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Abstract

Existing works on Aspect Sentiment Triplet
Extraction (ASTE) explicitly focus on devel-
oping more efficient fine-tuning techniques for
the task. Instead, our motivation is to come up
with a generic approach that can improve the
downstream performances of multiple ABSA
tasks simultaneously. Towards this, we present
CONTRASTE, a novel pre-training strategy
using CONTRastive learning to enhance the
ASTE performance. While we primarily fo-
cus on ASTE, we also demonstrate the advan-
tage of our proposed technique on other ABSA
tasks such as ACOS, TASD, and AESC. Given
a sentence and its associated (aspect, opin-
ion, sentiment) triplets, first, we design aspect-
based prompts with corresponding sentiments
masked. We then (pre)train an encoder-decoder
model by applying contrastive learning on the
decoder-generated aspect-aware sentiment rep-
resentations of the masked terms. For fine-
tuning the model weights thus obtained, we
then propose a novel multi-task approach where
the base encoder-decoder model is combined
with two complementary modules, a tagging-
based Opinion Term Detector, and a regression-
based Triplet Count Estimator. Exhaustive ex-
periments on four benchmark datasets and a de-
tailed ablation study establish the importance of
each of our proposed components as we achieve
new state-of-the-art ASTE results.

1 Introduction

ASTE is the most interpretable Aspect-based Sen-
timent Analysis (ABSA) task that, given a sen-
tence, requires the extraction of opinion triplets,
each consisting of an aspect term, the sentiment ex-
pressed towards it, and the corresponding opinion
term explaining the rationale behind the sentiment,
as shown in Table 2. Existing ASTE approaches,
ranging from pipeline (Peng et al., 2020a), multi-
task (Zhang et al., 2020), tagging-based (Xu et al.,
2020; Wu et al., 2020), span-based (Xu et al., 2021;
Feng et al., 2022), and generative (Mukherjee et al.,

2021; Chen et al., 2021; Yan et al., 2021; Zhang
et al., 2021a) have all developed newer, better,
and often more complex fine-tuning techniques for
the task, gradually enhancing performance on the
benchmark datasets (Xu et al., 2020). Our moti-
vation instead is to essentially improve the aspect-
aware sentiment understanding of a generative ar-
chitecture that can simultaneously benefit multi-
ple ABSA tasks. Towards this direction, we pro-
pose CONTRASTE, a CONTRAstive learning-
based efficient pre-training strategy that enhances
the downstream performance of ASTE. Although
we primarily focus on ASTE, we also demonstrate
the advantage of our proposed approach in achiev-
ing state-of-the-art performances for other ABSA
tasks such as Aspect Category Opinion Sentiment
(ACOS) quad prediction, Target Aspect Sentiment
Detection (TASD), and Aspect Extraction and Sen-
timent Classification (AESC).

Supervised Contrastive Learning (SCL) (Khosla
et al., 2020) has been previously explored in ABSA
(Li et al., 2021b; Liang et al., 2021; Ke et al., 2021).
SCL is performed on label (here sentiment) repre-
sentations, whose distance in the embedding space,
during training, is pulled together from the ones
with the same sentiment orientation and pushed
apart from those with different sentiment polarities.
The existing works however differ from ours in
their objectives and approaches. A detailed com-
parison is presented in Section 5. Most importantly,
the existing techniques apply SCL on sentence-
level sentiment embeddings, whereas in ASTE (or
ABSA in general), the sentiments are defined at an
aspect level. To address this limitation, we intro-
duce aspect-based prompts with [MASK] tokens.
A sentence, for e.g., the food was delicious, is sent
as input to the T5 (Raffel et al., 2019) encoder.
The decoder is then provided with an aspect-based
prompt, <aspect> food <sentiment> [MASK].
The decoded representation for the [MASK] token
gives us the aspect-aware representation of the cor-



Sentence Pre-training Prompts
<aspect> aspect <sentiment> [MASK]

The food was good. <aspect> food <sentiment> [MASK]

Both sound as well as display quality are great. <aspect> sound <sentiment> [MASK]
<aspect> display quality <sentiment> [MASK]

While the sushi was tasty, the ambience sucked. <aspect> sushi <sentiment> [MASK]
<aspect> ambience <sentiment> [MASK]

Table 1: Few sentences along with aspect-based prompts derived from them to pre-train an enc-dec framework.

responding sentiment label. Aspect-level SCL is
performed on these embeddings. Our proposed pre-
training scheme is depicted in Fig 1(a). Few exam-
ple sentences along with the aspect-based prompts
derived from them to pre-train the framework are
shown in Table 1. In Section 3.5, we compare
the two pre-training approaches, that is performing
SCL on sentence-level versus aspect-level senti-
ment embeddings, and demonstrate that the latter
(our proposal) leads to better ASTE performance.

After pre-training is completed, we need to fine-
tune the trained model weights for the downstream
ABSA tasks (we focus on ASTE here). Simi-
lar to PARAPHRASE (Zhang et al., 2021a), the
most competitive generative approach for ASTE
and other ABSA tasks, we train our base encoder-
decoder framework, CONTRASTE-Base, to gen-
erate opinion triplets as templatized paraphrases,
as shown in Fig. 1(b). Our template however dif-
fers. We argue that the template used in PARA-
PHRASE, although more intuitive, does not gener-
alize well across tasks, and often results in seman-
tically meaningless target sequences, as reported in
Table 2. Taking inspiration from Huguet Cabot and
Navigli (2021), we therefore design a more generic
placeholder-based template that can be leveraged
across ABSA tasks. Finally, we train CONTRASTE-
Base with two auxiliary multitask objectives, Opin-
ion Term Detection and Triplet Count Estimation,
each of which benefits the ASTE performance. We
call our final model CONTRASTE-MTL.
Our contributions can be summarized as follows:
• We propose a novel strategy to continually pre-

train T5 for ABSA tasks (from its generic pre-
trained checkpoint). More specifically, given a
sentence, we derive (possibly multiple) aspect-
based prompts with corresponding sentiments
masked as shown in Table 1. The model is then
pre-trained by applying supervised contrastive
learning (SCL) on the decoder-generated aspect-
level sentiment representations of the masked
tokens as shown in Fig 1(a). We show that such
an approach leads to better downstream ASTE
performance than performing SCL on sentence-

level sentiment embeddings for pre-training, as in
existing works. Also, different from prior works,
we do not use any additional data to perform
contrastive pre-training of our model.

• We propose more generic placeholder-based tem-
plates than the ones used in PARAPHRASE (re-
fer to Table 2) to fine-tune T5 for ASTE. We
further demonstrate that the template can be eas-
ily customized for various ABSA tasks.

• Our final model, CONTRASTE-MTL (Fig. 1(b)),
pre-trained using SCL on aspect-level sentiment
embeddings, and fine-tuned for ASTE using
a multi-task objective, achieves state-of-the-art
(SOTA) results on all four benchmark datasets.

