
SBGD: Improving Graph Diffusion Generative Model via Stochastic Block
Diffusion

Junwei Su 1 Shan Wu 2

Abstract
Graph diffusion generative models (GDGMs)
have emerged as powerful tools for generating
high-quality graphs. However, their broader adop-
tion faces challenges in scalability and size gen-
eralization. GDGMs struggle to scale to large
graphs due to their high memory requirements,
as they typically operate in the full graph space,
requiring the entire graph to be stored in mem-
ory during training and inference. This constraint
limits their feasibility for large-scale real-world
graphs. GDGMs also exhibit poor size general-
ization, with limited ability to generate graphs of
sizes different from those in the training data, re-
stricting their adaptability across diverse applica-
tions. To address these challenges, we propose the
stochastic block graph diffusion (SBGD) model,
which refines graph representations into a block
graph space. This space incorporates structural
priors based on real-world graph patterns, signifi-
cantly reducing memory complexity and enabling
scalability to large graphs. The block represen-
tation also improves size generalization by cap-
turing fundamental graph structures. Empirical
results show that SBGD achieves significant mem-
ory improvements (up to 6×) while maintaining
comparable or even superior graph generation per-
formance relative to state-of-the-art methods. Fur-
thermore, experiments demonstrate that SBGD
better generalizes to unseen graph sizes. The sig-
nificance of SBGD extends beyond being a scal-
able and effective GDGM; it also exemplifies the
principle of modularization in generative model-
ing, offering a new avenue for exploring genera-
tive models by decomposing complex tasks into
more manageable components.

1School of Computing and Data Science, University of Hong
Kong 2School of Resources and Environmental Engineering, Hefei
University of Technology. Correspondence to: Junwei Su <jun-
weisu@connect.hku.hk>, Shan Wu <wus@hfut.edu.cn >.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Graphs are a fundamental mathematical construct used to
represent relational data, consisting of nodes and edges that
depict pairwise relationships. This concept is widely applied
across various fields, such as social networks (Grover et al.,
2019; Wang et al., 2018), program synthesis (Brockschmidt
et al., 2018), and neural architecture search (Xie et al., 2019;
Lee et al., 2021). A key challenge in this domain is the
generation of new graphs that mirror the properties of the
observed ones. For example, in drug discovery, this involves
creating graphs that represent the structural composition of
specific proteins(Simonovsky & Komodakis, 2018; Li et al.,
2018; Preuer et al., 2018) or molecules.

Given its significance, the graph generation problem has
a long history of research, with rule-based random graph
models traditionally dominating the field (Barabási & Al-
bert, 1999; Holland et al., 1983; Erdős et al., 1960; New-
man et al., 2002). A prime example of such a model is the
Stochastic Block Model (SBM)(Holland et al., 1983), which
is based on the observation that real-life graphs often con-
sist of densely connected blocks of vertices exhibiting similar
behaviors(Abbe, 2018; Newman et al., 2002; Newman &
Girvan, 2004; Newman, 2006; Karrer & Newman, 2011;
Cherifi et al., 2019; Su & Marbach, 2022). This block struc-
ture reflects community-like patterns where nodes within
the same block are more likely to connect, while inter-block
connections are sparser. However, these rule-based models
face significant limitations: they fail to capture the complex
and nuanced distribution of graph-structured data observed
in real-world problems (Niu et al., 2020). As a result, the
focus has shifted towards deep learning-based methods that
can model more intricate graph properties. Among these,
graph diffusion generative models (GDGMs) have emerged
as a promising solution, showing impressive performance
in graph generation (Niu et al., 2020; Vignac et al., 2022; Jo
et al., 2022).

GDGMs belong to the family of diffusion-based generative
models (also referred to as the score-based generative mod-
els), which model the data generation process through a
diffusion mechanism operating within the data space. These
models consist of two key components: (1) a forward pro-
cess that gradually degrades the data into a simple known

1



Stochastic Block Graph Diffusion

distribution, such as standard Gaussian, and (2) a neural
network that reverses this process to reconstruct the original
data (see Sec. 2 for more details). Diffusion models are
known for their ability to generate high-quality samples and
have been successfully applied in domains like image and
audio synthesis (Dhariwal & Nichol, 2021; Rombach et al.,
2022; Nichol et al., 2021; Yang et al., 2023). Extending
this framework to graph data has produced promising re-
sults, as these models are capable of capturing the complex
distributions and structures characteristic of graphs.

Challenges and Limitations. Despite their success, exist-
ing GDGMs face two primary challenges: scalability and
size generalization. First, scalability remains a significant
hurdle due to the high memory demands of GDGMs. These
models currently model the diffusion generative process at
the graph level, requiring the entire graph — including its
structure and features — to be stored in memory during the
process. As the graph size increases, memory usage scales
quadratically with the number of nodes, making these mod-
els impractical for large-scale graphs, such as those found in
social networks or molecular simulations, where graphs can
contain millions of nodes and edges (Hamilton et al., 2018).
Second, GDGMs face difficulties with size generalization.
They are typically trained on graphs of a fixed size and often
fail to generate graphs that differ significantly in size from
those encountered during training. This limitation restricts
their applicability in scenarios where graph sizes can vary
widely, such as in molecular structures (Wieder et al., 2020).

1.1. Contribution and Significance

To address the challenges outlined, we propose the Stochas-
tic Block Graph Diffusion (SBGD) model, which incorpo-
rates a structural prior based on the block-based organization
commonly observed in real-world graphs (see Figure 4 for
an illustration). By leveraging this block structure, SBGD
captures community-like patterns and represents the graph
in a block space. Performing the diffusion process within
this block space significantly reduces memory usage, en-
abling the generation of larger graphs with reduced memory
overhead (see Table 1 for a comparison of memory complex-
ity between our method and existing GDGMs). Additionally,
this block-based representation enhances the model’s abil-
ity to generalize across graphs of varying sizes, as smaller,
fundamental building blocks can be recombined in different
configurations to generate graphs at different scales.

Empirical evaluations on both real-world and synthetic
datasets show that SBGD achieves up to a 6× improve-
ment in memory efficiency, while maintaining comparable
or superior generative performance relative to state-of-the-
art GDGMs. This makes SBGD highly scalable for large
graphs. Furthermore, experiments on size generalization
demonstrate that SBGD exhibit better size generation, par-

ticularly exceling at generating graphs larger than those
seen in the training set. Our ablation study on block graph
size also reveals that smaller block representations initially
improve performance, but excessively small blocks can de-
grade generative quality. Moreover, experiments show that
block graph size also impacts the model’s size generalization
ability. These findings suggest the existence of an optimal
block size, with granularity depending on the data’s proper-
ties and the specific generative task. This insight opens up
promising avenues for future research.

Overall, these results highlight the advantages of incorporat-
ing a structural prior through block representation, allowing
SBGD to overcome key limitations of existing diffusion-
based models. This approach provides a more flexible, scal-
able, and efficient solution to graph generation. Furthermore,
it exemplifies the principle of modularization in generative
modeling, offering a novel way to explore generative mod-
els by decomposing complex tasks into more manageable
components.

2. Background and Motivation
In this section, we present a brief introduction to diffusion-
based generative models, graph diffusion generative models,
and the role of block structure in graphs. We defer some of
the technical details to the appendix due to page limitation.

2.1. Diffusion Generative Models.

DGMs (Song & Ermon, 2019; Song et al., 2020b; Song
& Ermon, 2020; Sohl-Dickstein et al., 2015; Song et al.,
2020a) belong to the large family of latent variable models.
It models the data generation process as a transition pro-
cess in the latent space and primarily comprises two main
components: a noise model (forward process) and a denois-
ing neural network (backward process). The noise model
P gradually corrupts a data point x to form a sequence of
increasingly noisy data points (x1, . . . ,xT ). It adheres to a
Markovian structure, formulated as:

P(x1, . . . ,xT |x) = P(x1|x)
T∏

t=2

P(xt|xt−1).

In most cases, Gaussian noise is used for the forward pro-
cess. This amounts to a Markov chain that gradually adds
Gaussian noise to the data according to a variance schedule
β1, . . . , βT :

P(xt|xt−1) := N(xt;
√
1− βtxt−1, βtI),

P(xt|x0) = N(xt; ᾱtx0, (1− ᾱt)I),

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs. Then, the goal
of the backward process is to learn a (denoising) neural
network sθ (θ is the learnable parameter) to reverse this
noising process.

