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ABSTRACT

The matrix local low rank representation (MLLRR) is a critical dimension reduc-
tion technique widely used in recommendation systems, text mining and computer
vision. In MLLRR, how to robustly identify the row and column indices that form
a distinct low rank sub-matrix is a major challenge. In this work, we first organized
the general MLLRR problem into three inter-connected sub-problems based on
different low rank properties, namely, LLR-1C, LLR-1, and LLR-r. Existing so-
lutions on MLLRR all leverage problem-specific assumptions and mainly focused
on the LLR-1C problem, which lacks the capacity to detect a substantial amount
of true and interesting patterns generalizability and prohibits. In this work, we de-
veloped a novel multiple-filter based neural network framework, namely FLLRM,
which is the first of its kind to solve all three MLLRR problems.We systematically
benchmarked FLLRM with state-of-the-art methods on an extensive set of syn-
thetic data, empowered by a robustness evaluation of parameters and theoretical
discussions. Experimental results showed that FLLRM outperforms all existing
methods and enables a general solution to all the three sub-problems. Experiments
on real-world datasets also validated the effectiveness of FLLRM on identifying
local low rank matrices corresponding to novel context specific knowledge.

1 INTRODUCTION

Matrix low rank approximation has been widely utilized for dimension reduction and matrix com-
pletion in many fields, such as image processing, collaborative filtering, text mining, and biological
high throughput omics data analysis [1; 2; 3; 4; 5; 6]. Linear low rank representation approximates a
matrix by a low rank matrix generated from a few number of linear bases. Conventional solutions of
global low rank representations include truncated singular value decomposition (SVD) and nuclear
norm based approaches, which have been widely utilized in data processing and visualization.

Although the global solutions to low rank approximation can capture the major co-variance structure,
real world data are always generated from more complicated processes, under which both features
and incidences may form subspace structures, where each of the subspace preserves distinctive
structures “local” to the subsets of features and incidences. As illustrated in Fig 1, a matrix is
generated from the sum of a series of local low rank matrices (Fig 1). One example of such “locality”
property is the purchase history data, where a subset of items were purchased under a common
reason in a subset of customers, while neither the items or the users sharing a common purchase
reason is known [7]. Similarly, in biological single cell RNA-sequencing data, subgroups of genes
were regulated by unknown signals possessed by subset of cells, which form local low rank matrices
corresponding to different gene coregulation modules [8; 9; 10]. Another example is hyperspectral
imaging data, in which hyperspectral pixels of certain geometric structures form distinct local low
rank patterns [11; 12]. Compared with a global low rank representation, Matrix Local Low Rank
Representation (MLLRR) provides more interpretable patterns hidden in the data enabled by the
locality and hence sparse assumptions, as well as more accurate characterization of the data structure
by solving the subspace structure encoded in the data.

For an input matrix X , MLLRR aims to identify K submatrices with row and column index set
denoted as Ik × Jk, k = 1. . .K, such that the submatrix XIk×Jk

has a low matrix rank. Notably,
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Figure 1: One example of the Matrix Local Low Rank Representation (MLLRR) Problem.

Ik and Jk can be any subset of row and column indices, hence the total number of possible Ik × Jk
is 2N+M , making the MLLRR problem NP-hard [13]. Existing methods for MLLRR include three
types: (1) Co-clustering approach identifies submatrices with distinct mean comparing to back-
ground [14; 15]. (2) Sparse matrix decomposition based methods approach the problem by sparsify-
ing the pattern matrices with an L1 penalty [16; 17; 18; 19; 20; 21]. (3) Anchor-based methods first
pinpoints local regions using certain primitive similarity measure, and further conducts a low rank
fitting to each anchored region [22]. In summary, existing methods circumvent the real challenges
in MLLRR by introducing additional assumptions that are only applicable to special cases. There
is lack of a general capability to tackle the MLLRR problem, especially for detecting submatrices
with strong coherent structure but weak mean signals compared to the background noise. This calls
for an urgent and unmet need of a new solution.

The challenges in the general MLLRR problem arise from two aspects: (1) the total number, row
and column indices, density and rank of the local low rank matrices are always unknown, and (2)
the noise distribution of different local low rank matrices and background are unnecessarily i.i.d
(independent and identically distributed), which prohibits a direct application of convex optimiza-
tion or probabilistic generative model. To tackle the two challenges, we first formally categorized
the MLLRR problem into three sub-problems based on their different low rank properties, namely
LLR-1C (sub-matrix with a spiked mean), LLR-1 (sub-matrix of rank-1 ), and LLR-r (sub-matrix
of rank-r, r > 1), and argued that existing methods failed to offer a general solution to the LLR-1
and LLR-r problem. We generalized the local low rank property of a matrix that there exists a high
inner product between each of its row (or column) and a vector close to its top row (or column)
bases within a sub-matrix, which enables the identifiability of MLLRR. Based on this consider-
ation, we developed a novel multiple-filter based approach, namely FLLRM (Filter-based Local
Low Rank Matrix detection). FLLRM adopted the idea of local pattern detection in convolutional
neural network, by a hierarchical data sampling, convolution with a set of predefined low rank fil-
ters, and classification and prediction of the category of local low rank matrices. We systematically
benchmarked FLLRM with state-of-the-arts (SOTA) methods and evaluated its subalgorithms and
parameter setting on extensively simulated data and two real-world datasets. FLLRM outperformed
all SOTA methods on different MLLRR sub-problems. FLLRM is the only capability can iden-
tify the local low matrix whose mean is close to the background, and handle non-Gaussian errors.
Application of FLLRM on real world data also detected context meaningful local low rank matrices.

To the best of our knowledge, FLLRM is the first method that provides a general solution to all the
aforementioned three MLLRR sub-problems. The key contributions of this work include:

(1) Generalizing the MLLRR problem: We generalized the MLLRR problem and its mathematical
formulation into three different sub-problems and discussed the progress of existing methods on each
sub-problem.
(2) A novel perspective in local low rank matrix detection: FLLRM is the first method that utilizes
multiple-filter and a neural network architecture to solve the MLLRR problem. Mathematically
meaningful importance sampling, low rank filters, and convolutional computation were designed to
leverage the detection power and computational feasibility.
(3) The first general solution of MLLRR: The FLLRM framework is the first method that provides
a general solution for the unsolved LLR-1 and LLR-r problems and can handle different types of
error distributions in MLLRR. FLLRM also outperforms SOTA methods on the LLR-1C problem.
(4) Scalability: the FLLRM framework can be applied to large scale datasets.
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2 PRELIMINARIES

2.1 NOTATIONS

In this study, we denote a matrix with M rows and N columns as XM×N , and its entry of the ith
row and jth column as Xij . We denote a set of row and column indices as Ik ⊂ {1, ...,M} and
Jk ⊂ {1, ..., N}, respectively, and XIk×Jk

as a submatrix with row and column indices Ik, Jk. For
a matrix Z, we use tSVD∗(Z) to denote its most optimal truncated SVD, namely, tSVD∗(Z) =
UΣ(r)V T , in which U, V are the left and right singular matrix of Z, and Σ(r) is the diagonal matrix
of Z’s singular values, where all except for the top r singular values are forced to be zero. Here r is
the total number of non-zero singular values, or the numerical rank of Z.

2.2 MATHEMATICAL FORMULATIONS

The MLLRR problems can be categorized into three sub-problems, namely local low rank 1 with
constant mean (LLR-1C), local low rank-1 (LLR-1), and local low rank-r (LLR-r), under the no-
tations of the optimal truncated SVD [23]. Detailed mathematical definitions of the three sub-
problems are given below:

Give XM×N , MLLRR identifies submatrices indexed by Ik × Jk, k = 1, ...,K, s.t.

LLR-1C:

E(Xij) = uk,∀(i, j) ∈ Ik × Jk
E(Xij) = u0,∀(i, j) /∈ Ik × Jk

(2.1)

LLR-1:
tSVD∗(XIk×Jk

) = UkΣ
(1)
k V T

k (2.2)

LLR-r:
tSVD∗(XIk×Jk

) = UkΣ
(r)
k V T

k , r > 1 (2.3)

Noted, LLR-1 is a special case of LLR-r when r = 1. A unique property of LLR-1 is that the row
(or column) features in a LLR-1 submatrix are highly linearly correlated as they are generated from
the same row (or column) basis. Two types of distribution for the background noise were commonly
assumed in matrix low rank representation, namely (1) Gaussian and (2) a mixture of Gaussian and
rare component corresponding to outlying entries. Specifically, (1) models the i.i.d Gaussian error
in the whole matrix or specific to each column or row, while (2) assumes certain abnormal entries in
a submatrix may corrupt its low rank fitting.

