
Probabilistic Circuits That Know What They Don’t Know

Fabrizio Ventola*1 Steven Braun*1 Zhongjie Yu1 Martin Mundt1,2 Kristian Kersting1,2,3,4

1Department of Computer Science, TU Darmstadt, Darmstadt, Germany
2Hessian Center for AI (hessian.AI), Darmstadt, Germany

3German Research Center for Artificial Intelligence (DFKI), Darmstadt, Germany
4Centre for Cognitive Science, TU Darmstadt, Darmstadt, Germany

Abstract

Probabilistic circuits (PCs) are models that allow
exact and tractable probabilistic inference. In con-
trast to neural networks, they are often assumed to
be well-calibrated and robust to out-of-distribution
(OOD) data. In this paper, we show that PCs are in
fact not robust to OOD data, i.e., they don’t know
what they don’t know. We then show how this
challenge can be overcome by model uncertainty
quantification. To this end, we propose tractable
dropout inference (TDI), an inference procedure
to estimate uncertainty by deriving an analytical
solution to Monte Carlo dropout (MCD) through
variance propagation. Unlike MCD in neural net-
works, which comes at the cost of multiple network
evaluations, TDI provides tractable sampling-free
uncertainty estimates in a single forward pass. TDI
improves the robustness of PCs to distribution shift
and OOD data, demonstrated through a series of ex-
periments evaluating the classification confidence
and uncertainty estimates on real-world data.

1 INTRODUCTION

The majority of modern machine learning research concen-
trates on a closed-world setting [Boult et al., 2019]. Here, the
value of a model is judged by its performance on a dedicated
train-validation-test split from a joint data distribution. Such
a focus discounts crucial requirements for real-world infer-
ence, where data with a shift in distribution, conceptually
novel data, or various combinations of unfiltered corruptions
and perturbations are typically encountered [Boult et al.,
2019, Hendrycks and Dietterich, 2019]. It is well known
that the latter scenarios impose a significant challenge for
current practice, attributed to a common culprit referred to
as overconfidence [Matan et al., 1990]. Specifically, popular

*indicates equal contribution

0.0 0.5 1.0

OOD Threshold

0

25

50

75

100

Pe
rc

en
ta

ge
of

O
ut

lie
rs

PC

SVHN Test ID
CIFAR-100 OOD
CINIC OOD
LSUN OOD

0.0 0.5 1.0

OOD Threshold

PC + TDI

Figure 1: Conventional PCs are incapable of identifying
OOD datasets (solid colors, outlier percentage should be
large) while retaining correct predictions for ID data (dashed
red, outlier percentage needs to be low to avoid rejection)
independently of the decision threshold on the model’s pre-
dictive entropy. Whereas their OOD detection precision
drops rapidly with increasing threshold, TDI successfully
distinguishes ID from OOD data across a wide range.

discriminative approaches like SVMs [Scheirer et al., 2013,
2014] and neural networks [Nguyen et al., 2015, Amodei
et al., 2016, Guo et al., 2017] chronically assign probabili-
ties close to unity to their predictions, even when a category
does not yet exist in the present model.

Unfortunately, the above challenge is not limited to discrim-
inative models and has recently resurfaced in the context of
generative models. Various works [Nalisnick et al., 2019,
Ovadia et al., 2019, Mundt et al., 2022] have empirically
demonstrated that different deep models, such as variational
auto-encoders [Kingma and Welling, 2014] or normalizing
flows [Kobyzev et al., 2020, Papamakarios et al., 2021],
have analogous difficulties in separating data from arbitrary
distributions from those observed during training. Intuitively
speaking, these models “don’t know what they don’t know”.
In this paper, we show that a fairly new family of genera-
tive models, probabilistic circuits (PCs) [Choi et al., 2020],
suffer from the same fate. Until now, these models have
been generally assumed to overcome the overconfidence

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

problem faced by their deep neural network counterparts,
see e.g. [Peharz et al., 2020a], ascribed primarily to PCs’
ability for tractable and exact inference. This assumption
should clearly be challenged, as highlighted by our empiri-
cal evidence in the left panel of Fig. 1. Here, we show the
percentage of samples recognized as outliers based on the
predictive entropy

∑
c p (yc|x) log p (yc|x), with labels y,

classes c, and data x, obtained by a PC in a classification sce-
nario trained on an in-distribution (ID) dataset and tested on
several out-of-distribution (OOD) datasets. When correctly
identifying e.g. 95% of SVHN as ID, the PC is only able to
detect 24% of the LSUN dataset successfully as OOD.

Inspired by the neural network literature, we consequently
posit that PCs’ inability to successfully recognize OOD in-
stances is due to a lack of uncertainty quantification in their
original formulation. More specifically, the ability to gauge
the uncertainty in the model’s parameters (also called epis-
temic uncertainty) [Kendall and Gal, 2017, Hüllermeier and
Waegeman, 2021] is required to indicate when the output
is expected to be volatile and should thus not be trusted.
In Bayesian neural networks [MacKay, 1992], such uncer-
tainty is achieved by placing a distribution on the weights
and capturing the observed variation given some data. In
arbitrary deep networks, the popular Monte Carlo dropout
(MCD) [Gal and Ghahramani, 2016] measures uncertainty
by conducting stochastic forward passes through a model
with dropout [Srivastava et al., 2014], as a practical approxi-
mation based on Bernoulli distributions on the parameters.

In our work, we draw inspiration from the MCD approach
and build upon its success to quantify the uncertainty in PCs.
However, in a crucial difference to neural networks and as
the key contribution of our paper, we derive a closed-form
solution to MCD leveraging the PC structure’s clear prob-
abilistic semantics. We refer to the derived procedure as
tractable dropout inference (TDI), which provides tractable
uncertainty quantification in an efficient single forward pass
by means of variance propagation. The right panel of Fig. 1
highlights how TDI successfully alleviates the overconfi-
dence challenge of PCs and remarkably improves the OOD
detection precision over the entire range of threshold values.
Measured over all OOD detection thresholds, TDI improves
OOD precision over PCs without TDI by 2.2× on CIFAR-
100 and CINIC, and 2.7× on LSUN (see Section 4 for
details). In summary, our key contributions are:

1. We show that PCs suffer from overconfidence and fall
short in distinguishing ID from OOD data.

2. We introduce TDI, a novel inference routine that pro-
vides tractable uncertainty estimation. For this purpose,
we derive a sampling-free analytical solution to MCD
in PCs via variance propagation.

