less than the divergence before
diffusion (Liese & Vajda, 2006). This is summarized in (Pidstrigach, 2022, Thm. 1).
Theorem 4. Denote the initial data distribution by µ0 = µ, and let µT be the distribution of a
random variable Xt satisfying the forward SDE (5) on [0, T ]. Assume the above assumptions, and let
Yt satisfy the backwards SDE (6) on [0, T ] with terminal condition YT ∼ νT . Denote by µt and νt
the marginal distributions at time t ∈ [0, T ] of Xt and Yt, and assume that νT ≪ µT . Then:
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1. The limit Y0 := limt→0+ Yt exists a.s., with distribution ν0 ≪ µ0.

2. For any f -divergence Df ,

Df (µ0, ν0) ≤ Df (µT , νT ) and Df (ν0, µ0) ≤ Df (νT , µT ). (23)

This theorem shows that for an f -divergence, such as total variation distance or Kullback–Leibler
divergence, convergence of the marginals at time T implies convergence of the backwards-diffused
marginals at time 0 (also at any t < T ). However, this requires absolute continuity of the initial
marginal distribution νT with respect to µT , equivalently, w.r.t. Lebesgue measure. This precludes
useful bounds for singular initializations of νT , such as empirical measures.

E D4M ALGORITHM

Algorithm 4: D4M (Su et al., 2024)
Data: Training data and labels (T ,L), pre-trained encoder-decoder pair (E ,D), text encoder τ ,

latent diffusion model Ut, target IPC count K
1 Initialize latent variables Z = E(T );
2 for label L ∈ L do
3 Initialize latent centroids zkL, k = 1, ...,K;
4 Initialize update counts vkL = 1, k = 1, ...,K;

/* Compute prototypes with k-means */
5 for minibatch z ∈ Z|L do
6 for z ∈ z do
7 k̂ ← argmink ∥zkL − z∥;

/* Update learning rate */

8 vk̂L ← vk̂L + 1;
/* Update centroid */

9 zk̂L ← (1− 1/vk̂L)z
k̂
L + (1/vk̂L)z;

10 end
11 end
12 Compute class embedding y = τ(L);
13 Compute class distilled images SL = {D ◦ Ut(zkL, y) | k = 1, ...,K};
14 end

Result: distilled images S =
⋃

L∈L SL

F PROOF OF MAIN THEOREM 1

We first require a lemma that controls diffusions for compact measures. In particular, the score is
(weakly) monotonic.

Lemma 1 (Bardet et al. (2018)). Let µ ∈ P(Rd) be a probability measure with compact support,
say bounded by R. Let gt(x) = 1

(2πt)−d/2 exp
(
−∥x∥2/2t

)
be the density of the standard normal

distribution in Rd. Then if pt is the density of µ ∗ gt, it satisfies

⟨x− y,∇ log pt(x)−∇ log pt(y)⟩ ≤
(
R2

t2
− 1

t

)
∥x− y∥2.

Proof. From (Bardet et al., 2018, Sec. 2.1), the density pt can be written as

pt(x) =
1

(2πt)d/2
exp

(
−
(
∥x∥2

2t
+Wt(x)

))
,

where

Wt(x) = − log

∫
Rd

exp

(
⟨x, z⟩
t

)
ν(dz)− logCν ,
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with Cν(x) =
∫
Rd exp

(
−∥x∥2/2t

)
µ(dx) and ν(dx) = C−1

ν exp
(
−∥x∥2/2t

)
µ(dx). Moreover,

0 ≤ −∇2Wt ≤
R2

t2
Id. (24)

Therefore,

log pt(x) = −
d

2
log(2πt)− ∥x∥

2

2t
−Wt(x)

has Hessian satisfying

∇2 log pt(x) ≤
(
R2

t2
− 1

t

)
Id.

Therefore,∇ log pt satisfies the desired monotonicity condition. Note that R can be strengthened to
1
2 diam(suppµ).

We next require the following proposition, which can be thought of as a stochastic version of
Gronwall’s inequality. We present a simple version of the even stronger result available in Hudde
et al. (2021).