2.3 RELATED WORKS

Co-clustering methods simultaneously clusters rows and columns of a two-dimensional data ma-
trix. The general assumption is that the targeted sub-matrix has a mean structure heavily shifted
away from zero, comparing to the background noise. The goal of co-clustering is to find a ma-
trix partition defined by {Ik, Jk}Kk=1 such that the following objective function is minimized:∑

k

∑
i∈Ik,j∈Jk

d(xij , µk). Here µk is the mean value of the k-th co-cluster; the distance mea-
sure d(·) could have a variety of definitions: in Bregman co-clustering [15], it is defined as the
Kullback–Leibler divergence; while in the plaid model, it is defined as the Eucleadian distance
[24]. Matrix decomposition based methods identify local low rank matrices by imposing L1 sparse
penalty to the pattern matrices, such as factor matrices [20] and singular matrix [16; 18; 17; 19].
However, both the co-clustering and matrix decomposition based methods assume distinct mean
differences between the pattern and background matrix. In addition, they tend to detect large sub-
matrix that may explain better the variance of the whole matrix, while sacrificing the locality of
the submatrices [16; 17]. For anchor-based methods, Lee et al. proposed the LLORMA method by
using prior knowledge to select anchors of local low rank patterns [25]. As listed in table 1, Kh

Ω
is the kernel function with bandwith h to smooth the projection value PΩ(·) near the anchor points
Ω. However, this type of methods, highly depends on prior knowledge or LLR-1C property of local
low rank patterns cannot solve the general MLLRR problem.
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Table 1: Existing methods of MLLRR

Methods Examples Formulation Tasks Assumption Ref.

Co-clustering Bregman; min
∑

k

∑
i∈Ik,j∈Jk

d(xij , µk) LLR-1C Matrix [15; 24]Plaid partition
Matrix SSVD;

min(||X − UV T ||2F + λu||U ||1 + λv||V ||1),
LLR-1C Sparse [17; 20]decomposition PMD LLR-1 patterns

Anchor based LLORMA
min(KX[Î,Ĵ] � PX[Î,Ĵ](X − X̂)), s.t. rank(X) = 1 LLR-1 Submatrix [25; 26]methods WEMAREC detection

2.4 COMPUTATIONAL CHALLENGES

The three MLLRR sub-problems summarized in Section 2.2 are NP-hard [13], which raises the
following critical challenges: both row and column indices, the low rank bases, and the total number
of the local low submatrices are unknown. Moreover, varied error types such as the Bernoulli outliers
may diminish the low rank pattern of the whole sub-matrix. In addition, the high computational
intensity of SSVD and anchor based methods prohibits the application to large scale data. Noted,
co-clustering and Plaid focus on the LLR-1C problem, while SSVD and anchor-based method also
utilize the LLR-1C property to seed possible local low rank matrices. Hence, there is lack of a
general and effective solution of the LLR-1 and LLR-r problems in the public domain, especially
when the mean of the pattern is similar to the background. The above challenges call for a more
robust approach for the general MLLRR problem.

3 FLLRM ALGORITHM AND MATHEMATICAL BASIS

We develop the FLLRM (Filter based Local Low Rank Matrix detection) framework to robustly
solve the three MLLRR sub-problems, inspired by the ‘local connectivity’ of the convolutional
neural network (CNN) [27]. In imaging processing, CNN is capable of exploiting the locality of
the images based on convolving sub-parts of the input image with different filters, and then creates
representations of small local parts of the input, from where, the larger areas of the images are
assembled. Different from images, a matrix is usually unstructured, meaning random permutations
of the rows and columns of the matrix doesn’t alter the local low rank patterns, and that there is a
lack of an analogous proximity measure between the features as in an image.

FLLRM is designed with several key procedures in order to implement a similar convolution idea
to capture the locality of an unstructured data matrix. Since there is no natural proximity measure
between the features, a full permutation of either the matrix rows and columns or the filters is needed
to ensure the identifiability of the local pattern, which is infeasible to large data set. We adopted the
idea of random projection (RP) such that the matrix could be randomly cast onto its sub-parts, of
which the locality could be better investigated using pre-defined filters [28; 29; 30]. RP works by
projecting a high dimensional matrixX into lower dimensions with a given projection matrix, while
only slightly distorting the distances between the original data points. The projection matrix could
be highly versatile [31; 28; 32], and by carefully designing the random projection matrix, one could
preserve the most desirable property of the original matrix (Lemma 2). In FLLRM, we implement
a two-step matrix sampling approach to first slice a large matrix into medium matrix slices and
randomly sample small matrices from each slice, which is equivalent to random projection with
highly sparse projection matrix. The mathematical consideration of FLLRM is that a small matrix
randomly sampled from a region enriched by a local low rank pattern is more likely to inherit the low
rank property, which could be feasibly identified by a set of filters. Instead of training filters from
scratch, we use a set of pre-defined filters that could maximally capture the possible patterns of the
linear bases. We first illustrate the FLLRM algorithm and further provide mathematical discussions.

3.1 THE FLLRM ALGORITHM

The FLLRM framework is composed of six major steps as illustrated in Fig 2. Algorithm 1 illus-
trated the main algorithhm of FLLRM, while all the sub-algorithms are described in APPENDIX.
The input of FLLRM is a real matrix XM×N , filter set F , convergence criteria τ , and parameter
set Θ. The output is a series of local low rank matrices XIk×Jk

. Specifically, FLLRM first slices
(i) XM×N into a number of P × P matrix partitions (covering every entry and the slices are not
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Figure 2: The framework of the FLLRM algorithm.

overlapped), denoted as {E1, . . . , EMr
}×{F1, . . . , ENr

}, by using a randomized thresholding SVD
based algorithm Matrix Slicing [33]. This step reduces the input data into a number of partitions
that ensures the largest local low rank pattern enrich to at least one partition (Lemma 1). (ii) R
small Q × Q (Q � P ) matrices are further randomly sampled from each P × P matrix slice
by Random Sampling; (iii) Low Rank Bases Filtering NN computes the inner product between
each row and column of each sampledQ×Qmatrix against a set of predefined local low rank filters
and (iv) denoise the computed inner products to a T × T scoring matrix by using convolution and
max-pooling functions, (v) Local Low Rank Prediction utilizes an unsupervised variaional auto-
encoder (VAE) to predict the local low rank property of each Q × Q matrix based on their scoring
matrix, and (vi) Random Walk Clustering counts the frequency of each row/column index pair in
the predicted local low rank Q × Q matrices and reconstructs the local low rank matrix in X by a
spectral bi-clustering algorithm.

Algorithm 1: FLLRM

Inputs: A real matrix XM×N , low rank filter set F , convergence criteria τ , and other
parameters Θ

Outputs: The indices set {I × J }, where Ik ∈ I, Jk ∈ J , k = 1...K, XIk×Jk
is a low rank

matrix.
FLLRM(X,F , τ,Θ = {P, rMS , sMS , Q, r}):
I ← ∅,J ← ∅, k ← 0
while !τ do

L← ∅
X = X{E1,. . . ,EMr}×{F1,. . . ,ENr} ←Matrix Slicing(X,P, rMS , sMS)
Y← ∅
for each matrix slice XEi,Fj in X, Ei × Fj ∈ {E1, . . . , EMr} × {F1, . . . , ENr} do

XEi,Fj ←
XEi,Fj

−mean(XEi,Fj
)

sd(XEi,Fj
)

YEi,Fj
← Random Sampling(XEi,Fj

, Q, r)
append(Y,YEi,Fj

)
end
for each Q×Qmatrix Yp in Y do

Op ← Low Rank Bases Filtering NN(Yp,F)
append(L,Local Low Rank Prediction(Op))

end
LLRM← Random Walk Clustering(L)
for each local low rank module LLRMp identified in LLRM do

Ik ← row indices of LLRMp, Jk ← column indices of LLRMp

k + +
I ← append(I, Ik),J ← append(J , Jk)
X ← Random Shuffle(X, Ik × Jk)

end
end

In Algorithm 1, the P , rMS , sMS , Q, and r are parameters of Matrix Slicing and
Low Rank Bases Filtering NN, respectively; I,J denotes set of the indices of detected local
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low rank matrices; mean and sd represent mean and standard deviation; YEi,Fj
,Op, and L rep-

resent the set of Q × Q matrices randomly sampled from XEi,Fj
, the inner product matrix of each

Q × Q matrix, and the set of scoring matrices of all sampled Q × Q matrices. τ is the conver-
gence criteria, which can be set as detecting a certain number of patterns or a threshold of the top
singular value divided by the nuclear norm. The sub-algorithms Random Sampling conducts a
simple random sampling, and Low Rank Bases Filtering NN, Local Low Rank Prediction and
Random Walk Clustering adopt existing convolution computation, unsupervised VAE and spec-
tral bi-clustering algorithms. Below we discuss the mathematical considerations of Matrix Slicing
and filter set determination. We also provide theoretical derivations to justify the rationale of
Matrix Slicing and Low Rank Bases Filtering NN (Lemma 1-3) and optimization of parameters
and filer set on simulated data. Details of all sub-algorithms are provided in APPENDIX.