3. We demonstrate TDI’s robustness to distribution shifts
and OOD data in three key scenarios with OOD data of
different datasets, perturbed, and corrupted instances.

2 RELATED WORK

The primary purpose and goal of our work is to introduce
tractable uncertainty quantification to PCs to effectively per-
form OOD detection, an important aspect that has previously
received little to no attention. On a broader scale, the current
literature reflects minimal endeavors targeted at enhancing
the robustness of PCs. These works undertake the challenge
from different perspectives. For instance, to tackle overcon-
fidence on in-domain misclassified samples when data is
scarce, Deratani Mauá et al. [2018] introduced costly infer-
ence routines based on credal sets that forgo tractable and
general inference. Recently, Peddi et al. [2022] presented
a likelihood loss to involve artificially perturbed samples
during optimization. Although sharing the common aspect
of challenging the robustness of PCs, none of these works
has provided an efficient tractable uncertainty quantifica-
tion method to make arbitrary PCs more robust to differ-
ent OOD data without altering the model’s parameters or
compromising inference tractability. Thus, our most closely
related works reside in the respective area of uncertainty
quantification, in particular, the imminently related approx-
imations made in neural network counterparts [Blundell
et al., 2015, Gal and Ghahramani, 2016, Kendall and Gal,
2017]. Gauging such model uncertainty in turn provides
substantial value in various tasks, including OOD detection,
robustness to corrupt and perturbed data, and several down-
stream applications. We provide a brief overview of the
latter for the purpose of completeness, before concentrating
on the essence of our paper in terms of immediately related
methodology to estimate model uncertainty.

OOD Detection and Use of Uncertainty: Uncertainty quan-
tification based on Bayesian methods provides a theoretical
foundation to assess when a model lacks confidence in its
parameters and predictions. Alternatively, several other di-
rections have been proposed to deal with OOD inputs in the
inference phase. Notably, several works across the decades
have proposed to include various forms of reject options in
classification. These methods are often criticized for their
lack of theoretical grounding, leading to a separate thread
advocating for the challenge to be addressed through open
set recognition. We point to the recent review of Boult et al.
[2019] for an overview of techniques. In a similar spirit, as-
sessment of uncertainty has been shown to be foundational
in the application to e.g. active learning [Gal et al., 2017]
or continual learning [Ebrahimi et al., 2020]. We emphasize
that these techniques and applications are complementary to
our work and are yet to be explored in PCs. Similarly to prior
neural network-based efforts of Ovadia et al. [2019] and Nal-
isnick et al. [2019], we first show that PCs are incapable of
inherent OOD detection, before leaning on uncertainty to
overcome the challenge with our TDI.

Uncertainty Quantification: In a simplified picture, meth-
ods to estimate uncertainty could be attributed to two main

categories: methods falling into a Bayesian framework and
alternative non-Bayesian ones. As the categorization sug-
gests, the latter do not ground their principle in Bayesian
statistics and provide quantification in different forms, such
as the size of a prediction interval or a score [Osband et al.,
2021, Yu et al., 2022]. In contrast, Bayesian methods rely
on a solid theoretical ground that allows for a clear inter-
pretation. When applied to computation graphs like neural
networks and PCs, the key concept is to have a probability
distribution over the parameters, in this context, the weights
of the graph. More formally, the model parameterization
is framed as picking the parameters θ (subject to optimiza-
tion) from a prior probability distribution p(θ). We are then
interested in the parameter configuration that most likely
represents the data D, i.e., argmaxθ p(θ|D). To account
for model uncertainty, it would be necessary to integrate
over the parameters, which is intractable for many models.

A considerable number of works have pursued this direc-
tion for deep neural architectures. Bayesian neural net-
works [MacKay, 1992, Neal, 2012] have initially paved
the way to model uncertainty, but given the immense com-
putational cost, alternatives focus on several cheap approx-
imations. Popular ways are to back-propagate uncertainty
through the gradients [Blundell et al., 2015, Hernández-
Lobato and Adams, 2015, Mishkin et al., 2018, Maddox
et al., 2019], make use of variational inference [Graves,
2011, Louizos and Welling, 2016] or draw connections to
Gaussian Processes [Gal and Ghahramani, 2016, Khan
et al., 2019]. A related approximate approach is based on
ensembles, where the underlying idea is to relate the model
uncertainty with the statistics computed over the various en-
semble components. To obtain uncertainty estimates, most
of these approaches need to train multiple ensemble com-
ponents [Hansen and Salamon, 1990, Lakshminarayanan
et al., 2017] or larger overparameterized singletons and treat
them as an ensemble of subnetworks [Antorán et al., 2020,
Daxberger et al., 2021]. Among the Bayesian methods for
learning a PC on propositional knowledge bases, Cerutti
et al. [2022] deal with uncertainty estimation for conditional
boolean queries by attaching a second circuit to the PC.

Monte Carlo Dropout: The natural question for Bayesian
methods is how to sample the parameters θ from the poste-
rior p (θ | D), taking the high-dimensional and highly non-
convex nature of the probability distribution for complex
networks into account, which leads to intractable standard
sampling methods [Izmailov et al., 2021]. Gal and Ghahra-
mani [2016] have reframed dropout [Srivastava et al., 2014]
as a Bayesian approximation to assess model uncertainty.
Originally, dropout is a method proposed to avoid overfitting
and improve generalization by including a stochastic chance
p of removing a connection between units of an adjacent
layer. Gal and Ghahramani [2016]’s key realization is that
dropout allows to cheaply sample from the posterior under
the assumption of a Bernoulli distribution on the weights. In

essence, MCD approximates the integration over the param-
eters with a summation over a finite set of n drawn sets of
parameters θi ∼ p (θ | D). By using the set of n predicted
values, the first and the second raw moments can be com-
puted. The former is then used as the prediction and the
latter as an estimate of model uncertainty.