2



Stochastic Block Graph Diffusion

(a) Example graph with random layout. (b) Example graph with block structure
highlighted.

(c) Adjacency matrix of the example graph.

Figure 1. Visualization of an example graph in different layouts and its matrix representation. Fig. 1(a) is a visualization of the example
graph with a random layout. Fig. 1(b) is a visualization of the example graph with a Kamada Kawai layout (Kamada et al., 1989) and the
blocks are highlighted with different colours. Fig. 1(b) is a visualization of the adjacent matrix of the example graph where the dense area
in the diagonal region of the matrix represent the blocks in the graph.

Graph Diffusion Generative Methods SBGM (Niu et al., 2020) SDE (Jo et al., 2022) DiGress (Vignac et al., 2022) SBGD (ours)
Memory Complexity O(N2) O(N2 +NF ) O(N2 +NF ) O(C2 + CF )

Computation Complexity O(TN2) O(T (N2 +NF )) O(T (N2 +NF )) O(T (kC2 + kCF ))

Table 1. A summarized comparison of existing graph diffusion generative model. N is the number of vertices and F is the dimension of
the feature. C is the size of the block graph (which is much smaller than N ) and k is the number of blocks from the graph (kC is the size
of the graph). T is the number of diffusion steps used in the generation process. It is evident from the table that our method offers better
memory complexity while keeping the same computation complexity.

To generate new samples, a point is sampled from the prior
(convergent) distribution P(xT ) (typically standard Gaus-
sian) and iteratively denoised by the neural network sθ until
it recovers the original data distribution. This follows a
series of (reverse) state transitions,

xT
sθ−→ xT−1

sθ−→ · · · sθ−→ x0.

This is achieved by using sampling rules such as those spec-
ified in DDPM/DDIM (Ho et al., 2020; Song et al., 2020a).

GDGMs represent an important extension of DDMs to graph
data and have demonstrated empirical success in graph gen-
eration tasks. Due to the inherent complexity of graph data,
which consists of both structural and feature information,
existing GDGM extensions rely on matrix representations of
the graph. They model the graph generation process using
a system of stochastic processes that capture the depen-
dency between the structure and features. This is typically
achieved by incorporating underlying models, such as graph
neural networks, to model these interdependencies. The
stochastic process used in GDGMs can either be a stochas-
tic differential equation (for continuous data spaces) (Jo
et al., 2022) or a discrete Markov chain (for discrete data
spaces) (Vignac et al., 2022). Both approaches model the

graph generation by considering the entire graph at each
step, encompassing both the structure and feature matrix.

2.2. Block Structure in Graphs.

In real-life graphs, a prominent feature is their block (com-
munity structure) (Deshpande et al., 2018; Holland et al.,
1983), where vertices within the same block display dense
connections and exhibit similar behavioural traits (i.e., sim-
ilar feature distributions). This contrasts sharply with ver-
tices from different blocks, which are sparsely connected,
highlighting the distinct boundaries between these units. For
example, in social networks, groups of friends form tightly
connected communities. In citation networks, papers in the
same research domain cite each other frequently. In bio-
logical networks, where certain proteins or genes interact
heavily within specific functional modules. Block structures
are a cornerstone of graph analysis (Newman et al., 2002;
Newman, 2006) and play a critical role in many graph learn-
ing algorithms, such as DeepWalk (Perozzi et al., 2014)
and ClusterGCN (Chiang et al., 2019). The block structure
simplifies graph representation, highlighting modularity and
reducing complexity by focusing on inter- and intra-block
interactions.

3



Stochastic Block Graph Diffusion

... ...

......

Loss

Decompose

Sam
ple

Figure 2. The overview of SBGD. (1) incoming graphs are decomposed into block graphs where vertices share similar properties. (2)
sample from the set of block graphs and conduct separate diffusion. The noise model is defined by the distribution P(.) (3) The denoising
network sθ, sψ, sϕ learns to predict the clean graph, including the inter-connections, from C(t)

j , and C(t)
i . During inference, the predicted

distribution is combined with Q(C(t−1)|G,G(t)) in order to sample a discrete C(t−1) from this distributions.

3. Stochastic Block Graph Diffusion (SBGD)
In this section, we introduce the SBGD model, designed to
overcome the scalability and size generalization challenges
of traditional GDGMs by incorporating block structure prin-
ciples into the diffusion-based graph generation framework.
SBGD performs the diffusion process within a compact
block space instead of the full graph space, thereby reduc-
ing memory complexity and enhancing size generalization.
Fig. 2 is an overview of SBGD.

3.1. Block Graphs Representation

Let G = (V, E ,X) denote an undirected graph, where V =
{1, 2, . . . , N} is the set of N nodes, E ⊆ V × V represents
the edges, and X ∈ RN×F is the node attribute matrix,
where each row xv contains the feature vector for node
v. Alternatively, we can represent G as a two-tuple G =
(A,X), where A is the N × N adjacency matrix, with
A[i, j] = 1 if there is an edge between nodes i and j, and 0
otherwise. These representations are used interchangeably
to accommodate different aspects of the generation process.
For any matrix H, we denote its transpose as H′ and its
value at time step t as H(t).

To apply block decomposition, we partition the nodes into
k non-overlapping groups, V = [V1, . . . ,Vk], where Vi con-
tains the nodes in the i-th partition (see the supplementary
material for partition details). The subgraph induced by
Vi is denoted as the block graph Ci = G[Vi]. Given this

partition, we have a set C of k block graphs as

C = [C1, . . . , Ck]
= [G[V1], . . . ,G[Vk]]

= [(A1,X1), . . . , (Ak,Xk)],

where Ai and Xi are the adjacency matrix and feature ma-
trix of block graph Ci, respectively. The complete adjacency
matrix A of G can be partitioned into k2 submatrices:

A = Ā+∆ =

A1 · · · A1k

...
. . .

...
Ak1

· · · Ak



Ā =

A1 · · · 0
...

. . .
...

0 · · · Ak

 , ∆ =

 0 · · · A1k

...
. . .

...
Ak1 · · · 0

 .

Here, Ā consisting of all diagonal blocks of A and each
diagonal block Ai is a |Vi| × |Vi| adjacency matrix con-
taining the links within Ci. ∆ is the matrix consisting of
all off-diagonal blocks of A and Aij contains the links be-
tween two partitions Vi and Vj . Then, the graph G can be
represented by two tuples ({Ci}, {Aij}) where {Ci} is the
set of block graphs and {Aij} is set of adjacency matrix
among block graphs with the sparse connection.

3.2. Diffusion Frameworks

Forward process. Based on the block graph decomposi-
tion, we further factorize the distribution of feature matrix

4



Stochastic Block Graph Diffusion

and adjacency for the forward process as:

P(G(t)|G(t−1)) =
∏
i∈[k]

P(C(t)
i |C(t−1)

i )
∏

i,j∈[k]

P(A(t)
ij |A

(t−1)
ij ).

(3.1)

The complete distribution of the graph is decomposed into
two components where the first component is the distribu-
tion of the block graph and the second component is the
distribution of the interactions among the block graphs. For
the first component, we further decompose the block graph
distribution into adjacency matrix and feature matrix, i.e,

P(C(t)
i |C(t−1)

i ) = P(X(t)
i |X(t−1)

i )P(A(t)
i |A(t−1)

i ).

Then, we adopt the existing approaches from (Jo et al.,
2022; Vignac et al., 2022) to model the forward diffusion as
a system of stochastic process. We apply Gaussian noise to
X and A in the forward process, i.e.,

P(A(t)
i |A(t−1)

i ) = N(A(t)
i ;

√
(1− βt)A

(t−1)
i , βtI)

P(X(t)
i |X(t−1)

i ) = N(X(t)
i ;

√
(1− βt)X

(t−1)
i , βtI)

For the second component of Eq. 3.1, we note that the
interactions Aij between the block graphs are sparse (see
Fig. 4), and a light-weight module should be sufficient to
capture this information. In addition, the interconnection
Aij depends on the choice of block graphs. To capture such
a dependency, we propose to model these interactions matrix
with another neural network that takes in two (generated)
block graphs Ci, Cj as input and generated the interaction
among block graph Ci and Cj as output.

Training Objective. The core idea of the denoising diffu-
sion model is to use neural networks to model the reverse
(denoising) process for facilitating generation. With the de-
composition above, we need two separate denoising neural
networks sθ and sψ (θ and ψ are learnable parameter) to
model the denoising processes for the graph structure and
feature correspondingly. Instead of directly learning a neu-
ral net to model the transition from t to t− 1, we adopt the
idea from (Vignac et al., 2022; Chen et al., 2022) and learn
a neural network to predict C(0)

i (or the noise ϵ) from C(t)
i .