3.2 MATHEMATICAL DISCUSSIONS

To the best of our knowledge, FLLRM is the first method using multiple-filter and a neural network
architecture to detect local low rank matrices. While substantial number of parameters, filters, and
selection of predictors can be adjusted to fit different data and tasks, the most critical settings that
determine the detection power are (1) if the matrix slicing procedure can ensure the enrichment
of the largest local low rank pattern in at least one matrix slice and (2) if the filters are sensitive
enough to detect true local low rank patterns. To justify (1), we derive Lemma 1, which suggests
that if the largest LLR-1 sub-matrix is large enough, under a proper parameter setting, at least one
matrix slice determined by the thresholding SVD approach described in Matrix Slicing will enrich
to the sub-matrix. To justify (2), we adopt the Johnson-Lindenstrauss Theorem (Lemma 2) and
note that the LLR-1C and LLR-1 problem can be transformed into a LLR-1 problem of small mean
difference betwee the pattern and background noise (Lemma 3). Noted, we also justified (1) and (2)
by conducting experiments on synthetic data.

Lemma 1. For a real matrix XM×N , if there is at least one LLR-1 sub-matrix in X , denote the
size of the largest LLR-1 sub-matrix as M0 ×N0, if rMS,1 > 1/max{M0

M , N0

N }
sMS,1 and the other

rMS,i are large enough, by expectation at least one matrix slice determined by the thresholding SVD
approach described in Matrix Slicing will enrich to the sub-matrix.

Lemma 2 (Johnson-Lindenstrauss Theorem, Dasgupta&Gupta 2003). For any 0 < ε < 1 and
any integer n, let q be a positive integer such that q ≥ 4

(
ε2/2− ε3/3

)−1
lnn. Then for any set V

of n point in Rp, there is a map f : Rp → Rq such that for all u, v ∈ V

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

Lemma 3. For a given matrixX , if a method can detect Ik×Jk, s.t. tSVD∗(XIk×Jk
) = UkΣ

(1)
k V T

k ,
under the constraint of mean(XIk×Jk

)=mean(X), it can solve both LLR-1C and LLR-1 problem.

The proof of Lemma 1,3 are available in APPENDIX and Lemma 2 was proved in the original
paper [30; 29]. To prove Lemma 1, we also derived the lower bound of the parameters sMS,1 and
rMS,1 to ensure at least one matrix slice is enriched by the local low rank sub-matrix. Lemma 2
states that a set of n points in high dimensional Euclidean space can be mapped into anO

(
log n/ε2

)
-dimensional Euclidean space such that the distance between any two points changes by only a factor
of (1± ε). Lemma 3 suggests that for any method can detect the LLR-1 matrix with the same mean
as the background noise can generally solve all LLR-1C and LLR-1 problem. Specifically, Lemma
1 suggests the largest local low rank matrix will be enriched to at least one P × P matrix slice
and Lemma 2 suggests its local low rank property will be further inherited in the Q × Q matrices
randomly sampled from the matrix slice, which could be identified by filters in the low dimension
of RQ. Noted, a larger number of filters could achieve a higher maximal inner product with any
vector in RQ. However, too many filters will decrease the specificity and increase the computational
consumption. In addition, controlling the size of filter sets enable a largerQ, which also increase the
specificity. Lemma 3 suggests that only the filters with zero mean need to be considered, since when
mean(XIk×Jk

)=mean(X), all the low rank bases of mean(YIk×Jk
) in Y =X-mean(X) are with a

zero mean. Lemma 2 and 3 largely reduce the number of filters need to be considered and suggest
the computational feasibility of FLLRM. Selection of optimal filter set is given in APPENDIX.

Scalability. The computational complexity of Matrix Slicing is O(max{M,N}3). The Ran-
dom Sampling has a total complexity of O(MNr), where r is the number of submatrices to

6



Under review as a conference paper at ICLR 2021

be sampled on each P × P patch. The Low Rank Bases Filtering NN has a total complexity
O(MNrF ), where F is total number of filters. The complexity of other sub algorithms are much
less than Matrix Slicing. Hence the total complexity of FLLRM is O(max{M,N}3). Detailed
scalability analysis is provided in APPENDIX.
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Figure 3: Benchmark of FLLRM on Synthetic Data.

4 EXPERIMENTS ON SYNTHETIC DATA

We evaluated the performance of FLLRM and its sub algorithms on synthetic datasets with a com-
prehensive setting regarding four different aspects: (i) the overall performance of FLLRM on the
LLR-1 and LLR-r problem and comparison with SOTA methods; (ii) running time of FLLRM and
comparison with SOTA methods; (iii) the effectiveness of the Matrix Slicing algorithm; and (iv)
the effectiveness and optimization of filter length and filter sets.

We simulated data with local low rank sub-matrix by the general form: X = Xpattern + Xnoise.
For (i,iii,iv), X is fixed as a 1000 × 1000 matrix and Xn×n

pattern = UV T . Three different sizes of
X were utilized in evaluating the scalability. The pattern is denoted as XIlJl

, where Il and Jl are
the index set of the non-zero entries in U,l and V,l, respectively. Each non-zero entry in U,l and
V,l is generated from the uniform distribution U(0, 1). The size, mean and error of Xpattern were
perturbed. Denoting sd as the standard deviation of the background error, we simulated series of data
with one rank-1 local low rank matrix: (1) varied pattern mean (0-3×sd) with fixed size (200× 200,
500 × 500) and error (0 and 0.1 times of sd); (2) varied error (0-3×sd) with fixed size (200 × 200,
500 × 500) and mean (0 and 0.1 times of sd); (3) varied pattern size (100-500) with fixed mean (0
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Figure 4: Filter Parameters Experiment.

and 0.1 times of sd) and error (0 and 0.1 times of sd). In total, we achieved 284 different simulation
scenarios, each is with 5 replications. See details of experiments in APPENDIX.

4.1 BENCHMARK OF FLLRM ON SYNTHETIC DATA

We benchmark FLLRM with five SOTA methods, namely Bregman co-clustering (CC) and Plaid,
two sparse matrix decomposition methods (SSVD and SPCA), and one anchor based method
LLORMA. Specifically, an optimized parameter set P=50, Q=7, τ={the top 10 patterns}, F={full
permutation of {-1,-1,0,0,0,1,1}, {-1,-1,-1,0,1,1,1}, {-2,-1,0,0,0,1,2}, {-2,-1,-1,0,1,1,2}} were
utilzed for FLLRM. We evaluated the methods based on the accuracy of detecting the true pat-
tern and background noise. Details of parameter optimization of FLLRM, experimental setting of
other methods and evaluation metric are provided in 4.2 and APPENDIX.

We first evaluated the performance FLLRM on the LLR-1 problem under the three aforementioned
simulation settings. Fig 3a-c illustrated the accuracy (y-axis) of FLLRM (red) and other methods
under different simulation parameters. Overall, FLLRM achieved higher than 0.85 accuracy under
most settings, which is consistently higher than baseline methods. SPCA failed to identify a pattern
while CC recognize the whole matrix as one pattern when analyzing a dense matrix, hence these
two methods were excluded in further analysis. The experiment of perturbed mean demonstrated
that FLLRM is highly robust to the difference in the mean of the pattern and background noise (Fig
3a), particularly, it is the only method that can identify the pattern when its mean is close to the
background mean, i.e., the LLR-1 problem without the LLR-1C property. In contrast, LLORMA,
SSVD and Plaid cannot detect the pattern when the mean difference with respect to the background
noise is small and their prediction accuracy increases when the mean difference becomes more
distinct. All methods showed a decreased prediction accuracy with respect to the increase of the
pattern error. FLLRM and LLORMA are more robust to higher pattern errors comparing to SSVD
and Plaid. The size test suggested that FLLRM can accurately identify the pattern when its size of the
pattern is larger than 150×150 in a 1000×1000 matrix. On the other hand, the prediction accuracy
of FLLRM and LLORMA increases while the the accuracy of SSVD and Plaid decreases when
the pattern size increases. An explanation is that the larger pattern is easier to be identified by the
Matrix Slicing in FLLRM or the anchoring procedure in LLORMA while the sparse assumption of
SSVD and Plaid limits the pattern size. We also evaluated the performance of FLLRM on simulated
datasets with 2 and 4 patterns, namely,K = 2, 4, on which FLLRM achieved a satisfactory accuracy
(Fig 3d1-2). It is noteworthy that FLLRM can iteratively identify and remove the top local low rank
pattern from the input matrix, which enables a comprehensive detection of multiple patterns. We
evaluated the time consumption of the methods on dense matrices of three sizes, 102×102, 103×103,
and 104 × 104 (Fig 3d3). The running time of FLLRM, Plaid and LLORMA are at a similar level,
where FLLRM is faster than LLORMA and slower than Plaid. Here we focus on the LLR-1 problem
in a dense matrix. Both LLORMA and Plaid are more efficient on the LLR-1C problem in a sparse
matrix. We also evaluated FLLRM on the LLR-r problem with r=2,3,4 (Fig 3d4) and demonstrated
that FLLRM has a high robustness in detecting LLR-r patterns.

