
Does Representation Matter? Exploring Intermediate
Layers in Large Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Understanding what constitutes a “good” representation in large language models1

(LLMs) is a fundamental question in natural language processing. In this paper, we2

investigate the quality of representations at different layers of LLMs, specifically3

Transformers and State Space Models (SSMs). We find that intermediate layers4

consistently provide better representations for downstream tasks compared to final5

layers. To quantify representation quality, we employ existing metrics from other6

contexts—such as prompt entropy, curvature, and augmentation-invariance—and7

apply them to LLMs. Our experiments reveal significant differences between8

architectures, showcase how representations evolve during training, and illustrate9

the impact of input randomness and prompt length on different layers. Notably,10

we observe a bimodal behavior in entropy within intermediate layers and explore11

potential causes related to training data exposure. Our findings offer valuable12

insights into the internal workings of LLMs and open avenues for optimizing their13

architectures and training processes.14

1 Introduction15

Large Language Models (LLMs) have revolutionized natural language processing by achieving16

remarkable performance across a variety of tasks (Muennighoff et al., 2022; Hendrycks et al., 2020).17

Despite their success, understanding what constitutes a “good” representation within these models18

remains an open question. Specifically, how do representations at different layers contribute to19

downstream task performance, and how can we quantify their quality?20

Most previous studies have primarily focused on final-layer representations, often overlooking the21

potential of intermediate layers. However, recent work suggests that intermediate layers may offer22

richer or more generalizable features for certain tasks (Bordes et al., 2022; Fan et al., 2024). This23

observation prompts a deeper investigation into the layerwise behavior of LLMs.24

In this paper, we explore the quality of representations across different layers of LLMs in various25

settings, including different model architectures (Transformers (Vaswani, 2017) vs. State Space26

Models (SSMs) (Gu & Dao, 2023)), training checkpoints, input randomness, and prompt length. Our27

contributions are threefold:28

• We demonstrate that intermediate layers consistently yield much better representations for29

downstream tasks than final layers.30

• We apply and adapt existing metrics—such as prompt entropy, curvature, and augmentation-31

invariance—to quantify representation quality in LLMs.32

• We analyze how these metrics vary across different settings, including architectural dif-33

ferences (Transformers vs. SSMs), training progression, input randomness, and prompt34

length.35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Table 1: MTEB Downstream Task Performance Using Representations from Different Layers
Model Number of Tasks where Best Performance

is not in Last Layer Avg. Last Layer Performance Avg. Best Layer Performance

LLM2Vec 8B (Transformer) 100% 64.7% 66.8%
Pythia 410M (Transformer) 96.6% 49.8% 53.3%
Mamba 130M (SSM) 100% 46.9% 50.9%

Furthermore, we uncover significant differences in the behavior of these metrics between Transformers36

and SSMs. For example, we observe a bimodal distribution in entropy within intermediate layers and37

investigate potential causes, such as the influence of training data examples.38

Our findings provide new insights into the internal mechanisms of LLMs and offer practical guidance39

for model selection and architectural design in future research.40

2 Related Work41

Understanding representations in neural networks has been a topic of extensive research. Alain (2016)42

analyzed hidden representations to interpret neural networks’ learning processes. Raghu et al. (2017)43

introduced Singular Vector Canonical Correlation Analysis to compare representations across layers44

and networks. In the context of Transformers, Liu et al. (2019) studied the linguistic knowledge45

captured at different layers, finding that lower layers encode more syntactic information while higher46

layers capture semantic features. A similar work (Jin et al., 2024) showed that semantic concepts47

are learned in intermediate layers. They proposed a layerwise probing technique to discover exactly48

in which layer concepts are formed. On the other hand, state-space models have been less explored49

in this regard. Gu & Dao (2023) introduced MAMBA, an SSM architecture capable of handling50

long sequences efficiently. However, comparative studies between SSMs and Transformers at the51

representation level remain scarce.52

Metrics like entropy and curvature have been used in other contexts to analyze representations.53

Shwartz-Ziv & Tishby (2017); Shwartz-Ziv (2022) discussed the Information Bottleneck principle,54

suggesting that networks learn to compress representations. Hosseini & Fedorenko (2024) introduced55

curvature as a measure of representational dynamics in recurrent networks. Several works in the56

vision domain proposed unsupervised representational quality metrics that are strongly correlated57

with accuracy on downstream tasks (Garrido et al., 2023; Agrawal et al., 2022; Thilak et al., 2023).58