This amounts to,

LAi
= Et,ϵ

[∥∥∥sθ(A(t)
i ,X

(t)
i , t)−A

(0)
i

∥∥∥2] ,
LXi = Et,ϵ

[∥∥∥sψ(A(t)
i ,X

(t)
i , t)−X

(0)
i

∥∥∥2] ,
where ϵ is drawn from the standard Gaussian distribution.
If the denoising neural network simply operates separately
in the individual block graph, the sparse connection among
the block graphs will be lost. Therefore, in capturing the
interconnection, the denoising neural network takes in two

block graphs Ci, Cj from the block graph set and aims to
predict the clean two-block graph G[Ci]

⋃
G[Cj ] induced by

Ci, Cj . Then, we recover/model the sparse interaction be-
tween these two block graphs with another neural sϕ(Ci, Cj).
This amounts to the following objective,

LI = ECi,Cj

[
∥sϕ(Ci, Cj)−Aij∥2

]
.

The complete training objective is given by,

L = LAi
+ LAj

+ LXi
+ LXj

+ LI.

Sampling and Implementation. Once the network
sψsθ, sϕ for the graph structure, features, and cross-block
graph interactions are trained, we follow the standard pro-
cedure for sampling from a diffusion model. This involves
first creating a set of block graphs using sψ and sθ , and then
recovering their interactions using sϕ. For our implemen-
tation, we use the commonly employed graph transformer
architecture for all of these networks. Pseudo-code for train-
ing and sampling is provided in Appendix B, along with
additional technical details of the implementation.

3.3. Theoretical Discussion.

In this section, we present a theoretical discussion of our
proposed method. Our analysis focus on the memory com-
plexity and performance benefit of block representation, and
the benefit of using analogue bit.

Memory Analysis. Existing denoising diffusion-based ap-
proaches for graph generation operate directly on the com-
plete graph space, which leads to a memory complexity of
O(N2), where N is the number of vertices in the graph.
This quadratic complexity arises because the diffusion pro-
cess needs to track pairwise interactions or correlations
between every pair of vertices, making it highly memory-
intensive for large-scale graphs. In contrast, our proposed
SBGD approach reduces memory requirements by decom-
posing the graph into smaller block graphs, each of size
C, where C ≪ N . As a result, the memory complexity is
reduced to O(C2), which can lead to significant memory
savings, especially when dealing with very large graphs. A
memory complexity comparison among existing methods is
provided in Table 1.

Advantage for Distributed Training. This block-wise rep-
resentation not only reduces the memory footprint but also
provides several advantages in the context of distributed
training. By partitioning the graph into smaller, subgraphs
(blocks), the model can process each pair of block graphs
separately or in parallel, allowing for more efficient dis-
tributed computation. Each computational node or device in
a distributed system can handle smaller subproblems, reduc-
ing the memory load per node and mitigating bottlenecks
associated with memory constraints.

5



Stochastic Block Graph Diffusion

Therefore, the modularity of the block representation is par-
ticularly beneficial for large-scale graph learning tasks. It
improves scalability, as the approach scales linearly with the
number of blocks rather than quadratically with the number
of vertices, making it feasible to handle graphs with millions
or even billions of vertices. Moreover, the localized nature
of block-wise operations preserves important structural in-
formation within each block while enabling inter-block inter-
actions to be modeled through additional aggregation steps,
ensuring that the diffusion process still captures global graph
properties without incurring prohibitive memory costs.

Benefit of Structural Prior. Block representation improves
size generalization in graph generation by focusing on lo-
cal, size-invariant structures like communities, which have
consistent internal patterns (e.g., degree distributions, clus-
tering coefficients) regardless of the overall graph size. By
learning these modular, block-based components, the model
can generalize well across different graph sizes, applying
the same learned rules to both smaller and larger graphs.
This approach reduces the learning complexity compared to
full-graph methods, as it shifts the focus to intra-community
relationships (with complexity O(C2)) and sparse inter-
community connections, rather than handling the full graph
(with complexity O(N2)).

Moreover, block-based models avoid overfitting to specific
global graph patterns that are unique to certain sizes. This
modular approach allows the model to expand or contract
based on the number of blocks, making it adaptable to a
wide range of graph scales. The combination of reduced
learning complexity, modularity, and the ability to learn size-
invariant patterns ensures better generalization and faster
convergence across graphs of different sizes, enhancing
scalability and performance.

4. Experiment
In this section, we present an experimental study of our
proposed method. We defer some of the technical details
of these experiments to the appendix. The goal of the ex-
perimental study is to empirically validate and answer the
following two main questions for our method.

1. Can SBGD achieve comparable/better performance in
generating graphs while requiring less memory?

2. Can SBGD extrapolate better in generating graphs of size
that are not observed in training data?

Overview. The empirical results answer the above questions
affirmly, and thereby validate the effectiveness of SBGD.

4.1. General Setup

Baselines. In our experiments, we compare the perfor-
mance of SBGD against several state-of-the-art denoising-

diffusion-based graph generation methods including Di-
Gress (Vignac et al., 2022), GDSS (Jo et al., 2022), and
EDP-GNN (Niu et al., 2020). In addition, we also con-
sider several representative deep graph generation such as
GraphRNN (You et al., 2018), SPECTRE (Martinkus et al.,
2022), and EDGE (Chen et al., 2023).

Datasets. We consider five real and synthetic datasets with
varying sizes and connectivity levels: Planar-graphs, Con-
textual Stochastic Block Model(cSBM) (Deshpande et al.,
2018), Proteins (Dobson & Doig, 2003), QM9 (Wu et al.,
2018), OGBN-Arxiv, and OGBN-Products (Hu et al., 2021).
Notably, OGBN-Products is a large dataset for graph gener-
ation tasks, and our method is the only approach capable of
successfully training on it.

Evaluation. Our evaluation focuses on two main aspects:
(1) the quality of the generated graphs, assessing how well
the method captures the underlying graph distribution, and
(2) the memory consumption required during graph gen-
eration. For assessing the quality of generated graphs,
we follow established graph generation studies and adopt
both structure-based and neural-based metrics. In terms of
structure-based metrics, we measure the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) between test and
generated graphs across graph properties, including degrees,
clustering coefficients, and orbit counts. For neural-based
metrics, we use the Fréchet Inception Distance (FID) pro-
posed by (Heusel et al., 2017) (with modified procedure
in (Thompson et al., 2022)) to evaluate the alignment be-
tween graph distributions in a learned embedding space. To
ensure a direct comparison of memory consumption, we
use our method as a reference point and report the memory
consumption ratio as the baseline model’s memory divided
by our model’s memory, highlighting the relative efficiency
across approaches.

Testbed. Our experiments were conducted on a Dell Pow-
erEdge C4140, The key specifications of this server, perti-
nent to our research, include: CPU: Intel Xeon Gold 6230
processors equipped with 20 cores and 40 threads, GPU:
NVIDIA Tesla V100 SXM2 units equipped with 32GB of
memory, Memory: An aggregate of 256GB RAM, dis-
tributed across eight 32GB RDIMM modules, and Operat-
ing System: Ubuntu 18.04LTS

4.2. Experimental Results

Effectiveness. We evaluate the effectiveness of our ap-
proach in both real-life and synthetic datasets. The results
are presented in Table 1. We observe that SBGD can achieve
a significantly better memory consumption (up to 6 × more
memory efficient) while maintaining comparable or bet-
ter performance in generation in almost all metrics com-
pared to existing baselines. In particular, under the given
testbed, our method is the only one that can successfully

6



Stochastic Block Graph Diffusion

Training Graph (Size 100) Generated Graph (Size 50) Generated Graph (Size 100) Generated Graph (Size 200) Generated Graph (Size 300)

Figure 3. Visualization of graphs of different sizes generated from SBGD. The figure illustrates that SBGD is able to maintain the overall
characteristic of the ground-truth (training graph) nicely even if generating graph of varied size.