The essential advantage of MCD is its simple applicability,
which has led to a wide range of immediate applications
[Kendall and Gal, 2017, Gal et al., 2017, Kendall et al.,
2017, Miller et al., 2018]. In our work, we draw inspira-
tion from MCD and its vast impact. However, instead of
approximating the uncertainty with a Monte Carlo simula-
tion in PCs, we perform variance propagation from the leaf
to the root nodes with a single pass, with which we derive a
sampling-free, closed-form solution to model uncertainty.

3 TRACTABLE DROPOUT INFERENCE

In this section, we first introduce preliminaries with respect
to PCs, before continuing to delve into a step-by-step deriva-
tion of how to obtain sampling-free uncertainties with TDI.

3.1 PREFACE: PROBABILISTIC CIRCUITS

In this work, we refer to a relevant class of PCs, i.e., sum-
product networks (SPNs) [Poon and Domingos, 2011]. In
the family of tractable probabilistic models, SPNs stand out
for their inference capabilities and great representational
power [Delalleau and Bengio, 2011]. They hold important
structural properties such as smoothness and decomposabil-
ity that enable the efficient encoding of a valid probability
distribution. In the following, we first formally introduce
SPNs and their important properties.

Definition: An SPN S is a computational graph defined by
a rooted directed acyclic graph (DAG), encoding a probabil-
ity distribution pX over a set of random variables (RVs)
X = {X1, . . . , Xn}, where inner nodes are either sum
nodes S or product nodes P over their children, and leaves L
are valid probability distributions defined on a subset of the
RVs Z ⊆ X. Each node N ∈ S has a scope, sc (N) ⊆ X,
defined as the set of RVs appearing in its descendant leaves.
Each edge (Si → Nj) connecting a sum node Si to one of its
children Nj ∈ ch (Si) has a non-negative weight wij , with∑

j wij = 1. Sum nodes represent mixtures over the proba-
bility distributions encoded by their children, while product
nodes represent factorizations over contextually indepen-
dent distributions. In summary, an SPN can be viewed as a
deep hierarchical mixture model of different factorizations.
An illustration of this kind of PC is shown in Fig. 2a.

To encode a valid probability distribution, an SPN has to ful-
fill two structural requirements [Poon and Domingos, 2011].
One is decomposability, i.e., the scopes of the children of
each product node need to be disjoint, which allows distribut-

S

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

P1 P2

S2 L31 L12 S3

P3 P4 P5 P6

L13 L24 L15 L26 L27 L38 L29 L310

(a) Probabilistic inference

S

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

P1 P2

S2 L31 L12 S3

P3 P4 P5 P6

L13 L24 L15 L26 L27 L38 L29 L310

(b) Monte Carlo dropout inference

Var[S]

X3 X1

X1 X2 X1 X2 X2 X3 X2 X3

Var[P1] Var[P2]

Var[S2] Var[L31] Var[L12] Var[S3]

Var[P3] Var[P4] Var[P5] Var[P6]

Var[L13] Var[L24] Var[L15] Var[L26] Var[L27] Var[L38] Var[L29]Var[L310]

(c) Tractable dropout inference

Figure 2: Forward pass illustration of a PC (a), a PC with MCD sampling (b), and a PC with TDI based on variance
propagation through the graph (c). Whereas a single MCD forward pass only simulates one instantiation of a possible
subgraph, the PC with TDI directly propagates the variances through the graph in a single pass (expectations and covariances
are left out for visual clarity in the illustration, see Section 3.2 for full equations).

ing the NP-hard computation of integrals (e.g. the partition
function), to leaves where we require this computation to
be tractable. This condition can be fulfilled, either by an
explicit form, e.g., from an exponential family distribution,
or by the architectural design of the leaf density estima-
tors. The second requirement is smoothness, constraining
the scopes of the children of each sum node to be identical
(this is also referred to as completeness). This constraint is
important to encode a valid distribution that does not over-
or underestimate some RVs states. In a valid SPN, the prob-
ability assigned to a given state x of the RVs X is given by
the root node and will be denoted as S(x) = pX(X = x).

Tractable Inference: Given an SPN S, S(x) is computed
by evaluating the network bottom-up. When evaluating
a leaf node Li with scope Xj , Li(xj) corresponds to the
probability of the state xj . The value of a product node
Pi corresponds to the product of its children’s values:
Pi

(
x|sc(Pi)

)
=

∏
Nj∈ch(Pi)

Nj(x|sc(Nj)). The value of a
sum node Si is computed as the weighted sum of its chil-
dren’s values: Si

(
x|sc(Si)

)
=

∑
Nj∈ch(Si)

wijNj(x|sc(Nj)).
All the exact marginal and conditional probabilities, also
with different amount of evidence, the exact partition func-
tion, and even approximate most probable explanation and
maximum a posteriori states can be computed in time and
space linear in the network’s size, i.e. number of edges [Poon
and Domingos, 2011, Peharz et al., 2015].

Being part of the PC family, SPNs share the basic build-
ing blocks and procedures when performing inference with
other classes of PCs. Thus, the contributions that we intro-
duce in this paper can also be easily applied to other models
of the PC family [Choi et al., 2020]. We further note that
because TDI is presently framed as an inference routine,
training follows conventional algorithms. Whereas the in-
clusion of uncertainties to guide training itself is certainly
intriguing, we defer this prospect to future work and con-
centrate on the means to quantify uncertainty to overcome
overconfidence and detect OOD data.

3.2 DERIVING TDI

One of the crucial aspects in which PCs stand out compared
to neural networks is that they have clear probabilistic se-
mantics. Leaf nodes are normalized tractable distributions
and sum nodes represent weighted mixtures over different
factorizations, encoded by the product nodes, on the same
scope. When dropout is applied to PCs, it thus entails an
easier interpretation. At first look, similar to the case for
neural networks, MCD at sum nodes would perform a sort of
model averaging between a randomly selected set of models
(sub-graphs). Naively, we could follow the same procedure
as proposed in Gal and Ghahramani [2016] and conduct
stochastic forward passes with a more intuitive interpreta-
tion on mixtures over different factorizations (compared to
a black-box neural network); see Fig. 2b for an illustration.
The variance of the different models is then interpreted as
the uncertainty w.r.t. a specific input. However, we will now
show that it is also possible to derive TDI as a tractable
uncertainty estimate in a single forward pass in PCs. With
our closed-form derivations, we thus provide an analytical
solution to this measure of uncertainty.

