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Abstract
Despite the impressive capabilities of large lan-
guage models (LLMs) across diverse applications,
they still suffer from trustworthiness issues, such
as hallucinations and misalignments. Retrieval-
augmented language models (RAG) have been
proposed to enhance the credibility of generations
by grounding external knowledge, but the theo-
retical understandings of their generation risks
remains unexplored. In this paper, we answer: 1)
whether RAG can indeed lead to low generation
risks, 2) how to provide provable guarantees on
the generation risks of RAG and vanilla LLMs,
and 3) what sufficient conditions enable RAG
models to reduce generation risks. We propose
C-RAG, a novel framework to certify generation
risks for RAG models. Specifically, we provide
conformal risk analysis for RAG models and cer-
tify an upper confidence bound of generation risks,
which we refer to as conformal generation risk.
We also provide theoretical guarantees on con-
formal generation risks for general bounded risk
functions under test distribution shifts. We prove
that RAG achieves a lower conformal generation
risk than that of a single LLM when the quality of
the retrieval model and transformer is non-trivial.
Our intensive empirical results demonstrate the
soundness and tightness of our conformal genera-
tion risk guarantees across four widely-used NLP
datasets on four state-of-the-art retrieval models.

1. Introduction
Large language models (LLMs) (Touvron et al., 2023; Ope-
nAI et al., 2023) recently exhibit emergent abilities across
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different NLP tasks, such as text summarization, question
answering, and machine translation. However, existing
works (Wang et al., 2023a; Liang et al., 2022; Liu et al.,
2023) show that the generations of LLMs can be unreliable,
untrustworthy, and risky in many cases. Therefore, certi-
fiably controlling the generation risks of LLMs becomes
particularly important before the deployment of LLMs, es-
pecially in safety-critical domains.

Retrieval-augmented language models (RAG) (Lewis et al.,
2020; Karpukhin et al., 2020; Xiong et al., 2020) have been
proposed to enhance the credibility of LLMs by retrieving
relevant documents from an external knowledge base and
generating contents conditioned on the retrieved knowledge.
RAG models are shown effective in mitigating generation
risks via in-context learning from the retrieved documents
(Brown et al., 2020). However, theoretical understandings
of their generation risks still remain unexplored. In this
work, we focus on this problem and ask:

Can RAG indeed lead to low generation risks? How can we
provide provable guarantees on the generation risks of RAG
and vanilla LLMs? What are the sufficient conditions that
enable RAG models to reduce generation risks? Can we
provably control the generation risks below a desired level?

To theoretically analyze the generation risks of RAG and
answer the above questions, we propose C-RAG, a novel
framework of certified generation risks for RAG models.
We first propose a constrained generation protocol for RAG
models to produce a controlled set of generations. The pro-
tocol operates based on specific parameter configurations,
including the number of retrieved examples, the size of the
generation set, and a similarity threshold for generation di-
versity. We then provide conformal analysis (Bates et al.,
2021; Angelopoulos et al., 2021; 2022) for RAG models
under the constrained generation protocol, aiming to prov-
ably control the generation risks based on test statistics from
in-distribution calibration samples. To achieve this goal, we
derive a high-probability upper bound of generation risks
during inference time, which we call conformal generation
risk. We show that (a) the conformal generation risk serves
as a sound upper bound to the empirical generation risks
given a RAG configuration in Prop. 1; (b) the generation
risk can be certifiably controlled below a desired level by
computing a valid set of RAG configurations via C-RAG
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in Prop. 2; (c) the conformal analysis can be extended to
more complex scenarios under test-time distribution shifts
in Thm. 2, which presents the first generation risk guarantee
under test-time distribution shifts for general bounded risk
functions. Based on our conformal analysis for the genera-
tion risks of RAG and vanilla LLMs, we prove that (a) the
conformal generation risk of RAG is lower than that of the
corresponding vanilla LLM in Thm. 1; (b) under bounded
test-time distribution shifts, RAG also lowers the conformal
generation risks compared to the vanilla LLM in Thm. 3.

We evaluate the conformal generation risk guarantees of
C-RAG with different retrieval models on four widely-used
datasets. For all retrieval methods and datasets, we empiri-
cally validate that our conformal generation risk guarantees
are sound and tight even with distribution shifts, as they
upper bound the empirical generation risks observed on
random test sets while maintaining only a minimal gap, nar-
rowing down to the scale of 1e− 3. We empirically show
that RAG consistently achieves a lower conformal gener-
ation risk than a single LLM without retrieval, which is
consistent with our theoretical findings in Secs. 5 and 6.
We also evaluate the conformal generation risk for different
SOTA retrieval models, such as sparse encoding metrics
BM25 (Robertson et al., 2009), text-embedding-ada-002
model from OpenAI, bge model from BAAI (Zhang et al.,
2023a), and supervised fine-tuned embedding model (Wang
et al., 2023c) to validate our analysis on retrieval quality. We
show that among these models, text-embedding-ada-002 and
supervised fine-tuned embedding models outperform other
baselines in achieving low conformal generation risks.

2. Related work
Retrieval augmented generation (RAG) is a framework
for improving the generation quality of LLMs via retrieving
relevant information from an external knowledge base and
grounding the model on the retrieved knowledge for condi-
tional generations. SOTA retrieval methods (Lewis et al.,
2020; Karpukhin et al., 2020; Xiong et al., 2020) employ
dual encoders to project both query and candidate texts into
the embedding space and retrieve candidate texts that exhibit
high similarity to the embedded query text. Although RAG
is demonstrated to be effective in enhancing the generation
credibility, their theoretical understanding is limited. Basu
et al. conduct retrieval analysis for a constrained function
and data class from a statistical perspective, but the results
cannot be applicable to self-attention transformers and to
arbitrary data distribution. In this work, we provide the
first theoretical analysis of how RAG leads to low gener-
ation risks in self-attention transformers for arbitrary data
distribution.

Conformal prediction is a statistical technique used to
create prediction sets with assured coverage. (Vovk et al.,

1999; 2005; Lei et al., 2013; Yang & Kuchibhotla, 2021).
Broadly, conformal risk control methods (Bates et al., 2021;
Angelopoulos et al., 2021; 2022; Quach et al., 2023) pro-
vide a high-confidence risk guarantee for black-box risk
functions, assuming data exchangeability. However, the
risk guarantee can be broken under test-time distribution
shifts. While Angelopoulos et al. and Farinhas et al. offer a
valid conformal risk guarantee for monotonic risk functions
under distribution shifts, the monotonicity assumption is
not always practical. In this work, we introduce a generally
applicable conformal risk guarantee for general bounded
risk functions, under distribution shifts at test time.

3. Preliminaries
Before introducing C-RAG, we first review the preliminar-
ies of conformal controlling methods (Bates et al., 2021;
Angelopoulos et al., 2021; 2022), which calibrate machine
learning models to ensure their predictions meet explicit
finite-sample statistical guarantees. Let R(λ) and R̂(λ) de-
note the population risk and empirical risk, respectively,
where λ ∈ Λ is a parameter that induces the risk. We
consider a finite parameter space Λ with N parameters,
λ1, . . . , λN . For a desired risk level α (0 < α < 1), we de-
fine N null hypotheses: Hj : R(λj) > α (j ∈ 1, . . . , N). Let
pj be the p-value of the null hypothesisHj . Given n calibra-
tion samples, Bates et al.; Angelopoulos et al. provide valid
p-values as follows:

pj =min
{
exp
{
−nh(R̂(λj), α)

}
,eP
[
Bin(n, α) ≤ ⌈nR̂(λj)⌉

]}
,

(1)
where h(a, b) = a log(a/b) + (1− a) log((1−a)/(1−b)). Let
J be the index set of false null hypothesis. An
algorithm A : [0, 1]N 7→ 21,...,N is a family-wise er-
ror rate (FWER)-controlling algorithm at level δ if
P [A(p1, . . . , pN ) ⊆ J ] ≥ 1− δ. They finally show that:

P

[
sup
λ∈Λ̂

{R(λ)} ≤ α

]
≥ 1− δ, (2)

where Λ̂ denotes the output of the FWER algorithm A.

4. Conformal generation risks of RAG models
We introduce the problem setup in Sec. 4.1, our constrained
generation protocol for RAG models in Sec. 4.2, and the con-
formal generation risks in Sec. 4.3. We prove that (1) Given
a RAG configuration, C-RAG provides a high-probability
generation risk upper bound in Prop. 1, and (2) Given a
desired risk level α, C-RAG offers a set of configurations
that can provably maintain the risk below α in Prop. 2.

4.1. Problem setup

For a pretrained language model (LM) and any user input
text, we aim to provide rigorous guarantees for the genera-
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Figure 1: Overview of C-RAG. In the estimation stage (upper row), the conformal risk controller computes conformal generation risks for
different RAG configurations (Prop. 1), and valid configuration sets for different risk levels (Prop. 2), both based on risk statistics on the
calibration set. In the inference stage (lower row), for any configuration λ and any desired risk level α provided by users, the conformal
risk controller outputs the conformal generation risk α̂λ with Risk Guarantee (1) and the configuration set Λ̂α with Risk Guarantee (2).

tion risks (e.g., 1 − ROUGE). To achieve this, we develop
a constrained generation protocol for RAG models. The
generation protocol is governed by adjustable parameter
configurations (e.g., number of retrieved examples, size of
generations), which allow for more controlled RAG genera-
tions to achieve a desired risk level.

Formally, we let V be the vocabulary set, nI be the maximal
length of input text and nO be the maximal length of output
text. Let X := VnI be the input text space, and Y := VnO

be the output text space. We notate pθl(y|x) (x ∈ X , y ∈ Y)
as the probability distribution of output text y given input
text x, estimated by a pretrained LM parameterized by θl.
Consider a RAG generation protocol Tλ,pθl

: X 7→ 2Y with
LM θl and parameter configuration λ ∈ Λ = RB, where B

is the maximal number of parameters to control the gener-
ation procedure. To evaluate the quality of the generation
under Tλ,pθl

(x) given input x, we define a risk function
R(Tλ,pθl

(x), y) : 2Y × Y 7→ [0, 1], where y is the reference
text of x. For text generation tasks, a typical selection of
the risk function could be 1−maxy′∈Tλ,pθl

(x) ROUGE(y′, y),
where ROUGE measures the matching score between the
generation y′ and reference text y. Notably, our generation
protocol outputs a set of generations instead of just one,
allowing us to explore better generations and adjust the
generation set size through a parameter for risk control.

4.2. Constrained generation protocol for RAG models

RAG models (Wang et al., 2023c; Rubin et al., 2021; Huang
et al., 2023) combine a retrieval model and a generation
LM. The retrieval model retrieves Nrag relevant examples
to the query from an external knowledge base, and the LM
learns in-context from these examples. The knowledge base
contains Next samples in D̂ext = {(Xi, Yi)}Next

i=1. The retrieval

model uses an encoder to map instances into an embed-
ding space, and then identifies the relevant examples to the
query Xtest based on similarity. This similarity, defined by
sθr (·, ·) : X × X 7→ R and parameterized by θr, is used to
find the nearest examples using KNN search in the embed-
ding space.

We arrange the retrieved Nrag in-context examples and the
test example Xtest into augmented input text X (rag) using a
template. We then sample the generation from pθl(·|X (rag))

repeatedly until λg generations are collected. To control the
diversity of generations, we reject those with a similarity
higher than a threshold λs to the previous generations. In
essence, the constrained generation protocol is controlled by
configuration λ = [Nrag, λg, λs] and output a generation set
Tλ,pθl

(x) based on the configuration λ and input x. We refer
to Alg. 1 in App. C.1 for the pseudocode of the protocol.

4.3. Conformal generation risks for RAG models

We certify generation risks of the RAG models with the
constrained generation protocol Tλ,pθl

via conformal risk
analysis (Bates et al., 2021; Angelopoulos et al., 2022;
2021). Conformal analysis provably controls the generation
risks based on test statistics from in-distribution calibra-
tion samples. In this work, we consider a calibration set
D̂cal = {(Xi, Yi)}Ncal

i=1 with size Ncal, and compute the empiri-
cal generation risk R̂(D̂cal) = 1/Ncal

∑
(x,y)∈D̂cal

R(Tλ,pθl
(x), y).

Risk Guarantees for RAG Models For an LM θl, cal-
ibration set D̂cal, test sample (Xtest, Ytest), generation pro-
tocol Tλ,pθl

with configuration λ and confidence level
1− δ (δ ∈ [0, 1]), C-RAG provides two types of generation
risk guarantees for RAG models:

Proposition 1 (Risk Guarantee (1), adaptation of (Bates
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et al., 2021) to constrained RAG generation). Given a con-
figuration λ in generation protocol, C-RAG guarantees that:

P
[
R(Tλ,pθl

(x), y) ≤ α̂λ

]
≥ 1− δ, (3)

where the high-probability risk upper bound α̂λ, the so-
called conformal generation risk, is given by:

α̂ = min

{
h−1

(
1/δ

Ncal
; R̂(D̂cal)

)
,Φ−1

bin

(
δ

e
;Ncal, R̂(D̂cal)

)}
with h−1(·; ·) as the partial inverse h−1(h(a, b); a) = b of
h(a, b) = a log(a/b) + (1− a) log((1−a)/(1−b)), and Φ−1

bin as the
inverse of binomial cumulative distribution function (CDF).

Proposition 2 (Risk Guarantee (2), adaptation of (An-
gelopoulos et al., 2021) to constrained RAG generation).
Given a desired risk level α, C-RAG computes a configura-
tion set Λ̂α such that each configuration in Λ̂α is guaranteed
to keep the generation risk below α. Namely,

P
[
supλ̂∈Λ̂α

{
R
(
Tλ̂,pθl

(x), y
)}
≤ α

]
≥ 1− δ, (4)

where the valid configuration set Λ̂α is given by family-wise
error rate controlling algorithms such as Bonferroni correc-
tion: Λ̂α = {λ̂j : pj ≤ δ/|Λ|} where pj is the p-value of the
null hypothesis: Hj : R(Tλ,pθl

(x), y) > α (j ∈ {1, ..., |Λ|})
and can be computed by finite-sample valid bounds as shown
in App. D.2.

Connection between Risk Guarantees (1) and (2) Risk
Guarantee (1) computes the conformal generation risk (risk
upper bound) α̂λ given a configuration λ, while Risk Guar-
antee (2) computes a configuration set Λ̂α such that any con-
figuration in the set results in a risk below the desired level α.
Risk Guarantee (2) can be conceptualized as accepting con-
figurations with generation risks statistically below α with a
certain error rate (p-value), such that the union of error rates
over parameter space is within the uncertainty budget δ. The
Bonferroni correction in Prop. 2 adopts an even partition
of the uncertainty budget, while we can have a dynamic
partition algorithm based on graph search (see App. D.2).
Therefore, Risk Guarantee (1) and (2) are connected by the
duality between p-values and confidence intervals (Bates
et al., 2021). We mainly focus on the conformal analysis of
Risk Guarantee (1) in the following, and the results can be
extrapolated to Risk Guarantee (2) directly. We defer the
proofs of Props. 1 and 2 to App. D.