• We also show that our proposed pre-training strat-
egy helps in achieving SOTA results for other
ABSA tasks such as ACOS, TASD, and ASEC.

• Finally, we compare our results for all four tasks
against ChatGPT (OpenAI, 2023b), and observe
substantial gains in performance.
Section 2 presents the details of our pro-

posed pre-training and fine-tuning methodologies.
Section 3.4 demonstrates the advantage of our
placeholder-based templates, over the ones used in
PARAPHRASE, in achieving better ASTE perfor-
mance. Section 3.5 compares our pre-training strat-
egy with the one used in prior works. Here, we visu-
ally demonstrate how pre-training on aspect-centric
sentiment embeddings results in deriving more dis-
cernible clusters of representations with different
sentiment polarities. Our main results are reported
in Section 3.6. Section 4 discusses our model ab-
lations and demonstrates how pre-training helps in
improving the performances of other ABSA tasks,
such as ACOS, TASD, and AESC.

2 Methodology

2.1 Supervised Contrastive Pre-training

We model ASTE as a structured prediction task,
and leverage the T5 (Raffel et al., 2019) encoder-
decoder framework as the backbone of our pro-
posed architecture. The empirical justification
for this design choice primarily comes from prior



(a) Supervised contrastive pre-training (b) Proposed multi-task model for ASTE

Figure 1: CONTRASTE: (a) Contrastive pre-training of the encoder-decoder framework using aspect-based
prompts. (b) Fine-tuning the model for ASTE by optimizing a joint-objective to generate template-based triplets.

SENTENCE
CONTRASTE template: PARAPHRASE template:

<aspect> aspect <opinion> opinion <sentiment> sentiment [SSEP] ... It is great / ok / bad because ASPECT is OPINION

The food was good. <aspect> food <opinion> good <sentiment> POS It is great because food is good
While the sushi was tasty,
the ambience sucked.

<aspect> sushi <opinion> tasty <sentiment> POS [SSEP] It is great because sushi is tasty [SSEP] It is
<aspect> ambience <opinion> sucked <sentiment> NEG bad because ambience is sucked

I was very disappointed
with the chef.

<aspect> chef <opinion> very disappointed <sentiment> NEG It is bad because chef is very disappointed

Table 2: Few sentences along with their corresponding targets, to fine-tune the T5 encoder-decoder framework,
generated using our proposed templates vs. the ones proposed by PARAPHRASE (Zhang et al., 2021a). The target
sequences highlighted in red are not semantically meaningful; especially the last example where the customer
should be disappointed, and not the chef, contrary to what is meant by the paraphrased sentence.

works. Earlier ASTE approaches like JET-BERT
(Xu et al., 2020), GTS-BERT (Wu et al., 2020),
and Span-ASTE (Xu et al., 2021) are tagging-
based approaches built upon a single encoder.
Later works such as PASTE (Mukherjee et al.,
2021), Unified-BART-ABSA (Yan et al., 2021),
and PARAPHRASE (Zhang et al., 2021a) have ex-
perimentally demonstrated that ASTE can be better
solved using seq.-to-seq. generative approaches.

Given the choice of our fine-tuning framework,
we want both the encoder as well as the decoder to
take advantage of our proposed pre-training strat-
egy. Therefore, we do not obtain the aspect-aware
sentiment representations from input sentences us-
ing only an encoder (although possible). Rather,
we continually pre-train the full model (from its
generic pre-trained checkpoint) using aspect-based
prompts. The decoder is expected to learn from the
contextualized representations of input sentences as
produced by the encoder and decode aspect-aware
sentiment representations for the corresponding
[MASK] tokens based on the prompts it receives.
Supervised contrastive learning is performed on
these aspect-centric sentiment embeddings.

In order to pre-train the model, first we obtain
aspect-aware sentiment representation(s) from a
given sentence seni using aspect-based prompts
pij for each aspect term aj . It is to be noted here

that while a sentence can have multiple aspects, the
combination of (seni, pij) will have a single senti-
ment label sij . We denote a data point (seni, pij)
as xi and the corresponding sentiment label as yi.
Further, to train the model, we can now derive mul-
tiple data points from sentences with more than
one aspect. This alleviates to some extent the large
amount of data required to effectively (pre)train a
model using contrastive learning (Li et al., 2021b).

As depicted in Fig. 1(a), we pass the input sen-
tence through the encoder, and provide an aspect-
based prompt to the decoder. The prompt consists
of a [MASK] that masks the sentiment associated
with the aspect. The decoder-generated output for
the [MASK] token forms the aspect-centric senti-
ment representation zi corresponding to the data
point xi. The supervised contrastive loss on the
batch I is defined as follows:

Lsup
I =

∑
i∈I

− 1

|P (i)|
∑

p∈P (i)

log
exp(zi • zp/τ)∑

a∈A(i)
exp(zi • za/τ)

(1)

Here, index i represents the anchor. A(i) ≡ I \ i
represents the set of all indices except the anchor.
P (i) = {p ∈ A(i) : yp = yi} is the set of indices
of all positives (same sentiment label) distinct from
i, and |P (i)| is its cardinality. The • symbol denotes
the inner dot product between two embeddings, and
τ ∈ R+ is a scalar temperature parameter.



2.2 Multi-task Approach For ASTE

After being pre-trained, the encoder-decoder frame-
work now needs to be fine-tuned for the ASTE
task. For building our fine-tuning architecture, we
leverage multi-task learning (MTL) which has been
successfully used across a range of ABSA tasks
(Collobert and Weston, 2008; He et al., 2019; Gao
et al., 2022) to improve the performance of the
main task by designing and training related auxil-
iary tasks jointly. Designing appropriate auxiliary
tasks is also challenging since MTL is not guaran-
teed to always improve the main task performance
(Martínez Alonso and Plank, 2017). Next, we de-
scribe how T5 is trained for the main task of ASTE,
before elaborating on the motivation and working
of two auxiliary modules as depicted in Fig. 1(b).

Corresponding to each sentence x being passed
as input to the encoder, first we construct the target
sequence y to be generated by the decoder. Let
T = {tj | tj = (aspj , opinj , sj)}|T |

j=1 be the set of
opinion triplets associated with x. The linearized
target sequence y, as depicted in Fig. 1(b), takes
the form as reported in Table 2. The target construc-
tion algorithm is presented in Algorithm 1 (refer
A.1). Let e denote the encoder-generated contex-
tualized representation of x. At the i-th time step,
the decoder output yi = D(e, y<i) is computed
based on e and the previous outputs y<i. Proba-
bility distribution for the next token is obtained as:

pθ(yi+1|e, y<i+1) = softmax(W T yi) (2)

Here, θ is initialized with parameter weights ob-
tained after pre-training the model using contrastive
learning. W maps yi to a logit vector which is then
used to calculate the probability distribution over
the whole vocabulary set. It is to be noted here that
the tokens <aspect>, <opinion>, and <sentiment>
are added to the vocabulary at the time of train-
ing, and their embeddings are learnt from scratch.
Finally, the model parameters are fine-tuned on
the input-target pairs by minimizing the negative
log-likelihood pθ(y|e) (denoted LED) as follows:

LED = −log pθ(y|e) = −
n∑

i=1

log pθ(yi|e, y<i) (3)

where n is the length of the target sequence y.