4.2 ROBUSTNESS ANALYSIS OF SUB ALGORITHMS AND PARAMETER OPTIMIZATION

We also evaluated the effectiveness of the Matrix Slicing, Low Rank Bases Filtering NN and
Local Low Rank Prediction algorithms and optimized the filter length and filter sets. We observed
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the Matrix Slicing achieved at least one matrix slice enriched to the true pattern under all test
settings, suggesting the effectiveness of the sub-algorithm (see details in APPENDIX). Lemma 2,
3 and the mathematical discussion suggested possible optimal filter settings. We further evaluated
the prediction accuracy achieved by different filter lengths and sets. To leverage the prediction
specificity and computational feasibility, we evaluated six sets of filters of length 7 and 9 on the
synthetic data with varied values of pattern mean, error and size (see details in APPENDIX). Fig
4 illustrated the prediction accuracy (y-axis) of the pattern under different setting and parameters.
We identified the 7-digit filter set composed by the full permutation of {-1,-1,0,0,0,1,1}, {-1,-1,-
1,0,1,1,1}, 1,2}, and {-2,-1,-1,0,1,1,2}, totaling 2,450 filters, achieved more than 0.8 (averaged
0.96) prediction accuracy and consistently outperform other filter settings in all experiments, hence
was selected as the optimal filter set.

5 EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

Single cell RNA-sequencing (scRNA-seq) is a new type of high throughput molecular profiling com-
monly utilized in biological and biomedical fields [34]. More than 5,000 scRNA-seq data have been
generated since 2016. A typical scRNA-seq data is a sparse matrix that measures expression level
of ∼10,000 genes (rows) in ∼5,000 individual cells (columns). Recent system biology analyses
suggested that the LLR-1C, LLR-1 and LLR-r matrices in scRNA-seq directly correspond to sub
population of cells with distinct functional variation [35; 9]. We applied FLLRM and other SOTA
methods on two real-world scRNA-seq data, GSE72056 (melanoma) and GSE103322 (head and
neck cancer), the two high quality datasets that are most commonly utilized in testing pattern detec-
tion methods on scRNA-seq data [36; 37]. We utilized standardized data normalization protocol and
selected the 4000 top expressed genes and the 2000 cells of the top total expression level to build our
testing data. Four evaluation were utilized to evaluate the performance of each method, namely (1)
the Low Rankness, evaluated by the averaged Pearson correlation between the rows and the first row
base, and (2) the Size, of each identified local low rank matrix, (3) the total Coverage Rate of all the
identified local patterns, and (4) the Running Time. Detailed background information, processing
approach and evaluation metrics of the scRNA-seq data are provided in APPENDIX.

We evaluated the top six local low rank matrices identified by each method. The low rankness
of all the patterns identified by FLLRM are consistently higher than the ones detected by other
methods (Fig 5a). Specifically, to ensure a fair comparison of the patterns detected by different
methods, we extract the 200 rows and 100 columns of the largest absolute value of the first row and
column bases of each pattern detected by LLORMA and SSVD, i.e. the rows and columns with
strongest low rankness, to ensure the sub-matrices formed by them are consistently smaller than the
patterns detected by FLLRM (Fig 5b). We observed the low rankness of these top significant low
rank patterns detected by LLORMA and SSVD are also consistently lower than the ones detected
by FLLRM (Fig 5a). All the local patterns detected by SPCA only have three columns. Plaid
and CC only detected one local pattern, whose low rankness is much lower than the ones detected
by FLLRM, LLORMA and SSVD. The pattern detected by CC is much larger than then pattern
detected by other methods. Noted, the patterns identified by FLLRM do not only have the highest
low rankness, but also achieved the highest total coverage over the input matrix. The FLLRM is
with longer running time than SSVD and SPCA but is faster than LLORMA and CC on the two
real-world datasets. We also examined the biological meaning of the low rank patterns detected by
FLLRM, LLORMA and CC by testing the enrichment of the gene features of each pattern against
known biological pathways. Noted, three local low rank matrices correspond to distinct biological
functions in cell metabolism, cell proliferation, and antigen presentation are only seen in the patterns
detected by FLLRM. With the above evidence, we conclude FLLRM outperform baseline methods
in detecting LLR-1 and LLR-r modules on the selected real-world data.

6 CONCLUSION

We developed FLLRM, the first method that utilizes multiple-filter and a neural network architecture
to solve the MLLRR problem. Our experiments demonstrated FLLRM outperforms all baseline
methods on the LLR-1 and LLR-r MLLRR problem, on both synthetic and real-world datasets. To
the best of our knowledge, FLLRM is the only method that provides a general solution to these two
MLLRR tasks.
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Figure 5: Experiment on real-world data.
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1 SUB-ALGORITHMS OF FLLRM

In this section, we illustrate the details of each sub algorithm in FLLRM. Specifically, the
Algorithm 1-3 are of the Matrix Slicing approach, which partitions the input matrix into non-
overlapping P × P matrices. Our mathematical discussion in the main text suggested that if the
largest local low rank sub-matrix is large enough, the matrix slices achieved by Matrix Slicing
could ensure the largest local low rank sub-matrix enrich to at least on matrix slice. The Algorithm
4 randomly samples a large number of small Q×Q matrices from each matrix , which ensure each
entry in the original matrix can be sampled multiple times. The Algorithm 5-6 utilizes a set of
predefined local low rank filters to evaluate the strength of local low rank property of each sampled
Q ×Q matrices and predicts their potential hitting to a true local low rank matrix. The Algorithm
7 identifies and reconstructs the local low rank matrices based on the prediction of local low rank
hitting make on the Q×Q matrices.

1.1 MATRIX SLICING BY RANDOMIZED THRESHOLD SVD

The Matrix Slicing function conducts a matrix partition based on the idea of randomized thresh-
old SVD, among which the top local low rank matrix is enriched to at least one of the small
matrix partitions. The input of this algorithm is a real matrix XM×N , the output is the index
set of matrix partition {E1, . . . , EMr

} × {F1, . . . , ENr
}, where each XEi,Fj

is a P × P matrix.
Specifically, Matrix Slicing first randomly samples sMS,1 rows rMS,1 times, computes the col-
umn base of its top singular value, identifies the top sMS,2 columns that are best fitted by the
top column base, computes the goodness of fitting as the averaged R-square value of the sMS,2

columns, then select the rMS,2 sets with the top averaged R-square values among the rMS,1 sam-
pled sets (Determine Slicing). Based on this approach, rMS,2 matrices of sMS,1 rows and sMS,2

columns, each of which is with a larger first singular value comparing to the un-selected ones. Ma-
trix Slicing further iteratively conducts this row- or column-wise threshold SVD approach to gener-
ate one P ×P matrix, and its row and column indices were set as {E1}×{F1}. The same approach
will be conducted on X{1...M}\{E1},{1...N}\{F1} to compute {E2} × {F2}, and further iteratively
compute {E1, . . . , EMr} × {F1, . . . , ENr}. In this study, we empirically set P = 50, threshold-
ing size sMS={5, 10, 25, 50, 50}, number of thresholding rMS={1000, 100, 10, 1, 1}. Noted, the
Determine Slicing algorithm generates matrix slices of a square region. We introduced a Deter-
mine Slicing oneside algorithm to slice the rest part of the matrix. Our mathematical analysis sug-
gested that if the largest local low rank matrix is large enough, it will enrich to at least one matrix
slice generated by the Matrix Slicing function.

The input of Algorithm 1 Matrix Slicing is a real matrix XM×N , slicing size and parame-
ters P, rMS , sMS and the output is the matrix slices. Two sub algorithms (detailed below)
Determine Slicing and Determine Slicing oneside were utilized to compute matrix slices by using
iterative truncated SVD.X{E1,. . . ,EMr}×{F1,. . . ,FNr} denotes the final matrix slice, in whichEi and
Fj are the set of row and column indices of each slice.