Advance of C-RAG compared to conformal controlling
methods (Bates et al., 2021; Angelopoulos et al., 2021;
2022) Existing conformal risk analysis assumes that test
and calibration samples come from the same distribution,
which allows statistical risk predictions for test samples
based on the calibration data. While the conformal gen-
eration risk bounds are previously studied (Angelopoulos

et al., 2022; Farinhas et al., 2023b), the scope is limited to
the monotonic risk functions. In this work, we extend the
scope to provide the first conformal generation risk analysis
under test-time distribution shifts for general bounded risk
functions in Sec. 6. In addition, we propose a constrained
RAG generation protocol for enhanced effectiveness and
efficiency of risk controlling for LLM generations, as illus-
trated in Sec. 4. We also prove that RAG achieves a lower
conformal generation risk than vanilla LLMs under scenar-
ios with or without distribution shifts in Thms. 1 and 3.

5. Theoretical analysis of C-RAG
In this section, we prove that RAG model achieves a lower
conformal generation risk compared to LLMs without re-
trievals and its benefits are correlated with the quality of the
retrieval model and transformer. We provide the structure
of our theoretical analysis and conclusions in Fig. 2.
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Figure 2: Certification framework of C-RAG. We provide theo-
retical results with the data exchangeability assumption in Sec. 5
(upper row) and extend the results to more complex scenarios un-
der test-time distribution shifts in Sec. 6 (lower row).

5.1. Analysis setup

For our analysis, paralleling the previous transformer stud-
ies by (Von Oswald et al., 2023; Zhang et al., 2023b;
Han et al., 2023), we consider a one-layer self-attention
transformer parameterized with the embedding matrix
WE : V 7→ Rd1 , query matrix WQ : Rd1 7→ Rd2 , key matrix
WK : Rd1 7→ Rd2 , value matrix WV : Rd1 7→ Rd2 , projection
matrix WP : Rd2 7→ ∆|V|, and treat each instance approxi-
mately as a single token. The retrieval-augmented input text
then consists of Nrag retrieved examples and 1 query exam-
ple. We denote the augmented input text by q ∈ VNrag+1.
We categorize pairs of queries qi, qj (i, j ∈ [Nrag + 1]) as
positive if they convey identical semantic meanings, in-
dicated by g(qi) = g(qj). In this context, qi can be re-
ferred to as a positive example of qj . Conversely, pairs
qi, qj (i, j ∈ [Nrag + 1]) are considered negative if they are
semantically different. We use such a definition for clear
interpretation of our findings, but our analysis can be ex-
tended to include broader definitions of positive pairs, as
addressed in the remarks of Thm. 1.
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Following the single-layer transformer formulation in
(Von Oswald et al., 2023), given an input text q, we consider
the single-token output O(rag)(q) ∈ ∆|V| corresponding to the
query example qNrag+1

at the last position, formulated as:

O(rag)(q) = σ
(
WPWV

{
WEqNrag+1︸ ︷︷ ︸

residual

+

(WEq)σ((WKWEq)
T (WQWEqNrag+1))︸ ︷︷ ︸

attention scores to qNrag+1

})
,

(5)

where σ(·) is the Softmax function. Note that without
RAG, the output probability vector O(q) is formulated as
O(q) = σ

(
WPWV WEqNrag+1

)
.

5.2. Retrieval quality analysis

To quantify the quality of retrieval models, we introduce the
concept of Vrag-retrieval model, where Vrag measures the vari-
ance of the contrastive loss of the retrieval model. A small
Vrag implies a well-trained low-variance retrieval model and
can be theoretically linked to the retrieval quality, which is
measured by the number of retrieved positive examples with
respect to the query text.
Definition 1 (Vrag-retrieval model). Consider a re-
trieval model with similarity measurement sθr (·, ·) pa-
rameterized with θr and trained with contrastive loss
Lcont. Let x+, x− be positive and negative sam-
ples to sample x. Consider common contrastive loss
Lcont = − log (σsig(exp{sθ(x, x−)− exp{sθ(x, x+))), where
σsig(·) is the sigmoid function. We define a Vrag-
retrieval model as the retrieval model with (a) a non-
trivial utility such that the expected contrastive loss
Lτ is better than random: Lτ := E[Lcont] < ln 2 (i.e.,
E[sθ(x, x+)− sθ(x, x

−)] > 0); and (b) bounded variance
such that the training is stable and converges well:
Vrag := V[sθ(x, x+)− sθ(x, x

−)]1/2log(exp{Lτ} − 1) < 1

Remarks. (R1) Note that a retrieval model with random ini-
tialization can achieve E[sθ(x, x+)] = E[sθ(x, x−)] asymptot-
ically. We merely assume a Vrag-retrieval model that can non-
trivially differentiate the positive from negative examples.
(R2) We also assume a moderate stability with bounded vari-
ance, which implicitly assumes a moderate generalization
of the retrieval model based on the variance-generalization
link (Lam, 2016; Gotoh et al., 2018; Namkoong & Duchi,
2017). This is essential for the analysis as the knowledge
base distribution is non-identical to the calibration/test distri-
bution. (R3) We define Vrag-retrieval model using a standard
contrastive loss in (Wang et al., 2023c; Rubin et al., 2021),
but it can be adapted for other contrastive loss such as triplet
loss (Hermans et al., 2017), by altering the logarithmic fac-
tor in the Vrag formula. We defer the proof sketches as well
as the detailed proofs and remarks to App. F.

With a Vrag-retrieval model, we show that C-RAG can re-
trieve a high number of positive examples as in-context

demonstrations as follows.
Proposition 3 (lower bound of the number of retrieved
positive examples). Consider the Vrag-retrieval model in
Def. 1 and RAG generation protocol in Sec. 4.2. Let r(c)cal and
r
(c)
ext be the portion of data with groundtruth output c ∈ Y

in the calibration data distribution and external knowledge
data distribution, respectively. We have:

E [Npos] ≥
9

10
Nrag

(
1−

∑
c∈Y

r
(c)
cal

(
Next − r

(c)
ext Next

+
√
2 ln 10

)
V

0.5
(
r
(c)
ext Next−

√
2 ln 10

)
rag

) (6)

where Npos is the number of retrieved positive examples,
Nrag is the total number of retrieved examples, and Next is
the number of examples in the external knowledge base.

Remarks. Prop. 3 offers a guarantee on the minimum num-
ber of positive examples retrieved by the Vrag-retrieval model.
(R1) The ratio of the retrieved examples that are positive
increases at an exponential rate with respect to Next, which
suggests that expanding the external knowledge base could
enhance the retrieval quality and therefore benefit in-context
learning of LLMs, as shown in (Min et al., 2022; Wang et al.,
2022a). For a sufficiently large Next (a common scenario in
practice), the lower bound approximately scales with 0.9Nrag.
(R2) If the knowledge base is highly long-tailed such that
samples of certain reference texts are rare (i.e., small r(c)ext ),
we require a larger sample size of knowledge base Next to
compensate for the long-tail distribution and achieve compa-
rable retrieval quality. (R3) A low-variance retrieval model
is expected to generalize well to test distribution and in-
crease retrieval quality. The above guarantee we provide for
E[Npos] in relation to Vrag is a rigorous demonstration of this.

5.3. RAG achieves provably lower conformal generation
risk than a single LLM without retrieval

Besides retrieval quality, the generation risk in RAG models
is also affected by LLM quality, and to measure transformer
quality, we define a (d+,ΦM )-transformer as follows.
Definition 2 ((d+,ΦM )-transformer). We assume that
each in-context example (Xi, Yi) (i ∈ [Nrag + 1]) is en-
coded with a single token qi. Let q be the retrieval-
augmented input, consisting of Nrag retrieved in-context
examples and 1 query example. We define a ran-
dom variable to represent the negative prediction mar-
gin: M = maxc̸=g(qNrag+1) Oc(q)−Og(qNrag+1)(q), where
O(q) is the output probability vector without RAG.
Let ΦM (·) be the CDF of random variable M . We
define a (d+,ΦM )-transformer as a single-layer self-
attention transformer with (a) non-trivial self-attention layer
with σ

(
(WKWEqi)

T (WQWEqj)
)
≥ d+ > 0 for semantically

identical examples with g(qi) = g(qj); and (b) the prediction
utility that is better than random:

∫ 1

−1
ΦM (v)dv > 1.

5
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Remarks. (R1) d+ measures the minimal attention scores
for positive pairs and reflects the effectiveness of the trans-
former’s embedding, key, and query matrices. Since we
always have d+ ≥ 0 due to the Softmax activation, the
condition d+ > 0 only assumes a non-trivial self-attention
layer. (R2) The integral

∫ 1

−1
ΦM (v)dv measures the quality

of the embedding, value, and projection matrices. Note
that a random prediction margin Mrand over a uniform
distribution [−1, 1] results in

∫ 1

−1
ΦMrand(v)dv = 1. Thus,∫ 1

−1
ΦM (v)dv > 1 =

∫ 1

−1
ΦMrand(v)dv only indicates better-

than-random prediction utility.

Next, we prove that RAG in C-RAG achieves a lower con-
formal generation risk than a single LLM without retrieval
with high probability.
Theorem 1 (RAG reduces the conformal generation
risk). Consider the setup in Sec. 5.1 as well as the
Vrag-retrieval model in Def. 1 and (d+,ΦM )-transformer in

Def. 2. Let r(c)cal and r
(c)
ext be as defined in Prop. 3. We show

that the conformal generation risk of RAG α̂rag is smaller
than that of a single LLM α̂ with high probability:

P [α̂rag < α̂] ≥ 1− pt − pr, where

pt =exp{−2Ncal[ΦM (
1

2

quality of transformers︷ ︸︸ ︷
d+(

∫ 1

−1

ΦM (v)dv−1)Nrag)−ΦM (0)︸ ︷︷ ︸
improvement of generation quality with RAG

]2}

pr =
25

Nrag
(4− 9

C∑
c=1

r
(c)
cal (1.5Next − r

(c)
ext Next)V

0.25r
(c)
ext Next

rag︸ ︷︷ ︸
number of retrieved negative examples

)−2

(7)
provided that Next > 2

√
2 ln 10/minc r

(c)
ext , Nrag > 2/d+ and

NextV
0.25minc r

(c)
ext Next

rag < 4/9. pt, pr are the uncertainty in-
duced by the quality of transformer and retrieval model.

Remarks. (R1) The probability of reduced risk with RAG
(P [α̂rag < α̂]) increases with both Ncal, which improves risk
approximation via enhanced calibration, and Nrag and Next,
which expand the scope of retrieved knowledge. (R2) The re-
duced risk probability also increases with the transformer’s
quality induced by attention scores and prediction capability.
(R3) A low-variance retrieval model (small Vrag) enhances
generalization and reduces retrieval model uncertainty pr.
(R4) For certification simplicity, we define positive pairs as
semantically identical examples, but this can be expanded
to pairs similar in the embedding space for boosting at-
tention scores, in-context learning, and generation quality.
(R5) These result can readily extend to various conformal
risks such as (Angelopoulos et al., 2022). (R6) For suffi-
ciently large sample size Next in the external knowledge base,
we further have P [α̂rag < α̂] ≥ 1− pt − 25/16Nrag (Cor. 1 in
App. G). In contrast to Thm. 1, the bound has no dependency
on the external knowledge distribution r

(c)
ext and calibration

distribution r
(c)
cal .

6. C-RAG under distribution shifts
Here, we present a valid distribution-drift conformal genera-
tion risk and prove the benefit of RAG compared to vanilla
LLM under test-time distribution shifts.

6.1. Analysis setup

Conformal risk guarantees often assume that calibration
and testing samples come from the same distribution (Bates
et al., 2021; Angelopoulos et al., 2022; 2021). Next, build-
ing on Sec. 5.1, we extend these guarantees to distribution
shifts between calibration and testing.

6.2. Conformal generation risk under distribution shifts

Under test-time distribution shifts, the certification guaran-
tees of prior work (Angelopoulos et al., 2022; Farinhas et al.,
2023a) are limited to the monotonic risk functions and to dis-
tribution shifts caused by changes in sample weights. Here,
we provide generation risk certification for any bounded risk
function and any distribution shift, which is as follows.

Theorem 2 (Conformal generation risk under distribu-
tion shifts). Suppose that the test instance (Xtest, Ytest)

is sampled from a shifted distribution Q with bounded
Hellinger distance from the calibration distribution D:
H(D,Q) ≤ ρ. Let R̂ =

∑Ncal
i=1 R(Zi)/Ncal be the empiri-

cal risk on calibration samples Zi (i ∈ {1, ..., Ncal}) and
V̂ = 1/Ncal(Ncal − 1)

∑
1≤i<j≤Ncal

(R(Zi)−R(Zj))
2 be the

unbiased estimator of the risk variance on the calibration
set. Then we have the following guarantee of conformal
generation risk on the shifted distribution Q:

P(Xtest,Ytest)∼Q [R(Tλ(Xtest), Ytest) ≤ α̂(ρ)] ≥ 1− δ, where

α̂(ρ) := min

{
h−1

(
8/δ

Ncal
; R̂ρ

)
,Φ−1

bin

(
δ

8e
;Ncal, R̂ρ

)}
.

(8)
where h−1(·; ·) is the partial inverse function as defined in
Prop. 1 and R̂ρ is formulated as:

R̂ρ = R̂+ ρ2(2− ρ2)(1− R̂)︸ ︷︷ ︸
empirical mean scaled by ρ

+2ρ(1− ρ2)
√

2− ρ2
√

V̂︸ ︷︷ ︸
estimated variance scaled by ρ

+

(1−ρ2)

(
1− ρ2√
2Ncal

+
2
√
2ρ
√

2− ρ2√
Ncal − 1

)√
ln(4/δ) +

√
ln (8/δ)

2Ncal︸ ︷︷ ︸
finite-sample error

where the radius ρ satisfies the following: ρ2 ≤ 1 −
[
1 +(

R̂−1+
√

ln(4/δ)/2Ncal

)2
/
(√

V̂+
√

2 ln(2/δ)/(Ncal−1)

)2]−2
.

Remarks. Thm. 2 offers a distribution-drift conformal gen-
eration risk α̂(ρ), under the distribution shift with radius
ρ. (R1) We adopt the Hellinger distance for measuring dis-
tribution distances due to its f-divergence properties and
direct applicability to total variation distance between D and
Q ((Steerneman, 1983), Equation 1). (R2) For conformal
guarantees under distribution shifts, we derive an empirical

6
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risk upper bound considering worst-case shifts in Thm. 2,
which is efficiently calculable with empirical statistics on
calibration distribution D. (R3) We recover the empirical

mean R̂ from R̂ρ when ρ → 0 and Ncal → ∞ in Thm. 2.