2.2.1 Opinion Term Detection (OTD)
The motivation behind including this module
comes from (Mrini et al., 2022) where the authors
introduce a similar auxiliary module called entity

mention detection, modeled as a token-wise binary
classification task, to improve the performance of
the main task of autoregressive entity linking, for-
mulated as a “language generation task”. We have
a similar setting, where our main task of ASTE fol-
lows a generative paradigm, whereas, as depicted in
Fig. 1(b), we formulate OTD as a sequence-tagging
task using the BIO scheme. We hypothesize that
the opinion term detection (OTD) module will help
to better detect the opinion span boundaries which
in turn affects the sentiment prediction. Formally,
for each token toki ∈ x, the opinion tagger takes
as input the contextualized token embedding gener-
ated by the encoder, and performs a 3-way classifi-
cation task with the classes being B-beginning of
the span, I-inside the span, O-outside the span. The
module is trained by minimizing the Cross Entropy
loss (LOTD) between the true and predicted labels.
Our ablation results reported in Sec. 4 further jus-
tify the importance of this module.

2.2.2 Triplet Count Estimation (TCE)
During fine-tuning of T5 for the ASTE task, the tar-
get sequences explicitly guide the decoder, through
supervision, on how many triplets to generate. In
order to further augment this process, we intro-
duce the auxiliary task of triplet count estimation
(TCE). Part of our motivation comes from (Mrini
et al., 2022) where the second auxiliary task of en-
tity match prediction is modeled as a classification
task. Please note however that the exact number
of triplets in a test sentence is not known a priori.
Hence, we design TCE as a simple regressor, con-
sisting of two layers of fully connected networks
(FCN). Specifically, we take the encoder-generated
sentence embedding e as input (768-dim.) and pass
it through the first FCN layer consisting of 128 neu-
rons. The outputs of this layer are passed through
the second layer of FCN which consists of a single
neuron. The regressor is trained to predict the num-
ber of triplets associated with the sentence x by
minimizing the Mean Squared Error loss (LTCE).

It is to be noted here that the TCE module, being
a regressor, generates float values. For inference,
we round off the output to the nearest integer (and
< integer > .5 to < integer >). However, there
is no direct influence of the TCE output on the T5
decoder in the absence of any explicit connection
between the two. Please note that this architectural
choice is consistent with the literature on multi-task
learning unless the main and auxiliary modules are
trained in a hierarchical setup (Sanh et al., 2019).



Datasets #S POS NEU NEG

Lap14
Train 906 817 126 517
Dev 219 169 36 141
Test 328 364 63 116

14Res
Train 1266 1692 166 480
Dev 310 404 54 119
Test 492 773 66 155

15Res
Train 605 783 25 205
Dev 148 185 11 53
Test 322 317 25 143

16Res
Train 857 1015 50 329
Dev 210 252 11 76
Test 326 407 29 78

Table 3: ASTE-V2 dataset statistics. #S denotes the no.
of sentences, ‘POS’, ‘NEU’, and ‘NEG’ denote the no.
of positive, neutral, and negative triplets respectively.

Also, we do not post-process the decoder-generated
sequence to match the same number of triplets as
predicted by the TCE module before calculating
the final results. The only implicit guidance be-
tween T5 and TCE is expected through the joint
optimization of loss functions as described next.
Our ablation results (Sec. 4) justify the advantage
of TCE in improving ASTE performance.

2.2.3 Joint Training
Our base model, CONTRASTE-Base is trained by
optimizing the encoder-decoder loss LED only.
The full model, CONTRASTE-MTL is jointly
trained in a multi-task setup by minimizing the
combined loss L as follows:

L = LED + α · LOTD + β · LTCE (4)

α and β are the weight coefficients assigned to the
OTD loss LOTD, and TCE loss LTCE respectively.

3 Experiments

3.1 Datasets & Evaluation Metrics

We evaluate CONTRASTE on four ASTE datasets
(ASTE-Data-V2) released by Xu et al. (2020),
which includes one dataset from the laptop domain
and three datasets from the restaurant domain. The
statistics of all the datasets are shown in Table 3.

Following prior works, we report precision, re-
call and F1 scores to evaluate and compare meth-
ods on the ASTE task. A predicted triplet is con-
sidered correct if all its predicted elements exactly
match with those of a ground-truth opinion triplet.

3.2 Experimental Setup

3.2.1 Pre-Training
For this, we combine the train data from all four
ASTE-DATA-V2 datasets (Table 3) to prepare our

pre-training dataset. This results in a total of
5,039 train data points (refer Section 2.1) from
3,634 sentences. Please note that we do not need
test data in the pre-training phase. Also, different
from Li et al. (2021b), we do not use any exter-
nal data for performing supervised contrastive pre-
training. Pre-trained t5-base1 was used to initialize
the model weights. We (pre)train the T5 encoder-
decoder framework for 14 epochs using AdamW
optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 2e-7 and a batch size of 16. The
temperature parameter τ was set to 0.07.

3.2.2 Fine-Tuning
CONTRASTE-MTL contains around 222 million
trainable parameters. For each of the datasets,
we respectively fine-tune the pre-trained model
weights for the downstream ASTE task using
AdamW optimizer with a learning rate of 1e-4 for
14Res and 16Res, and 3e-4 for 15Res and Lap14.
A batch size of 16 was used for all datasets. Fol-
lowing Mrini et al. (2022), we optimize the auxil-
iary task weights, α (OTD), and β (TCE) for each
dataset. As shown in Fig. 3, we start by optimiz-
ing α with β set to 0.4. We then optimize β given
the optimal α values. One can visibly observe
that the ASTE performance varies with changing
task weights. For each dataset, we obtain a dif-
ferent set of optimal α and β values based on the
highest ASTE F1 scores on the respective val sets.
Fig 3 shows the optimal weights on all for ASTE-
Data-V2 datasets; α = 1.0, β = 0.4 on Lap14,
α = 0.2, β = 0.6 on 14Res, α = 0.8, β = 0.4 on
15Res, and α = 0.8, β = 0.8 on 16Res.