Algorithm 2 Determine Slicing computes the index of the first slice of an input matrix by a ran-
domized thresholding SVD approach. The input of Determine Slicing is a real matrix XM×N ,

1
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Algorithm 1: Matrix Slicing
Inputs: A real matrix XM×N , slicing size P, rMS , sMS .
Outputs: The slices X = X{E1,. . . ,EMr}×{F1,. . . ,FNr}.
Rset ← NULL , Cset← NULL
RC ← {1,...,M}, CC ← {1,...,N}
i← 0
while RC ! = NULL & CC ! = NULL do

i+ +
Ei, Fi ←Determine Slicing(XRC×CC , P, rMS , sMS)
append(Rset, Ei), append(Cset, Fi)
RC ← RC \ Ei, CC ← CC \ Fi

end
if RC ! = NULL then

Ei+1, ..., EMr
← Determine Slicing oneside(XRC×{1,...,N}, C

set)

append(Rset, Ei+1, ..., EMr
)

if CC ! = NULL then
Fi+1, ..., FNr← Determine Slicing oneside(X{1,...,M}×CC , Rset)

append(Cset, Fi+1, ..., FNr
)

X = X{E1,. . . ,EMr}×{F1,. . . ,FNr}

Algorithm 2: Determine Slicing
Inputs: A real matrix XM×N , slicing size P, rMS , sMS , rMS,|rMS | = 1, sMS,|sMS | = P .
Outputs: The row indices E and column indices F of the first slice.
rowset ← NULL, columnset ← NULL
i← 1
rowset ← randomly sampling sMS,i rows rMS,i times
while sMS,i > 1 do

rankscore ← NULL
i+ +
columnset0 ← NULL
for each rowset

p in rowset do
UΣV T← SVD(Xrowset

p ,.)

columnset0p ← {j|Xrowset
p ,j is of the top sMS,i largest cor(Xrowset

p ,j , U,1)}
rankscorep ← mean(cor(Xrowset

p ,columnset0
p

, U,1))

end
columnset ← {columnset0p |rankscorep is the top rMS,i largest rank

score}
rankscore ← NULL
i+ +
rowset0 ← NULL
for each columnsetp in columnset do

UΣV T← SVD(X.,columnset
p

)

rowset0
p ← {j|Xj,columnset

p
is of the top sMS,i largest cor(Xj,columnset

p
, V,1)}

rankscorep ← mean(cor(Xrowset0
p ,columnset

p
, V,1))

end
rowset ← {rowset0

p |rankscorep is the top rMS,i largest rank
score}

end
E ← rowset, F ← columnset

2
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slicing size and parameters P, rMS , sMS and the output is the row indices E and column indices
F of the first slice. Determine Slicing is initiated by randomly generates a series of row index
set. The algorithm first computes the columns with the top Pearson correlation to the first column
base of the submatrix of each row index set, select the subset of index set with top mean of the
Pearson correlations, then conduct this approach on the row side and iterative the column/row-wise
computation. Through the computation, the number of selected row and column indices in each set
increase to P while the number of selected sets reduce to 1, which generate the index set of one
slice. The algorithm repeats this approach to generate all index sets of the matrix slicing. In the
algorithm, SVD, mean and cor represents computing of singular value decomposition, mean and
Pearson correlation coefficients.

Algorithm 3: Determine Slicing oneside
Inputs: A real matrix XM×N , row-side slices rowset = {E1, . . . , EMr

} or column-side slices
columnset = {F1, . . . , FNr

}, and slicing size P .
Outputs: Column-side slice Cset or row-side slice Rset.
if Input is row-side then

Cset ← NULL
CC ← {1, ..., N}
while CC 6= NULL do

X ← X.,CC

rankscore ← NULL
for each rowset

p in rowset do
UΣV T← SVD(Xrowset

p ,.)

columnset0p ← {j|Xrowset
p ,j is of the top P largest cor(Xrowset

p ,j , U,1)}
rankscorep ← mean(cor(Xrowset

p ,columnset0
p

, U,1))

end
C0 ← {columnset0p |rankscorep is the largest rankscore}
append(Cset, C0)
CC ← CC \ C0

end
return Cset

if Input is column-side then
Rset ← NULL
RC ← {1, ...,M}
while RC 6= NULL do

X ← XRC ,.

rankscore ← NULL
for each columnsetp in columnset do

UΣV T← SVD(X.,columnset
p

)

rowset0
p ← {j|Xj,columnset

p
is of the top P largest cor(Xj,columnset

p
, V,1)}

rankscorep ← mean(cor(Xrowset
p ,columnset0

p
, V,1))

end
R0 ← {rowset0

p |rankscorep is the largest rankscore}
append(Rset, R0)
RC ← RC \R0

end
return Rset

Algorithm 3 Determine Slicing oneside computes the index of the first slice of an input matrix
with fixed slice indices of rows or columns. The input of Determine Slicing oneside is a real
matrix XM×N , slicing size P and fixed slice indices or rows or columns. The algorithm iteratively
identifies the indices of the unfixed side of rows or columns that maximize the averaged correlation
between its first column or row base and the data, with respect to each fixed slice, i.e. the indices of
the unfixed side that maximize the rank-1 property over one slice on the fixed side.

3
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1.2 SAMPLING SMALL MATRICES FOR THE FILTER BASED PREDICTION LOCAL LOW RANK
PATTERNS

The computational assumption of FLLRM is that the small Q×Q matrices sampled from a P × P
matrix slice that is enriched by a true local low rank matrix are with a higher probability to be with a
local low rank pattern. The algorithm Random Sampling randomly samples small Q×Q matrices
from each P × P matrix slice.

Algorithm 4: Random Sampling
Inputs: A slice XEi,Fj , sampling size Q, sampling times r.
Outputs: r Q×Q sub-matrices YEi,Fj = {Y Ei,Fj

1,...,r } randomly sampled from XEi,Fj
.

YEi,Fj ← NULL
for k = 1 to r do

rowk ← Q indices randomly sampled from Ei

colk ← Q indices randomly sampled from Fj

append(YEi,Fj , {Xrowk,colk , rowk, colk})
end

1.3 PREDICT THE HITTING OF LOCAL LOW RANK PATTERN

If a local low rank pattern is enriched to a P × P matrix slice, the Q × Q matrix sampled
from the P × P matrix is with a higher probability to have certain rows and columns hit the
local low rank pattern, i.e. resulting in consistent high row-wise inner product with the filters
that are close to its true linear row bases (see details in Mathematical Considerations). To en-
sure a fair and comprehensive screening, the filters generated by the full permutation of pre-given
filter patterns will be utilized. Our mathematical consideration and experiments suggested that
P = 50, Q = 7 and the full permutation of f1={−1,−1, 0, 0, 0, 1, 1}, f2={−1,−1,−1, 0, 1, 1, 1},
f3={−2,−1, 0, 0, 0, 1, 2}, and f4={−2,−1,−1, 0, 1, 1, 2} form an optimized filter set. The algo-
rithm Low Rank Bases Filtering NN compute the inner product between each row of a Q × Q
matrix and each filter, and further conducted convolution and max-pooling operation to amplify the
signal of local rank hitting and output a scoring matrix OY . More larger values in OY suggest the
Q × Q is more likely to hit a local low rank pattern. The algorithm Local Low Rank Prediction
utilizes a variational auto-encoder based unsupervised approach to predict the Q ×Q matrices that
hit a local low rank pattern.

Algorithm 5 Low Rank Bases Filtering NN generate a scoring matrix to characterize the strength
of local low rank hitting of each randomly sampled Q×Q matrix, by computing the inner product
between each row of the matrix and a pre-defined filter set and downstream convolution and max-
pooling operations. With the inner products computed, it first conducts the convolution of the top
k = Q,Q − 1, ..., 1 largest inner product with respect to each filter. The rational here is that if the
Q × Q matrix hits a local low rank pattern with k columns (k 6 Q), the inner product between
the k columns and the filters that are closest to the top row bases of the local low rank pattern
are consistently large, hence their convolution. Low Rank Bases Filtering NN further conducts
a max-pooling with respect to groups of the filters. Here the filter groups were determined by a
hierarchical clustering by using their cosine similarity. The rational here is that if the Q×Q matrix
hits a local low rank pattern, the convolution of the inner products between the row bases and all the
filters that are close to its top row bases should be large, hence large inner products could be seen on
multiple filters of a large cosine similarity. The max-pooling can effectively denoise such redundant
information.

Algorithm 6 Local Low Rank Prediction utilizes an unsupervised classifier LR classifier to clas-
sify theQ×Qmatrices and predict if the ones that are with a significant hit to a local low rank pattern
by using the scoring matrix. Here LR classifier is a classifier trained by a VAE model. The detailed
structure of the network is an encoder with seven layers and 49-128-64-32-16-8-4-(2,2) neurons in
each layer and a decoder with seven layers and 2-4-8-16-32-64-128-49 neurons in each layer.