6.3. RAG achieves provably lower conformal generation
risk than a single LLM under distribution shifts

Next, we prove that RAG mitigates conformal generation
risk better than a single LLM under distribution shifts.1

Theorem 3 (RAG reduces conformal generation risk even
under distribution shifts). Suppose that the shifted test dis-
tribution Q is within bounded Hellinger distance ρ > 0

to the calibration distribution D. Consider the same
setup and assumptions as Thm. 1. Consider also a
Vrag-retrieval model in Def. 1 and (d+,ΦM )-transformer
in Def. 2. Under the condition that Next > 2

√
2 ln 10/rmext,

NextVrag(ρ)
0.25rmextNext < 8/17, and Nrag > 2/d+ , we have:

P [α̂rag(ρ) < α(ρ)] ≥ 1− pt − pr(ρ), where

pr(ρ) =
100

Nrag

(
8− 17NextVrag(ρ)

0.25
(
minc r

(c)
ext Next

))−2

,
(9)

where pt is the uncertainty induced by the transformer qual-
ity as Eq. (7) and pr(ρ) is the uncertainty induced by the
retrieval model. Moreover, Vrag(ρ) = m(ρ)Vrag quantifies the
quality of retrieval models under distance ρ, where

m(ρ) =

(√
−6ρ4 + 12ρ2 + 1− 4ρ(1− ρ2)

√
2− ρ2

1− 16ρ2 + 8ρ4

)−2

︸ ︷︷ ︸
retrieval model quality decay factor by distribution shifts

.

Remarks. Our result rigorously characterizes the effect of
distribution shift on the reduced risk guarantee of RAG.
(R1) Compared to Thm. 1, only the uncertainty of retrieval
model pr(ρ) is affected by the distribution shift ρ. This affect
is reflected on the the retrieval quality Vrag(ρ). In particu-
lar, a large distance radius ρ will downgrade the retrieval
quality Vrag(ρ) and thus lead to a higher uncertainty pr(ρ).
However, the influence of ρ on pr(ρ) can be reduced by Nrag

inverse proportionally and by Next exponentially, demonstrat-
ing the robustness of RAG with more retrieval knowledge.
(R2) Since Vrag(ρ) is proportional to model variance Vrag, a
low-variance retrieval model demonstrates better robustness
against distribution drifts, aligning with existing empirical
observations (Lam, 2016; Gotoh et al., 2018; Namkoong &
Duchi, 2017), which evaluate the generalization ability of
low-variance retrieval models under distribution shifts. (R3)
Compared to Thm. 1, Thm. 3 has no dependence on varying
label portions r

(c)
cal during distribution shifts, as long as the

size of external knowledge base Next is moderately large, a
condition often met in practice with large knowledge bases.

1Additionally, we examine retrieval quality and prove a lower
bound of retrieved positive examples under test-time distribution
shifts. We leave the analysis to App. H for interested readers.

7. Evaluation
We evaluate C-RAG on four datasets using different retrieval
models. We find that (1) our conformal generation risks in
Prop. 1 is empirically sound and tight in Sec. 7.2, (2) RAG
reduces the conformal generation risks for different retrieval
models, which empirically validates Thm. 1 in Sec. 7.2, (3)
the conformal generation risk under distribution shifts in
Thm. 2 is empirically sound and tight for varying distances
in Sec. 7.3, (4) multi-dimensional RAG configurations main-
tain sound and tight conformal generation risks in Sec. 7.4,
and (5) C-RAG computes valid configurations with empiri-
cal risks always below the desired risk level in Sec. 7.5.

The codes are publicly available at https://github.
com/kangmintong/C-RAG.

7.1. Evaluation setup

Datasets & knowledge base We evaluate C-RAG on four
widely used NLP datasets, including AESLC (Zhang &
Tetreault, 2019), CommonGen (Lin et al., 2019), DART
(Nan et al., 2020), and E2E (Novikova et al., 2017). Follow-
ing (Wang et al., 2023c; Cheng et al., 2023), we construct
the knowledge base as a collection of 30 public datasets
from 9 distinct categories with over 6 million documents.

Retrieval models We consider four retrieval models: (1)
BM25 (Robertson et al., 2009) with token-level matching
scores, (2) BAAI/bge (Zhang et al., 2023a) as SOTA em-
bedding model in MTEB benchmark (Muennighoff et al.,
2022), (3) OpenAI/ada as SOTA close source text embed-
ding model, and (4) Biencoder-SFT (Wang et al., 2023c) as
a biencoder retriever trained with in-domain data samples.

RAG Generation protocol We use our generation pro-
tocol (Alg. 1 in App. C.1) controlled by the number of
retrieved examples Nrag, generation set size λg, and diversity
threshold λs. We use Llama-2-7b for inference and perform
conformal calibration on validation sets with uncertainty
δ = 0.1. We use 1− ROUGE-L as the risk function. See
App. J.1 for more details of evaluation setup.

7.2. Evaluation of conformal generation risks

Soundness and tightness of conformal generation risks
To achieve generation risk guarantee in Eq. (3), C-RAG
computes the conformal generation risk using Prop. 1. We
evaluate the conformal generation risks of RAG models
α̂rag under different numbers of retrieved examples Nrag by
calibration statistics on the validation set. To validate the
soundness and tightness of the conformal generation risk
guarantee, we evaluate the empirical risks on randomly sam-
pled test instances. The sampling protocol is detailed in
Alg. 3 in App. J.2. We provide the results using OpenAI/ada
retrieval model in Fig. 3 and results for BM25, BAAI/bge,
Biencoder-SFT in Figs. 8 to 10 in App. J.2. The results show

7

https://github.com/kangmintong/C-RAG
https://github.com/kangmintong/C-RAG


C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models
E

va
lu

at
io

n
R

is
k

AESLC

# Retrieved examples Nrag

CommonGen

# Retrieved examples Nrag

DART

# Retrieved examples Nrag

E2E

# Retrieved examples Nrag

Figure 3: Conformal generation risk α̂rag and empirical risk based on retrieval model OpenAI/ada taking different Nrag (λg = 1, λs = 1.0).
We observe that our conformal generation risk (Prop. 1) is valid and tight; larger Nrag reduces risk α̂rag (empirically validating Thm. 1).
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Figure 4: Conformal generation risk α̂rag with different Nrag using different retrieval models (λg = 1, λs = 1.0). We observe that large
Nrag effectively reduces α̂rag for different models; the trained Biencoder-SFT usually leads to the lowest conformal generation risk.

that (1) the conformal generation risks α̂rag upper bound the
empirical risks of the sampled test instances, (2) for some
test instances, the empirical risks nearly reach the conformal
generation risk, demonstrating the soundness and tightness
of our generation risk guarantees, (3) the conformal genera-
tion risk decreases as the number of retrieved examples Nrag

increases, which shows the effectiveness of RAG models
and aligns with our theoretical analysis in Thm. 1.

Comparisons of different SOTA retrieval models We
compare the conformal generation risks for token-level
BM25 scores, and SOTA embedding models BAAI/bge,
OpenAI/ada, and Biencoder-SFT. The results in Fig. 4 show
that RAG achieves lower conformal generation risks than
LLM without retrieval (i.e., Nrag = 0) for different retrieval
models. Biencoder-SFT, trained with in-domain data sam-
ples, leads to lower conformal generation risk in general
compared with other retrieval models. OpenAI/ada, which
is known of high quality and trained on large open corpus,
also demonstrates low conformal generation risks.

7.3. Conformal generation risk under distribution shifts

Soundness and tightness of conformal generation risk
under distribution shifts In practice, user input text may
deviate from the calibration distribution. In Thm. 2, we pro-
vide the first conformal generation risk under distribution
shifts for general bounded risk functions. We evaluate the
conformal generation risk α̂(ρ) in Eq. (8). To empirically
verify the soundness, we create test sets with covariate shifts

by varying sample weights. The Hellinger distance is com-
puted using original and shifted sample weights, with details
in Alg. 4 in App. J.3. We compare the conformal generation
risk and empirical risks with Nrag = 15 using OpenAI/ada
in Fig. 5, and using BM25, BAAI/bge and Biencoder-SFT
in Figs. 11 to 13 in App. J.3. The results show that (1)
our conformal generation risks under distribution shifts are
sound and tight across various models, and (2) conformal
generation risks increase linearly with Hellinger distance ρ,
remaining non-trivial up to ρ = 0.2.

Comparison of SOTA retrieval models under distribu-
tion shifts We compare conformal generation risks for
different retrieval models under distribution shifts in Fig. 14
in App. J.3. All models show a linear rise in risk with in-
creasing Hellinger distance, with BiEncoder-SFT and Ope-
nAI/ada showing lower risks at varying distances.

7.4. C-RAG with multi-dimensional RAG configurations

So far, we demonstrate the effectiveness of retrieved in-
context examples quantified by Nrag. To further improve the
conformal generation risk, we can adjust the RAG configura-
tions, such as the number of generations λg and the diversity-
controlling similarity threshold λs. We follow RAG gener-
ation protocol in Alg. 1 and define the risk function as the
minimal risk among λg candidate generations. Our tests on
AESLC, CommonGen, DART, and E2E datasets (see Fig. 6
and Fig. 15 in App. J.4) show that the multi-dimensional
RAG configurations maintain sound and tight conformal

8



C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models
E

va
lu

at
io

n
R

is
k

AESLC

Hellinger Distance ρ

CommonGen

Hellinger Distance ρ

DART

Hellinger Distance ρ

E2E

Hellinger Distance ρ

Figure 5: Conformal generation risk α̂rag(ρ) and empirical risks based on retrieval model OpenAI/ada under distribution shifts
(Nrag = 15, λg = 1, λs = 1.0). We observe that our distribution-drift conformal generation risk (Thm. 2) is empirically valid and tight.

AESLC CommonGen

Figure 6: Conformal generation risk α̂rag and empirical risks with
different λg and Nrag for OpenAI/ada.

AESLC CommonGen

Figure 7: Valid configurations Λ̂α given a desired risk level α and
the empirical risks with different λg and Nrag for OpenAI/ada.

generation risks. Notably, a higher Nrag reduces generation
risks more effectively than adjusting λg.

7.5. Valid configurations given desired risk levels

In risk guarantee (2) outlined in Sec. 4.3, given a desired
risk level α, C-RAG computes a valid RAG configuration set
Λ̂α, such that configurations within this set will lead to gen-
eration risks below α. We apply the Bonferroni correction
in Prop. 2 for rigorous family-wise error rate control and
assess empirical risks on random test sets with the identified
valid configurations. We provide the results on AESLC and
CommenGen in Fig. 7 and results on DART and ECE in
Fig. 15 in App. J.5. These results validate our certification,
as the empirical risks of generated configurations Λ̂α are
consistently below the given conformal generation risk α.

The results also show that a high number of retrieved ex-
amples Nrag and a larger generation set size λg contribute
to reducing conformal generation risk. The impact of the
diversity threshold λs is explored in App. J.5.

In App. J.6, we provide comparisons of the conformal gen-
eration risks for different LLMs as inference models. In
App. J.7, we also provide a quantitative example to show
how the constrained generation protocol benefits in reducing
LLM hallucination risks.

8. Conclusion
In this paper, we propose C-RAG to provide conformal gen-
eration risk guarantees for RAG models. C-RAG certifies
(1) a conformal generation risk for a given RAG configura-
tion, and (2) a valid configuration set for a given desired risk
level. We theoretically show that RAG reduces conformal
generation risks of a single LLM. We empirically validate
the soundness and tightness of our risk guarantees.
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A. Discussions of limitations and future work
Limitations One potential challenge of applying C-RAG practically could be the collection of calibration data. In practice,
the user input texts are sampled from a time-series data distribution. Therefore, accessing in-distribution calibration samples
requires collecting real-time query samples, which could pose the challenge of computational resources and system latency.
Another potential limitation may lie in the probability of the guarantee. Since C-RAG can only provide a high-confidence
risk bound via conformal risk analysis, generations with excessive risks can exist. Therefore, we may need more calibration
samples to counter for a higher confidence level, and thus mitigate the appearance of outliers to a large extent. Also, although
the analysis in C-RAG shows the benefits of a large external knowledge base to a low conformal generation risk, the large
knowledge base may induce a larger time complexity of KNN searching and space complexity of storing the examples,
leading to a trade-off between the generalization/utility and inference efficiency.

Future work One interesting future work is to provide conformal risk analysis for time-series data. Conformal prediction
for time series (Zaffran et al., 2022; Xu & Xie, 2021; Stankeviciute et al., 2021) adaptively adjusts the prediction coverage
for sequential data for the regression and classification task. However, the adaptive risk calibration for time series is
unexplored but important to practical deployments. Therefore, conformal risk analysis for time series can further motivate
the application of conformal risk analysis for LLMs.

Further discussions on calibration data collection. In principle, if test and calibration instances are from the same
distribution, randomly sampling from this distribution with a sufficient sample size Ncal already provides competitive
generation risk guarantees (Proposition 1 and Theorem 1). Otherwise, if sampling from the test distribution is impractical,
we should sample instances from a proposal distribution with a small distribution distance (ρ) to the test distribution and
sample variance (V̂ ) so the distribution of the calibration set mimics that of test data (Theorem 2). We can further use the
following techniques for calibration data selection: (1) rejection sampling: drawing samples from a proposal distribution
and then rejecting some of these samples based on the known criterion of the test distribution, (2) importance sampling:
adjusting the sample weights to closely match the target distribution, and (3) variance reduction such as input normalization.
To exemplify, consider a composite domain with medical support, wiki question answering, and service assistance fields,
where only a broad proposal distribution is available. We can leverage the strategies mentioned above as follows. We can
(1) reject out-of-scope samples, (2) perform importance sampling by adjusting the sample weights based on the proposal
distribution and the test distribution, and (3) normalize samples to minimize the distribution gap and variance, for instance,
through a unified prompt reformulation. To improve the probability of the risk guarantee given fixed sample sizes, one can
seek advanced concentration analysis with additional constraints on data distribution, which may lead to tighter risk bounds
in practice.

B. Additional related work
Retrieval augmented generation (RAG) is a framework for improving the generation quality of LLMs via retrieving relevant
information from the external knowledge base and grounding the model on the information for conditional generations.
Biencoder retrieval methods (Lewis et al., 2020; Karpukhin et al., 2020; Xiong et al., 2020) leverage two encoders to map
the query text and candidate texts into the embedding space and retrieve candidate texts with high embedding similarity to
the query text embedding. End-to-end retrieval methods (Tay et al., 2022; Wang et al., 2022b; Kishore et al., 2023) train a
model to map the query text to the id of relevant candidate documents directly. Another line of work (Luo et al., 2023; Gou
et al., 2023) leverages external tools such as LLMs to retrieve relevant documents via prompting design. Although RAG
demonstrates impressive capacities, the theoretical analysis of retrieval models for LLM generations is limited. Basu et al.
analyze the retrieval model of constrained function class from a statistical perspective, but the results cannot be generalized
to the self-attention transformers. In this work, we provide the first analysis of how RAG enhances the generation quality
and mitigate generation risks of self-attention transformers.