Each of our models was trained for 20 epochs
and the model instance corresponding to the best
val F1 score was used to evaluate the test set. We
report the median scores over five runs of the exper-
iments. Each pre-training epoch took 10 minutes
and each fine-tuning epoch took 1 minute on 15Res
and 2 minutes on the other three datasets. All our
experiments were run on Tesla P100-PCIE 16GB
GPU. We make our codes publicly available.2

3.3 Baselines
We compare our proposed approach with sev-
eral state-of-the-art ASTE baselines which can be
broadly grouped into the following five categories:
• Pipeline: CMLA, RINANTE (Dai and Song,

2019) and Li-unified-R (Li et al., 2019) are
1https://huggingface.co/t5-base
2https://github.com/nitkannen/CONTRASTE/



Model 14Res 15Res 16Res Lap14
PARAPHRASE 0.715 0.621 0.719 0.605
ASTE-Base 0.720 0.634 0.722 0.608

w/ SCL-Sent. 0.722 0.645 0.724 0.611
CONTRASTE-Base 0.728 0.648 0.730 0.614

Table 4: Test F1 scores on ASTE. Comparing PARA-
PHRASE with our non-multi-task model variants.

pipeline methods to co-extract aspects and opin-
ion terms. CMLA+, RINANTE+, Li-unified-R,
and Peng-two-stage are improved versions pro-
posed by (Peng et al., 2020a) to jointly extract the
aspects, opinions, and corresponding sentiments.

• Tagging-based: OTE-MTL (Zhang et al., 2020)
propose a multi-task framework to jointly extract
the three sentiment terms. JET-BERT (Xu et al.,
2020) is an end-to-end approach that proposes
a novel position-aware tagging scheme. GTS-
BERT (Wu et al., 2020) models ASTE as a grid-
tagging task. EMC-GCN (Chen et al., 2022a)
proposes an Enhanced Multi-Channel GCN net-
work to model the relation between words.

• Span-based: Span-ASTE (Xu et al., 2021) con-
siders the span-level interactions of targets and
opinions while predicting the sentiment. SBSK-
ASTE (Feng et al., 2022) uses abundant syntax
Knowledge to improve ASTE. Span-BiDir (Chen
et al., 2022b) is a recent approach that uses a
span-level bidirectional network to utilize all pos-
sible spans for extracting tuples bidirectionally.

• Generative: PASTE (Mukherjee et al., 2021)
is a tagging-free decoding scheme using pointer
networks for ASTE. Unified-BART-ABSA (Yan
et al., 2021) unifies all ABSA tasks with a gen-
erative framework using BART. GAS (Zhang
et al., 2021b) proposes a T5-based solution with
linearized templated targets. PARAPHRASE
(Zhang et al., 2021a) proposes to decode triplets
as templated natural language paraphrases.

• MRC-based: BMRC (Chen et al., 2021) pro-
poses a novel method to solve ASTE as a Bidi-
rectional Machine Reading Comprehension task.
Among these, PARAPHRASE is closest to our

fine-tuning approach, and one of the strongest base-
lines. Next, we demonstrate the better advantage of
our prompt-based templates over the ones used in
PARAPHRASE to fine-tune the model for ASTE.

3.4 PARAPHRASE vs. Our Templates

CONTRASTE-Base refers to our base (non-multi-
task) model variant which is first pre-trained using

(a) Before Contrastive Pre-training (b) After Contrastive Pre-training

Figure 2: t-SNE visualization of decoder-generated
[MASK] token embeddings from aspect-based prompts
derived from 15Res val set. Our SCL objective encour-
ages the decoder to produce discriminable representa-
tions of different sentiment polarities.

our proposed pre-training strategy (refer Section
2.1) and then fine-tuned for ASTE using our pro-
posed templates (refer Table 2). We denote ASTE-
Base as the variant of CONTRASTE-Base without
the pre-training part. In essence ASTE-Base is di-
rectly comparable to PARAPHRASE (Zhang et al.,
2021a), the difference being the templates used
for fine-tuning. As previously discussed, the tem-
plates used in PARAPHRASE do not generalize
well across ABSA tasks, and often lead to semanti-
cally meaningless or wrong targets (refer Table 2).
Our prompt-based templates, on the other hand, can
easily be extended across tasks, such as ACOS, as
detailed in Section 4. Fine-tuning the T5 encoder-
decoder framework with our templates also results
in better ASTE performance as reported in Table
4. One can observe that ASTE-Base outperforms
PARAPHRASE with overall 0.9% F1 gains across
all four ASTE benchmark datasets. Detailed results
for all compared models are reported in Table 5.

3.5 Comparison of Supervised Contrastive
Pre-Training Approaches

As discussed in Section 2.1, we design novel aspect-
based prompts to pre-train our encoder-decoder
framework by performing supervised contrastive
learning (SCL) on decoder-generated aspect-aware
sentiment embeddings of [MASK] tokens. In or-
der to qualitatively understand the effect of such
pre-training on the aspect-based sentiment learning
ability of our framework, we show in Fig. 2, a
t-SNE (van der Maaten and Hinton, 2008) visual-
ization of these embeddings on all the aspect-based
prompts derived from all four ASTE-Data-V2 test
sets. We observe that the positive, and negative sen-
timent embeddings are better clustered and more
neatly separated from each other after pre-training.



Model 14Res 15Res 16Res Lap14
P. R. F1 P. R. F1 P. R. F1 P. R. F1

CMLA+ ♠ 0.392 0.471 0.428 0.346 0.398 0.370 0.413 0.421 0.417 0.301 0.369 0.332
RINANTE+ ♠ 0.314 0.394 0.350 0.299 0.301 0.300 0.257 0.223 0.239 0.217 0.187 0.201
Li-unified-R ♠ 0.410 0.674 0.510 0.447 0.514 0.478 0.373 0.545 0.443 0.406 0.443 0.423
Peng-two-stage ♠ 0.432 0.637 0.515 0.481 0.575 0.523 0.470 0.642 0.542 0.374 0.504 0.429
ChatGPT ♣ 0.513 0.629 0.565 0.419 0.606 0.495 0.449 0.617 0.520 0.351 0.489 0.409
OTE-MTL 0.630 0.551 0.587 0.579 0.427 0.489 0.603 0.534 0.565 0.492 0.405 0.451
JET-BERT ♠ 0.706 0.559 0.624 0.645 0.520 0.575 0.704 0.584 0.638 0.554 0.473 0.510
PASTE 0.648 0.638 0.643 0.583 0.567 0.575 0.655 0.644 0.650 0.550 0.516 0.532
GTS-BERT 0.680 0.676 0.678 0.627 0.555 0.589 0.654 0.680 0.667 0.561 0.530 0.545
GAS 0.650 0.695 0.672 0.561 0.618 0.588 0.661 0.687 0.674 0.571 0.540 0.555
Unified-BART-ABSA 0.655 0.650 0.653 0.591 0.594 0.593 0.666 0.687 0.676 0.614 0.562 0.587
BMRC 0.756 0.618 0.680 0.685 0.534 0.601 0.712 0.611 0.658 0.706 0.490 0.578
EMC-GCN 0.712 0.724 0.718 0.615 0.625 0.619 0.656 0.713 0.683 0.617 0.563 0.588
Span-ASTE 0.729 0.709 0.719 0.622 0.645 0.633 0.695 0.712 0.703 0.634 0.558 0.594
PARAPHRASE 0.711 0.719 0.715 0.604 0.639 0.621 0.701 0.739 0.719 0.634 0.578 0.604
SBSK-ASTE 0.746 0.715 0.730 0.653 0.637 0.645 0.708 0.720 0.714 0.656 0.565 0.607
Span-BiDir 0.764 0.724 0.743 0.699 0.604 0.648 0.716 0.726 0.721 0.657 0.599 0.627
ASTE-Base 0.718 0.721 0.720 0.616 0.654 0.634 0.695 0.751 0.722 0.635 0.584 0.608
CONTRASTE-Base 0.724 0.732 0.728 0.626 0.672 0.648 0.721 0.739 0.730 0.639 0.591 0.614
CONTRASTE-MTL 0.736 0.744 0.740 0.653 0.667 0.661 0.722 0.763 0.742 0.642 0.617 0.629