Core Idea – Sampling-free Uncertainty: The general idea
is to derive closed-form expressions of the expectation, vari-
ance, and covariance for sum and product nodes as a func-
tion of their children. The model uncertainty at the root
nodes is then recursively computed by performing variance
propagation from the leaf nodes to the root nodes in a single
bottom-up pass through the graph structure (see Fig. 2c).
This procedure results in uncertainty estimates without sam-
pling from the graph multiple times, as is required by MCD.

In TDI we start by viewing sum nodes as linear combina-
tions of RVs over their Bernoulli dropout RVs and their
children:

S =
∑
i

δiwiPi , (1)

where δi ∼ Bern(q) and p = 1 − q corresponds to the
dropout probability.

We will now provide the expectation, variance, and covari-
ance closed-form solutions for sum, product, and leaf nodes.
Here, we present the most relevant derivations for these
quantities. For full derivations and theoretical details, we
refer to Appendix A.

3.2.1 Expectation: The Point Estimate

Using the linearity of the expectation, we push the expec-
tation into the sum and make use of the independence be-
tween the child nodes Ni and the Bernoulli RVs δi to extract
E[δi] = q:

E[S] = q
∑
i

wiE[Ni] . (2)

The decomposability of product nodes ensures the indepen-
dence of their children w.r.t. each other, which leads to the
product node expectation simply becoming the product over
the expectations of its children, i.e.,

E[P] =
∏
i

E[Ni] . (3)

3.2.2 Variance: The Uncertainty Proxy

Similar to the original work in neural networks of Gal and
Ghahramani [2016], we will use the variance as the proxy
for the uncertainty. The sum node variance decomposes
into a sum of two terms. The first term is based on the
variances and expectations of its children and the second
term accounts for the covariance between the combinations
of all children, i.e.,

Var[S] =q
∑
i

w2
i

(
Var[Ni] + pE[Ni]

2
)

+ q2
∑
i ̸=j

wiwjCov[Ni,Nj] . (4)

Analogously, the product node variance decomposes into
two product terms. By applying the product of independent
variables rule, we obtain:

Var[P] =
∏
i

(
Var[Ni] + E[Ni]

2
)
−
∏
i

E[Ni]
2
. (5)

3.2.3 Covariance: The Evil

The covariance between two sum nodes, SA and SB , neatly
decomposes into a weighted sum of all covariance combina-
tions of the sum node children:

Cov
[
SA,SB

]
= q2

∑
i

wA
i

∑
j

wB
j Cov

[
NA

i ,N
B
j

]
. (6)

For an arbitrary graph, we are unable to provide a closed-
form solution of the covariance between two product nodes
due to the first expectation in the product node covariance:

Cov
[
PA,PB

]
=E

∏
i

NA
i

∏
j

NB
j


−

∏
i

E
[
NA

i

]∏
j

E
[
NB

j

]
, (7)

which cannot be simplified without any structural knowl-
edge about independencies between the children of NA and
NB , as they may share a common subset of nodes, deeper
down in the PC structure. Fortunately, we explore three pos-
sible solutions to solve Eq. (7) in the following, of which
variants b) and c) are always applicable.

a) Structural Knowledge: To simplify Eq. (7) we can easily
exploit structural knowledge of the DAG. The simplest solu-
tion is a structure in which we know that two product nodes
PA and PB are not common ancestors of any node, resulting
in the independence PA ⊥⊥ PB and thus Cov[PA,PB] = 0.
This constraint is always given in tree-structured PCs. Be-
cause simple in practice, tree structures are generated by
the most common structure learner for SPNs such as Learn-
SPN [Gens and Domingos, 2013], ID-SPN [Rooshenas and
Lowd, 2014], and SVD-SPN [Adel et al., 2015].

For binary tree random and tensorized (RAT) structures
[Peharz et al., 2020b], Eq. (7) can be simplified to

Cov[Pl,r,Pl′,r′] = Cov
[
SLl ,S

L
l′
]
E
[
SRr

]
E
[
SRr′

]
+Cov

[
SRr ,S

R
r′
]
E
[
SLl

]
E
[
SLl′

]
+Cov

[
SLl ,S

L
l′
]

Cov
[
SRr ,S

R
r′
]
. (8)

The covariance of two product nodes now only depends on
the covariance of the input sum nodes of the same graph
partition (L or R) for which we can plug in Eq. (6).

b) It’s Somewhere in Here – Covariance Bounds:
Whereas knowledge about the specific PC structure can
facilitate the covariance computation, when not available,
we can alternatively obtain a lower and upper bound of the
covariance, making use of the Cauchy-Schwarz inequality:

Cov[Ni,Nj]
2 ≤ Var[Ni]Var[Nj] (9)

⇔ Cov[Ni,Nj] ∈
[
−
√

Var[Ni]Var[Nj],

+
√

Var[Ni]Var[Nj]

]
. (10)

c) The Copy-paste Solution: A third alternative to using
structural knowledge or giving covariance bounds is via a
“copy-paste” augmentation of the DAG, that enforces the
covariance between two nodes, NA and NB , to be zero by
treating their common child as two separate nodes. That

is, for each node NC where a PathA := NA → NC and a
second PathB := NB → NC exists, we can “copy” NC to
obtain an equivalent node NC′ and replace the original NC

in PathB with the copy NC′ . With this simple procedure,
we can enforce a tree structure on the PC, resulting in the
covariance between two children of a node N to be zero. In
practice, we do not need to modify the DAG. Instead, we can
simply ignore the covariance terms and thereby obtain this
DAG transformation during the TDI procedure implicitly.