Conformal prediction is a statistical tool to construct the prediction set with guaranteed prediction coverage (Vovk et al.,
1999; 2005; Lei et al., 2013; Yang & Kuchibhotla, 2021; Kang et al., 2023; 2024a), assuming that the data is exchangeable.
However, conformal prediction can only provide guarantees for the regression and classification tasks and is not directly
applicable to the generation tasks, which are more relevant for LLMs. Conformal risk controlling methods (Bates et al., 2021;
Angelopoulos et al., 2021; 2022; Quach et al., 2023) provide a high-confidence risk guarantee with the data exchangeability
assumption for any black-box risk functions. We can define a specific risk function for a RAG model and certify a risk upper
bound of generations based on statistics on in-distribution calibration set. However, the risk guarantee is violated under
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Algorithm 1 Constrained generation protocol for RAG

1: Input: input prompt Xtest, LM pθl(y|x), generation set size λs, retrieved example size Nrag, external knowledge
base D̂ext, similarity measurement function sθr (·, ·) with embedding model parameterized by θr, generation similarity
threshold λg , parameter configuration λ = [Nrag, λg, λs]

2: Output: Generation set Gλ(Xtest)
3: Gλ(Xtest)← Φ
4: Z ← KNN(Xtest, Nrag; D̂ext, sθr ) {Retrieve Nrag examples from D̂ext via KNN search with similarity measurement

sθr (·, ·)}
5: X (rag) ← Template(Xtest,Z) {Augmented prompt with Xtest and retrieved examples Z with a template}
6: while |Gλ(Xtest)| < λs do
7: y ∼ pθl(·|X (rag))
8: while ∃g ∈ Gλ, sθr (y, g) > λg do
9: y ∼ pθl(·|X (rag)) {Reject sampling}

10: end while
11: Gλ(Xtest) = Gλ(Xtest) ∪ {y}
12: end while
13: Return Gλ(Xtest)

distribution shifts at test time. Angelopoulos et al.; Farinhas et al. offer a valid conformal risk for monotonic risk functions
under distribution shifts, but the monotonicity assumption may not always hold in practice. In this work, we introduce the
first conformal risk bound for general bounded risk functions under test-time distribution shifts.

C. Conformal generation risks for RAG models
C.1. Constrained generation protocol for RAG models

To safeguard diverse foundation model-based applications (Chen et al., 2024b;a; Jiang et al., 2024; Li et al., 2023; Chen et al.,
2023; Zhang et al., 2024), we typically leverage RAG to enhance the trustworthiness of generations (Wang et al., 2023b;
Kang et al., 2024b). RAG models (Wang et al., 2023c; Rubin et al., 2021; Huang et al., 2023) combine a retrieval model and
a generation LM. The retrieval model retrieves Nrag relevant examples to the query from an external knowledge base, and
the LM learns in-context from these examples. The knowledge base contains Next samples in D̂ext = {(Xi, Yi)}i∈[Next]. The
retrieval model uses an encoder to map instances into an embedding space, and then identifies the relevant examples to the
query Xtest based on similarity. This similarity, defined by sθr (·, ·) : X × X 7→ R and parameterized by θr, is used to find the
nearest examples using KNN search in the embedding space.

We arrange the retrieved Nrag in-context examples and the test example Xtest into augmented input text X (rag) using a template.
We then sample the generation from pθl(·|X (rag)) repeatedly until λg generations are collected. To control the diversity
of generations, we reject those with a similarity higher than a threshold λs to the previous generations. In essence, the
constrained generation protocol is controlled by configuration λ = [Nrag, λg, λs] and output a generation set Tλ,pθl

(x) based
on the configuration λ and input x. We refer to Alg. 1 for the pseudocode of the protocol.

D. Risk Guarantees
D.1. Risk guarantee (1) (Prop. 1)

Proof of Prop. 1. The proof sketch follows (Angelopoulos et al., 2021). Since the risk function R(·, ·) is upper bounded by
1, we can apply a tighter version of Hoeffding’s inequality (Hoeffding, 1994) for α̂ > E[R(Tλ,pθl

(x), y)]:

P
[
R(Tλ,pθl

(x), y) ≥ α̂
]
≤ exp

{
−Ncalh(R̂(D̂cal), α̂)

}
(10)

Also, applying Bentkus inequality (Bentkus, 2004), we have:

P
[
R(Tλ,pθl

(x), y) ≥ α̂
]
≤ eP

[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉]
(11)

16



C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models

Combining Eqs. (10) and (11), we have:

P
[
R(Tλ,pθl

(x), y) ≥ α̂
]
≤ min

(
exp

{
−Ncalh

(
R̂(D̂cal), α̂)

)}
, eP

[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉])
(12)

Or equivalently, given uncertainty 1− δ, we have:

δ = min
(
exp

{
−Ncalh

(
R̂(D̂cal), α̂)

)}
, eP

[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉])
, (13)

which leads to the following by formulating an inverse function:

α̂ = min

{
h−1

(
1/δ

Ncal
; R̂(D̂cal)

)
,Φ−1

bin

(
δ

e
;Ncal, R̂(D̂cal)

)}
(14)

Remarks. Given the constrained generation protocol Tλ,pθl
, RAG generation parameter λ, a calibration set D̂cal, and a risk

function R(·, ·) : 2Y × Y 7→ R, we aim to provide a risk guarantee of the test sample (Xtest, Ytest):

P
[
R(Tλ,pθl

(Xtest), Ytest) ≤ α̂
]
≥ 1− δ, (15)

where α̂ is the conformal risk upper bound, and the confidence level 1−δ can be computed by Hoeffding-Bentkus inequalities
(Bates et al., 2021):

δ = min
(
exp

{
−Ncalh

(
R̂(D̂cal), α̂)

)}
, eP

[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉])
, (16)

where h(a, b) = a log(a/b) + (1− a) log((1− a)/(1− b)), Bin(·, ·) denotes the binomial distribution, Ncal is the number
of samples in the calibration set, and R̂(·) computes the empirical risk on the calibration set.

Given the confidence level 1− δ, we can also inversely compute the conformal risk upper bound α̂ as the following:

α̂ = min

{
h−1

(
1/δ

Ncal
; R̂(D̂cal)

)
,Φ−1

bin

(
δ

e
;Ncal, R̂(D̂cal)

)}
(17)

where h−1(·; ·) is the partial inverse function such that h−1(h(a, b); a) = b with h(a, b) = a log(a/b) + (1− a) log((1−
a)/(1− b)), and Φ−1

bin denotes the inverse of CDF of binomial distribution. The HB bound uses the empirical risk on the
calibration set as test statistics and provides finite-sample statistical results with surprising empirical effectiveness.

Alternative approach for Risk Guarantee Prop. 1 We can obtain a tighter guarantee of the conformal risk if we assume
that the given configuration vector λ has dimension 1 (i.e., B = 1) and the risk function R(·, ·) monotonically increases
in parameter λ and is upper bounded by C (R : 2Y × Y 7→ (−∞, C]). Then, we can have the following conformal risk
guarantee according to (Angelopoulos et al., 2022):

Ncal

Ncal + 1
R̂(D̂cal)−

C

Ncal + 1
≤ E

[
R(Tλ̂,pθl

(Xtest), Ytest)
]
≤ Ncal

Ncal + 1
R̂(D̂cal) +

C

Ncal + 1
. (18)

Although the guarantee in Eq. (18) is tighter with the guarantee of the upper bound and the lower bound, the additional
assumption of single dimensionality and monotonicity does not hold for many practical generation protocols. Therefore, we
mainly consider the conformal risk bound in Eq. (17) across the analysis. We also add discussions that C-RAG is flexible in
considering different types of conformal risk bounds, which basically presents an explicit function of the controlled risk
with respect to the empirical risk. Since we build the connection between the empirical risk R̂ to the retrieval model in the
risk in the analysis, we only need to directly connect the empirical risk to the controlled risk via the explicit function to
achieve end-to-end certification.
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Algorithm 2 Graph-based valid configurations search

1: Input: confidence error level δ, parameter configurations Λ = {λ1, ...,λN}, p−values (p1, ..., pN ), graph G, initial
error budget δi such that

∑
i δi = δ

2: Output: valid configurations set with certified conformal risk Λ̂
3: Λ̂← Φ
4: while ∃i : pi ≤ δi do
5: Select any i such that pi ≤ δi
6: Λ̂← Λ̂ ∪ {λi}
7: Update the error level and the graph:

δj ←

{
δj + δigi,j , λj ∈ Λ\Λ̂
0, otherwise

and gk,j ←


gk,j + gk,igi,j
1− gk,igi,k

, λk, λj ∈ Λ\Λ̂, k ̸= j

0, otherwise
(21)

8: end while
9: Return Λ̂

D.2. Risk guarantee (2) (Prop. 2)

Proof of Prop. 2. The proof follows (Holm, 1979). We consider |Λ| independent hypothesis test corresponding to the |Λ|

Null hypothesis. By the Bonferroni method, each test is performed at a significance level of
δ

|Λ|
. Therefore, The probability

of not making a Type I error in a single test is 1 − δ

|Λ|
. The probability of making no Type I error in all |Λ| tests is

(1 − δ

|Λ|
)|Λ|. The probability of making at least one Type I error (i.e., FWER) is the complement of making no Type I

errors, which is 1 − (1 − δ

|Λ|
)|Λ| ≤ δ. Therefore, we prove that the familywise error rate is δ for Bonferroni correction.

Thus, going back to the risk guarantee, we have:

P

[
sup
λ̂∈Λ̂α

{
R
(
Tλ̂,pθl

(x), y
)}
≤ α

]
≥ 1− δ (19)

Remarks. To achieve conformal analysis (2), we follow the procedure in (Angelopoulos et al., 2021): (a) for each parameter
configuration λ in the feasible region Λ, associate the null hypothesis: Hj : R(Tλ,pθl

) > α (rejecting the null hypothesis
implies controlling the risk below α with hyperparameter λ), (b) for each null hypothesis, compute a finite-sample valid
p-value pj using Hoeffding-Bentkus inequality, and (c) return Λ̂α = A(p1, ..., p|Λ|), where A is an algorithm that controls
the family-wise error rate (FWER). Essentially, FWER controls the error by union bounds over the hyperparameter space.
The Bonferroni correction yields Λ̂α = {λ̂j : δj ≤ δ/|Λ|}. The graph-based search in Alg. 2 dynamically assigns the error
levels and yields a tighter certification. Specifically, we maintain a directed graph with nodes denoting the error rate of the
parameter configuration and edges denoting the correlations between two parameters. The correlations can be instantiated
randomly. We first randomly assign error rates to all feasible parameter configurations, and then once we search for one
valid parameter with a smaller p-value than the assigned error rate, we will add the parameter to the valid set and propagate
the excessive error rate to other nodes. The procedure repeats until no valid parameter can be found.
Computation of p-values. Due to the duality between p-values and confidence intervals (Bates et al., 2021), we compute
the p-value by applying the Hoeffding-Bentkus inequality as the following:

pj = min
(
exp

{
−Ncalh

(
Ê[R(Tλj ,pθl

(x), y)], α̂)
)}

, eP
[
Bin(Ncal, α̂) ≤

⌈
NcalÊ[R(Tλj ,pθl

(x), y)]
⌉])

, (20)

where Ê[R(Tλj ,pθl
(x), y)] denotes the empirical mean risk with configuration λj (j ∈ {1, 2, .., |Λ|}).
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E. Grammian generalization bound
Lemma E.1 ((Weber et al., 2022)). Let D and Q denote two distributions supported on X × Y . Let hθ : X 7→ Y be any
black-box pretrained model. Consider any risk/loss function ℓ : Y × Y 7→ R such that 0 ≤ ℓ(hθ(X), Y ) ≤ T , then

max
Q,θ

E(X,Y )∼Q[ℓ(hθ(X), Y )] s.t. H(D,Q) ≤ ρ

≤E(X,Y )∼D[ℓ(hθ(X), Y )] + 2Cρ

√
V(X,Y )∼D[ℓ(hθ(X), Y )]+

ρ2(2− ρ2)

(
T − E(X,Y )∼D[ℓ(hθ(X), Y )]−

V(X,Y )∼D[ℓ(hθ(X), Y )]

T − E(X,Y )∼D[ℓ(hθ(X), Y )]

)
,

(22)

where Cρ =
√

ρ2(1− ρ2)2(2− ρ2), for any given distance bound ρ > 0 that satisfies

ρ2 ≤ 1−
(
1 +

(T − E(X,Y )∼D[ℓ(hθ(X), Y )])2

V(X,Y )∼D[ℓ(hθ(X), Y )]

)−1/2

. (23)

This theorem provides a closed-form expression that upper bounds the risk of hθ(·) on shifted distribution (namely
EQ[ℓ(hθ(X), Y )]), given bounded Hellinger distance H(D,Q) and the mean E and variance V of loss on D under two
mild conditions: (1) the function is positive and bounded (denote the upper bound by T ); and (2) the distance H(D,Q) is
not too large (specifically, H(D,Q)2 ≤ γ̄2 := 1− (1 + (T − E)2/V )−

1
2 ). Since Lem. E.1 holds for arbitrary models and

risk functions ℓ(hθ(·), ·) as long as the function value is bounded by [0, T ], using Lem. E.1 allows us to provide a generic
and succinct retrieval analysis and conformal risk certificate in Thm. 2 and Thm. 3 that holds for generic models including
DNNs without engaging complex model architectures. Indeed, we only need to query the mean and variance under D for
the retrieval model to compute the certificate in Lem. E.1.

F. Proofs and detailed remarks in Sec. 5
F.1. Detailed remark of Def. 1

Remarks. (R1) Note that a retrieval model with random initialization can achieve E[sθ(x, x+)] = E[sθ(x, x−)] asymptoti-
cally. We only assume a Vrag-retrieval model that differentiates positive examples from negative examples slightly better than
random with the condition E[sθ(x, x+)− sθ(x, x

−)] > 0. (R2) We also only assume a moderate stability characterized with
bounded variance V[sθ(x, x+)− sθ(x, x

−)]1/2 < ln(exp{−Lτ}/(1− exp{−Lτ})), which implicitly assumes a moderate
generalization of the retrieval model by the variance-generalization connection (Lam, 2016; Gotoh et al., 2018; Namkoong
& Duchi, 2017). The moderate generalization ability of the retrieval model is essential since we do not assume that the
knowledge base distribution is identical to the calibration/test distribution. Since the frequently adopted cosine similarity is
bounded in [−1, 1], the variance of difference in similarities V[sθ(x, x+)− sθ(x, x

−)] is upper bounded by 1 (derived by
the variance bound V[X] ≤ (b− a)2/4 for random variable X bounded in [a, b]). Therefore, as long as Lτ is small such
that ln(exp{−Lτ}/(1 − exp{−Lτ})) > 1, the variance requirement can be automatically satisfied. (R3) We define the
Vrag-retrieval model with a commonly used contrastive loss for retrieval model training (Wang et al., 2023c; Rubin et al.,
2021), but we also allow for flexibility in considering other types of contrastive loss such as the triplet loss (Hermans et al.,
2017). Towards that, we only need to connect a different loss formulation to the denominator of the formulation of Vrag (i.e.,
ln(exp{−Lτ}/(1− exp{−Lτ}))).