0 10 20
Graph Size

0

30

60

FI
D 

Sc
or

e
 (L

ow
er

 is
 B

et
te

r)

GraphRNN
SPECTRE
SBGDD

GDSS
DiGress

(a) Size Generalization of Different Methods

2 4 6 8 10
Number of Partitions

0

10

20

30

FI
D 

Sc
or

e
 (L

ow
er

 is
 B

et
te

r)

(b) Effect of Partition Partition

0 6 12
Graph Size

0

30

60

FI
D 

Sc
or

e
 (L

ow
er

 is
 B

et
te

r)

2
4
6

8
10

(c) Partition Number and Size Generalization

Figure 4. Experiments on Size Generalization and Partition Number. Figure 4(a) illustrates the size generalization performance of different
methods. Figure 4(b) shows the performance of our method as a function of the number of partitions. Figure 4(c) demonstrates how the
number of partitions impacts the size generalization of our method.

train and learn on the OGBN-products dataset. This vali-
dates the effectiveness of our approach in addressing the
main motivation for making the graph generation method
scalable and efficient for large graphs. In addition, we ob-
serve that recent diffusion-based methods such as DiGress
consistently outperform other deep-learning based method
such as GraphRNN. This is consistent with the existing liter-
ature and further indicates our improvement on the diffusion
model is important for the graph generation.

Size Generalization. Next, we evaluate the size general-
ization of our method compared to existing baselines. For
this, we use the cSBM model and focus on the FID metric
to evaluate the distance between the generated distribution
and the training distribution. As illustrated in Fig. 3 and
4(a), our method can maintain global structure characteristic
and significantly excels in generating graphs with varied
sizes. This indicates that our method is able to extrapolate
better in size generation with respect to complex/large graph
generation, validating our previous theoretical discussion
on the benefit of block-representation.

Partition Number. Next, we investigate how the partition
number, the main hyperparameter of our framework, can

affect the learning process. For this, we are interested in
two questions: 1) how does the partition number affect the
generation quality and 2) how does the partition number
affect the size generalization ability of the method? For
the first question, we evaluate the FID score (relative to the
training dataset) with respect to different partition number.
As illustrated in Fig. 4(b), there is an optimal point for the
partition number. We hypothesize the reason behind this
is that when the partition number is too large (block size
being too small), the method would be unable to learn some
important global structure. On the other hand, when the
partition number is too small (block size being too large),
the method would pick up noise from the undesired global
structure. Next, we look at how partition number affects
the size generalization Based on the previous observation,
we would expect that a larger partition number (leading to a
smaller block size) would extrapolate better for generating a
smaller graph. On the other hand, a lower partition number
(leading to a larger block size) would extrapolate better for
generating a larger graph. The results in Fig. 4(c) indeed
match our expectation.

7



Stochastic Block Graph Diffusion

Table 2. Performance Comparison of Graph Generation Methods. The symbol ↓ indicates that a lower value is preferable, while ↑ indicates
that a higher value is better. The best and second-best performances are highlighted in dark gray and light gray, respectively. ”N.S.” means
the method does not support the dataset,” ”O.O.M.” means ”Out of Memory,” and ”N.A.” means the metric is not available for the dataset.
”M.R.” denotes the memory ratio, with the baseline reference being our method.

Dataset Method ↓ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Avg. ↓ V.U.N ↑ FID ↓ M.R. ↓

Planar Graphs

GraphRNN 0.097 ± 2.11e-3 0.325 ± 1.23e-3 0.650 ± 3.25e-3 0.933 ± 1.66e-3 0.196 ± 1.02e-3 0.44 53.0 ± 0.795 38.0 ± 1.02 6.1
SPECTRE 0.102 ± 1.07e-3 0.252 ± 1.52e-3 0.619 ± 2.42e-3 0.871 ± 3.42e-3 0.176 ± 1.52e-3 0.40 60.0 ± 0.892 33.3 ± 0.842 4.2
EDGE 0.204 ± 1.12e-3 0.522 ± 1.72e-3 0.589 ± 2.17e-3 0.788 ± 3.21e-3 0.154 ± 1.56e-3 0.45 60.6 ± 1.731 46.7 ± 2.768 5.3
EDP-GNN 0.058 ± 9.01e-4 0.648 ± 8.76e-4 0.639 ± 1.01e-3 0.886 ± 2.83e-3 0.170 ± 2.01e-3 0.48 73.1 ± 0.923 36.8 ± 1.391 5.5
GDSS 0.085 ± 1.43e-3 0.275 ± 7.71e-4 0.421 ± 1.72e-3 0.773 ± 1.87e-3 0.098 ± 1.89e-3 0.33 87.5 ± 2.127 33.3 ± 1.721 4.8
DiGress 0.076 ± 7.58e-4 0.260 ± 6.21e-4 0.451 ± 5.90e-4 0.775 ± 3.32e-3 0.094 ± 1.07e-3 0.33 86.2 ± 3.981 29.0 ± 3.011 5.7
SBGD 0.081 ± 6.21e-4 0.216 ± 5.81e-4 0.446 ± 1.89e-3 0.765 ± 4.21e-3 0.093 ± 7.34e-4 0.32 89.5 ± 1.642 25.0 ± 2.857 1.0

Contextual Stochastic Block Model

GraphRNN 0.105 ± 1.78e-3 0.388 ± 3.11e-3 0.538 ± 1.53e-3 0.758 ± 2.46e-3 0.210 ± 1.82e-3 0.40 67.7 ± 2.86 29.7 ± 1.28 6.0
SPECTRE 0.087 ± 5.67e-4 0.355 ± 2.43e-3 0.499 ± 2.31e-3 0.741 ± 2.75e-3 0.174 ± 1.42e-3 0.37 70.3 ± 3.72 17.6 ± 0.92 4.0
EDGE N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
EDP-GNN N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
GDSS 0.082 ± 1.43e-3 0.298 ± 8.21e-4 0.448 ± 7.21e-4 0.538 ± 2.32e-3 0.164 ± 9.21e-4 0.31 66.9 ± 5.12 22.1 ± 0.88 5.5
DiGress 0.083 ± 2.08e-3 0.302 ± 7.25e-4 0.457 ± 6.39e-4 0.610 ± 1.59e-3 0.165 ± 8.63e-4 0.32 83.1 ± 1.74 18.8 ± 0.53 5.3
SBGD 0.078 ± 1.00e-3 0.287 ± 5.77e-4 0.431 ± 3.97e-4 0.537 ± 1.25e-3 0.154 ± 6.44e-4 0.29 85.2 ± 3.21 16.3 ± 0.32 1.0

QM9

GraphRNN N.A. N.A. N.A. N.A. N.A. N.A. 75.6 ± 2.54 39.5 ± 3.35 6.4
SPECTRE N.A. N.A. N.A. N.A. N.A. N.A. 68.6 ± 1.88 35.5 ± 2.22 4.5
EDGE N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
EDP-GNN N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
GDSS N.A. N.A. N.A. N.A. N.A. N.A. 88.6 ± 2.62 21.6 ± 1.56 5.7
DiGress N.A. N.A. N.A. N.A. N.A. N.A. 92.8 ± 1.42 19.7 ± 1.25 5.5
SBGD N.A. N.A. N.A. N.A. N.A. N.A. 91.2 ± 1.08 20.0 ± 1.02 1.0

OGBN-Arxiv

GraphRNN 0.077 ± 1.68e-3 0.176 ± 2.31e-3 0.382 ± 2.00e-3 0.953 ± 1.64e-3 0.185 ± 3.18e-3 0.35 N.A. 33.9 ± 2.13 6.2
SPECTRE 0.095 ± 2.31e-3 0.177 ± 2.71e-3 0.371 ± 2.64e-3 0.822 ± 1.27e-3 0.175 ± 1.94e-3 0.33 N.A. 25.0 ± 1.54 4.3
EDGE N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
EDP-GNN N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
GDSS 0.066 ± 1.92e-3 0.165 ± 1.62e-3 0.376 ± 2.27e-3 0.789 ± 1.99e-3 0.172 ± 1.23e-3 0.31 N.A. 21.6 ± 1.56 5.6
DiGress 0.060 ± 1.72e-3 0.156 ± 1.22e-3 0.285 ± 1.97e-3 0.761 ± 2.82e-3 0.171 ± 1.68e-3 0.28 N.A. 33.7 ± 1.21 5.3
SBGD 0.062 ± 2.01e-3 0.148 ± 1.84e-3 0.271 ± 1.06e-3 0.739 ± 3.48e-3 0.173 ± 1.74e-3 0.27 N.A. 21.4 ± 1.23 1.0