Table 5: Comparative results on the ASTE-Data-V2 (Xu et al., 2020). ♠ denotes that the results are retrieved from
Xu et al. (2020). ♣ ChatGPT results are obtained using 100-shot In Context Learning (ICL) prompts. The results
for all other methods were reproduced using released codes and original parameters. The highest F1 scores on each
dataset are highlighted in bold. The second highest F1 scores are underlined.

Thus, our SCL-based pre-training objective helps
in improving the performance on ABSA tasks.

Next, we wanted to compare our pre-training
strategy with the one used in existing ABSA works.
While Li et al. (2021b) uses SCL for pre-training,
Liang et al. (2021), and Ke et al. (2021) use it for
fine-tuning their respective models. However, dif-
ferent from us, all of them apply SCL on sentence-
level sentiment representations of sentences. In or-
der to replicate their methodology, we pre-train our
encoder-decoder framework by applying SCL on
mean-pooled representations of sentences from the
final layer of encoder. For this, we collected a total
of 3358 data points (sentences containing triplets
with the same sentiment polarity) from 3,634 sen-
tences combining all four train datasets. Model
weights were initialized with pre-trained t5-base,
and the framework was (pre)trained for 14 epochs
using AdamW optimizer with a learning rate of
2e-5, batch size of 16, and τ = 0.07.

We fine-tune ASTE-base from this pre-trained
checkpoint (settings discussed in Section 3.2) re-
spectively for each of the datasets and report our
results in Table 4 (row ASTE-Base w/ SCL-Sent.).
We observe that CONTRASTE-Base outperforms
ASTE-Base w/ SCL-Sent. with overall 0.6% im-
provement in F1 scores. This establishes the better

suitability of performing supervised contrastive pre-
training on aspect-centric sentiment embeddings,
since in ABSA, the sentiments are defined at an
aspect level and not at the sentence level.

3.6 Main Results
We report the comparison of our model variants
with all considered baselines in Table 5. The
majority of the baselines including OTE-MTL,
JET-BERT, PASTE, GTS-BERT, BMRC, Span-
ASTE, EMC-GCN, SBSK-ASTE, and Span-BiDir
use BERT (Devlin et al., 2019) as their backbone.
Unified-BART-ABSA uses BART (Lewis et al.,
2020). GAS and PARAPHRASE are based on
a T5 encoder-decoder framework and hence are
most similar to our approach. PARAPHRASE is
our strongest T5-based baseline. SBSK-ASTE and
Span-BiDir are very recent span-based techniques
and they qualify to be our strongest two baselines.

We find that ASTE-Base, our non-multi-
task non-pre-trained model outperforms PARA-
PHRASE with overall 0.9% F1 gains, however,
fails to beat SBSK-ASTE and Span-BiDir. This
observation may be attributed to better feature
learning strategies employed by these two meth-
ods. We find that our proposed SCL-based pre-
training approach hugely improves the perfor-
mance of ASTE-Base, as CONTRASTE-Base out-



CON OTD TCE Triplet Aspect Opinion Sentiment

✗ ✗ ✗ 0.671 0.820 0.815 0.753
✓ ✗ ✗ 0.680 0.824 0.820 0.765
✗ ✓ ✓ 0.678 0.827 0.827 0.762
✓ ✗ ✓ 0.685 0.832 0.828 0.770
✓ ✓ ✗ 0.682 0.836 0.842 0.776
✓ ✓ ✓ 0.692 0.840 0.848 0.784

Table 6: Ablation Results. We report F1 scores for
Triplet, Aspect, and Opinion predictions, and Sentiment
accuracies for correctly predicted tuples (asp, opin).

performs SBSK-ASTE with overall 1.4% F1 gains,
while performing comparably with Span-BiDir.
Finally, CONTRASTE-MTL comfortably outper-
forms PARAPHRASE with overall 4.4% F1 gains,
SBSK-ASTE with overall 2.8% F1 gains, and
Span-BiDir with overall 1.2% F1 gains, to achieve
new state-of-the-art ASTE results.

4 Analysis

4.1 Experiments With ChatGPT

Natural Language Processing, in recent times, has
been revolutionized by the evolution of Large Lan-
guage Models (LLMs) such as GPT-3 (Brown et al.,
2020). ChatGPT (OpenAI, 2023b), powered by
GPT-3.5 and GPT-4 (OpenAI, 2023a), has pio-
neered the excitement around LLMs by achieving
remarkable zero-shot and few-shot in-context learn-
ing (ICL) (Brown et al., 2020) results for unseen
NLP tasks, without any parameter updates.

In this work, we investigated how well can Chat-
GPT perform on ABSA tasks. We experimented
with 4 different kinds of zero-shot and few-shot
prompts as detailed in Sec. A.2. For each task, our
best test set results are obtained when we prompt
ChatGPT with task-specific instructions followed
by 100 randomly selected (sentence, target out-
put) samples from the corresponding training set.
ASTE results obtained with ChatGPT are reported
in Table 5. Compared to our CONTRASTE-MTL re-
sults, we observe a huge gap in performance. This
demonstrates that ChatGPT is far from producing
SOTA ASTE results (refer Sec. A.2 for details).

4.2 Model Ablations

Contrastive pre-training (CON), OTD, and TCE
are the three crucial components of CONTRASTE-
MTL. Here, we ablate one component at a time
and report in Table 6 the F1 scores correspond-
ing to the triplet, aspect term, and opinion term
predictions averaged over all four datasets. Senti-
ment prediction accuracies corresponding to cor-

Model Res15 Res16 Rest-ACOS Lap-ACOS

ChatGPT 0.262 0.386 0.391 0.237
PARAPHRASE 0.468 0.578 0.592 0.429
ACOS-Base 0.458 0.583 0.597 0.431
ACOS-Contra 0.478 0.598 0.605 0.446

Table 7: Test F1 scores on ACOS. Comparing ChatGPT
and PARAPHRASE with our ACOS model variants.

rectly predicted opinion tuples (aspect term, opin-
ion term) are also reported. The first row corre-
sponds to ASTE-Base, and the last row corresponds
to CONTRASTE-MTL results from Table 5.