F.2. Detailed remark of Def. 2

Remarks. (R1) d+ represents the attention score of positive pairs and quantifies the utility of embedding matrix WE , key
matrix WK , and query matrix WQ of the transformer. Note that the attention scores are always non-negative after the Softmax
activation, so d+ > 0 usually holds. (R2)

∫ 1

−1
ΦM (v)dv characterizes the quality of the embedding matrix WE , value

matrix WV , and projection matrix WP . We have a Softmax normalization for output probability vectors and M is bounded
in [−1, 1], so the integral over [−1, 1] traverses the support of M . Predictions aligning well with the reference text induce a
generally small value of M and thus a large integral of CDF

∫ 1

−1
ΦM (v)dv. Also, note that a random prediction margin Mrand

with a uniform distribution over [−1, 1] satisfies
∫ 1

−1
ΦMrand(v)dv = 1. Therefore,

∫ 1

−1
ΦM (v)dv > 1 =

∫ 1

−1
ΦMrand(v)dv

only assumes a better-than-random prediction margin.
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F.3. Proof and detailed remark of Prop. 3

Remarks. Eq. (6) shows the lower bound of the expectation of the retrieved positive examples by the retrieval model. (R1)
For a sufficiently large number of instances in the external knowledge base Next (a typical scenario in practice), the lower
bound approximately scales with 0.9Nrag and this scaling occurs at an exponential rate with respect to Next. These findings
imply that with a large external knowledge base, a large ratio of the retrieved examples is positive (i.e., with the same
groundtruth output), which is valuable as the retrieved positive examples which share similar semantic meanings as the query
examples can improve in-context learning of LLMs (Min et al., 2022; Wang et al., 2022a). To formulate this observation in
a rigorous way, we theoretically show the benefits of retrieved positive in-context examples in achieving low conformal
generation risks in Thm. 1. (R2) The lower bound of the expected retrieved positive examples also correlates with the

balance in the external knowledge base (i.e., r(c)ext ). The correlation implies that if the knowledge base is highly long-tailed
such that samples of certain reference texts are rare (i.e., r(c)ext is small), we require a larger sample size of knowledge base
Next to compensate for the long-tail distribution and achieve comparable retrieval quality. (R3) The bound also shows that a
low-variance retrieval model (i.e., a small Vrag) can generalize well to test distribution and induce a better retrieval quality.

Proof sketch. We first formulate the expectation of similarity difference between positive pairs and negative pairs
E[sθr (x, x+) − sθr (x, x

−)] as a function of the contrastive loss of the retrieval model Lτ . Then, we apply Cheby-
shev’s inequality to upper bound the failure probability P[sθ(x, x+) < sθ(x, x

−)] as a function of Vrag. We then derive a
lower bound of the number of retrieved positive examples, which follows a binomial distribution with Nrag trials and the
failure rate as a function of Vrag. We finally correct the bound with the finite-sample errors of the knowledge base by the tail
bound of categorical distribution.

Proof of Prop. 3. Let D be the data distribution, which is also the training distribution of the retrieval model, conformal
calibration distribution, and test distribution. For a sample (x, y) ∼ D, we denote D+

ext(x), D−
ext(x) be the distribution of

positive examples (with the same groundtruth output y) and negative examples (with different groundtruth output to y) of
sample x in the external knowledge base. Then we can formulate the expectation of contrastive loss of the retrieval model as:

Lτ = Ex∼D,x+∼D+
ext(x),x

−∼D−
ext(x)

[
Lcontrastive(x, x

+, x−)
]

= Ex∼D,x+∼D+
ext(x),x

−∼D−
ext(x)

[
− log

exp {sθ(x, x+)}
exp {sθ(x, x+)}+ exp {sθ(x, x−)}

]
,

(24)

which is equivalent to

Ex∼D,x+∼D+
ext(x),x

−∼D−
ext(x)

[
sθ(x, x

+)− sθ(x, x
−)
]
= ln

exp {−Lτ}
1− exp {−Lτ}

> 0. (25)

Then we can apply Chebyshev’s inequality (Saw et al., 1984) to the random variable sθ(x, x
+) − sθ(x, x

−) and get the
following:

P
[
sθ(x, x

+) < sθ(x, x
−)
]
= Px∼D,x+∼D+

ext(x),x
−∼D−

ext(x)

[
sθ(x, x

+)− sθ(x, x
−) < 0

]
(26)

≤ V [sθ(x, x
+)− sθ(x, x

−)]

E [sθ(x, x+)− sθ(x, x−)]
2 (27)

≤

(√
V [sθ(x, x+)− sθ(x, x−)]

E [sθ(x, x+)− sθ(x, x−)]

)2

= V 2
rag < 1. (28)

We first focus on one demonstration example Zr retrieved by sθ(·, ·). According to the retrieval mechanism, the example
Zr has the highest similarity (measured by sθ(·, ·)) to the query sample Zq. Recall that r(c)cal and r

(c)
ext be the event

probability of the c-th category in the categorical calibration distribution and categorical external knowledge distribution.
Let rext =

[
r
(1)
ext , r

(2)
ext , ..., r

(C)
ext

]
. Since we only have Next finite sample drawn from Dext in the external knowledge base in

practice, we notate the empirical categorical portions as q̂ext =
[
r̂
(1)
ext , r̂

(2)
ext , ..., r̂

(C)
ext

]
, where r̂

(c)
ext (c ∈ {1, .., C}) represents

the portion of samples with grountruth text c ∈ Y in the external knowledge base. Then we can apply the concentration
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bound of categorical distribution as (Agrawal & Jia, 2017):

P

[
∥r̂ext − rext∥1 ≥

√
2 ln (1/δext)

Next

]
≤ δext, (29)

where δext > 0 represents the confidence level of the tail bound. Then we can upper bound the probability that the groundtruth
output g(Zr) of the retrieved sample Zr is not equal to that of the query sample g(Zq) as the following:

P [g(Zr) /∈ g(Zq)] = PZq∼D

[
g(Zr) /∈ g(Zq)

∣∣∣∣sθ(Zq, Zr) ≥ max
z∈Dext

sθ(z, Zq)

]
(30)

= PZq∼D

[
max

Z−∈D−
ext(Zq)

sθ(Z
−, Zq) ≥ max

Z+∈D+
ext(Zq)

sθ(Z
+, Zq)

]
(31)

= PZq∼D
[
sθ(Z

−, Zq) ≥ sθ(Z
+, Zq), ∀Z+ ∈ D+

ext(Zq), ∃Z− ∈ D−
ext(Zq)

]
(32)

≤
C∑

c=1

r
(c)
cal

(
1− r

(c)
ext

)
NextP

[
sθ(x, x

+) < sθ(x, x
−)
]Nextr

(c)
ext , (33)

where Eq. (33) is derived by applying the union bound. Considering finite-sample error of categorical distribution in Eq. (29)
and combining Eq. (28), we finally have:

P [g(Zr) /∈ g(Zq)] ≤
C∑

c=1

r
(c)
cal

(
1− r

(c)
ext

)
NextP

[
sθ(x, x

+) < sθ(x, x
−)
]Nextr

(c)
ext (34)

≤
C∑

c=1

r
(c)
cal

(
1− r

(c)
ext +

√
2 ln (1/δext)

Next

)
NextV

0.5Next

(
r
(c)
ext −
√

2 ln (1/δext)/Next

)
rag . (35)

Since we assume that the retrieval model retrieves samples identically from the external knowledge base, the number of
retrieved positive examples Npos follows a Binomial distribution with Nrag trials and failure rate in Eq. (35). Therefore, we
can lower bound the expectation of Npos as the following:

E [Npos] ≥ Nrag (1− δext)

(
1−

C∑
c=1

r
(c)
cal

(
1− r

(c)
ext +

√
2 ln (1/δext)

Next

)
NextV

0.5Next

(
r
(c)
ext −
√

2 ln (1/δext)/Next

)
rag

)
, (36)

which holds for any δext > 0. Therefore, letting δext = 0.1, we can finally conclude that:

E [Npos] ≥
9

10
Nrag

(
1−

C∑
c=1

r
(c)
cal

(
Next − r

(c)
ext Next +

√
2 ln 10

)
V

0.5
(
r
(c)
ext Next−

√
2 ln 10

)
rag

)
. (37)

F.4. Proof and detailed remark of Thm. 1

Remarks. In Thm. 1, we theoretically show that the conformal generation risk with RAG α̂rag is smaller than the risk without
RAG α̂ with a high probability. (R1) We can observe that the probability monotonically increases in the sample size of the
calibration set Ncal, the size of retrieved examples Nrag, and the number of instances in the external knowledge base Next. In
particular, a large Ncal reduces the finite-sample error during the calibration and induces a better approximation of the true
generation risk with the empirical risk on the calibration set. A large Nrag and Next brings in related background information
from a more knowledge-intensive knowledge base, which enhances the quality of generations augmented by retrieval. (R2)
Furthermore, the probability P [α̂rag < α̂] increases with the increase in transformer’s quality, which is quantified by the
attention scores for a positive pair (i.e., d+ ) and the prediction capability (without RAG) (i.e.,

∫ 1

−1
ΦM (v)dv − 1 ). Since

1−ΦM (0) represents the population risk without RAG, the difference of the prediction margin CDF ΦM (·) (monotonically
increasing) directly characterizes the benefit of generation quality with RAG. The quality improvement provided by RAG
also exponentially induces a larger probability of reducing the conformal generation risk of a single LLM. The transformer
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uncertainty pt also decreases exponentially with a large number of retrieved examples, indicating that more examples
retrieved by a good retrieval model benefit a lower conformal generation risk. (R3) The retrieval model uncertainty pr
decreases with a low-variance retrieval model (small Vrag), which can generalize well to test distribution. (R4) We focus on
the conformal generation risk formulated in Prop. 1, but we can easily adapt the results to any other forms of conformal risks.
Since we build the connection between the empirical risk R̂ to the retrieval model quality, we only need to directly connect
the empirical risk to the certified generation risk via the explicit function to achieve end-to-end certification. (R5) We define
the positive pairs as examples sharing the same semantic meanings of reference texts for simplicity of the certification results.
In the certification framework, we can also consider a relaxed definition of positive pairs by the similarity of reference texts
in the embedding space. Similarly, the examples with high similarity of reference texts to the query example will induce
high attention scores and benefit the generation with the attention mechanism.

Proof sketch. We decompose the one-layer self-attention mapping as the combinations of attention with positive examples
and attention with negative examples. Based on the explicit formulation, we then derive a lower bound of the logit difference
of the ground truth token by taking a lower bound of the number of positive examples (derived from Prop. 3) and the
attention scores with positive examples. Next, we get a lower bound of the risk difference between the transformer without
RAG and the RAG model. Finally, we apply Hoeffding’s inequality to derive a lower bound of the difference in empirical
risks, and accordingly, conformal risk bounds. Applying union bounds over all uncertainty levels concludes the proof.

Proof of Thm. 1. From Prop. 3, we prove that:

E [Npos] ≥ N pos :=
9

10
Nrag

(
1−

C∑
c=1

r
(c)
cal

(
Next − r

(c)
ext Next +

√
2 ln 10

)
V

0.5
(
r
(c)
ext Next−

√
2 ln 10

)
rag

)
. (38)

Since Npos is a binomial random variable with Nrag trials, we have the upper bound of the variance V[Npos] ≤
Nrag

4
.

Applying Chebyshev’s inequality to the random variable Npos, the following holds ∀npos < N pos:

P [Npos ≥ npos] ≥ 1−
V[Nrag]

(N pos − npos)2
≥ 1−

Nrag

4(N pos − npos)2
, (39)

which implicates that we can do the analysis with Npos ≥ npos with probability 1−
V[Nrag]

(N pos − npos)2
.

Since the query example is encoded at the last position of the sequence (i.e., Nrag + 1-th position), we let N := Nrag + 1 for
ease of notation. We denote the probability vector at the position as O(rag)(q) with RAG and O(qN ) without RAG (without
RAG, the input text is only the query sample qN ). Recall the single-layer self-attention transformer:

O(rag)(q) = WP

{
WV WEqN + (WV WEq)σ

(
(WKWEq)

TWQWEqN
)}

. (40)

Note that each raw vector of the linear projection matrix (fully connected layer) represents the prototype embedding denoted
as pc of the corresponding groundtruth output c. Formally, we have WP := [p1,p2, ...,pC ]

T . Recall that we denote g(qN )
as the groundtruth output of example qN . Then we can reformulate Eq. (40) as the following:

O(rag)(q) = [p1,p2, ...,pC ]
T
{
WV WEqN + (WV WEq)σ

(
(WKWEq)

TWQWEqN
)}

, (41)

which indicates the formulation of O(rag)
c (q) denoting the probability of query sample qN being with groundtruth output c:

O(rag)
c (q) = pT

c

{
WV WEqN + (WV WEq)σ

(
(WKWEq)

TWQWEqN
)}

. (42)

We can also similarly formulate the prediction without RAG:

Oc(q) = pT
c WV WEqN . (43)

Then we will focus on analyzing O(rag)
c (q) and connect it with the quantities of characterizing the quality of the transformer

(i.e., d+, d−, t+, t−) and the quality of retrieved examples. Towards that, we let I+(qN ) be the index set of retrieved
examples with the same groundtruth output as qN (i.e., positive examples), and I−(qN ) be the index set of retrieved
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examples with the different groundtruth output to qN (i.e., negative examples). Then we can reformulate Eq. (42) as the
following:

O(rag)
c (q) =pT

c WV WEqN + pT
c (WV WEq)σ

(
(WKWEq)

TWQWEqN
)

=pT
c WV WEqN +

∑
i+∈I+(qN )

σ ((WKWEqi+)WQWEqN )pT
c (WV WEqi+)

+
∑

i−∈I−(qN )

σ ((WKWEqi−)WQWEqN )pT
c (WV WEqi−)

(44)

Recall that we have the following assumption:

σ
(
(WKWEqi)

T (WQWEqj)
)
≥ d+ > 0, for g(qi) = g(qj), (45)

We denote Npos as the number of positive retrieved examples to the query sample qN and the lower bound of it npos with

probability 1−
V[Nrag]

(N pos − npos)2
according to Eq. (39). Note that the attention scores are normalized by Softmax with the

summation of them being 1. By Eq. (44), ∀c ̸= g(qN ), we have:

E
[
O(rag)

g(qN )(q)−O(rag)
c (q)− (pT

g(qN )WV WEqN − pT
c WV WEqN )

]
=E

 ∑
i+∈I+(qN )

σ ((WKWEqi+)WQWEqN ) (pg(qN ) − pc)
T (WV WEqi+)

+
∑

i−∈I−(qN )

σ ((WKWEqi−)WQWEqN ) (pg(qN ) − pc)
T (WV WEqi−)


≥E

d+ ∑
i+∈I+(qN )

(pg(qN ) − pc)
T (WV WEqi+) + (1− nposd

+)

− ∑
i+∈I+(qN )

(pg(qN ) − pc)
T (WV WEqi+)


≥
(
(npos + 1)d+ − 1

)
E

 ∑
i+∈I+(qN )

(pg(qN ) − pc)
T (WV WEqi+)


≥
(
(npos + 1)d+ − 1

)
nposE

[
pT
g(qN )WV WEqN − pT

c WV WEqN

]
≥
(
(npos + 1)d+ − 1

)
nposE

[
pT
g(qN )WV WEqN − max

c̸=g(qN )
pT
c WV WEqN

]

(46)

Recall that ΦM (·) is the CDF function of the random variable of prediction marigin maxc̸=g(qN ) Oc(q)−Og(qN )(q) such
that ΦM (v) = P[maxc ̸=g(qN ) Oc(q)−Og(qN )(q) < v]. Since the output probability of the transformer is bounded in [0, 1],
we define a new random variable X = maxc̸=g(qN ) Oc(q)−Og(qN )(q) + 1 with P [0 ≤ X ≤ 2] = 1. Then we have the
following:

E
[
Og(qN )(q)− max

c ̸=g(qN )
Oc(q)

]
= 1− E [X] (47)

= 1−
∫ 2

0

(1− ΦX(x)) dx (48)

= 1−
∫ 1

−1

(1− ΦM (v)) dv (49)

=

∫ 1

−1

ΦM (v)dv − 1 (50)
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Note that from Eq. (43), we have Og(qN )(q) − Oc(q) = pT
g(qN )WV WEqN − pT

c WV WEqN . Combining Eq. (46) and
Eq. (50), the following holds ∀c ̸= g(qN ):

E
[
O(rag)

g(qN )(q)−O(rag)
c (q)

]
≥ E

[
Og(qN )(q)−Oc(q)

]
+
(
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

)
. (51)

Letting c∗ = argmaxc̸=g(qN ) O
(rag)
c (q), we have:

E
[
O(rag)

g(qN )(q)− max
c̸=g(qN )

O(rag)
c∗ (q)

]
= E

[
O(rag)

g(qN )(q)−O(rag)
c∗ (q)

]
≥ E

[
Og(qN )(q)−Oc∗(q)

]
+
(
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

)
≥ E

[
Og(qN )(q)− max

c ̸=g(qN )
Oc(q)

]
+
(
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

)
,

(52)
which implies the following:

E
[
O(rag)

g(qN )(q)− max
c̸=g(qN )

O(rag)
c (q)

]
−E

[
Og(qN )(q)− max

c ̸=g(qN )
Oc(q)

]
≥
(
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

)
,

(53)
which is equivalent to the following:

E
[

max
c ̸=g(qN )

O(rag)
c (q)−O(rag)

g(qN )(q)

]
≤ E

[
max

c̸=g(qN )
Oc(q)−Og(qN )(q)

]
−
(
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

)
,

(54)

Recall that we define the risk as 1− Accuracy and notate R and Rrag as the risk without RAG and with RAG, respectively.
Then we have:

E [R] = 1− E
[
I
[

max
c̸=g(qN )

Oc(q)−Og(qN )(q) < 0

]]
(55)

= 1− P
[

max
c ̸=g(qN )

Oc(q)−Og(qN )(q) < 0

]
(56)

= 1− ΦM (0). (57)

Similarly for the risk with RAG Rrag, we have:

E [Rrag] = 1− E
[
I
[

max
c̸=g(qN )

O(rag)
c (q)−O(rag)

g(qN )(q) < 0

]]
(58)

= 1− P
[

max
c ̸=g(qN )

O(rag)
c (q)−O(rag)

g(qN )(q) < 0

]
(59)

≤ 1− P
[

max
c ̸=g(qN )

Oc(q)−Og(qN )(q) <
(
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

)]
(60)

≤ 1− ΦM

((
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

))
, (61)

where Eq. (60) holds by applying Eq. (54). Therefore, combining Eq. (57) and Eq. (61), the following holds:

E [R−Rrag] ≥ ΦM

((
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

))
− ΦM (0). (62)

Let nrag = Nrag/2. Combining Eq. (62) and Eq. (39), we get that if N pos > Nrag/2 > 1/d+, with probability 1 −
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Nrag

4(N pos −Nrag/2)2
, we have:

E [R−Rrag] ≥ ΦM

d+
(∫ 1

−1
ΦM (v)dv − 1

)
Nrag

2

− ΦM (0). (63)

Let R(Z) be the risk of Z sampled from the distribution D. Define the empirical risk R̂ and R̂rag as the following:

R̂ =
1

Ncal

Ncal∑
i=1

R(Zi), R̂rag =
1

Ncal

Ncal∑
i=1

Rrag(Zi) (64)

According to Eq. (16), the statistical guarantee of conformal risk α̂ and α̂rag with confidence 1− δ can be formulated as:

α̂ = min

{
h−1

(
1/δ

Ncal
; R̂

)
,Φ−1

bin

(
δ

e
;Ncal, R̂

)}
, (65)

α̂rag = min

{
h−1

(
1/δ

Ncal
; R̂rag

)
,Φ−1

bin

(
δ

e
;Ncal, R̂rag

)}
, (66)

where Φ−1
bin (·) is the inverse function of CDF of binomial distribution. Noting that α̂ is monotonically increasing in R̂, the

following holds by Hoeffding’s inequality:

P [α̂rag < α̂] ≥ P
[
R̂rag < R̂

]
≥ 1− exp

{
−2NcalE [R−Rrag]

2
}
. (67)

Combining Eq. (63) and Eq. (67) and using the union bound, under the condition that N pos > Nrag/2 > 1/d+, we have:

P [α̂rag < α̂] ≥ 1− exp

−2Ncal

ΦM

d+
(∫ 1

−1
ΦM (v)dv − 1

)
Nrag

2

− ΦM (0)

2
− Nrag

4(N pos −Nrag/2)2
. (68)

Let rmext := minc∈{1,..,C} r
(c)
ext . Then we can show that one sufficient condition of N pos > Nrag/2 > 1/d+ is that

Next >
2
√
2 ln 10

rmext
, NextV

0.25rmextNext
rag <

4

9
, and Nrag >

2

d+
. Rearranging the terms and considering the sufficient condition in

Eq. (68), we can finally conclude that, under the condition that Next >
2
√
2 ln 10

rmext
, NextV

0.25rmextNext
rag <

4

9
, and Nrag >

2

d+
,

the following holds:

P [α̂rag < α̂] ≥1− exp

−2Ncal

ΦM

d+
(∫ 1

−1
ΦM (v)dv − 1

)
Nrag

2

− ΦM (0)

2


− 25

Nrag

(
4− 9

C∑
c=1

r
(c)
cal

(
Next − r

(c)
ext Next +

√
2 ln 10

)
V

0.5
(
r
(c)
ext Next−

√
2 ln 10

)
rag

)−2

.

(69)

G. Cor. 1: Asymtotic result of Thm. 1
Corollary 1 (Thm. 1 with a sufficiently large external knwoledge base). Under the same conditions as Thm. 1, suppose that
we have a sufficiently large sample size Next in the external knowledge base. We then have the following guarantee:
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P [α̂rag < α̂] ≥ 1− pt −
25

16Nrag
, (70)

where pt is the uncertainty induced by the quality of the transformer as formulated in Eq. (7), and α̂rag and α̂ are the
conformal generation risks with and without RAG, respectively.

Proof of Cor. 1. The proof directly follows that of Thm. 1. Considering Eq. (7) in the asymptoptic limit (i.e., Next → +∞),
we obtain the formulation in Eq. (70).

Remarks. (R1) Cor. 1 shows that the conformal generation risk of transformer with RAG α̂rag is smaller than that of without
RAG α̂ with high probability (RHS of Eq. (70)), which asymptotically approaches 1 with a sufficiently large sizes of the
calibration set Ncal and retrieved augmented examples Nrag. (R2) In contrast to Thm. 1, the bound has no dependency on

distributions in the external knowledge base r
(c)
ext since a sufficiently large knowledge base can cover also rare examples.

(R3) Compared to Thm. 1, the bound also has no dependency on the distribution of the calibration/test distribution r
(c)
cal ,

showing that a sufficiently large external knowledge base can better generalize to unknown test distributions. Additionally,
the lower bound in Eq. (70) is tighter than that in Eq. (7), which demonstrates the benefit of the large external knowledge
base.

H. Prop. 4: Retrieval quality analysis under distribution shifts
Under test-time distribution shifts, retrieval model quality declines. To derive conformal generation risk, we first examine
the lower bound of retrieved positive examples.
Proposition 4 (Lower bound to the retrieved positive examples under test-time distribution shifts). Suppose that the potential
test distribution Q is shifted from the original test distribution D with bounded Hellinger distance ρ > 0. Consider the same
setup as Prop. 3 and a large external knowledge base where Next > 2

√
2 ln 10/minc r

(c)
ext . We have:

E [Npos] ≥
9

10
Nrag

(
1− 1.5NextVrag(ρ)

0.25
(
minc r

(c)
ext Next

))
, (71)

where Vrag(ρ) := m(ρ)Vrag and

m(ρ) =

(√
−6ρ4 + 12ρ2 + 1− 4ρ(1− ρ2)

√
2− ρ2

1− 16ρ2 + 8ρ4

)−2

︸ ︷︷ ︸
retrieval model quality decay factor by distribution shifts

.

Proof sketch. We first formulate the expectation of similarity difference between positive pairs and negative pairs
E[sθr (x, x+) − sθr (x, x

−)] as a function of the contrastive loss of the retrieval model Lτ . Then, we apply Chebyshev’s
inequality to upper bound the failure probability P[sθ(x, x+) < sθ(x, x

−)] as a function of the variance and expectation
of the similarity difference. Considering the distribution shifts, the variance and expectation bound can be derived via
Grammian bound as (Weber et al., 2022). We then plug in the failure rate corrected by distribution shifts and follow the
proof structure of Prop. 3.
Remarks. (R1) Different from Prop. 3, the quality of retrieval models under distribution shifts is decreased from Vrag to
Vrag(ρ) with a linear decay factor m(ρ). As we require Vrag(ρ) < 1 to ensure high retrieval quality, large distribution shift
radius ρ must be compensated by small Vrag. This is consistent with the existing observations that low-variance models can
generalize better under distribution shifts (Lam, 2016; Gotoh et al., 2018; Namkoong & Duchi, 2017). (R2) Compared
to Prop. 3, Prop. 4 removes the dependency on varying label portions r

(c)
cal during distribution shifts, as long as the size of

external knowledge base is sufficiently large Next to offset the worst-case long-tail distributions, a condition often met in
practice with large knowledge bases.

Proof of Prop. 4. Let D be the data distribution, which is also the training distribution of the retrieval model and conformal
calibration distribution. Let Q be the test distribution where the test samples are drawn from. Q is within Hellinger distance
ρ from the distribution D: H(D,Q) ≤ ρ.

For a sample (x, y) ∼ D, we denote D+
ext(x), D−

ext(x) be the distribution of positive examples (with the same groundtruth
output y) and negative examples (with different groundtruth output to y) of sample x in the external knowledge base. Then
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we can formulate the expectation of contrastive loss of the retrieval model as:

Lτ = Ex∼D,x+∼D+
ext(x),x

−∼D−
ext(x)

[
Lcontrastive(x, x

+, x−)
]

= Ex∼D,x+∼D+
ext(x),x

−∼D−
ext(x)

[
− log

exp {sθ(x, x+)}
exp {sθ(x, x+)}+ exp {sθ(x, x−)}

]
.

(72)

We can apply Chebyshev’s inequality (Saw et al., 1984) to the random variable sθ(x, x+)− sθ(x, x
−) and get the following:

P
[
sθ(x, x

+) < sθ(x, x
−)
]
= Px∼Q,x+∼D+

ext(x),x
−∼D−

ext(x)

[
sθ(x, x

+)− sθ(x, x
−) < 0

]
(73)

≤ V [sθ(x, x
+)− sθ(x, x

−)]

E [sθ(x, x+)− sθ(x, x−)]
2 . (74)

For ease of notation, we notate random variable S = sθ(x, x
+) − sθ(x, x

−). Then we have P[−2 ≤ S ≤ 2] = 1, and

E[S] ≥ E[S] :=
exp {−Lτ (ρ)}

1− exp {−Lτ (ρ)}
. Note that P[0 ≤ S2 ≤ 4] = 1, we have V[S2] ≤ (4− 0)2/4 = 4. Then by Lem. E.1,

we have the following:

EQ
[
S2
]
≤ ED

[
S2
]
+ ρ2(2− ρ2)

(
1− ED

[
S2
])

+ 2ρ(1− ρ2)
√
2− ρ2

√
VD [S2] (75)

≤ (1− ρ2)2ED
[
S2
]
+ ρ2(2− ρ2) + 4ρ(1− ρ2)

√
2− ρ2. (76)

By applying the lower bound of expectation values in Theorem A.2 in (Weber et al., 2022),which is a straightforward
variation of Lem. E.1, we have the following:

EQ [S] ≥ (1− ρ2)2ED [S]− 2ρ(1− ρ2)
√
2− ρ2

√
VD [S] + ρ2(2− ρ2)

VD [S]

ED [S]
. (77)

Since we assume that ED [S] = ED [sθ(x, x
+)− sθ(x, x

−)] > 0, we have the following:

EQ [S] ≥ (1− ρ2)2ED [S]− 2ρ(1− ρ2)
√

2− ρ2
√
VD [S]. (78)

Combining Eqs. (76) and (78), we have the following:

VQ [S]

EQ [S]
2 =

EQ
[
S2
]
− EQ [S]

2

EQ [S]
2 (79)

≤
(1− ρ2)2

(
VD [S] + ED [S]

2
)
+ ρ2(2− ρ2) + 4ρ(1− ρ2)

√
2− ρ2

EQ [S]
2 − 1 (80)

≤
(1− ρ2)2

(
VD [S] + ED [S]

2
)
+ ρ2(2− ρ2) + 4ρ(1− ρ2)

√
2− ρ2(

(1− ρ2)2ED [S]− 2ρ(1− ρ2)
√

2− ρ2
√
VD [S]

)2 − 1. (81)

Through some algebraic rearrangement, we can show that:

VQ [S]

EQ [S]
2 ≤ Vrag(ρ) :=

VD [S]

ED [S]
2

(√
−6ρ4 + 12ρ2 + 1− 4ρ(1− ρ2)

√
2− ρ2

1− 16ρ2 + 8ρ4

)−2

. (82)

Therefore, one sufficient condition of Vrag(ρ) < 1 is that:

√
VD [S] ≤

(√
−6ρ4 + 12ρ2 + 1− 4ρ(1− ρ2)

√
2− ρ2

1− 16ρ2 + 8ρ4

)
ED [S] (83)

=

(√
−6ρ4 + 12ρ2 + 1− 4ρ(1− ρ2)

√
2− ρ2

1− 16ρ2 + 8ρ4

)
ln

exp {−Lτ}
1− exp {−Lτ}

(84)
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Then, we follow a similar procedure as the proof of Prop. 3 to analyze the expected retrieved positive examples. We
first focus on one demonstration example Zr retrieved by sθ(·, ·). According to the retrieval mechanism, the example
Zr has the highest similarity (measured by sθ(·, ·)) to the query sample Zq. Recall that r(c)test(Q) and r

(c)
ext be the event

probability of the c-th category in the categorical test distribution (i.e., Q) and categorical external knowledge distribution.
Let rext =

[
r
(1)
ext , r

(2)
ext , ..., r

(C)
ext

]
. Since we only have Next finite sample drawn from Dext in the external knowledge base in

practice, we notate the empirical categorical portions as q̂ext =
[
r̂
(1)
ext , r̂

(2)
ext , ..., r̂

(C)
ext

]
, where r̂

(c)
ext (c ∈ {1, .., C}) represents

the portion of samples with grountruth output c in the external knowledge base. Then we can apply the concentration bound
of categorical distribution as (Agrawal & Jia, 2017):

P

[
∥r̂ext − rext∥1 ≥

√
2 ln (1/δext)

Next

]
≤ δext, (85)

where δext > 0 represents the confidence level of the tail bound. Then we can upper bound the probability that the groundtruth
output g(Zr) of the retrieved sample Zr is not equal to the groundtruth output of the query sample g(Zq) as the following:

P [g(Zr) /∈ g(Zq)] = PZq∼D

[
g(Zr) /∈ g(Zq)

∣∣∣∣sθ(Zq, Zr) ≥ max
z∈Dext

sθ(z, Zq)

]
(86)

= PZq∼D

[
max

Z−∈D−
ext(Zq)

sθ(Z
−, Zq) ≥ max

Z+∈D+
ext(Zq)

sθ(Z
+, Zq)

]
(87)

= PZq∼D
[
sθ(Z

−, Zq) ≥ sθ(Z
+, Zq), ∀Z+ ∈ D+

ext(Zq), ∃Z− ∈ D−
ext(Zq)

]
(88)

≤ max
Q

C∑
c=1

r
(c)
test(Q)

(
1− r

(c)
ext

)
NextP

[
sθ(x, x

+) < sθ(x, x
−)
]Nextr

(c)
ext , (89)

where Eq. (89) is derived by applying the union bound. Considering finite-sample error of categorical distribution in Eq. (85)
and combining Eqs. (74) and (82), we finally have:

P [g(Zr) /∈ g(Zq)] ≤ max
Q

C∑
c=1

r
(c)
test(Q)

(
1− r

(c)
ext

)
NextP

[
sθ(x, x

+) < sθ(x, x
−)
]Nextr

(c)
ext (90)

≤ max
Q

C∑
c=1

r
(c)
test(Q)

(
1− r

(c)
ext +

√
2 ln (1/δext)

Next

)
NextVrag(ρ)

0.5Next

(
r
(c)
ext −
√

2 ln (1/δext)/Next

)
(91)

Since we assume that the retrieval model retrieves samples identically from the external knowledge base, the number of
retrieved positive examples Npos follows a Binomial distribution with Nrag trials and failure rate in Eq. (91). Therefore, we
can lower bound the expectation of Npos as the following:

E [Npos] ≥ min
Q

Nrag (1− δext)

(
1−

C∑
c=1

r
(c)
test(Q)

(
1− r

(c)
ext +

√
2 ln (1/δext)

Next

)
NextVrag(ρ)

0.5Next

(
r
(c)
ext −
√

2 ln (1/δext)/Next

))
(92)

which holds for any δext > 0. Therefore, letting δext = 0.1, we can finally derive the following:

E [Npos] ≥ min
Q

9

10
Nrag

(
1−

C∑
c=1

r
(c)
test(Q)

(
Next − r

(c)
ext Next +

√
2 ln 10

)
Vrag(ρ)

0.5
(
r
(c)
ext Next−

√
2 ln 10

))
(93)

≥ 9

10
Nrag

(
1− 1.5NextVrag(ρ)

0.25
(
minc r

(c)
ext Next

))
, (94)

with a sample size in the external knowledge base such that Next > 2
√
2 ln 10/minc r

(c)
ext .
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I. Proofs and detailed remarks in Sec. 6
I.1. Proof and detailed remark of Thm. 2

Remarks. (R1) Different from Prop. 3, the quality of retrieval models under distribution shifts is decreased from Vrag to
Vrag(ρ) with a linear decay factor m(ρ). As we require Vrag(ρ) < 1 to ensure high retrieval quality, large distribution shift
radius ρ must be compensated by small Vrag. This is consistent with the existing observations that low-variance models can
generalize better under distribution shifts (Lam, 2016; Gotoh et al., 2018; Namkoong & Duchi, 2017). (R2) Compared
to Prop. 3, Prop. 4 removes the dependency on varying label portions r

(c)
cal during distribution shifts, as long as the size of

external knowledge base is sufficiently large Next to offset the worst-case long-tail distributions, a condition often met in
practice with large knowledge bases.

Proof sketch. We first formulate the expectation of similarity difference between positive pairs and negative pairs
E[sθr (x, x+) − sθr (x, x

−)] as a function of the contrastive loss of the retrieval model Lτ . Then, we apply Chebyshev’s
inequality to upper bound the failure probability P[sθ(x, x+) < sθ(x, x

−)] as a function of the variance and expectation
of the similarity difference. Considering the distribution shifts, the variance and expectation bound can be derived via
Grammian bound as (Weber et al., 2022). We then plug in the failure rate corrected by distribution shifts and follow the
proof structure of Prop. 3.

Proof of Thm. 2. Recall that the calibration samples (Z1, Z2, ..., ZNcal) are drawn from the distribution D and the test
sample Ztest = (Xtest, Ytest) is sampled from the distribution Q. The distribution Q and D have bounded Hellinger distance
H(Q,D) ≤ ρ and the risk is upper bounded by 1. Let RQ, RD be the population risk on distribution Q, D and VD be the
variance of risk on distribution D. We can apply Lem. E.1 and get the following:

RQ ≤ RD + 2ρ(1− ρ2)
√
2− ρ2

√
VD + ρ2(2− ρ2)

(
1−RD −

VD

1−RD

)
, (95)

with any given distance bound ρ > 0 that satisfies:

ρ2 ≤ 1−
(
1 +

(1−RD)
2

VD

)−1/2

. (96)

Since the variance is non-negative, Eq. (95) further implies that:

RQ ≤ RD + 2ρ(1− ρ2)
√

2− ρ2
√
VD + ρ2(2− ρ2) (1−RD) . (97)

Then we will consider the finite-sample error of the calibration set. From Hoeffding’s inequality (Hoeffding, 1994), with
probability 1− δ/4, we have:

RD ≤ R̂+

√
ln(4/δ)

2Ncal
. (98)

From sample variance bound in (Maurer & Pontil, 2009), with probability 1− δ/4, we have:

√
VD ≤

√
V̂ +

√
2 ln(4/δ)

Ncal − 1
. (99)

Note that the RHS of Eq. (97) monotonically increases in RD and VD, combining Eqs. (97) to (99) and applying the union
bound, with probability 1− δ/2, we have:

RQ ≤ R̂+ ρ2(2− ρ2)
(
1− R̂

)
+ 2ρ(1− ρ2)

√
2− ρ2

√
V̂ + (1− ρ2)(

1− ρ2√
2Ncal

+
2
√
2ρ
√

2− ρ2√
Ncal − 1

)
√
ln(4/δ). (100)

By two-sided Hoeffding’s inequality, with probability 1− δ/4, we have:

R̂ρ ≤ RQ +

√
ln (8/δ)

2Ncal
. (101)
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Combining Eqs. (100) and (101) and applying the union bound, with probability 1− 3δ/4, we have:

R̂ρ ≤ R̂+ρ2(2−ρ2)
(
1− R̂

)
+2ρ(1−ρ2)

√
2− ρ2

√
V̂ +(1−ρ2)(

1− ρ2√
2Ncal

+
2
√
2ρ
√

2− ρ2√
Ncal − 1

)
√

ln(4/δ)+

√
ln (8/δ)

2Ncal
.

(102)
Recall that the controlled conformal risk α̂ can be formulated as a function of the empirical risk R̂ as Eq. (16). When
(Xtest, Ytest) is sampled from D, the guarantee of conformal risk is as follows:

P
[
R(Tλ̂;Xtest, Ytest) ≤ α̂ := min

{
h−1

(
8/δ

Ncal
; R̂

)
,Φ−1

bin

(
δ

8e
;Ncal, R̂

)}]
≥ 1− δ/4, (103)

where h−1(·; ·) is the partial inverse function such that h−1(h(a, b); a) = b with h1(a, b) = a log(a/b) + (1− a) log((1−
a)/(1 − b)). Note that α̂ monotonically increases in R̂. By Eq. (102), with probability 1 − 3δ/4, the following holds
about the conformal risk on distribution Q (denoted by α̂ρ), which is within bounded Hellinger distance ρ to the original
distribution D:

α̂ρ ≤ min

{
h−1

(
8/δ

Ncal
; R̂ρ

)
,Φ−1

bin

(
δ

8e
;Ncal, R̂ρ

)}
, (104)

where R̂ρ is formulated as:

R̂ρ = R̂+ρ2(2−ρ2)
(
1− R̂

)
+2ρ(1−ρ2)

√
2− ρ2

√
V̂ +(1−ρ2)(

1− ρ2√
2Ncal

+
2
√
2ρ
√

2− ρ2√
Ncal − 1

)
√

ln(4/δ)+

√
ln (8/δ)

2Ncal
.

(105)
Combining Eqs. (103) and (104) and applying the union bound, we can finally conclude that:

P
[
R(Tλ̂;Xtest, Ytest) ≤ α̂ρ := min

{
h−1

(
8/δ

Ncal
; R̂ρ

)
,Φ−1

bin

(
δ

8e
;Ncal, R̂ρ

)}]
≥ 1− δ, (106)

where R̂ρ is formulated as:

R̂ρ = R̂+ρ2(2−ρ2)
(
1− R̂

)
+2ρ(1−ρ2)

√
2− ρ2

√
V̂ +(1−ρ2)(

1− ρ2√
2Ncal

+
2
√
2ρ
√

2− ρ2√
Ncal − 1

)
√

ln(4/δ)+

√
ln (8/δ)

2Ncal
.

(107)

I.2. Proof and detailed remark of Thm. 3

Remarks. Our result rigorously characterizes the effect of distribution shift on the reduced risk guarantee of RAG. (R1)
Compared to Thm. 1, only the uncertainty of retrieval model pr(ρ) is affected by the distribution shift ρ. This affect is
reflected on the the retrieval quality Vrag(ρ). In particular, a large distance radius ρ will downgrade the retrieval quality
Vrag(ρ) and thus lead to a higher uncertainty pr(ρ). However, the influence of ρ on pr(ρ) can be reduced by Nrag inverse
proportionally and by Next exponentially, demonstrating the robustness of RAG with more retrieval knowledge. (R2)
Since Vrag(ρ) is proportional to model variance Vrag, a low-variance retrieval model demonstrates better robustness against
distribution drifts, aligning with existing empirical observations (Lam, 2016; Gotoh et al., 2018; Namkoong & Duchi, 2017),
which evaluate the generalization ability of low-variance retrieval models under distribution shifts. Different from Prop. 3,
the quality of retrieval models under distribution shifts is decreased from Vrag to Vrag(ρ) with a linear decay factor m(ρ).
As we require Vrag(ρ) < 1 to ensure high retrieval quality, large distribution shift radius ρ must be compensated by small
Vrag. This is consistent with the existing observations that low-variance models can generalize better under distribution
shifts (Lam, 2016; Gotoh et al., 2018; Namkoong & Duchi, 2017). (R3) Compared to Thm. 1, Thm. 3 has no dependence
on varying label portions r

(c)
cal during distribution shifts, as long as the size of external knowledge base Next is moderately

large, (Next > 2
√
2 ln 10/minc r

(c)
ext ) to offset the worst-case long-tail distributions, a condition often met in practice with large

knowledge bases.

Proof sketch. We apply Prop. 4 to provide the lower bound of the retrieved positive examples under distribution shifts. We
plug in the term and analyze the functionality (logit difference statistics) of the self-attention transformer as proof of Thm. 1.
Connecting the logit difference statistics to the empirical risks and the distribution-shifted conformal risk bound in Thm. 2
finally concludes the proof.
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Proof of Thm. 3. From Prop. 4, we prove that:

E [Npos] ≥ N pos :=
9

10
Nrag

(
1− 1.5NextVrag(ρ)

0.25
(
minc r

(c)
ext Next

))
. (108)

Since Npos is a binomial random variable with Nrag trials, we have the upper bound of the variance V[Npos] ≤
Nrag

4
.

Applying Chebyshev’s inequality to the random variable Npos, the following holds ∀npos < N pos:

P [Npos ≥ npos] ≥ 1−
V[Nrag]

(N pos − npos)2
≥ 1−

Nrag

4(N pos − npos)2
, (109)

which implicates that we can do the analysis with Npos ≥ npos with probability 1−
V[Nrag]

(N pos − npos)2
.

According to the proof of Thm. 1, by Eq. (62), we have the following:

E [R−Rrag] ≥ ΦM

((
(npos + 1)d+ − 1

)
npos

(∫ 1

−1

ΦM (v)dv − 1

))
− ΦM (0). (110)

.

Let nrag = Nrag/2. Combining Eq. (110) and Eq. (109), we get that if N pos > Nrag/2 > 1/d+, with probability

1−
Nrag

4(N pos −Nrag/2)2
, we have:

E [R−Rrag] ≥ ΦM

d+
(∫ 1

−1
ΦM (v)dv − 1

)
Nrag

2

− ΦM (0). (111)

Let R(Z) be the risk of Z sampled from the distribution Q. Define the empirical risk R̂ and R̂rag as the following:

R̂ =
1

Ncal

Ncal∑
i=1

R(Zi), R̂rag =
1

Ncal

Ncal∑
i=1

Rrag(Zi) (112)

Note that since the risk R(·) is bounded in [0, 1], the variance estimator V̂ =
1

Ncal(Ncal − 1)

∑
1≤i<j≤Ncal

(R(Zi)−R(Zj))
2

is bounded in [0, 1]. Leveraging the fact and according to Thm. 2, the statistical guarantee of conformal risk α̂ρ and α̂rag
ρ

with confidence 1− δ can be formulated as:

α̂ρ := min

{
h−1

(
8/δ

Ncal
; R̂ρ

)
,Φ−1

bin

(
δ

8e
;Ncal, R̂ρ

)}
where R̂ρ = R̂+ ρ2(2− ρ2)(1− R̂) + 2ρ(1− ρ2)

√
2− ρ2 + C(ρ,Ncal),

(113)

α̂rag
ρ := min

{
h−1

(
8/δ

Ncal
; R̂rag

ρ

)
,Φ−1

bin

(
δ

8e
;Ncal, R̂

rag
ρ

)}
where R̂rag

ρ = R̂rag + ρ2(2− ρ2)(1− R̂rag) + 2ρ(1− ρ2)
√
2− ρ2 + C(ρ,Ncal),

(114)

where C(ρ,Ncal) = (1− ρ2)

(
1− ρ2√
2Ncal

+
2
√
2ρ
√
2− ρ2√

Ncal − 1

)√
ln(4/δ) +

√
ln (8/δ)

2Ncal
.

Noting that α̂ρ is monotonically increasing in R̂ρ and R̂ρ is monotonically increasing in R̂, α̂ρ is monotonically increasing
in R̂. Then, the following holds by Hoeffding’s inequality:

P
[
α̂rag
ρ < α̂ρ

]
≥ P

[
R̂rag < R̂

]
≥ 1− exp

{
−2NcalE [R−Rrag]

2
}
. (115)
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Algorithm 3 Test distribution sampling protocol.

1: Input: original test set D, test sample pool Dpool, Risk function R(·, ·) : X × Y 7→ R
2: Output: empirical risk on the sampled test set Q R̂Q
3: Randomly sample Q from Dpool with equalized set size as D: |Q| = |D|

4: Evaluate empirical risks for all samples in Q: R̂Q =
1

|Q|
∑

(x,y)∈Q R(x, y)

5: Return R̂Q
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Figure 8: Conformal generation risk α̂rag and simulations of empirical risks with Biencoder-SFT for different Nrag and fixed
λg = 1, λs = 1.0.