3.2.4 Leaf Nodes

As leaf nodes are free of any dropout Bernoulli variables,
their expectation, variance, and covariance degrade to the
leaf node value and zero respectively, i.e.,

E[L] = L, Var[L] = 0, Cov[Li, Lj] = 0 . (11)

While the above is a valid choice, this framework further
allows including prior knowledge about aleatoric and epis-
temic uncertainty, by setting Var[L] > 0 and Cov[Li, Lj] ̸=
0. This additionally highlights the advantage over the MCD
procedure, where the inclusion of prior knowledge is not
possible.

3.2.5 Classification Uncertainty

For classification in PCs, we can express the class condition-
als p (x | yi) = Si as root nodes with class priors p (yi) = ci
and obtain the posterior via Bayes’ rule, i.e.,

p (yi |x) =
p (x | yi) p (yi)∑
j p (x | yj) p (yj)

=
Sici∑
j Sjcj

. (12)

In our case, the expectation and variance of the posterior
are that of a random variable ratio, E

[
A
B

]
and Var

[
A
B

]
, with

A = Sici and B =
∑

j Sjcj . This ratio is generally not
well-defined, but can be approximated with a second-order
Taylor approximation [Seltman, 2018]:

E
[
A

B

]
≈ E[A]

E[B]
− Cov[A,B]

(E[B])
2 +

Var[B]E[A]

(E[B])
3 (13)

Var
[
A

B

]
≈ E[A]

2

E[B]
2

[
Var[A]

E[A]
2 − 2

Cov[A,B]

E[A]E[B]
+

Var[B]

E[B]
2

]
.

(14)

We will now resolve every component of Eqs. (13) and (14).
The expectations are straightforward:

E[A] = E[Sici] = E[Si] ci (15)

E[B] = E

∑
j

Sjcj

 =
∑
j

E[Sj] cj . (16)

For the variances we obtain:

Var[A] = Var[Si] c2i (17)

Var[B] =
∑
j

Var[Sj] c2j +
∑
j1 ̸=j2

Cov[Sj1 ,Sj2] cj1cj2 .

(18)

Following Eq. (6), the covariance term between a root node
and the sum of all root nodes can be decomposed as follows:

Cov[A,B] = ci
∑
j

cjCov[Si,Sj] , (19)

which in turn can be resolved with one of the methods
provided in Section 3.2.3.

While Eqs. (13) and (14) are seemingly simple, their partic-
ular formulation implies statistical independence between
A and B. Since B is a sum over all A, this independence
naturally does not hold. Therefore, the solution given here
is only an approximation of the true second-order Taylor ap-
proximation. In Appendix A.2.7 we extend the formulation
of Seltman [2018] and take into account the dependencies
between root nodes Si and their sum

∑
i Si.

3.2.6 Tractability

We re-emphasize that PCs are tractable probabilistic models
where, in general, inference is at most polynomial in the
network size. Specifically, in the PC family, SPNs perform
a wide range of queries in linear time in the network size.

Thanks to the compact representation of PCs, all formula-
tions derived for TDI in Sections 3.2.1 to 3.2.5 have poly-
nomial space and time complexity, specifically, at most
quadratic. In fact, the expectation of a single sum node,
given by Eq. (2), adds a negligible single floating point
multiplication (by q) as we can reuse the sum node output.
The expectation of a single product, in Eq. (3), does not
require any additional operations. For the computation of
variance and covariance, the cost depends on the actual PC
structure. In sparse structures such as trees, the cost is linear
with respect to the number of input nodes, as the covari-
ance term becomes zero. However, for cases where all child
input covariance combinations need to be computed, as in
Eq. (5), the cost can be locally quadratic with respect to the
number of sum node inputs (see Eqs. (4) and (6)). Applying
solution c) of Section 3.2.3, i.e., the implicit “copy-paste”
augmentation of the DAG, reduces the cost of Eq. (5) to be
linear instead of quadratic. This renders a full bottom-up
pass tractable, which can be performed in parallel with the
standard bottom-up probabilistic inference procedure. We
provide pseudocode for the bottom-up TDI in Appendix B.

4 EXPERIMENTAL EVALUATION

To demonstrate that PCs generally suffer from overconfi-
dence under various forms of distribution shift, and to show
the benefits of TDI in these circumstances, we investigate
the following three common experimental scenarios:

1. OOD datasets: Following popular practice to assess
whether a model can successfully distinguish known
data from unknown OOD instances [Bradshaw et al.,
2017, Nalisnick et al., 2019], we train the circuits
on SVHN [Netzer et al., 2011] and then additionally
test on several popular color image datasets: CIFAR-
100 [Krizhevsky, 2009], CINIC [Darlow et al., 2018],
and LSUN [Yu et al., 2015].

2. Perturbations: Inspired by recent works that inves-
tigate predictions in the context of increasingly per-
turbed data instances [Ovadia et al., 2019, Antorán
et al., 2020, Daxberger et al., 2021], we evaluate our
models when rotating MNIST [LeCun et al., 1998]
digits are introduced for inference.

3. Corrupted inputs: In the spirit of recent works that
demonstrate standard neural networks’ inability to ef-
fectively handle naturally corrupted data [Hendrycks
and Dietterich, 2019, Michaelis et al., 2019], we in-
clude a set of 15 different non-trivial corruptions to the
SVHN dataset for inference with PCs and PCs + TDI.
Each of these corruptions features five different levels
of severity.

Experimental Setup. For our experiments, we im-
plemented TDI based on RAT-SPNs in PyTorch and
SPFlow [Molina et al., 2019]. We use S = 20, I =
20, D = 5, R = 5 for the RAT-SPN structure and train
our models for 200 epochs with a mini-batch size of
200, a learning rate of 1e-3 with the Adam [Kingma
and Ba, 2015] optimizer, and a PC + TDI dropout value
of 0.2 for MNIST and 0.1 for SVHN. A detailed de-
scription is provided in Appendix C and our code is
available at https://github.com/ml-research/
tractable-dropout-inference.