From Table 6, we observe (bottom to top) that
removing TCE and OTD degrades the triplet F1
scores by 1.3%, and 0.8% respectively, thereby
highlighting their impact on the overall task. Re-
moving TCE results in more spurious triplets being
generated, which in turn hampers the scores. Re-
moving OTD especially affects the opinion term ex-
traction (F1 ↓ 2.4%) and sentiment prediction (acc
↓ 1.8%) performance. Removing CON substan-
tially affects all the scores (triplet, aspect, opinion
F1 scores ↓ 1.9%, 1.6%, 2.5% respectively, senti-
ment acc ↓ 2.9%), thereby demonstrating the advan-
tage of contrastive pre-training using our proposed
approach. This observation is further strengthened
when we compare the second row, corresponding
to CONTRASTE-Base, with the first row, corre-
sponding to ASTE-Base, and see a huge jump in
sentiment acc (↑ 1.6%). Finally, removing all com-
ponents results in a significant drop across all the
scores, thereby establishing the importance of all
proposed components of CONTRASTE-MTL.

4.3 Qualitative Analysis

Table 8 compares the model predictions of PARA-
PHRASE and CONTRASTE-MTL for a few test
sentences. The first example highlights the advan-
tage of both TCE and OTD as we correctly predict
both the number of triplets, as well as the triplets
themselves (and hence the opinion terms) whereas
PARAPHRASE misses out on both. The second
example further establishes the importance of OTD
as we correctly predict the opinion term boundaries
whereas PARAPHRASE fails to do so.

4.4 Advantage of Pre-Training On ACOS

We consider the task of Aspect Category Opin-
ion Sentiment (ACOS) quad prediction (Cai et al.,
2021; Zhang et al., 2021a) in order to understand
whether our proposed SCL-based pre-training tech-



SENTENCE TRIPLETS

Gorgeous place ideal for a romantic dinner.
GOLD: place ; Gorgeous ; POS | place ; ideal ; POS
PARAPHRASE: place ; romantic ; POS
CONTRASTE-MTL: place ; Gorgeous ; POS | place ; ideal ; POS

I complained to the manager, but he was not
even apologetic.

GOLD: manager ; not even apologetic ; NEG
PARAPHRASE: manager ; apologetic ; NEG
CONTRASTE-MTL: manager ; not even apologetic ; NEG

Table 8: Few test set sentences; their gold triplets, & predictions made by PARAPHRASE and CONTRASTE-MTL.

nique can improve the downstream performance of
more difficult ABSA tasks as well. Here, given a
sentence, for example, “the spicy tuna roll was un-
usually good”, the task is to extract the (aspect, cat-
egory, opinion, sentiment) quad (‘spicy tuna roll’,
‘food quality’, ‘unusually good’, POS). Also, there
could be multiple such quads in a given sentence.

We perform our experiments on four datasets,
Restaurant-ACOS, Laptop-ACOS released by Cai
et al. (2021), and Rest15, Rest16 released by the au-
thors of PARAPHRASE (Zhang et al., 2021a), and
report our results in Table 7. Experimental details
can be found in Sec. A.3. Here, ACOS-Base refers
to T5 trained with our proposed fine-tuning tem-
plates (updated for ACOS). ACOS-Contra refers
to the fine-tuning of ACOS-Base from a check-
point pre-trained using our proposed SCL-based
strategy (refer Sec. 2.1). We observe that while
the performance of ACOS-Base is comparable to
that of PARAPHRASE, supervised contrastive pre-
training of the model hugely improves the scores as
ACOS-Contra outperforms both PARAPHRASE,
and ACOS-Base with overall 2.9% F1 gains. Also,
ACOS-Contra substantially outperforms ChatGPT.

Baselines and comparative results for Target As-
pect Sentiment Detection (TASD), and Aspect Ex-
traction and Sentiment Classification (AESC) are
respectively reported in Sections A.4 and A.5.

5 Related Works

Supervised Contrastive Learning (SCL) has been
explored previously in the ABSA domain with
very different objectives and approaches than ours.
Li et al. (2021b) use supervised contrastive pre-
training to effectively learn implicit sentiments.
However, their approach is not optimal as they
apply contrastive learning on sentence-level sen-
timent representations of sentences, whereas in
ASTE (or any other ABSA task), sentiments are de-
fined at an aspect-level. Additionally, they rely on
external large-scale sentiment-annotated corpora to
learn sentiment knowledge. We, differ from them
as we do not use any external data. Also, we per-

form CL on aspect-aware sentiment representations
of masked opinion terms expressing the sentiment.

Liang et al. (2021) try to distinguish between
aspect-invariant and aspect-dependent sentiment
features. Further, their data augmentation strategy
masks the aspect terms, whereas we mask the senti-
ment. Finally, they apply contrastive learning only
to fine-tune the BERT encoder, whereas we use
SCL to pre-train an encoder-decoder setup.

Ke et al. (2021) apply contrastive learning in a
continual learning setup with very different objec-
tives of knowledge transfer across tasks, and knowl-
edge distillation from old tasks to the new task.
Moreover, all these works tackle a relatively easier
downstream ABSA task of Aspect Sentiment Clas-
sification (ASC), where the goal is to determine the
sentiment, given the sentence and a specific aspect.
Also, all of them are encoder-based approaches.
The novelty of our approach, therefore lies in de-
signing aspect-based prompts, obtaining aspect-
aware sentiment representations of masked senti-
ment terms, and applying contrastive learning on
these embeddings to (pre)train an encoder-decoder
framework for the downstream ASTE task.

6 Conclusion

We propose a novel strategy to continually pre-train
T5, from its publicly available generic pre-trained
checkpoint, for ABSA tasks. For this, given a sen-
tence, first, we derive aspect-based prompts with
corresponding sentiments masked. We then ap-
ply supervised contrastive learning (SCL) on the
decoder-generated aspect-level sentiment embed-
dings of the masked tokens. Compared to perform-
ing SCL on sentence-level sentiment embeddings,
we show that our strategy results in a better down-
stream performance for ABSA tasks such as ASTE,
ACOS, TASD, and AESC. Also, we do not use any
external data for pre-training. For task-specific fine-
tuning, we propose generic placeholder-based tem-
plates to train T5. Finally, we present our multi-task
model, CONTRASTE-MTL, that achieves SOTA re-
sults on the majority of ASTE benchmark datasets.



7 Limitations

It requires a substantial amount of data to effec-
tively apply contrastive learning (Li et al., 2021b)
even for continually pre-training an already pre-
trained (generic) encoder-decoder model such as
T5. However, in this work, we limited ourselves to
the training sets of existing ASTE benchmarks. Us-
ing our proposed aspect-based prompts, we could
obtain more data points than the actual number of
sentences, and they were sufficient enough for us
to achieve new state-of-the-art results. The impact
of pre-training with more data however remains to
be investigated.