Combining Eq. (111) and Eq. (115) and using the union bound, under the condition that N pos > Nrag/2 > 1/d+, we have:

P [α̂rag < α̂] ≥ 1− exp

−2Ncal
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2

− ΦM (0)

2
− Nrag

4(N pos −Nrag/2)2
. (116)

Combining Eqs. (108) and (116), under the condition that Next >
2
√
2 ln 10

rmext
, NextVrag(ρ)

0.25rmextNext <
8

17
, and Nrag >

2

d+
,

we can finally conclude that:
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(117)

J. Additional evaluation results

J.1. Experiment setup

Datasets We evaluate C-RAG on four NLP datasets with retrieval augmented generation utilizing an external knowledge
base. (1) AESLC: The Annotated Enron Subject Line Corpus (AESLC) dataset (Zhang & Tetreault, 2019) contains a
collection of email messages from employees of the Enron Corporation. It contains two primary features: the “email_body“,
which is the text of the email body, and the “subject_line“, which is the text of the email subject. The task is to generate
the email subject given the email body. (2) The Generative Commonsense Reasoning (CommonGen) dataset (Lin et al.,
2019) is a collection of commonsense descriptions, amounting to 79k descriptions over 35k unique concept sets, constructed
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Figure 9: Conformal generation risk α̂rag and simulations of empirical risks with BM25 for different Nrag and fixed
λg = 1, λs = 1.0.
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Figure 10: Conformal generation risk α̂rag and simulations of empirical risks with BAAI/bge for different Nrag and fixed
λg = 1, λs = 1.0.

via crowdsourcing and existing caption corpora. The task is to generate a sentence that uses given concepts in a coherent
and commonsense way. (3) The Data Record to Text (DART) dataset (Nan et al., 2020) is a large-scale dataset designed
to facilitate the generation of text from structured data records. It comprises 82,191 examples spanning various domains,
with each example being a set of Resource Description Framework (RDF) triples derived from data records in tables and
tree ontologies of schemas. These are annotated with sentence descriptions that encapsulate all the facts presented in the
RDF triplet. (4) The End-to-End Generation (E2E) dataset (Novikova et al., 2017) contains about 50k comments in the
restaurant domain. The task is to generate text from meaning representations (MRs), which are structured inputs that
describe various aspects of a restaurant. These MRs consist of slots and values that a model needs to convert into natural
language descriptions that are coherent and fluent.

External knowledge base: Following (Wang et al., 2023c; Wei et al., 2021; Cheng et al., 2023), we construct the external
knowledge base as the union of a total of 30 publicly available datasets from 9 distinct categories with over 6 million
documents.

Metrics For generation tasks, we leverage ROUGE-L to quantify the quality of generations. ROUGE-L measures the
longest common subsequence between a candidate generation and reference texts and is typically adopted for generation
quality evaluations across the literature (Lin, 2004; Gatt & Krahmer, 2018). A low ROUGE-L implies poor quality
generations and accordingly a high generation risk. Therefore, we adopt the risk function as 1− ROUGE-L to bound the
risk in [0, 1]. Note that C-RAG is agnostic to selection of risk functions, and thus, practitioners can specify any function that
suits their specific use cases.

Retrieval models We consider four types of retrieval models. (1) BM25 (Robertson et al., 2009) is a sparse encoding
metric used to rank the candidate documents given a query in information retrieval tasks. BM25 scores are linearly weighted
combinations of token-level scores and can be analytically formulated as a function of term frequency, inverse document
frequency, and length of documents. (2) BAAI general embedding (BAAI/bge) (Zhang et al., 2023a) trains the SOTA
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Algorithm 4 Shifted distribution sampling protocol.

1: Input: original test set D, test sample pool Dpool, Risk function R(·, ·) : X × Y 7→ R
2: Output: empirical risk on the shifted test set Q R̂Q, Hellinger distance between D and Q HPQ
3: Randomly sample Q from Dpool with equalized set size as D: |Q| = |D|
4: Randomly sample the sample weight vector of Q w ∈ ∆|D|

5: Compute Hellinger distance as HPQ =

√
1−

∑|D|
i=1

√
wi/|D|

6: Evaluate risks for all samples in Q with risk function R(·, ·): R̂Q ∈ R|D|

7: Compute the empirical risk on Q with weight vector w: R̂Q = wT R̂Q
8: Return R̂Q, HPQ
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Figure 11: Conformal generation risk α̂rag and empirical risks with Biencoder-SFT under distribution shifts with Nrag =
15, λg = 1, λs = 1.0.

embedding model in the MTEB benchmark (Muennighoff et al., 2022) and supports the diverse retrieval augmentation
needs of LLMs by a reward formulation based on LLMs’ feedback, the stabilization of knowledge distillation, multi-task
fine-tuning with explicit instructions, and homogeneous in-batch negative sampling. (3) OpenAI ada-text-embedding-02
(OpenAI/ada) is a close source text embedding models designed to convert text into high-dimensional vectors, which capture
the semantic meaning of the input text and can be used for a variety of tasks, such as text similarity, classification, and
clustering. (4) Biencoder-supervised fine-tuning (Biencoder-SFT) (Wang et al., 2023c) is a bi-encoder based dense retriever
trained with contrastive loss and hard negative sampling strategies. It iteratively trains the retrieval model with hard negative
samples identified by computing similarity scores by the current retrieval model.

Implementation details We leverage Llama-7b for inference without specification. We perform conformal calibration
on validation sets for different NLP datasets and fix the confidence levels 1− δ = 0.9 across all evaluations. Lastly, we
concatenate the retrieved in-context examples and the query sample with line break tokens.

J.2. Conformal risk bounds evaluation

Soundness and tightness of generation risk guarantees in C-RAG. To achieve the generation risk guarantee in Eq. (3),
C-RAG computes the upper confidence bound of generation risk by Prop. 1, which takes the empirical risk, calibration
size and confidence level as input. We evaluate the conformal risks of RAG models αrag with variations of the number
of retrieved examples Nrag by calibration statistics on the validation set. To validate the soundness and tightness of the
risk bounds, we randomly sample multiple test sets from a pool of test samples and compute the empirical risks on the
sampled test sets. The sampling protocol is detailed in Alg. 3 in App. J.2. We provide the results for BM25, BAAI/bge,
Biencoder-SFT in Figs. 8 to 10. The results show that (1) the certified conformal risks αrag (black up-pointing triangles)
are larger than the empirical risks of sampled test sets (grey points) and some empirical risks approach the risk bounds,
demonstrating the soundness and tightness of risk bounds in C-RAG, and (2) the conformal risks decrease much as the
number of retrieved examples Nrag increases, which shows the effectiveness of retrieved in-context examples in RAG model
and aligns with our theoretical analysis in Thm. 1.
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Figure 12: Conformal generation risk α̂rag and empirical risks with BM25 under distribution shifts with Nrag = 15, λg =
1, λs = 1.0.
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Figure 13: Conformal generation risk α̂rag and empirical risks with BAAI/bge under distribution shifts with Nrag = 15, λg =
1, λs = 1.0.

Comparisons of C-RAG risk bounds for SOTA retrieval models. We also compare the conformal risk bounds of C-RAG
for different retrieval models, including sparse encoding method BM25, and SOTA dense encoding models BAAI/bge,
OpenAI/ada, Biencoder-SFT. The results in Fig. 4 show that (1) RAG benefits in achieving a lower conformal risks of
generations for different retrieval models, and (2) Biencoder-SFT is the most performant generally since the model is
trained in the same domain as the test sets, while OpenAI/ada trained with an open corpus also demonstrates impressive
effectiveness and even outperforms Biencoder-SFT on CommonGen dataset.

J.3. Conformal risk bounds evaluations under distribution shifts

Soundness and tightness of distribution-shifted conformal risk bounds in C-RAG. The test user input text can be out of
the calibration distribution in practice, which needs correction of the conformal risk bounds considering the distribution drift.
We provide the first distribution-shfted conformal risk bounds for general bounded risk functions in Thm. 2. We evaluate
the bounds in Eq. (8) as a function of the distribution shifting distance measured by Hellinger distance ρ. To validate the
bounds, we also construct various test sets with covariate shift induced by sample weight shifting. Specifically, different
weights can be assigned to test samples in the shifted test sets and the Hellinger distance can also be explicitly computed
by the original sample weights and shifted sample weights. We provide the detailed procedure in Alg. 4 in App. J.3. We
provide the results of conformal risk bounds and simulated empirical risks with Nrag = 15 in Figs. 11 to 13 with BM25,
BAAI/bge, and Biencoder-SFT. The results demonstrate that (1) the distribution-shifted conformal risk bounds in Thm. 2
is sound and tight for different retrieval models, and (2) the conformal risk bounds increases linearly with the Hellinger
distance and are non-trivial for a Hellinger distance up to 0.2.

Comparisons of C-RAG distribution-shifted risk bounds for SOTA retrieval models. We compare the distribution-drift
conformal risk bounds for different retrieval models in Fig. 14. The results show that (1) the bounds for different retrieval
models increases linearly with a same slope as the Hellinger distance ρ increases, and (2) Biencoder-SFT and OpenAI/ada
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Figure 14: Conformal generation risk αrag vs. Hellinger distance ρ for different retrieval models under distribution shifts
with Nrag = 15, λg = 1, λs = 1.0.
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Figure 15: Conformal generation risk α̂rag and simulated empirical risks with different λg and Nrag for OpenAI/ada.

demonstrate lower conformal risk bounds for different distances due to a lower initial risk without distribution shifts.

J.4. Conformal risk bounds with multi-dimensional RAG configurations

We already theoretically and empirically demonstrate the effectiveness of retrieved in-context examples quantified by Nrag.
To further improve the conformal risk bounds, we can addtionally consider more RAG parameters such as the number of
generations λg in the generation set and a similarity threshold λs to control the diversity of generations as Alg. 1. We follow
the RAG generation protocol in Alg. 1 and define the risk function as the minimal risks among all candidate generations.
We similarly construct random test sets and provide the results on DART and E2E in Fig. 7. The results show that (1) the
conformal risk bounds for multi-dimensional RAG configurations are still sound and tight, and (2) a larger Nrag can reduce
the conformal risks more sensitively compared to the number of generations λg, demonstrating the effectiveness of more
retrieved in-context examples. We also fix the number of retrieved examples Nrag = 5 and the diversity threshold λs = 1.0,
and evaluate the certified conformal risk and empirical risk of randomly sampled test set in Fig. 17, which demonstrates that
although not effective as the number of retrieved examples, a larger generation set size also benefits a low generation risk.
Further more, we fix Nrag = 5, λg = 20, λs = 1.0 and evaluate the risks for different distribution drift distance in Fig. 16.
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Figure 16: Conformal generation risk α̂rag and empirical risks with Nrag = 5, λg = 20, λs = 1.0 under distribution shifts
for Biencoder-SFT.
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Figure 17: Conformal generation risk α̂rag and simulated empirical risks for different generation set size λg and fixed
Nrag = 5, λs = 1.0 for Biencoder-SFT.

J.5. Valid configurations identification with specified risk levels

In conformal analysis (2) in Sec. 4.3, given a desired risk level α, C-RAG can certify a set of valid configurations Λ̂α such
that any configuration in the set results in a conformal risk below α. We use Bonferroni correction for family-wise error
rate control and evaluate empirical risks on randomly sampled test sets for the identified valid configurations. We provide
the results on DART and ECE datasets in Fig. 15. The results demonstrate that (1) the certification is empirically sound
since the empirical risks of valid configurations Λ̂α are always below the desired level α, and (2) a large number of retrieved
examples Nrag and a large generation set size λg are effective in achieving a low generation risk since the valid configuration
set includes the region with a large Nrag and λg . We also individually demonstrate the effectiveness of generation set size λg

and diversity threshold λs in Figs. 17 and 18.

J.6. Conformal generation risks with different inference models

Table 1: Comparison of conformal generation risk α̂rag with different Nrag using Llama-2-7b, Mistral-7B-Instruct-v0.2, and
Llama-2-13b. The results are evaluated on the AESLC dataset with text-embedding-ada-002 from OpenAI as the retrieval
model.

Model Nrag = 0 Nrag = 1 Nrag = 2 Nrag = 3 Nrag = 4 Nrag = 5
Llama-2-7b 0.953 0.957 0.879 0.868 0.847 0.836
Mistral-7B-Instruct-v0.2 0.897 0.829 0.813 0.795 0.792 0.793
Llama-2-13b 0.889 0.823 0.802 0.792 0.772 0.772

We conduct additional evaluations of the conformal generation risk (upper bound of the generation risk) of C-RAG with
different types of inference models as well as models with different sizes. The results in Table 1 demonstrate that (1)
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Figure 18: Conformal generation risk α̂rag and simulated empirical risks for different diversity threshold λs with fixed
Nrag = 5, λg = 20 for Biencoder-SFT.

for different inference models, the conformal generation risk decreases effectively as the number of retrieved in-context
examples Nrag increases, and (2) given that Llama-2-13b outperforms Llama-2-7b in the evaluations, models with larger
sizes in the same model family achieve a lower conformal generation risk.

J.7. Qualitative example
Table 2: A qualitative example.

Prompt Generation set
Vanilla generation Which team won the 2020 World

Cup?
“The 2020 World Cup was not held
in 2020 due to the COVID-19 pan-
demic.”

RAG generation protocol
(Nrag = 1)

The World Cup is held every four
years. France won the 2018 World
Cup in Russia. Argentina won the
2022 World Cup in Katar.
Which team won the 2020 World
Cup?

“The 2020 World Cup has not yet
been held.”

RAG generation protocol
(Nrag = 1, λg = 3)

The World Cup is held every four
years. France won the 2018 World
Cup in Russia. Argentina won the
2022 World Cup in Katar.
Which team won the 2020 World
Cup?

“The 2020 World Cup has not yet
been held.”, “2020 World Cup is not
held yet.”, “2020 World Cup has not
held yet.”

RAG generation protocol
(Nrag = 1, λg = 3, λs =
0.5)

The World Cup is held every four
years. France won the 2018 World
Cup in Russia. Argentina won the
2022 World Cup in Katar.
Which team won the 2020 World
Cup?

“The 2020 World Cup has not yet
been held.”, “The 2020 World Cup
was not held due to the COVID-19
pandemic”, “2020 was not the year
for any World Cup as the tourna-
ment”

In Table 2, we use the following qualitative example to illustrate the effectiveness of our RAG protocol. Consider the
input prompt, "Which team won the 2020 World Cup?" This prompt is inherently misleading, as there was no World
Cup event scheduled for 2020. In the vanilla generation process, the model (LLAMA-2-7B-32K-INSTRUCT) produces a
misconception stating, “The 2020 World Cup was not held in 2020 due to the COVID-19 pandemic.” By integrating one
retrieved result (Nrag = 1) into the prompt: "The World Cup is held every four years." the model no longer falsely attributes
the absence of the event to COVID-19. However, it still fails to recognize that 2020 was not a designated year for the World
Cup. Simply increasing the generation set size to λg = 3 yields similar results, failing to address the core issue. Nonetheless,
by imposing diversity constraints on the generations λs = 0.5, the model correctly identifies the crux of the matter: “2020
was not the year for any World Cup as the tournament”.
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