4.1 PCS WITH TDI DETECT OOD DATA

Following our outlined first scenario, we first train on the
SVHN dataset. We then evaluate the predictive entropy ob-
tained on samples of the unseen test set and on instances that
come from entirely different distributions of other datasets,
e.g. house numbers vs. different scene images or object
categories like cars and sofas. To successfully avoid mispre-
dictions on an unrelated unknown dataset, the entropy of
our model’s predictions should be higher compared to the
one obtained for ID samples. Although predictive entropy
might not be the optimal choice for uncertainty quantifi-
cation [Hüllermeier and Waegeman, 2021], we leave the

Table 1: PC + TDI (in bold) improves area under curve
scores for Fig. 1 over PCs when measuring the OOD pre-
cision over all thresholds by more than 2× on every OOD
dataset. TDI is competitive with MCD while being more ef-
ficient as it does not require the cost of performing multiple
(here 100) stochastic forward passes.

AUC (↑) CIFAR CINIC LSUN

PC 29.3 29.9 30.3
PC + TDI 64.6 66.1 81.8

PC + MCD 68.5 70.0 84.9

MLP 56.0 58.1 55.9
MLP + MCD 80.8 95.9 80.5

LeNet 17.1 15.6 2.6
LeNet + MCD 43.4 92.9 29.5

0.0 0.2 0.4 0.6 0.8 1.0

OOD Threshold

0

20

40

60

80

100

Pr
ec

is
io

n
D

iff
er

en
ce

ID
/O

O
D CIFAR-100, PC

CIFAR-100, PC + TDI
CINIC, PC
CINIC, PC + TDI
LSUN, PC
LSUN, PC + TDI

Figure 3: Difference between ID and OOD detection pre-
cision of PCs (dashed) and PCs + TDI (solid) for all OOD
detection threshold of Fig. 1. PCs with TDI both outperform
PCs in absolute terms and allow the model to adequately
balance ID versus OOD data. On the contrary, conventional
PCs without TDI generally perform poorly and have their
best point at an unintuitively low threshold.

exploration of better measures, in particular for OOD de-
tection, to future work and remark that our main focus is
on assessing whether the epistemic uncertainty estimate
obtained with TDI is meaningful or not.

Our introductory Fig. 1 has already shown that conventional
PCs are bad at properly detecting OOD data while keep-
ing a high precision on ID data, whereas PCs with TDI
overcome this challenge. To also quantify the improvement
introduced by TDI over all thresholds, we now show the
area under the curve scores for Fig. 1 in Table 1, demon-
strating that TDI improves all scenarios by more than two
times. For a comprehensive overview and as a point of ref-
erence, we also present results illustrating that MCD attains
analogous improvements on both PCs and neural networks
such as a Multilayer Perceptron (MLP) and an inherently
overconfident LeNet. However, while MCD requires several

https://github.com/ml-research/tractable-dropout-inference
https://github.com/ml-research/tractable-dropout-inference

0.00

0.10

0.20
Pr

ed
.E

nt
ro

py

0 15 30 45 60 75 90

Rotation (degrees)

0.00

0.03

0.06

Pr
ed

.U
nc

er
ta

in
ty

PC
PC + TDI

0

50

100

A
cc

ur
ac

y
(-

-)

Figure 4: Top panel: predictive entropy (left y-axis, solid)
and accuracy (right y-axis, dashed) of a PC (blue circles) and
PC + TDI (orange triangles) on a gradual distribution shift
of increasing MNIST digit rotations from 0◦ to 90◦ (x-axis).
TDI already captures the distribution shift at lower degrees
of rotation and assigns a much larger predictive entropy
to greater rotations than PCs, while retaining predictive
accuracy. Bottom panel: complementary view of predictive
uncertainty (standard deviation in Eq. (14)) in PC + TDI.

stochastic forward passes (100 in this case), by exploiting
PCs semantics, TDI achieves similar performance with only
a single forward pass.

In addition, we further highlight the precise tradeoff between
the ID and OOD precision over all OOD decision thresholds
in Fig. 3. In other words, we quantify the precision with
which a selected threshold on entropy correctly leads to
rejection of unknown OOD data, while at the same time not
rejecting ID data in order to classify it correctly. Intuitively,
the threshold should balance the latter two, as a very low
threshold should simply reject all data, whereas a very high
threshold would incorrectly accept any inputs. As visible,
this is not the case for PCs, that have their largest margin
between ID and OOD error at a very low OOD decision
threshold, leading to a high ID error, e.g. 28.7% ID error and
21.8% LSUN OOD error at a threshold of 0.05 (cf. Fig. 1).
On the contrary, TDI balances this shortcoming and allows
for much higher OOD decision thresholds while keeping
a lower ID error, e.g. 13.2% ID error and 10.2% LSUN
OOD error at a reasonable mid-way threshold of 0.6 (cf.
Fig. 1). A complementary view with predictive entropy and
uncertainty in terms of the standard deviation as the square
root of Eq. (14) is provided in Appendix D.

4.2 PCS WITH TDI ARE MORE UNCERTAIN ON
PERTURBED SAMPLES

In addition to the abrupt distribution shift of the prior sec-
tion, we now inspect the behavior of PCs and PCs + TDI
on a more gradual scale in the second scenario. Here, we
train on the original MNIST training set. At inference time,

we evaluate the models’ predictive entropy on rotated ver-
sions of the MNIST test set from 0◦ to 90◦ in steps of 5◦, to
simulate a gradual increase in data perturbation. Once more,
with the aim of an effective measure for the distribution
shift, the model should assign higher predictive entropy and
uncertainty with increasing data perturbation. We visualize
this experiment in Fig. 4, demonstrating in the top panel,
that PCs with TDI (orange triangle) measure the data per-
turbation already at lower degrees of rotation and assigns a
higher entropy to larger rotations than PCs (blue, circles).
At the same time, TDI retains the same predictive accuracy.
In the bottom panel of Fig. 4, we additionally highlight the
measure of uncertainty as the standard deviation of Eq. (14),
again confirming the expected increase of uncertainty with
increasing data perturbation from an auxiliary viewpoint.