OGBN-products

GraphRNN OOM OOM OOM OOM OOM OOM OOM OOM OOM
SPECTRE OOM OOM OOM OOM OOM OOM OOM OOM OOM
EDGE N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
EDP-GNN N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
GDSS OOM OOM OOM OOM OOM OOM OOM OOM OOM
DiGress OOM OOM OOM OOM OOM OOM OOM OOM OOM
SBGD 0.092 ± 8.38e-4 0.141 ± 1.56e-3 0.467 ± 1.32e-3 0.921 ± 2.73e-3 0.231 ± 1.80e-3 0.37 N.A. 18.7 ± 2.78e-3 1

5. Related Works
Graph Generation. Graph generation research has a
rich history, underscored by the importance of the prob-
lem, and is characterized by the use of various random
graph models. Notable among these are the Erdos-Renyi
(ER) model (Erdős et al., 1960), Barabasi-Albert mod-
elt (Barabási & Albert, 1999), and the Stochastic-Block
Model (SBM) (Holland et al., 1983) , each contributing
uniquely to our understanding of graph structures. The
SBM, in particular, is pivotal because it builds on the obser-
vation that real-life networks often consist of more funda-
mental block or community structures. This is evident in
the way real-life networks exhibit block structures (Su &
Marbach, 2022; 2023; Abbe, 2018), where vertices within a
block show similar behaviours and have dense interconnec-
tions, while inter-block connections remain sparse. Many
graph algorithms have been developed based on this under-
standing, leveraging the inherent block structure in networks.
In our current work, we connect this traditional knowledge
in graph analysis with the recent advancements in graph dif-
fusion generative models. By applying the block structure
prior, we aim to enhance the graph diffusion model’s perfor-
mance, particularly in scaling up to handle larger graphs.

Graph Diffusion Generative Model. Inspired by the suc-
cess of DDM in other domains, there is increasing attention

on extending DDM into the graph domains. (Niu et al.,
2020) is one of the pioneer works in graph generation that
extends the diffusion model in the graph domain. (Niu et al.,
2020) shows that a diffusion-based model combined with
a graph-neural-like backbone is permutation invariant and
capable of capturing the complex distribution of the graph
structure of real-life graphs. (Jo et al., 2022) further extend
the procedure to incorporate graph structure. In order to
speed up the sampling efficiency, (Chen et al., 2023) pro-
pose to use Bernoulli distribution as the diffusion process
to model the generation and deletion of edges and to use
an empty graph as the convergent point. However, their
method suffers from two limitations: 1) their methods only
model the generation of graph structure and are inapplicable
to graphs with features (i.e., inapplicable to most of the
interesting applications); and 2) they use a single point in
space (empty graph) as the convergent distribution, which
seriously limits the expressive power of the generation pro-
cess (Xu et al., 2022). (Vignac et al., 2022) aims to tackle
the discrete nature of graph structure data and extend the
discrete diffusion (Hoogeboom et al., 2021; Austin et al.,
2021) to the graph structure data with categorical features.
Their method also requires accommodating the complete
graph in training or sampling, but they are still suffering
from the memory explosion problem.

Recent work also explores multi-modal distributions under-

8



Stochastic Block Graph Diffusion

lying graph structures to enhance generation accuracy (Jo
et al., 2023). Moreover, an alternative line of research ap-
proaches graph generation as an autoregressive editing pro-
cess on graphs (Zhao et al., 2024), fundamentally distinct
from the diffusion framework. An intriguing future research
direction would be to investigate potential synergies be-
tween these autoregressive and diffusion-based generative
paradigms.

6. Concluding Discussion
6.1. Conclusion

We present the SBGD model, which leverages a block graph
representation to address key challenges faced by existing
GDGMs. By utilizing a block-based structure, SBGD not
only reduces memory complexity, improving scalability, but
also enhances size generalization. Through extensive empir-
ical evaluations, we show that SBGD significantly improves
memory efficiency and scalability, while demonstrating su-
perior generalization across graphs of varying sizes. This
makes SBGD a more flexible and efficient solution to the
graph generation problem.

6.2. Future Work

Our experiments reveal a trade-off when increasing the num-
ber of partitions in the block representation. We hypoth-
esize that the key factor controlling this trade-off is the
alignment between the resulting block size, the inherent
granularity of the graph structure, and the granularity re-
quired for the downstream task. Further investigation into
this issue presents an exciting direction for future research.
Specifically, developing metrics to quantitatively capture
this phenomenon could provide valuable insights, allowing
us to refine the block representation for improved perfor-
mance across a wide range of graph generation tasks.

Impact Statement
This paper presents work whose goal is to advance the scal-
ability of score-based graph generation method. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here

Acknowledgement
We would like to thank the anonymous reviewers and
area chairs for their helpful comments. This work was
supported in part by grants from the National Key Re-
search and Development Program of China (Grant No.
2023YFC3707905), and the Natural Science Foundation
of China (No. 42302326).

References
Abbe, E. Community detection and stochastic block mod-

els: recent developments. Journal of Machine Learning
Research, 18(177):1–86, 2018.

Aref, S. and Mostajabdaveh, M. Analyzing modularity max-
imization in approximation, heuristic, and graph neural
network algorithms for community detection. Journal of
Computational Science, 78:102283, 2024.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

Barabási, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. arXiv
preprint arXiv:1805.08490, 2018.

Chen, T., Zhang, R., and Hinton, G. Analog bits: Gen-
erating discrete data using diffusion models with self-
conditioning. arXiv preprint arXiv:2208.04202, 2022.

Chen, X., He, J., Han, X., and Liu, L.-P. Efficient and degree-
guided graph generation via discrete diffusion modeling.
arXiv preprint arXiv:2305.04111, 2023.

Cherifi, H., Palla, G., Szymanski, B. K., and Lu, X. On
community structure in complex networks: challenges
and opportunities. Applied Network Science, 4(1):1–35,
2019.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 257–266, 2019.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E. Con-
textual stochastic block models. Advances in Neural
Information Processing Systems, 31, 2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330(4):771–783, 2003.

Erdős, P., Rényi, A., et al. On the evolution of random
graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60,
1960.

9



Stochastic Block Graph Diffusion

Fiedler, M. Algebraic connectivity of graphs. Czechoslovak
mathematical journal, 23(2):298–305, 1973.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.

Grover, A., Zweig, A., and Ermon, S. Graphite: Iterative
generative modeling of graphs. In International confer-
ence on machine learning, pp. 2434–2444. PMLR, 2019.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs, 2018.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Learning
categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs, 2021. URL
https://arxiv.org/abs/2005.00687.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Jo, J., Kim, D., and Hwang, S. J. Graph generation with dif-
fusion mixture. arXiv preprint arXiv:2302.03596, 2023.

Kamada, T., Kawai, S., et al. An algorithm for drawing
general undirected graphs. Information processing letters,
31(1):7–15, 1989.

Karrer, B. and Newman, M. E. Stochastic blockmodels and
community structure in networks. Physical review E, 83
(1):016107, 2011.

Karypis, G. and Kumar, V. Multilevelk-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed computing, 48(1):96–129, 1998.

Korte, B. H., Vygen, J., Korte, B., and Vygen, J. Combina-
torial optimization, volume 1. Springer, 2011.

Lee, H., Hyung, E., and Hwang, S. J. Rapid neural architec-
ture search by learning to generate graphs from datasets.
arXiv preprint arXiv:2107.00860, 2021.

Li, Y., Zhang, L., and Liu, Z. Multi-objective de novo drug
design with conditional graph generative model. Journal
of cheminformatics, 10:1–24, 2018.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. Spectre: Spectral conditioning helps to overcome the
expressivity limits of one-shot graph generators. In In-
ternational Conference on Machine Learning, pp. 15159–
15179. PMLR, 2022.

Newman, M. E. Modularity and community structure in net-
works. Proceedings of the national academy of sciences,
103(23):8577–8582, 2006.

Newman, M. E. and Girvan, M. Finding and evaluating
community structure in networks. Physical review E, 69
(2):026113, 2004.

Newman, M. E., Watts, D. J., and Strogatz, S. H. Random
graph models of social networks. Proceedings of the
national academy of sciences, 99(suppl 1):2566–2572,
2002.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:
Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710, 2014.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736–
1741, 2018.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Simonovsky, M. and Komodakis, N. Graphvae: Towards
generation of small graphs using variational autoencoders.