While preparing the pre-training data, we com-
bined data from both domains, that is, laptop and
restaurant. It was done mainly because our exper-
iments with pre-training the model with a limited
number of laptop data points could not give us good
results (please note that there are three restaurant
datasets vs one laptop dataset in the ASTE-Data-
V2 benchmark). This raises an important question
regarding how much data is sufficient enough to ef-
fectively pre-train the model. Running pre-training
experiments with different fractions of available
data is something that we have not explored here.
Also, the applicability of our proposed scheme in
cross-domain settings remains to be investigated.
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Model 14Res 15Res 16Res Lap14
P. R. F1 P. R. F1 P. R. F1 P. R. F1

5-shot ICL (Han et al., 2023) - - 0.549 - - 0.466 - - 0.518 - - 0.390
Setting 1 0.151 0.175 0.162 0.125 0.181 0.148 0.184 0.255 0.214 0.171 0.233 0.197
Setting 2 0.445 0.529 0.484 0.377 0.551 0.447 0.426 0.609 0.502 0.276 0.375 0.318
Setting 3 0.513 0.629 0.565 0.419 0.606 0.495 0.449 0.617 0.520 0.351 0.489 0.409
Setting 4 0.488 0.619 0.546 0.400 0.575 0.472 0.473 0.656 0.549 0.351 0.475 0.404
CONTRASTE-MTL 0.736 0.744 0.740 0.653 0.667 0.661 0.722 0.763 0.742 0.642 0.617 0.629

Table 9: Comparing ASTE results obtained using ChatGPT and CONTRASTE-MTL. All four settings are described
in the text. Setting 3 gives us our best ChatGPT results, however substantially outperformed by CONTRASTE-MTL.

A Appendix

A.1 Algorithm For Target Construction

Algorithm 1 Converting opinion triplets associated
with a sentence into a linearized target sequence

Input : triplets: [(aspect, opinion, sentiment), ...] - List
of opinion triplets for the given sentence.
linear_string = ""
for triplet in triplets do

linear_string += <aspect>
linear_string += triplet[0]
linear_string += <opinion>
linear_string += triplet[1]
linear_string += <sentiment>
linear_string += triplet[2]
linear_string += [SSEP]

end for
linear_string = linear_string[: −6]

A.2 Experiments With ChatGPT

Natural Language Processing, in recent times, has
been revolutionized by the evolution of Large Lan-
guage Models (LLMs) such as GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022), Llama 2
(Touvron et al., 2023), etc. ChatGPT (OpenAI,
2023b), powered by GPT-3.5 and GPT-4 (OpenAI,
2023a), has pioneered the excitement around LLMs
by achieving remarkable zero-shot and few-shot in-
context learning (ICL) (Brown et al., 2020) results
for unseen tasks, without any parameter updates.

In this work, we carried out exhaustive experi-
ments to investigate how well can ChatGPT solve
ABSA tasks. The ChatGPT version used by us
is gpt-3.5-turbo. The temperature parameter was
set to 0 in order to avoid variations in ChatGPT-
generated outputs. This will help us to reproduce
the results in the future with the same settings. For
generating the responses, the max_tokens parame-
ter was set to 512. We experimented with 4 differ-
ent prompts as detailed below to get the response
for each test set sentence. We take the example of
ASTE to explain our experimental settings:
• Setting 1: Full zero-shot with no task defini-

tion. Here the prompt that we use is: Given the
restaurant/laptop review: sent, find all the (as-
pect, opinion, sentiment) triplets appearing in the
review in JSON format, with review and triplets
as the keys. No explanations are needed and do
not provide any text in the response.

• Setting 2: Zero-shot with task definition. Here,
we prepend the following ASTE task definition to
the prompt mentioned above: Aspects are nouns
or phrases appearing in the text that indicate spe-
cific attributes of the entity being reviewed. Opin-
ions are adjectives or phrases that express specific
sentiments towards the aspects. Sentiments could
be either positive, negative, or neutral.

• Setting 3: Few-shot In-Context-Learning
(ICL) with the same exemplars. To design the
prompt in this setting, after the task definition
mentioned in Setting 2, and before the final in-
struction defined in Setting 1 above, we add 100
randomly selected (sentence, target output) sam-
ples from the corresponding training set. Please
note that the same 100 samples are used as part
of the prompt for each test set sentence.

• Setting 4: Few-shot ICL with dynamically se-
lected exemplars. Here, for each test set sen-
tence, we use a different set of randomly selected
100 samples from the corresponding training set
as part of the prompt. While no model parameters
are updated in our experiments with ChatGPT,
our goal in this setting is to investigate whether
covering a broader range of training set samples
helps to improve scores.

ASTE results obtained using ChatGPT are re-
ported and compared against CONTRASTE-MTL
in Table 9 above. First, we observe that across all
4 datasets, using the task definition helps to im-
prove scores considerably. Prompting with training
set examples further improves the scores. How-
ever, we do not observe any advantage of Setting
4 over Setting 3. This is expected since the model
does not remember the training set examples it



Model Res15 Res16 Rest-ACOS Lap-ACOS
P. R. F1 P. R. F1 P. R. F1 P. R. F1

ChatGPT 0.257 0.271 0.262 0.367 0.407 0.386 0.396 0.386 0.391 0.253 0.224 0.237
Paraphrase 0.457 0.479 0.468 0.575 0.582 0.578 0.597 0.588 0.592 0.434 0.424 0.429
ACOS-Base 0.451 0.465 0.458 0.569 0.598 0.583 0.598 0.597 0.597 0.436 0.426 0.431
ACOS-Contra 0.471 0.484 0.478 0.587 0.610 0.598 0.608 0.602 0.605 0.450 0.441 0.446

Table 10: Comparative ACOS results on the Lap-ACOS, Rest-ACOS (Cai et al., 2021), and Res15, Res16 (Zhang
et al., 2021a) datasets. ChatGPT results are obtained using 100-shot In Context Learning (ICL) prompts. The
highest F1 scores on each dataset are highlighted in bold. The second highest F1 scores are underlined.

was prompted with earlier while generating the re-
sponse for a new test set sentence. Its memory is
limited to the context of the prompt.

We also compare our ChatGPT results with the
ones reported in (Han et al., 2023) where the au-
thors investigate the capability of ChatGPT in solv-
ing different information extraction tasks, includ-
ing ABSA. We observe that our Setting 3/4 results
comfortably outperform them. Finally, comparing
our Setting 3 results with the ones obtained using
our proposed CONTRASTE-MTL model, we ob-
serve a huge gap in performance. With necessary
task-specific adjustments made to Setting 3, we
report the ChatGPT results for other ABSA tasks
in tables 10, 11, and 12 respectively, and observe
similar trends in performances. These observa-
tions reinstate the findings of Han et al. (2023) and
demonstrate that ChatGPT is not equipped enough
to produce state-of-the-art results for ASBA tasks.