An unsupervised predictor were trained from a VAE model. We generated a large collection of
P × P, P = 50 matrices containing different level of local low rank matrix, with size uniformly
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Algorithm 5: Low Rank Bases Filtering NN
Inputs: A Q×Q matrix Y , a set of low rank filters F , pre-defined low rank filter groups FG,
FG

1 ∪ ... ∪ FG
|FG| = F , and size of the output scoring matrix Or ×Oc.

Outputs: Convoluted local low rank scoring matrix OY .
FS , OS ← Q× |F |matrix
FS
i,j ← Yi,. · Fj

for k = 1 to |F | do
F 0 ← sort(FS

.,k) #by decreasing order
for q = 1 to Q do

OS
q,k ← mean(F 0

1,...,q) #convolution the signal of row-wise local low rank property
end

end
for k = 1 to |FG| do

for q = 1 to Q do
Oq,k ← max(OS

q,FG
k

) #max pooling with respect to pre-defined low rank filter groups
end

end
Reorder the column of O by the decreasing order of the mean of each column
OY ← O{1,...,Or}×{1,...,Oc} #truncation of less sensitive signals

Algorithm 6: Local Low Rank Prediction
Inputs: The local low rank scoring matrices O of a randomly sampled Q×Q matrices.
Outputs: Predicted low rank hitting level of the Q×Q matrix.
L← LR classifier(O)

ranged from 10× 10 to 40× 40, and randomly draw Q×Q,Q = 7 matrices from them with known
labels of local-low-rank-hitting, to train an unsupervised classifier of the Q ×Q matrices. The low
rank sub-matrix (pattern) was simulated by the inter product of two vectors randomly generated from
U(0, 1). The simulated data fall into four major categories: (1) local low rank matrix without error,
(2) local low rank matrix with low error ranges from (0− 0.5)× sd of the pattern, (3) local low rank
matrix with high error (0.5 − 1)× sd of the pattern, and (4) 50 × 50 matrix with only back ground
noise. The background noise of the 50×50 matrix is a normal distribution with mean equals 0 and σ2

equals sd of the pattern. We processed these simulated 50×50 matrices by our Random Sampling,
Low Rank Bases Filtering NN, max-Pooling and denosing steps to compute the T × T matrices,
which serves as the inputs of the VAE model to train the predictor. When applying the predictor in
the FLLRM framework, all the Q × Q matrices are predicted label ”1” or label ”0”. The detailed
structure of the network is an encoder with seven layers and 49-128-64-32-16-8-4-(2,2) neurons in
each layer and a decoder with seven layers and 2-4-8-16-32-64-128-49 neurons in each layer.

1.4 RECONSTRUCTION OF LOCAL LOW RANK MATRICES

FLLRM further utilizes to Algorithm 7 Random Walk Clustering reconstruct the local low rank
matrices. It first counts the times of any row-row, column-column, row-column pair that appear
in one Q×Q matrix of a significant hitting to a local low rank pattern predicted by Algorithm 5-6.
Noted, the indices of a local low rank matrix should have a high counts, which could be identified by
a Bi-Clustering approach. Here we utilized the Spectral BiClustering method developed by kluger
et al [1] and the python package provided by scikit-learn [2]. With the indices of each possible local
low rank matrix identified, the local patterns were ranked by the level of their top singular values
normalized by the sum of all singular values. Here the local patterns of the top K significant low
rank property or with the top singular values large than a certain threshold form the final output of
FLLRM.

5
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Algorithm 7: Random Walk Clustering
Inputs: A real matrix XM×N , the predicted label L and the row and column indices of Q×Q

sampled matrices Y (from all P × P matrix slices), local low rank z.
Outputs: The set of Local Low Rank sub-matrices LLRM.
LLRM← NULL
LLRset ← NULL
for each class Lp in L of a local low rank hit do

XL ← 0M×N
for each Yp,k in Yp = {Q×Qmatrices whose predicted label is Lp} do

XL
rowindex(Yp,k),columnindex(Yp,k) + +

end
append(LLRset, Spectral BiClustering(XL))

end
Singularnormalized ← NULL
for each LLRset

p in LLRset do
UΣV T ← SVD(Xrowindex(LLRset

p ),columnindex(LLRset
p ))

append(Singularnormalized,
Σ1,1+...+Σz,z

trace(Σ) )

end
Return the local low rank patterns of top Singularnormalized or with Singularnormalized
larger than a certain threshold.

2 MATHEMATICAL DERIVATIONS AND CONSIDERATIONS

2.1 COMPARISON OF FILTERS IN CNN AND FLLRM

Note that in CNN, image patterns are identified by training a set of filters. However, despite that the
low rank bases and indices of a local low rank matrix are unknown, its low rank property always
suggests higher inner products between each of its row or column and the vectors that are close to
its linear row or column bases. This indicates that instead of training filters from scratch, we could
pre-define a set of filters that could maximally capture the possible patterns of the linear bases.
Here we implement a two-step matrix sampling approach to first slice a large matrix into medium
matrix slices and randomly sample small matrices from each slice, which is equivalent to random
projection with highly sparse projection matrix. The mathematical consideration of FLLRM is that
a small matrix randomly sampled from a region enriched by a local low rank pattern is more likely
to inherit the low rank property, which could be feasibly identified by a set of pre-defined filters.

2.2 LEMMA PROOF

Lemma 1. For a real matrix XM×N , if there is at least one LLR-1 sub-matrix in X , denote the
size of the largest LLR-1 sub-matrix as M0 ×N0, if rMS,1 > 1/max{M0

M , N0

N }
sMS,1 and the other

rMS,i are large enough, by expectation at least one matrix slice determined by the thresholding SVD
approach described in Matrix Slicing will enrich to the sub-matrix.

Proof. We conduct the following probabilistic derivation: Given a matrixX of sizeM×N , assume
there is a low rank submatrix X0 of size M0 × N0, the number of hits to the row or columns in
X0 in a random sampling of sMS,1 rows or columns follows binomial distribution Bin(sMS,1, a)
or Bin(sMS,1, b). It then follows that the probability that a random sampling of sMS,1 rows or
columns could hit more than K rows or columns in X0 is 1 −

∑K
l=1Bin(l; sMS,1,max{a, b}).

Here Bin(n, p) denotes the binomial density function with n trials and success probability of p, and
Bin(n0;n, p) denotes the probability of observing n0 success under n and p. This enables us to
derive the lower bound of sMS,1 and rMS,1 to achieve a significant hit to the true pattern.

For example, we can derive ifmax{a, b} > 0.15, using sMS,1 = 5, the probability of havingK > 3
hits in row or column of the true pattern is 0.0022; and if we set rMS,1 = 1000, we could expect 2
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samples with more than 3 row or column hits to the true pattern. We have empirically justified a 3/5
hits to the true pattern suffices to guarantee that one slice enriches to the true pattern in the threshold
SVD computation.

Lemma 3. For a given matrixX , if a method can detect Ik×Jk, s.t. tSVD∗(XIk×Jk
) = UkΣ

(1)
k V T

k ,
under the constraint of mean(XIk×Jk

)=mean(X), it can solve both LLR-1C and LLR-1 problem.

Proof. When mean(XIk×Jk
)=mean(X), mean(XIk×Jk

)=mean(X \ XIk×Jk
). Denote Y =X-

mean(X), mean(YIk×Jk
)=0, i.e., the method can identify the local low rank pattern if its mean

is 0. On the other side, by Lemma 1, for any LLR-1 problem:tSVD∗(XIk×Jk
) = UkΣ

(1)
k V T

k , by
Lemma 1, at least one matrix slice will enrich XIk×Jk

, and the mean of the matrix slice forms a ap-
proximation of the mean ofXIk×Jk

. Denote Y ij=X-mean(XEi,Fj
), in Y ij the pattern Y ij

Ik×Jk
mean

will be 0 and applying the method on all Y ij will ensure the identification of the Ik × Jk. Similarly,
for any LLR-1C problem: E(Xij) = uk,∀(i, j) ∈ Ik × Jk and E(Xij) = u0,∀(i, j) /∈ Ik × Jk,
the rows in Xi,j , i /∈ Ik, j ∈ Jk or the columns in Xi,j , i ∈ Ik, j /∈ Jk with smallest variance will
form a LLR-1 sub-matrix with XIk×Jk

, whose first row or column base is (uk, ..., uk, u0, ..., u0),
hence can be identified by the method as derived above.

LLR-1C problem is a special case of LLR-1 problem. We also conducted an empirical analysis by
testing the largest R-square value between our selected filter set and a randomly generated linear base
of length Q. Our analysis suggested that on average, our selected filter set achieve a 0.91 and 0.84
R-square value to the low rank base generated from U(0, 1) and N(0, 1), respectively, suggesting
the low rank filters can effective capture possible local low rank structure. Detailed evaluation of the
low rank filters is given in 4.2.