10

https://arxiv.org/abs/2005.00687


Stochastic Block Graph Diffusion

In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27, pp. 412–422. Springer, 2018.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion im-
plicit models. arXiv preprint arXiv:2010.02502, 2020a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. Advances in neural
information processing systems, 33:12438–12448, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Su, J. and Marbach, P. Structure of core-periphery commu-
nities. In International Conference on Complex Networks
and Their Applications, pp. 151–161. Springer, 2022.

Su, J. and Marbach, P. Structural properties of core–
periphery communities. Advances in Complex Systems,
pp. 2340004, 2023.

Thompson, R., Knyazev, B., Ghalebi, E., Kim, J., and Taylor,
G. W. On evaluation metrics for graph generative models.
arXiv preprint arXiv:2201.09871, 2022.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang,
F., Xie, X., and Guo, M. Graphgan: Graph representation
learning with generative adversarial nets. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., et al. Deep graph
library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315,
2019.

Wieder, O., Kohlbacher, S., Kuenemann, M., Garon, A.,
Ducrot, P., Seidel, T., and Langer, T. A compact review of
molecular property prediction with graph neural networks.
Drug Discovery Today: Technologies, 37:1–12, 2020.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Xie, S., Kirillov, A., Girshick, R., and He, K. Exploring
randomly wired neural networks for image recognition. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1284–1293, 2019.

Xu, Y., Liu, Z., Tegmark, M., and Jaakkola, T. Poisson flow
generative models, 2022.

Yang, D., Yu, J., Wang, H., Wang, W., Weng, C., Zou, Y.,
and Yu, D. Diffsound: Discrete diffusion model for text-
to-sound generation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2023.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018.

Zhao, L., Ding, X., and Akoglu, L. Pard: Permutation-
invariant autoregressive diffusion for graph generation.
arXiv preprint arXiv:2402.03687, 2024.

11



Stochastic Block Graph Diffusion

A. Background
Denoising Diffusion Models (DDM). DDM models (Song & Ermon, 2019; Song et al., 2020b; Song & Ermon, 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020a) belong to the large family of latent variable models which use a latent space of
the same dimension as the data. It models the data generation process as a transition process in the latent space and primarily
comprises two main components: a noise model (forward process) and a denoising neural network (backward process).
The noise model q gradually corrupts a data point x to form a sequence of increasingly noisy data points (x1, . . . , xT ). It
adheres to a Markovian structure, formulated as:

q(x1, . . . , xT |x) = q(x1|x)
T∏

t=2

q(xt|xt−1) (A.1)

Then, we want to learn a denoising network ϕθ that aims to reverse this process by predicting xt−1 from xt. To synthesize
new samples, a noisy point is sampled from the prior distribution p(xT ) and then inverted through the iterative application
of the denoising network. For a diffusion model to exhibit efficiency, it should satisfy three properties:

1. The distribution q(xt|x) should possess a closed-form equation, facilitating parallel training across varying time steps.

2. The posterior pθ(xt−1|xt) =
∫
q(xt−1|xt, x)dϕθ(x) must also be expressed in a closed-form, enabling the utilization

of x as the neural network’s target.

3. The limit distribution q∞ = limT→∞ q(xT |x) must remain independent of x, making it viable as a prior distribution
for inference.

A scheme that satisfies all these properties is to use Gaussian noise (Ho et al., 2020) as the noise model and it has become
the de-facto option for the forward process. This amounts to a Markov chain that gradually adds Gaussian noise to the data
according to a variance schedule β1, . . . , βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), q(xt|x0) = N (xt; ᾱtx0, (1− ᾱt)I), (A.2)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. Instead of directly learning a neural net to model the transition from xt to xt−1,
one can learn a neural net f(xt, t) to predict x0 (or ϵ) from xt, and estimate xt−1 from xt and estimated x̂0 (or ϵ̂).

Graph Diffusion Generative Model(GDGM). Building upon the empirical success of DDM in other domains, there is
increasing attention on extending DDM to tackle the graph generation problem (refer to the related work section for a more
detailed discussion). Two notable extensions by (Niu et al., 2020) and (Jo et al., 2022) involve the utilization of matrix
representations for graphs, which allows them to treat the graphs in a similar manner as images. However, these approaches
exhibit two key limitations: 1) they overlook the discrete nature of graph data, and 2) the dimensionality of the representation
space scales as O(N2), where N denotes the number of vertices.

To tackle the discrete nature of graph structure data, recent work (Vignac et al., 2022) extends the discrete diffusion model
from other domains (Hoogeboom et al., 2021; Austin et al., 2021) and models the graph representation using a state space
model, treating the noising process as a Markov transition on the state transitions. However, this approach still suffers from
the issue of memory explosion, as each state in the state space model continues to represent the complete graph.

Block Structure in Graphs. In real-life graphs, a prominent feature is their block (community structure) (Deshpande et al.,
2018; Holland et al., 1983), where vertices within the same block display dense connections and exhibit similar behavioural
traits (i.e., similar feature distributions). This contrasts sharply with vertices from different blocks, which are sparsely
connected, highlighting the distinct boundaries between these units. The concept of block structure is a cornerstone in
graph analysis (Newman et al., 2002; Newman, 2006) and plays a crucial role in many graph learning algorithms such as
DeepWalk (Perozzi et al., 2014) and ClusterGCN (Chiang et al., 2019). In this paper, we integrate the traditional principles
of graph analysis with the graph diffusion generation model. By leveraging the block structure of the graph as the diffusion
space, we aim to significantly reduce memory complexity in our approach.

A.1. Training Objective Derivation

In this appendix, we present a derivation for the Equations used in the problem formulation for completeness. A similar
derivation can be found in (Jo et al., 2022).

12



Stochastic Block Graph Diffusion

The partial score functions can be estimated by training the time-dependent score-based models sθ(.) and sϕ(.), so that

sθ(Gt, t) ≈ ∇X logP(Gt), sϕ(Gt, t) ≈ ∇A logP(Gt).

However, the objectives introduced in SGM for estimating the score function are not directly applicable here, since the partial
score functions are defined as the gradient of each component, rather than the gradient of the data as in the conventional
score function. This interdependence between the two diffusion processes tied by the partial scores adds another layer of
difficulty.

To address this issue, an new objective for estimating the partial scores is needed. Intuitively, the score-based models
should be trained to minimize the distance to the corresponding ground-truth partial scores. The following new objectives
generalize score matching (Song et al., 2020b) to the estimation of partial scores for the given graph dataset, as follows:

min
θ

Et

[
EG0

EGt|G0

∥∥sθ,t(Gt)−∇X logP(Gt)
∥∥2
2

]
, (A.3)

min
ϕ

Et

[
EG0EGt|G0

∥∥sϕ,t(Gt)−∇A logP(Gt)
∥∥2
2

]
, (A.4)

where t is uniformly sampled from [0, T ]. The expectations are taken over samples G0 ∼ pdata and Gt ∼ P(Gt|G0), where
P(Gt|G0) denotes the transition distribution from 0 to t induced by the forward diffusion process.

Unfortunately, the equations above are still not directly trainable since the ground-truth partial scores are not analytically
accessible in general. This is why we need to underlying process to be an OU process, as we can leverage the known
conditional density of OU process for training.

min
θ

Et

[
EG0

EGt|G0

∥∥sθ,t(Gt, t)−∇X logP(Gt|G0)
∥∥2
2

]
, (A.5)

min
ϕ

Et

[
EG0

EGt|G0

∥∥sϕ(Gt, t)−∇A logP(Gt|G0)
∥∥2
2

]
. (A.6)

Since the drift coefficient of the forward diffusion process is linear, the transition distribution P(Gt|G0) can be separated in
terms of Xt and At as follows:

P(Gt|G0) = P(Xt|X0)P(At|A0). (A.7)

Notably, we can easily sample from the transition distributions of each component, P(Xt|X0) and P(At|A0), as they are
Gaussian distributions with mean and variance determined by the coefficients of the forward diffusion process. This leads to
the following training objective:

min
θ

Et

[
EG0

EGt|G0

∥∥sθ(Gt, t)−∇X logP(Xt|X0)
∥∥2
2

]
, (A.8)

min
ϕ

Et

[
EG0EGt|G0

∥∥sϕ(Gt, t)−∇A logP(At|A0)
∥∥2
2

]
. (A.9)

The expectations in the equation above can be efficiently computed using the Monte Carlo estimate with the samples
(t,G0,Gt). Note that estimating the partial scores is not equivalent to estimating ∇X logP(Xt) or ∇A logP(At), the main
objective of previous score-based generative models, since estimating the partial scores requires capturing the dependency
between Xt and At determined by the joint probability through time.