Proposition 8 (Hudde et al. 2021, Lem. 3.6). Consider the diffusion

dx = f(x, t) dt+ g(x, t) dW . (25)

Suppose that there exists a measurable ϕ : [0, T ] → [0,∞] satisfying
∫ T

0
ϕ(t) dt < +∞, and that

for all t ∈ [0, T ] and x, y ∈ Rd,

⟨x− y, f(x, t)− f(y, t)⟩+ 1

2
∥g(x, t)− g(y, t)∥2HS ≤ ϕ(t)∥x− y∥2. (26)

Then for processes Xx
t , X

y
t starting at x, y respectively under (25), it holds for all t ∈ (0, T ] that

∥Xx
t −X

y
t ∥L1(Ω;Rd) ≤ ∥x− y∥ exp

(∫ t

0

ϕ(s) ds

)
. (27)

Our goal is to “pushforward” the convergence of the Wasserstein distance from the latent space (of op-
timal quantizations) through the diffusion model (backwards SDE (6)) into the image space/manifold.
We proceed with the proof.

Theorem 5. Consider the VESDE/Brownian motion

dx = dW (28)

or the VPSDE/Ornstein–Uhlenbeck process

dx = −1

2
x dt+ dW . (29)

Then, for any initial data distribution µ ∈ P2(Rd) with compact support bounded by R > 0, the
assumptions for Proposition 7 hold and the backwards diffusion process is well posed.

Suppose further that there are two distributions µT , νT at time T that undergo the reverse diffusion
process (with fixed initial reference measure µ) up to time t = δ ∈ (0, T ) to produce distributions
µδ, νδ. Then there exists a constant C = C(δ,R, d) ∈ (0,+∞) such that if f : Rd → Rn is an
L-Lipschitz function, then the difference in expectation satisfies

∥Eµδ
[f ]− Eνδ

[f ]∥ ≤ CLW2(µT , νT ). (30)

Proof. The main idea is to push a Wasserstein-optimal coupling through the backwards SDE, then
using Proposition 8 and Proposition 2. First fix a δ ∈ (0, T ], and let suppµ be bounded by R. Let
gt =

1
(2πt)−d/2 exp

(
−∥x∥2/2t

)
denote the distribution of the Gaussian N (0, tId) in d dimensions.

By the Hörmander condition, the densities of a random variable Xt with initial distribution X0 ∼ µ
undergoing the Brownian motion or Ornstein–Uhlenbeck process exist, and furthermore the forward
and backward SDE processes are diffusions (Malliavin, 1978; Hairer, 2011; Pidstrigach, 2022).
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Step 1. (Monotonicity of the drifts.) For the Brownian motion,

pt(x) = (µ(z) ∗ gt)(x).

For the Ornstein–Uhlenbeck process, the solution from initial condition X0 = x0 is

xt = x0e
−t/2 +W1−e−t .

The law of Xt is thus µ(et/2x) ∗ g1−exp(−t), where µ(et/2x) has support bounded by Re−t/2.

Apply Lemma 1 with µ for the Brownian motion, and µ(et/2x) for the Ornstein–Uhlenbeck pro-
cess. The corresponding backward SDEs (in forward time) for the Brownian motion and Ornstein–
Uhlenbeck process as given by the forward time versions of (6) are

dx = ∇ log pT−t(x)dt+ dW for Brownian motion;

dx =
[x
2
+∇ log pT−t(x)

]
dt+ dW for the OU process,

where pT−t(x) is the law of XT−t for t ∈ [0, T ).

Step 2. (Lipschitz w.r.t. initial condition after diffusion.) For the backwards SDEs, since the score is
(weakly) monotone and the diffusion term is constant, the backwards SDEs satisfy the monotonicity
condition in Proposition 8. Hence, there exists a constant C such that for any Y x

t , Y
y
t evolving

according to the backwards SDE,

E∥Y x
T−δ − Y

y
T−δ∥ ≤ C∥x− y∥. (31)

From the monotonicity condition and Proposition 8, the constants can be chosen to be as follows,
noting the diffusion term is constant:

logCBrownian =

∫ T

δ

[
R2

t2
− 1

t

]
dt , logCOU =

∫ T

δ

[
R2e−t

(1− e−t)2
− 1

1− e−t

]
dt . (32)

Step 3. (Lift to function expectation.) Now let Yt, Ŷt be two diffusions, initialized with distributions
Y x
0 ∼ µT , Ŷ x

t ∼ νT . Let γ ∈ Γ(µT , νT ) be any coupling. Define the “lifted coupling” γ̂ on the
measurable space