2.3 OPTIMIZATION OF THE FILTER SET AND FAIRNESS

As the Lemma 2 and 3 largely reduce the number of filters need to be considered to the
filters in dimension RQ and with 0 mean. Due to the presence of a local low rank matrix is
lack of fixed structure in the whole matrix, for any filter, its full permutation is needed for
a fair computation. Considering the detection power and computational feasibility, we select
Q = 7or9. For Q = 7, it can be proved that the full permutation of f1={−1,−1, 0, 0, 0, 1, 1}
and f2={−1,−1,−1, 0, 1, 1, 1} can have at least 1/sqrt(2) cosine similarity to any vector in
R7 with mean equals 0. Similarly, the filter set of Q = 7 can be further expanded to include
f3={−2,−1, 0, 0, 0, 1, 2} and f4={−2,−1,−1, 0, 1, 1, 2}, and further f5={−5,−1, 0, 0, 0, 1, 5}
and f6={−5,−2,−1, 0, 1, 2, 5}. The vector with smallest cosine similarity to the whole
filter set can be identified. Similarly, for Q = 9, we consider a possible growth of the
optimal filter set as f1={−1,−1, 0, 0, 0, 0, 0, 1, 1} and f2={−1,−1,−1, 0, 0, 0, 1, 1, 1},
f3={−1,−1,−1,−1, 0, 1, 1, 1, 1} and f4={−2,−1, 0, 0, 0, 0, 0, 1, 2},
f5={−2,−1,−1, 0, 0, 0, 1, 1, 2}, f6={−2,−2,−1,−1, 0, 1, 1, 2, 2}.
With the top informative filter set and its growth can be derived, we further confirmed the optimal
filter by synthetic data based experiments. Specifically, we generated an extensive set of synthetic
data (as described in the main text), we tested the two length settings, i.e. Q = 7, 9 and test the
filter set combinations {f1,f2}, {f1,f2,f3,f4}, and {f1,f2,f3,f4,f5,f6} for each length setting. Our
experiments suggested Q = 7 and the {f1,f2,f3,f4} as the optimal filter setting.

It is noteworthy different filter sets have different modes. Intuitively, the largest inner product be-
tween a random vector in RQ and the full permutation of {−1,−1,−1, 0, 1, 1, 1} is larger than
the full permutation of {−1,−1, 0, 0, 0, 1, 1}, hence a certain weight are given to ensure the inner
products of different filter sets are comparable. See details of the derivation of the weight in 3.7.

2.4 SCALABILITY ANALYSIS

The Matrix Slicing targeted the low rank pattern by filtered with a P by P patch. The time com-
plexity of Determine Slicing is O(M

P ×
N
P ) and the complexity of Determine Slicing onside

is O(M
P ) or O(N

P ). Since the Matrix Slicing will be conducted multiple times, the complex-
ity of Matrix Slicing is O((max{M,N}

P )3)=O(max{M,N}3). The Random Sampling has a

7
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complexity of O(r + 1), where r is the total sampling times on the P by P patch. The
Low Rank Bases Filtering NN and Max pooling step calculated the inner product of the iden-
tified bases, where the complexity is O(F ) and F is total number of filters. Thus the last three
sub-algorithms are efficient enough whose computational complexity can be ignored compared with
Matrix Slicing.

We conducted all experiments on the the high performance cluster (HPC) of our institute. The
HPC has eight large-memory compute nodes, each with 512 GB of RAM. In support of deep learn-
ing applications and research, Carbonate also features 12 GPU-accelerated Lenovo ThinkSystem
SD530 deep learning (DL) nodes, each equipped with two Intel Xeon Gold 6126 12-core CPUs, two
NVIDIA GPU accelerators (eight with Tesla P100s; four with Tesla V100s), four 1.92 TB solid-
state drives, and 192 GB of RAM. FLLRM has a good time and memory performance comparing
to SOTA methods. We fix the matrix size as 1000x1000 and 4000x2000, for which FLLRM can
generate the final results within 2 minutes.

3 EXPERIMENT DETAILS

Detailed experimental parameters, data and analysis are provided below. The original codes of
FLLRM and experiments are available at https://github.com/ICLRanonLab.

3.1 GENERAL EXPERIMENTAL SETTING OF SYNTHETIC DATA BASED TESTS

We first simulated data with a local low rank sub-matrix by the general form: X =
Xpattern + Xnoise. Here X is fixed as a 1000 × 1000 matrix, Xn×n

pattern = U × V T , where
U, V ∈ Rn×k. The pattern is referred as

∑k
l=1XIlJl

, where Il and Jl are the index set of non-zero
element in lth column of U, V , respectively. The non-zero index set of each column of U, V
is with a fixed size P and each non-zero element follows a uniform distribution on (0, 1), i.e.,
Uil, Vjl|i ∈ Il, j ∈ Jl ∼ U(0, 1). The input data (simulated data and real data) was further
normalized by forcing its mean to 0 by our normalization function:

XM×N =
XM×N −Meanrow(XM×N )

sdrow(XM×N )
(3.1)

3.2 EXPERIMENT SETTING OF BASELINE METHODS

FLLRM is implemented by python 3.6.3 version and the python libraries numpy(1.19.0), pan-
das(1.4.1), pytorch(1.6.0) etc. For trainning the classifier, 60% of the input data as training data,
20% of the input data as validation data and 20% of the input data as testing data. We trained the
neuron network 2048 epochs with 512 batch size and 0.001 learning rate. The Adam optimizer and
MSE loss function are used in the training process.

The baseline methods includes SSVD [3], SPCA [4], Plaid [5], CC [6], LLORMA [7]. The first four
methods were performed in R enviroment. For SSVD, we used R package ssvd (version 1.0) and
default parameters. For SPCA, we used R package sparsepca (version 0.1.2) and default parameters.
For two bicluster methods Plaid and CC, we used R package biclust (version 2.0.1). Specifically for
Plaid, we set ‘background’ parameter as True, ‘fit.model’ parameter as y ∼ m + a + b as tutorial.
And for CC method, the parameter δ and α was set as 1.0 and 1.5 as tutorial.

For LLORMA, we used the Global LLORMA from author’s GitHub1 with library Tensorflow-GPU
1.4.0, For synthetic data experiments, all experiments were tested in PRE RANK=1 along with
other default parameters, except for time testing for different size of 10000 × 10000 and 5000 ×
5000 matrices. We applied lower PRE LARNING RATE = 2e-5 for lower RMSE score to a more
reasonable range during training. In real-world data experiments, the setting used PRE RANK = 10
along with other parameters in default.

1https://github.com/JoonyoungYi/LLORMA-tensorflow
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3.3 EVALUATION METRIC

For the simulated data. The Accuracy of detecting the true pattern and the back ground noise is used
in our experiments to evaluate the performance of FLLRM and the benchmarks. For one simulated
input matrix XM×N , we labeled the true pattern as ”1” and the back ground noise as ”0”. We keep
tracking the index of the true pattern, thus we could generate a binary matrix as the ground-truth
GTM×N . If we define the output from the methods above to be XM×N

output and change the non-zero
elements in XM×N

output to ”1”. We could get the output binary matrix GTM×N
output. Then we can get the

criterion of True Positive(TP), True Negative(TN), False Positive(FP), False Negative(FP) and the
Accuracy by the following function:

TP, FP, FN, TN ← Confusion Matrix(GTM×N
output, GT

M×N ) (3.2)

Accuracy ← TP + TN

TP + TN + FP + FN
(3.3)

3.4 SYNTHETIC DATA BASED EXPERIMENT

We tested the following simulation setting, by (1) changing the mean of the pattern from 0-2.8 times
of sd under the fixed pattern error of 0 and 0.1 sd and size P = 200, 500, (2) adding different
level of errors from 0-2.8 times of sd to the pattern under a fixed mean of 0 and 0.1 sd and size
P = 200, 500, and (3) perturbing the pattern size from 100-500 with 50 step size under a fixed
mean of 0 and 0.1 sd and error of 0.1 and 0.5 sd. In total, we achieved 284 different simulation
scenarios. In theses tests, the method SPCA only return NA value, so we gave its Accuracy of 0. All
”0” Accuracy in the figures are because the methods could only return NA value, they couldn’t give
an output. The method CC could only output the binary matrixGTM×N

output of all ”1”, it means that CC
could not identify the true pattern at all, but under our Accuracy function TP=1,TN=0,FP=0,FN=1,
we gave the Accuracy of 0.5.