A.1.1. DERIVATION OF TRAINING OBJECTIVE A.3

The original score matching objective can be written as follows:

EGt

[
∥sθ(Gt, t)−∇X logP(Gt)∥22

]
= EGt

[
∥sθ(Gt, t)∥22

]
− 2EGt

[⟨sθ(Gt, t),∇X logP(Gt)⟩] + C1,

13



Stochastic Block Graph Diffusion

where C1 is a constant that does not depend on W. On the other hand, we have

EGtEGt|G0

[
∥sθ(Gt, t)−∇X logP(Gt|G0)∥22

]
= EGtEGt|G0

[
∥sθ(Gt, t)∥22

]
− 2EGtEGt|G0

[⟨sθ(Gt, t),∇X logP(Gt|G0)⟩] + C2,

For the second term, from the derivation (Appendix A.1 from (Jo et al., 2022)), we know that it has the following
equivalency:

EGt [⟨sθ(Gt, t),∇X logP(Gt)⟩] = EGtEGt|G0
[⟨sθ(Gt, t),∇X logP(Gt|G0)⟩]

Since the constant C1 and C2 does not affect the optimization results, we can conclude that the following two objectives are
equivalent with respect to θ

EGt
EGt|G0

[
∥sθ(Gt, t)−∇X logP(Gt|G0)∥22

]
EGt

[
∥sθ(Gt, t)−∇X logP(Gt)∥22

]
Similarly, computing the gradient with respect to A, we can show that the following two objectives are also equivalent with
respect to ϕ:

EGtEGt|G0

[
∥sϕ(Gt, t)−∇A logP(Gt|G0)∥22

]
EGt

[
∥sϕ(Gt, t)−∇A logP(Gt)∥22

]
Now, it remains to show that ∇X logP(Gt|G0) is equivalent to ∇X logP(Xt|X0). Using the chain rule, we get that

∂ logP(At|A0)

∂(Xt)ij
= Tr

[
∇A logP(At|A0)

∂At

∂(Xt)ij

]
= 0.

With this result, we have that,

∇X logP(Gt|G0) = ∇X logP(Xt|X0) +∇X logP(At|A0) = ∇X logP(Xt|X0).

Therefore, we can conclude that

∇X logP(Gt|G0) = ∇X logP(Xt|X0)

With a similar computation for At, we can also show that ∇A logP(Gt|G0) is equal to ∇A logP(At|A0).

B. Algorithm Summarization
SBGD decompose the graphs into finer structural structures (blocks) and operates on a latent graph space consisting of the
building block of the graph structure, allowing for the computation of various graph descriptors at each diffusion step. The
procedure of training and sampling from SBGD are summarized in Algorithm 1 and Algorithm 2 respectively.

Implementation. SBGD decompose the graphs into finer structural structures (blocks) and operates on a latent graph space
consisting of the building block of the graph structure, allowing for the computation of various graph descriptors at each
diffusion step. The detailed and complete procedure of training and sampling of SBGD are provided in the supplementary
material

C. Graph Partition Problem
The graph partition problem is a fundamental problem in graph theory and computer science. It involves dividing a graph
into multiple smaller subgraphs, or ”partitions,” that satisfy certain properties. This problem has wide-ranging applications,
including parallel computing, clustering, network analysis, and community detection. The goal is to achieve a division of
the graph that satisfies specific constraints while optimizing one or more criteria, such as minimizing the number of edges
cut between partitions or ensuring that each partition is balanced in size.

14



Stochastic Block Graph Diffusion

Algorithm 1 SBGD Training Algorithm
Require: A set of block graphs and their interaction C = {Ci},∆ = {Aij}

1: Sample two block graphs Ci, Cj from C
2: Extract the corresponding interactions Aij

3: Sample t ∼ Uniform(1, . . . , T )
4: Sample a noise ϵ ∼ N(0, I)
5: Corrupt data:
6: A

(t)
i =

√
γ(t) ·A(0)

i +
√
1− γ(t) · ε

7: A
(t)
j =

√
γ(t) ·A(0)

j +
√
1− γ(t) · ε

8: X
(t)
i =

√
γ(t) ·X(0)

i +
√
1− γ(t) · ε

9: X
(t)
j =

√
γ(t) ·X(0)

j +
√
1− γ(t) · ε

10: Extract structural and spectral features from the block graph:
z
(t)
i , z

(t)
j = f(A

(t)
i ,X

(t)
i , t), f(A

(t)
j ,X

(t)
j , t)

11: Predict and compute the weighted reconstruction loss:
Â

(0)
i = sθ(A

(t)
i ,X

(t)
i , z

(t)
i , t)

Â
(0)
j = sθ(A

(t)
j ,X

(t)
j , z

(t)
j , t)

X̂
(0)
i = sψ(A

(t)
i ,X

(t)
i , z

(t)
i , t)

X̂
(0)
j = sψ(A

(t)
j ,X

(t)
j , z

(t)
j , t)

Âij = sϕ(Âi, Âj , X̂i, X̂j)

L =
∑

A LA(Â(0),A(0)) +
∑

X LX(X̂(0),X(0)) + L(Âij ,Aij)

Algorithm 2 SBGD sampling algorithm.
1: Sample n1, n2 from the training data distribution
2: Sample A

(T )
i ,A

(T )
j from PAintra(n1),PAintra(n2)

3: Sample X
(T )
i ,X

(T )
j from PX(n1),PX(n2)

4: for t = T to 1 do
5: z

(t)
i , z

(t)
j = f(A

(t)
i ,X

(t)
i , t), f(A

(t)
j ,X

(t)
j , t)

Âi = sθ(A
(t)
i ,X

(t)
i , z

(t)
i , t)

Âj = sθ(A
(t)
j ,X

(t)
j , z

(t)
j , t)

X̂i = sψ(A
(t)
i ,X

(t)
i , z

(t)
i , t)

X̂j = sψ(A
(t)
j ,X

(t)
j , z

(t)
j , t)

Â
(t−1)
i , Â

(t−1)
j , X̂

(t−1)
i , X̂

(t−1)
j = DDIM or DDPM(Âi, Âj , X̂i, X̂j ,A

(t)
i ,A

(t)
j ,X

(t)
i ,X

(t)
j , t, t− 1)

6: end for
7: Âij = sϕ(Âi, Âj , X̂i, X̂j)

15



Stochastic Block Graph Diffusion

C.1. Formal Definition of the Graph Partition Problem

Formally, the graph partition problem can be defined as follows: Given a graph G = (V,E), where V is the set of vertices
(nodes) and E is the set of edges (connections between nodes), the objective is to partition V into k disjoint subsets
V1, V2, . . . , Vk such that:

V = V1 ∪ V2 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅ for all i ̸= j

Each partition Vi represents a subgraph of G, and the partitions are subject to various optimization criteria. A common
objective is to minimize the cut size, which is the number of edges connecting vertices in different partitions. The cut size is
defined as:

Cut(V1, V2, . . . , Vk) =
∑

1≤i<j≤k

|E(Vi, Vj)|

where E(Vi, Vj) is the set of edges between partitions Vi and Vj , and |E(Vi, Vj)| is the number of such edges. This is
typically referred to as the min-cut problem, where the objective is to minimize the number of edges between partitions
while ensuring the constraints on the partitioning of the vertices are satisfied.

Beyond the cut size, additional constraints may be imposed on the partitioning, such as balancing the size of each partition
(ensuring that the number of vertices in each partition is roughly equal), or optimizing a more complex objective such as
minimizing the conductance or maximizing modularity in network analysis.

C.2. Approaches to Solving the Graph Partition Problem

The graph partition problem, particularly the min-cut problem, is NP-hard, meaning that no efficient algorithm guarantees
an optimal solution in polynomial time for all instances. Consequently, various heuristic and approximation methods are
employed to tackle the problem. Key approaches include:

• Spectral Partitioning: This approach uses the eigenvalues and eigenvectors of the graph’s Laplacian matrix to
determine the best way to partition the graph. By computing the Fiedler vector (the eigenvector corresponding to the
second smallest eigenvalue of the Laplacian matrix), the graph can be split into two parts such that the cut size is
minimized. This approach is widely used in clustering and graph partitioning, particularly for large graphs (Chung,
1997; Fiedler, 1973).