4.3 PCS WITH TDI ARE MORE ROBUST TO DATA
CORRUPTIONS

As outlined in our third scenario, we investigate the case
of natural and synthetic data corruptions. We train on the
SVHN training set and then evaluate the models on cor-
rupted versions of the SVHN test set, with 15 different
corruptions at five increasing levels of severity. Similar to
the prior two scenarios, a successful detection entails that
the models should be able to attribute a progressive increase
in predictive entropy with increasing corruption severity. In
Fig. 5 we highlight the model’s behavior on four such cor-
ruption types: brightness, elastic transformation, simulated
frost, and Gaussian noise (see Appendix E for analogous
evidence for all 15 corruption types). Matching the behavior
of the perturbation scenario, in all shown corruption settings,
a PC with TDI can associate an increase in corruption sever-
ity with higher predictive entropy. On top of that, TDI stays
more robust at all severity levels of corruption than the PC
by retaining higher predictive accuracy in the case of elastic
transformation and Gaussian noise corruptions. This third
scenario thus further verifies TDI’s robustness against, and
their ability to capture distribution shift.

4.4 DISCUSSION

Our empirical evidence across all three scenarios indicates
that PC + TDI is in fact more robust and provides model
uncertainty estimates that allow detecting data from various
unknown and shifted distributions. TDI lets PCs “know what
they don’t know”. Beyond this desideratum, the sampling-
free uncertainty of TDI entails several advantages over MCD
in neural networks, opening up various additional prospects.

Prospects: On the one hand, TDI alleviates the compu-
tational burden of MCD, getting rid of the compromise
between estimation quality and amount of forward passes.
This can be particularly beneficial to other circuits such as
regression or logistic circuits [Liang and Van den Broeck,

0 1 2 3 4 5

Brightness

0.0

0.5

1.0

1.5

2.0
Pr

ed
ic

tiv
e

E
nt

ro
py

PC
PC + TDI

0 1 2 3 4 5

Elastic transformation
0 1 2 3 4 5

Frost
0 1 2 3 4 5

Gaussian noise

0

20

40

60

80

A
cc

ur
ac

y
(-

-)

Corruption severity

Figure 5: Predictive entropy (left y-axis) and accuracy (right y-axis) of a PC (blue circles) and PC + TDI (orange triangles)
for increasingly corrupted SVHN data at five severity levels; here, altering brightness, introducing elastic transformation,
simulating frost, and adding Gaussian noise. PCs with TDI detect the distribution shift by assigning higher predictive entropy
with increasing severity, while at the same time being more robust in predictive accuracy against the corruption.

2019] tailored to predictive tasks. Moreover, the tractable
computation in a single forward pass in turn paves the way
for uncertainty estimates to be directly involved in training
processes. Such a signal does not only help with robustness
but can also improve active or continual learning, in which
PCs are largely yet to be explored. On the other hand, the
clear semantics of PCs allow for the prospective inclusion of
prior knowledge about uncertainty through the explicit (co-
)variance terms at leaf nodes (recall Section 3.2.4), which is
unavailable to neural networks.

Limitations: Whereas TDI has removed the computational
burden of MCD, the necessity to select a dropout chance
p, as a hyperparameter, remains untouched. In our various
experiments, and prior works in neural networks, a common
low value seems to suffice, but it is an additional considera-
tion to be taken into account for training and inference. On
the empirical side, further investigation of TDI should be
extended to arbitrary structures, involving the propagation
of the covariance as introduced in Section 3.2.3. In similar
spirit, although we have already experimentally investigated
three distinct scenarios, the empirical performance of TDI
for other density estimation tasks remains to be explored.

5 CONCLUSION

In the spirit of recent works for neural networks, we have
highlighted that the generative model family of PCs suffers
from overconfidence and is thus unable to effectively sepa-
rate ID from OOD data. As a remedy to this challenge, we
have drawn inspiration from the well-known MCD and in-
troduced a novel probabilistic inference method capable of
providing tractable uncertainty estimates: tractable dropout
inference. We obtain such sampling-free, single computation
pass estimates by deriving a closed-form solution through
variance propagation. Our empirical evidence confirms that
TDI provides improved robustness and comes with the abil-
ity to detect distribution changes in three key scenarios:
dataset change, data perturbation, and data corruption. The

computationally cheap nature and potential to include prior
knowledge in TDI paves the way for various future work,
such as including uncertainty in training.

Acknowledgements

This work was supported by the Federal Ministry of Ed-
ucation and Research (BMBF) Competence Center for
AI and Labour (“kompAKI”, FKZ 02L19C150) and the
project “safeFBDC - Financial Big Data Cluster” (FKZ:
01MK21002K), funded by the German Federal Ministry for
Economics Affairs and Energy as part of the GAIA-x initia-
tive. It benefited from the Hessian Ministry of Higher Edu-
cation, Research, Science and the Arts (HMWK; projects
“The Third Wave of AI” and “The Adaptive Mind”), and the
Hessian research priority programme LOEWE within the
project “WhiteBox”.

References

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning
the structure of sum-product networks via an svd-based
algorithm. In UAI, 2015.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Chris-
tiano, John Schulman, and Dan Mané. Concrete problems
in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Javier Antorán, James Urquhart Allingham, and José Miguel
Hernández-Lobato. Depth uncertainty in neural networks.
In NeurIPS, 2020.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In ICML, 2015.

Terrance E. Boult, Steve Cruz, Akshay Raj Dhamija, Manuel
Gunther, James Henrydoss, and Walter J. Scheirer. Learn-
ing and the unknown: Surveying steps toward open world
recognition. In AAAI, 2019.

John Bradshaw, Alexander G de G Matthews, and Zoubin
Ghahramani. Adversarial examples, uncertainty, and
transfer testing robustness in gaussian process hybrid
deep networks. arXiv preprint arXiv:1707.02476, 2017.

Federico Cerutti, Lance M. Kaplan, Angelika Kimmig, and
Murat Sensoy. Handling epistemic and aleatory uncer-
tainties in probabilistic circuits. Machine Learning, 2022.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. Technical report, UCLA, 2020.

Luke Nicholas Darlow, Elliot J. Crowley, Antreas Anto-
niou, and Amos J. Storkey. CINIC-10 is not imagenet or
CIFAR-10. arXiv preprint arXiv:1810.03505, 2018.

Erik A. Daxberger, Eric T. Nalisnick, James Urquhart Alling-
ham, Javier Antorán, and José Miguel Hernández-Lobato.
Bayesian deep learning via subnetwork inference. In
ICML, 2021.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep
sum-product networks. In NIPS, 2011.