A.3 Advantage of Pre-Training On ACOS

We perform our experiments on four benchmark
ACOS datasets, Restaurant-ACOS, Laptop-ACOS
released by Cai et al. (2021), and Rest15, Rest16
released by the authors of PARAPHRASE (Zhang
et al., 2021a), and report our detailed results in
Table 10. We had to make a minor change in
our fine-tuning templates by adding the special
token <category> and its associated value before
<aspect>. The remaining fine-tuning settings are
similar to ASTE as discussed in Sec. 3.2.

A.4 Advantage of Pre-Training On TASD

Here, we consider the task of Target (category)
Aspect Sentiment triplet Detection (TASD) (Wan
et al., 2020). Given a sentence, for example, “the
spicy tuna roll was unusually good”, the task is
to extract the (category, aspect, sentiment) triplet
(‘food quality’, ‘spicy tuna roll’, POS). Further,
there could be multiple such triplets in a sentence.
We perform our experiments on two benchmark

Model Res15 Res16
ChatGPT 0.469 0.561
TAS-T5-SW-BIO-CRF 0.533 0.616
BART-Phrase-Joint-TASD 0.585 0.602
T5-Phrase-Joint-TASD 0.614 0.698
T5-Sentence-Joint-TASD 0.611 0.675
GAS-Extraction 0.615 0.694
PARAPHRASE 0.630 0.719
LEGO-ABSA 0.617 0.688
Seq2Path (k=8) 0.633 0.721
EHG-Para 0.628 0.721
TASD-Base 0.634 0.709
TASD-Contra 0.664 0.747

Table 11: Test F1 TASD scores on the benchmark Res15,
and Res16 datasets (Wan et al., 2020). The highest F1
scores on each dataset are highlighted in bold. The
second highest F1 scores are underlined.

datasets, Res15, and Res16 released by Wan et al.
(2020), and report our results in Table 11.

Among the baselines, TAS (Wan et al., 2020)
highlights that the prediction of sentiment polari-
ties depends on both the target (category) as well as
the aspect terms, and accordingly proposes a novel
approach for target-aspect-sentiment joint detec-
tion, specifically improving the methods that pre-
dict sentiment polarities based only on explicit tar-
gets. Joint-TASD (Chebolu et al., 2021) transforms
ABSA into abstract summary-like conditional text
generation. GAS-Extraction (Zhang et al., 2021b)
is a predecessor of the PARAPHRASE paper that
generates triplets with simple linearized tuple tem-
plates. PARAPHRASE (Zhang et al., 2021a) as dis-
cussed before proposes to model triplet generation
as natural language paraphrases. LEGO-ABSA
(Gao et al., 2022) solves multiple ABSA tasks by
controlling the task prompts. Seq2Path (Mao et al.,
2022) proposes a novel method where they gener-
ate sentiment tuples as paths of a tree. EHG-Para
(Lv et al., 2023) leverages a novel Efficient Hybrid



Model 14Res 15Res 16Res Lap14
ChatGPT 0.634 0.556 0.623 0.541
Unified-BART-ABSA 0.785 0.699 0.757 0.682
GAS-R 0.790 0.688 0.757 0.658
EHG 0.793 0.700 0.771 0.685
SentiPrompt 0.811 0.742 0.798 0.708
AESC-Base 0.818 0.729 0.781 0.701
AESC-Contra 0.826 0.741 0.810 0.731

Table 12: Comparative test set AESC results on the
benchmark datasets (Peng et al., 2020b). The highest
and the second highest F1 scores on each dataset are
respectively highlighted in bold and underline.

Transformer and proposes a novel global hybrid
loss in combination with bipartite matching.

In Table 11, TASD-Base refers to the T5 encoder-
decoder framework trained with our proposed
fine-tuning templates (updated for TASD). TASD-
Contra refers to the fine-tuning of TASD-Base
from a checkpoint that is pre-trained using our
proposed strategy (refer Section 2.1). We ob-
serve that TASD-Base performs slightly better on
Res15 than the three strongest baselines, EHG-
Para, PARAPHRASE, and Seq2Path. However,
its performance on Res16 is weaker than the other
three. Leveraging the advantages of supervised
contrastive pre-training, TASD-Contra performs
substantially better than TASD-Base while comfort-
ably outperforming EHG-Para, PARAPHRASE,
and Seq2Path with overall 4.67%, 4.65%, and
1.88% F1 gains, averaged over the two datasets.
For our experiments, here again we had to make
a minor change in our fine-tuning templates by
adding the special token <category> and its asso-
ciated value before <aspect>. Also, we remove
the <opinion> placeholders from the targets.

A.5 Advantage of Pre-Training On AESC

Lastly, we consider the task of Aspect Extraction
and Sentiment Classification (AESC). Here, given
a sentence, for example, “the spicy tuna roll was
unusually good”, the task is to extract the (aspect,
sentiment) pair (‘spicy tuna roll’, POS). Further,
there could be multiple such pairs in a given sen-
tence. We perform our experiments on a total of
four benchmark datasets (Peng et al., 2020b) from
two domains; 14Res, 15Res, and 16Res belong-
ing to the Restaurant domain, and Lap14 built on
Laptop reviews, and report our results in Table 12.

Among the baselines, Unified-BART-ABSA
(Yan et al., 2021) converts all ABSA subtasks into a
unified generative formulation by redefining respec-

tive subtask targets as sequences mixed with aspect
term/opinion term word indices and sentiment class
indexes. GAS-R (Zhang et al., 2021b) again tack-
les ABSA tasks in a unified generative framework
by formulating targets using simple linearized tem-
plates. EHG (Lv et al., 2023) leverages a novel Effi-
cient Hybrid Transformer to generate the semantic
and position information of AESC targets in paral-
lel. SentiPrompt (Li et al., 2021a) injects sentiment
knowledge connecting aspects and opinion terms
using sentiment knowledge-enhanced prompts to
tune the language model.

Similar to the previously discussed tasks, in Ta-
ble 12, AESC-Base and AESC-Contra refer to our
fine-tuned T5 model variants (with templates suit-
ably updated for AESC) without and with con-
trastive pre-training respectively. Consistent with
our previous observations, here again we establish
the advantages of our proposed pre-training strat-
egy as AESC-Contra outperforms AESC-Base and
our strongest competitor SentiPrompt with over-
all 2.65%, and 1.65% F1 gains, averaged across
the four datasets. For our experiments, our fine-
tuning templates only consist of the <aspect> and
<sentiment> placeholders followed by their re-
spective values. All the above experiments fur-
ther highlight the generalizability of our templates
over PARAPHRASE. When performing our exper-
iments for the respective tasks, i.e. ACOS, TASD,
and AESC, we did not make any changes in the
pre-training settings. The fine-tuning settings are
similar to ASTE as discussed in Section 3.2.



(a) Choosing the optimal α, setting β = 0.4

(b) Choosing the optimal β, given the optimal α

Figure 3: Task weight tuning on the dev set for Opinion Term Detection (OTD) and Triplet Count Estimation (TCE).
We first optimize for α (a), and then for β (b).