• Optimization-Based Methods: These methods formulate the graph partitioning problem as a mathematical opti-
mization problem and solve it using techniques such as linear programming, semidefinite programming, or integer
programming. While these methods can provide exact solutions, they often suffer from high computational complexity,
especially for large graphs (Korte et al., 2011).

• Community Detection Algorithms: In the context of networks and social graphs, community detection algorithms
aim to partition the graph in such a way that the number of edges within each partition is maximized while the number
of edges between partitions is minimized. Methods like the Louvain algorithm and Infomap have become popular for
detecting communities in large-scale networks (Aref & Mostajabdaveh, 2024).

In this paper, we focus on incorporating structural priors into the score-based graph generative model. For the partitioning
algorithm, we adopt the commonly used METIS algorithm (Karypis & Kumar, 1998) from the DGL library (Wang et al.,
2019). Further exploration of partition algorithm selection and its impact on the performance of SGBD presents an exciting
direction for future research.

We select the METIS partitioning algorithm primarily due to our core modeling assumption, which posits dense and
homogeneous intra-block (diagonal) structures coupled with sparse inter-block (off-diagonal) connections. METIS excels in
partitioning graphs into balanced, cohesive clusters while simultaneously minimizing edge cuts. This characteristic aligns
closely with our scenario, making METIS a particularly suitable choice for capturing and leveraging the inherent block-wise
structure of the graphs under investigation.

16



Stochastic Block Graph Diffusion

D. Experiment Details
D.1. General Setup

Baselines. In our experiments, we compare the performance of SBGD against several state-of-the-art denoising-diffusion-
based graph generation methods including DiGress (Vignac et al., 2022), GDSS (Jo et al., 2022), and EDP-GNN (Niu et al.,
2020). In addition, we also consider several representative deep graph generation such as GraphRNN (You et al., 2018),
SPECTRE (Martinkus et al., 2022), and EDGE (Chen et al., 2023). The summarized description of each baseline are as
follows.

• GraphRNN: A pioneering autoregressive model for graph generation that sequentially generates graphs by adding
nodes and edges in a breadth-first-search order, effectively capturing the structure of small- to medium-sized graphs.

• SPECTRE: A graph generation framework leveraging spectral decomposition to generate realistic graph structures,
focusing on preserving spectral properties like eigenvalues and eigenvectors for structural fidelity.

• EDGE: An efficient graph generation method that employs generate graph edge-by-edge, enabling scalability.

• EDP-GNN: A pioneering diffusion-based graph generation model for generating graph structure.

• DiGress: A state-of-the-art denoising diffusion-based framework based on Markov state model.

• GDSS: A graph generation method utilizing score-based generative modeling with stochastic differential equations
(SDEs) to model the gradient field of the graph distribution.

Datasets. We consider five real and synthetic datasets with varying sizes and connectivity levels: Planar-graphs, Contextual
Stochastic Block Model(cSBM) (Deshpande et al., 2018), Proteins (Dobson & Doig, 2003), QM9 (Wu et al., 2018),
OGBN-Arxiv, and OGBN-Products (Hu et al., 2021). Notably, OGBN-Products is a relatively large dataset for graph
generation tasks, and our method is the only approach capable of successfully training on it. The summarized descriptions
of each datasets are as follow.

• Planar-graphs: A synthetic dataset consisting of planar graphs, where nodes and edges are arranged such that they can
be embedded in the plane without edge crossings. This dataset is used to evaluate models on generating graphs with
specific structural constraints.

• cSBM: cSBM is an extension of the classic Stochastic Block Model (SBM), designed to incorporate node features or
context into the synthetic.

• Proteins: A real-world dataset consisting of protein structures represented as graphs, where nodes correspond to amino
acids and edges represent spatial or functional interactions.

• QM9: A dataset of small molecules represented as graphs, where nodes represent atoms and edges represent bonds.

• OGBN-Arxiv: A large citation network dataset where nodes represent papers and edges denote citation relationships.
Node features are derived from paper abstracts.

• OGBN-Products: A large-scale product co-purchasing network where nodes represent products and edges signify
co-purchase relationships.

D.2. Model Description and Configuration

For our implementation, we follow the approach outlined in (Vignac et al., 2022) and utilize a Graph Transformer as the score
network. Graph Transformers are a class of models that adapt the transformer architecture, originally designed for sequential
data, to process graph-structured data. These models are particularly well-suited for tasks such as node classification,
link prediction, and graph generation. One of the main advantages of Graph Transformers over traditional Graph Neural
Networks (GNNs) is their ability to model long-range dependencies in graph data. By leveraging the attention mechanism,
Graph Transformers can capture relationships between distant nodes, without requiring explicit graph convolutions, thus
offering a more flexible and scalable approach to graph representation learning.

17



Stochastic Block Graph Diffusion

D.3. Hyperparameter Tuning and Training

For training our network, we adopt the widely-used Adam optimizer, tuning only the learning rate as the primary hyperpa-
rameter. To determine the optimal values for other hyperparameters in our model, we perform a simple grid search over the
following ranges:

• Number of layers: [2, 4]

• Hidden dimension: [8, 16, 32, 64, 128, 256]

• Learning rate: [0.1, 0.05, 0.01, 0.005, 0.001]

• Diffusion Length T : [50,100,200]

• Sampling Steps: [100,200,500,1000]

For the variance schedule, we follow the one in (Jo et al., 2022).

D.4. Evaluation Metric

Our evaluation focuses on two main aspects: (1) the quality of the generated graphs, assessing how well the method captures
the underlying graph distribution, and (2) the memory consumption required during graph generation. To assess the quality
of the generated graphs, we follow established graph generation studies and adopt both structure-based and neural-based
metrics. These metrics allow us to evaluate the generated graphs from different perspectives, ensuring a comprehensive
comparison across methods.

D.4.1. STRUCTURE-BASED METRICS

Structure-based metrics evaluate how well the generated graphs match the statistical properties of real-world graphs. These
metrics are critical for understanding whether the generated graphs preserve important structural characteristics like node
connectivity and community structure, which are crucial for tasks like graph analysis and network modeling.

Maximum Mean Discrepancy (MMD): MMD is a kernel-based metric that quantifies the difference between the distribution
of graph properties in the generated graph and the real graph. Specifically, MMD measures how well the generated graph
approximates the distribution of properties like node degrees, clustering coefficients, and orbit counts. The degree distribution
reflects how nodes are connected within the graph, the clustering coefficient measures the tendency of nodes to form local
clusters, and orbit counts capture the higher-order relationships between nodes (such as triangles and motifs). By comparing
these properties between the generated and real graphs, MMD provides a robust measure of structural fidelity, where a lower
MMD indicates better alignment between the graphs (Gretton et al., 2012).

D.4.2. NEURAL-BASED METRICS

Neural-based metrics evaluate the quality of generated graphs in the context of learned representations. These metrics
are useful for assessing whether the generator has captured not only low-level structural properties but also more abstract
features that are harder to quantify with traditional metrics. This allows us to measure the generative model’s performance
in a more holistic manner.

Fréchet Inception Distance (FID): FID is a widely used metric in generative models, originally proposed for image
generation, that compares the distribution of features extracted from a learned embedding space between the real and
generated graphs. Specifically, we use FID to assess the alignment between graph distributions in the embedding space
produced by a pre-trained neural network. The key advantage of FID is that it compares high-level feature representations,
providing insights into whether the generative model produces graphs that are not only structurally similar but also preserve
the higher-level semantic relationships. A lower FID score indicates that the generated graphs are more similar to the
real graphs in the learned embedding space (Heusel et al., 2017). This is particularly important when we are dealing with
complex graph data that may contain non-trivial patterns or higher-order structures that are not easily captured by traditional
structural metrics.

18



Stochastic Block Graph Diffusion

D.4.3. MEMORY CONSUMPTION METRICS

In addition to evaluating the quality of the generated graphs, we also focus on the memory efficiency of the graph generation
process. Memory consumption is a crucial factor, especially for large-scale graph generation tasks, as excessive memory
usage can hinder the scalability of the model.

Memory Consumption Ratio: To ensure a direct comparison of memory efficiency between different methods, we define the
memory consumption ratio as the ratio of the baseline model’s memory consumption to our model’s memory consumption.
This metric highlights the relative efficiency of our approach in terms of memory usage during graph generation. A lower
ratio indicates that our method requires less memory, making it more scalable and efficient, particularly when generating
large graphs. By using our method as a reference point, we provide a clear comparison of how different approaches perform
in terms of memory consumption, which is essential for practical applications that require handling large-scale graphs.

19