As shown in (Fig 3 a-c), FLLRM achieved consistent high Accuracy score with respect to different
mean, error and size changes, while SV and plaid only works when the pattern has a distinct mean
comparing to the background noise, SPCA and LLORMA did detected any pattern while CC predict
all entries as a pattern. Our data clearly suggested FLLRM outperforms other methods on the LLR-1
problem. We further evaluate if the FLLRM can detect multiple patterns through its iterations. We
simulated data with two and four patterns, and run FLLRM two and four times on each data set with
100 replicates. On average, the patterns detected by FLLRM hits 95% of the top pattern, 50% of
the second pattern and 10% of the third and fourth pattern (Fig 3 d1,d2). We also tested FLLRM on
LLR-k problem by setting the local rank-1 pattern, the local rank-2 pattern, the local rank-3 pattern
and the local rank-4 pattern (Fig 3 d4). FLLRM successfully identified the local rank-k pattern with
the error range from 0-3 times of sd and fixed mean 0 and size P = 500. We tested that the running
time of FLLRM and benchmarks on the different input matrix size(100×100, 1000×1000, 10000×
10000) (Fig 3 d3).

3.5 REAL-WORLD DATA BASED EXPERIMENT

The real application performed on two biomedical datasets, which are melanoma and head and neck
cancer scRNA-seq data. We collected these two datasets from Gene Expression Omnibus (GEO)
database, with accession ID GSE72056 and GSE103322. The cell type label and sample informa-
tion provided in the original work were directly utilized. The GSE72056 data is collected on human
melanoma tissues. The original paper provided cell classification and annotations including B cells,
cancer-associated fibroblast (CAF) cells, endothelial cells, macrophage cells, malignant cells, NK
cells, T cells, and unknown cells. The GSE103322 data is collected on head and neck cancer tissues.
The original paper provided cell classification and annotations including B cells, dendritic cells,
endothelial cells, fibroblast cells, macrophage cells, malignant cells, mast cells, myocyte cells, and
T cells. Notably, as indicated by the original work, malignant cells have high intertumoral hetero-
geneity. Theses two datasets provide us great opportunity to analysis the biological mechanism by
identifying the local low rank pattern within data. And the total citation of two work is above 2000.
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Fig S1. Matrix Slicing Step Experiment.

Both data sets have been utilized in more than 100 studies, in which GSE72056 contains 23684
genes and 4486 cell, and GSE103322 contains 22494 genes and 5902 cell. We utilize the standard-
ized TPM measure of gene expression level as the input. Firstly, we first conducted a standardized
normalization of the data by taking log+1: GSE ← log2(GSE + 1). We further selected the 4000
genes (rows) of top averaged expression level and the 2000 cells (columns) of the top total expres-
sion level to build our input testing data GSE4000×2000. The Low Rankness, Coverage Size(Size),
Coverage Rate, Running Time were used as metrics in our experiments to evaluate the performance
of FLLRM and benchmark with other methods. For each sub-matrices calculated by the methods
above, we compute its COR rate, Size(how many elements in it) and the coverage of rate of the
sub-matrix to the input real data.

The rows represent the genes and the columns represent the cell. Each element in the matrix means
the gene expression. The scRNA-seq data is sparse, the zero value in the matrix means the gene
is not expressed in the cell. Thus, we just select 4000 rows and 2000 columns by their top mean
value in our experiments. Specifically, the scRNA-seq data is the unstructured data, it isn’t like the
image data, the order of row or column doesn’t have special mean. The experiments on scRNA-seq
data, our goal is to get the local low rank sub-matrix from these data. The results(Fig 4) show that
FLLRM performances great to get the sub-matrices of LLR-1 structure. The figures of COR Rate
and Size show that FLLRM can get the most obvious LLR-1 structure sub-matrix and coverage
enough sub-matrix size(product of number of row and column). The Running Time shows that
FLLRM has good time performance. FLLRM consistently identified the local rank-1 pattern under
this experimental setting.

3.6 EXPERIMENTAL SETTING OF THE TEST OF MATRIX SLICING ALGORITHM

We tested the sub-algorithm Matrix Slicing on an extensive synthetic data set. We tested the fol-
lowing simulation setting, by (1)adding different level of errors from 0-2 times of sd to the pattern
under a fixed mean of 0 and size P = 500, (2) changing the mean of the pattern from 0-2 times of sd
under the fixed pattern error of 0 and size P = 500, and (3) perturbing the pattern size from 100-500
with 100 step size under a fixed mean of 0 and error of 0. In total, we achieved 47 different simula-
tion scenarios and 100 replicates. As shown in (Fig S1 ), different colored lines represent different
level of error in Error Test, different mean of the pattern in Mean Test and different true pattern
size in Size Test. The y-axis represents the true pattern coverage rate and the x-axis represents the
the order id of the top k coverage rate, ie the first largest rate, the second largest rate etc. On average,
some slices generated from the sub-algorithm Matrix Slicing of FLLRM can hit 100% true pattern
with respect to different error, mean and size changes.

3.7 EXPERIMENTAL SETTING OF THE TEST OF DIFFERENT FILTER SETS

We tested that how the size of filter affects the performance of FLLRM. For the filter size
of 7 and 9, we tested that the 2 filters, 4 filters and 6 filters are used in the sub-algorithm
Low Rank Bases Filtering NN respectively. The details of the setting as bellow:
Filter Size of 7:
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We firstly calculate the weights for each filter to balance them by order statis-
tics: W7 = Meancol(Sortrow(N(0, 1) ∈ R1000000∗7)), then,W7 ∈ R1∗7, W7 =
[−1.35,−0.76,−0.35, 0.00, 0.35, 0.76, 1.35]
2 filters:
f1={−1,−1, 0, 0, 0, 1, 1}, f2={−1,−1,−1, 0, 1, 1, 1}, w1 = sum(f1 ∗W7), w2 = sum(f2 ∗W7),
then f1 = f1 and f2 = f2 ∗ w1

w2
. The number of the full permutation of f1 and f2 is 350, thus, if we

use 2 filters we can get the filter set F 350×7.
4 filters:
f3={−2,−1, 0, 0, 0, 1, 2}, f4={−2,−1,−1, 0, 1, 1, 2}, w3 = sum(f3 ∗W7), w4 = sum(f4 ∗W7),
then f3 = f3 ∗ w1

w3
and f4 = f4 ∗ w1

w4
. The number of the full permutation of f1, f2, f3 and f4 is

2450, thus, if we use 4 filters we can get the filter set F 2450×7.
6 filters:
f5={−5,−1, 0, 0, 0, 1, 5}, f6={−5,−2,−1, 0, 1, 2, 5}, w5 = sum(f5 ∗W7), w6 = sum(f6 ∗W7),
then f5 = f5 ∗ w1

w5
and f6 = f6 ∗ w1

w6
. The number of the full permutation of f1, f2, f3, f4,f5 and f6

is 8330, thus, if we use 6 filters we can get the filter set F 8330×7.

Filter Fize of 9:
Similarly, we firstly calculate the weights for each filter to balance them by order
statistics: W9 = Meancol(Sortrow(N(0, 1) ∈ R1000000∗9)), then,W9 ∈ R1∗9,
W9 = [−1.48,−0.93,−0.57,−0.27, 0.00, 0.27, 0.57, 0.93, 1.48]
2 filters:
f1={−1,−1, 0, 0, 0, 0, 0, 1, 1}, f2={−1,−1,−1, 0, 0, 0, 1, 1, 1}, w1 = sum(f1 ∗ W9),
w2 = sum(f2 ∗ W9), then f1 = f1 , f2 = f2 ∗ w1

w2
. The number of the full permutation of

f1 and f2 is 2436, thus, if we use 2 filters we can get the filter set F 2436×9.
4 filters:
f3={−1,−1,−1,−1, 0, 1, 1, 1, 1}, f4={−2,−1, 0, 0, 0, 0, 0, 1, 2}, w3 = sum(f3 ∗ W9) and
w4 = sum(f4 ∗W9), then f3 = f3 ∗ w1

w3
and f4 = f4 ∗ w1

w4
. The number of the full permutation of

f1, f2, f3 and f4 is 6090, thus, if we use 4 filters we can get the filter set F 6090×9.
6 filters:
f5={−2,−1,−1, 0, 0, 0, 1, 1, 2}, f6={−2,−2,−1,−1, 0, 1, 1, 2, 2}, w5 = sum(f5 ∗ W9) and
w6 = sum(f6 ∗W9), then f5 = f5 ∗ w1

w5
and f6 = f6 ∗ w1

w6
.The number of the full permutation of

f1, f2, f3, f4, f5 and f6 is 43890, thus, if we use 6 filters we can get the filter set F 43890×9.
When Accuracy of detecting the true pattern and back ground noise was used to evaluate its
performance. The figures (Fig S2) show that when we use the filter size of 7 and 4 filters in the
sub-algorithm Low Rank Bases Filtering NN, the Accuracy can reach over 95%. FLLRM has
the best performance.
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Fig S2. Filter Parameters Experiment.
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