(
(Rd × Rd)× Ω,B(Rd × Rd)⊗F

)
, where (Ω,F ,P) is the underlying (filtered)

probability space of the diffusion, as the pushforward of the diffusion:

γ̂ = (Y0 7→ YT−δ, Ŷ0 7→ ŶT−δ, ιΩ)♯(γ ⊗ P) (33)

Marginalizing over P, this is a (probability) measure on Rd × Rd since the backward SDE paths are
continuous: the backward SDEs admit the following integral formulation, where h(r, Yr) is the drift
term of the backward SDE:

Yt = Y0 +

∫ t

0

h(r, Yr) dr +Wt.

Moreover, γ̂ is a coupling between YT−δ ∼ µδ and ŶT−δ ∼ νδ . We compute:

∥Eµδ
[f ]− Eνδ

[f ]∥ = ∥
∫∫

E[f(x)− f(y)] dγ̂(x, y) ∥

≤
∫∫

E[∥f(Y x
T−δ)− f(Ŷ

y
T−δ)∥] dγ(x, y)

≤ L
∫∫
∥Y x

T−δ − Ŷ
y
T−δ∥ dγ(x, y)

≤ CL
∫∫
∥Y x

0 − Ŷ
y
0 ∥ dγ(x, y)

= CL

∫∫
∥x− y∥ dγ(x, y) ≤ CL

(∫∫
∥x− y∥2 dγ(x, y)

)1/2

.

The desired inequality follows by taking infimums over admissible couplings γ ∈ Γ(µT , νT ).
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G APPROXIMATE TIMINGS

All times are done on Nvidia A6000 GPUs with 48GB of VRAM. We note that synthesis time as
reported in Su et al. (2024); Sun et al. (2024) do not include the time required to generate the latent
variables, and thus are not sufficiently representative of the end-to-end time required to distill the
dataset.

Table 5: Time required for each step of dataset distillation on ImageNet-1K. Synthesis requires
application of the Stable Diffusion V1.5 model to each distilled latent variable, and soft label requires
application of the pre-trained ResNet-18 model to each distilled image. Memory usage is constant
between IPCs due to equal batch size.

Step Time (IPC 10) Time (IPC 100)

1 (Latent clustering) 8 hours 8 hours
2 (Synthesis) 2 hours 1 day
3 (Soft label) 1 hour 16 hours

4 (Training ResNet18) 2.5 hours 9 hours

H EXPERIMENT HYPERPARAMETERS

We detail the parameters when training the student networks from the distilled data. They are mostly
similar to Su et al. (2024).

For consistency and a more direct comparison with previous methods, we use the pre-trained PyTorch
ResNet-18 model to compute the soft labels, using the same protocol as Su et al. (2024). After
computing the soft labels using the pre-trained ResNet-18 model, we train new ResNet-18, ResNet-
50 and ResNet-101 models to match the soft labels. The data augmentation is also identical, so
that the only differences are the addition of the weights to the training objective and some minor
hyperparameter tuning for the new objective. The latent diffusion model chosen for latent generation
and image synthesis is the publicly available pre-trained Stable Diffusion V1.5 model, the same as
D4M.

Table 6: Hyperparameter setting for ImageNet-1K experiments.

Setting Value

Network ResNet
Input size 224
Batch size 1024

Training epochs 300
Augmentation RandomResizedCrop

Min scale 0.08
Max scale 1

Temperature 20
Optimizer AdamW

Learning rate 2e-3 for Resnet18, 1e-3 otherwise
Weight decay 0.01

Learning rate schedule ηk+1 = ηk/4 at epoch 250

Variance reduction (heuristic). We note that the variance of the number of cluster assignments can
vary significantly, sometimes up to two orders of magnitude, such as in Figure 1. After normalizing
the cluster counts in Step 3 of Algorithm 1 to give weights w ∈ (0, 1), most weights are very
small, and do not contribute much to the neural network training. To reduce this effect, we use the
per-centroid weights as follows,

w
(L)
k =

√
K

√√√√v
(L)
k

/ K∑
j=1

v
(L)
j . (34)
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We note that other choices of variance reduction can also be used, and leave a more thorough search
to future work.
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