Denis Deratani Mauá, Diarmaid Conaty, Fabio Gagliardi
Cozman, Katja Poppenhaeger, and Cassio Polpo de Cam-
pos. Robustifying sum-product networks. International
Journal of Approximate Reasoning, 2018.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and
Marcus Rohrbach. Uncertainty-guided continual learning
with bayesian neural networks. In ICLR, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In ICML, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep
bayesian active learning with image data. In ICML, 2017.

Robert Gens and Pedro Domingos. Learning the Structure
of Sum-Product Networks. In ICML, 2013.

Alex Graves. Practical variational inference for neural net-
works. In NIPS, 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In ICML,
2017.

Lars Kai Hansen and Peter Salamon. Neural network en-
sembles. TPAMI, 1990.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking
neural network robustness to common corruptions and
perturbations. In ICLR, 2019.

José Miguel Hernández-Lobato and Ryan P. Adams. Proba-
bilistic backpropagation for scalable learning of bayesian
neural networks. In ICML, 2015.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and
epistemic uncertainty in machine learning: an introduc-
tion to concepts and methods. Machine Learning, 2021.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and
Andrew Gordon Gordon Wilson. What are bayesian neu-
ral network posteriors really like? In ICML, 2021.

Alex Kendall and Yarin Gal. What uncertainties do we
need in bayesian deep learning for computer vision? In
NeurIPS, 2017.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla.
Bayesian segnet: Model uncertainty in deep convolutional
encoder-decoder architectures for scene understanding.
In BMVC, 2017.

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi,
and Maciej Korzepa. Approximate inference turns deep
networks into gaussian processes. In NeurIPS, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In ICLR, 2014.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker.
Normalizing flows: An introduction and review of current
methods. TPAMI, 2020.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, U. of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In NeurIPS, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proc. IEEE, 1998.

Yitao Liang and Guy Van den Broeck. Learning logistic
circuits. In AAAI, 2019.

Christos Louizos and Max Welling. Structured and efficient
variational deep learning with matrix gaussian posteriors.
In ICML, 2016.

David JC MacKay. A practical bayesian framework for
backpropagation networks. Neural computation, 1992.

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P.
Vetrov, and Andrew Gordon Wilson. A simple baseline
for bayesian uncertainty in deep learning. In NeurIPS,
2019.

Ofer Matan, RK Kiang, CE Stenard, B Boser, JS Denker,
Don Henderson, RE Howard, W Hubbard, LD Jackel,
and Yann Le Cun. Handwritten character recognition
using neural network architectures. In USPS advanced
technology conference, 1990.

Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Ev-
genia Rusak, Oliver Bringmann, Alexander S. Ecker,
Matthias Bethge, and Wieland Brendel. Benchmarking
robustness in object detection: Autonomous driving when
winter is coming. arXiv preprint arXiv:1907.07484, 2019.

Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko
Sünderhauf. Dropout sampling for robust object detection
in open-set conditions. In ICRA, 2018.

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark
Schmidt, and Mohammad Emtiyaz Khan. SLANG: fast
structured covariance approximations for bayesian deep
learning with natural gradient. In NeurIPS, 2018.

Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert
Peharz, Pranav Subramani, Nicola Di Mauro, Pascal
Poupart, and Kristian Kersting. Spflow: An easy and
extensible library for deep probabilistic learning using
sum-product networks. arXiv preprint arXiv:1901.03704,
2019.

Martin Mundt, Iuliia Pliushch, Sagnik Majumder, Yongwon
Hong, and Visvanathan Ramesh. Unified probabilistic
deep continual learning through generative replay and
open set recognition. Journal of Imaging, 2022.

Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan
Görür, and Balaji Lakshminarayanan. Do deep generative
models know what they don’t know? In ICLR, 2019.

Radford M Neal. Bayesian learning for neural networks.
Springer Science & Business Media, 2012.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in
natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep
neural networks are easily fooled: High confidence pre-
dictions for unrecognizable images. In CVPR, 2015.

Ian Osband, Zheng Wen, Mohammad Asghari, Morteza
Ibrahimi, Xiyuan Lu, and Benjamin Van Roy. Epistemic
neural networks. arXiv preprint arXiv:2107.08924, 2021.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lak-
shminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? evaluating predictive uncertainty
under dataset shift. In NeurIPS, 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling
and inference. JMLR, 2021.

Rohith Peddi, Tahrima Rahman, and Vibhav Gogate. Robust
learning of tractable probabilistic models. In UAI, 2022.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro Domingos. On theoretical properties of sum-
product networks. In AISTATS, 2015.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In ICML, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In UAI, 2020b.

Hoifung Poon and Pedro M. Domingos. Sum-product net-
works: A new deep architecture. In UAI, 2011.

Amirmohammad Rooshenas and Daniel Lowd. Learning
sum-product networks with direct and indirect variable
interactions. In ICML, 2014.

Walter J Scheirer, Anderson de Rezende Rocha, Archana
Sapkota, and Terrance E Boult. Toward open set recogni-
tion. TPAMI, 2013.

Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Prob-
ability models for open set recognition. TPAMI, 2014.

Howard Seltman. Approximations for mean and variance
of a ratio. Technical report, CMU, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. JMLR,
2014.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. LSUN: construction of a large-scale image
dataset using deep learning with humans in the loop.
arXiv preprint arXiv:1506.03365, 2015.

Zhongjie Yu, Fabrizio Ventola, Nils Thoma, Devendra Singh
Dhami, Martin Mundt, and Kristian Kersting. Predictive
whittle networks for time series. In UAI, 2022.

	Introduction
	Related Work
	Tractable Dropout Inference
	Preface: Probabilistic Circuits
	Deriving TDI
	Expectation: The Point Estimate
	Variance: The Uncertainty Proxy
	Covariance: The Evil
	Leaf Nodes
	Classification Uncertainty
	Tractability

	Experimental Evaluation
	PCs with TDI Detect OOD Data
	PCs with TDI are More Uncertain on Perturbed Samples
	PCs with TDI are More Robust to Data Corruptions
	Discussion

	Conclusion