The RankMe measure can be shown to be a measure of entropy known as matrix-based entropy,59

which we use in our subsequent analysis.60

Our work bridges these areas by applying and adapting such metrics to LLMs, providing a novel61

perspective on representation quality across architectures and training stages.62

3 Methodology63

3.1 Definitions64

Let Z ∈ RN×D represent a batch of N samples, each with dimensionality D. The vector zi denotes65

the i-th row of Z. We denote the i-th largest eigenvalue of a matrix M as λi(M), and the trace of M66

by tr(M). Input sequences are denoted by x ∈ RL×d and output sequences by y ∈ RL×d, where L67

is the sequence length and d is the feature dimension.68

3.2 Architectures69

In this study, we compare two prominent architectures: Transformer-based models (Vaswani, 2017)70

and State Space Models (SSMs) (Gu & Dao, 2023). Transformers utilize self-attention mechanisms71

to capture long-range dependencies within input sequences, enabling parallel processing and effective72

encoding of complex patterns. On the other hand, SSMs employ recurrent dynamics to handle73

sequential information with linear time and memory complexity, offering efficiency in processing74

longer sequences. Despite their differing approaches, both architectures aim to generate rich and75

meaningful representations across multiple layers. For detailed mathematical formulations and76

parameter configurations of each architecture, please refer to Appendix C.77

2

3.3 Representation Evaluation Metrics78

To quantify the quality of representations across layers, we employ two categories of metrics: token79

embedding diversity metrics and augmentation-invariance metrics. We rigorously introduce each of80

the following metrics in Appendix B.81

Token embedding diversity metrics evaluate the variability and richness of the representations82

at the token level within a single sequence. We employ prompt entropy (Wei et al., 2024) and83

curvature (Hosseini & Fedorenko, 2024). Of particular interest is the prompt entropy, which measures84

the amount of compression in a prompt’s token representations.85

Augmentation-invariance metrics assess the robustness of representations to augmentations on the86

input prompt. We employ DiME (Skean et al., 2023), infoNCE (Oord et al., 2018), and LiDAR (Thilak87

et al., 2023). We provide full details and examples of the augmentation process in Appendix F.88

4 Experiments89

4.1 Intermediate Layers Yield Better Representations for Downstream Embedding Tasks90

First, we evaluate the performance of the representations of each layer in downstream tasks in91

the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022). This benchmark is92

designed to test the performance of LLMs on various embedded tasks. We chose 32 tasks that range93

from classification, clustering, and re-ranking. We evaluated each layer of Pythia 410M, Mamba94

130M, and LLM2Vec-unsup-simcse (BehnamGhader et al., 2024).95

Interestingly, the intermediate layers consistently outperform the final layers in all architectures96

(Table 1). Using the best-performing layer to compute the average accuracy yields at least a 2%97

improvement. Similar findings were shown in (Fan et al., 2024) for generation tasks, while our results98

are for embedding tasks.99

4.2 Downstream Performance is Negatively Correlated with Entropy100

We evaluate the relationship between the prompt entropy of different layers with the performance on101

downstream tasks in the Massive Multitask Language Understanding (MMLU) (Hendrycks et al.,102

2021) dataset. The MMLU is designed to assess the comprehensive knowledge and multitask accuracy103

of language models. It comprises a wide range of subjects organized into 57 tasks, covering topics104

from elementary mathematics to professional law.105

We compared two models of the same parameter size, Llama3-8B and Mamba2-8B. Despite having106

the same parameter size, Llama3 63.85± 0.38% outperforms Mamba2 26.76± 0.37 significantly.107

We hypothesize that LLama3’s superior performance is due to compression in its intermediate layers,108

as shown in Figure 1, enabling it to filter irrelevant information, which is useful for tasks like MMLU.109

Additionally, we find a strong negative correlation (-0.43) between the second and later layers of110

LLama3’s representations and MMLU task performances 5. In contrast, Mamba2 shows neither such111

compression nor correlation with performance 6.112

4.3 Experimental Setup for Quantifying Representation Quality113

Next, we apply the metrics described in Section 3.3 to measure the quality of layerwise representations.114

We conduct experiments on Transformers, SSMs and Pythia (Biderman et al., 2023) using models of115

varying sizes to analyze the impact of architecture and capacity. We utilize the WikiText-103 dataset116

(Merity et al., 2016) and an instruction medical dataset (Vsevolodovna, 2024) to test different input117

complexities.118

4.3.1 Differences Between Architectures119

Our analysis reveals key differences in representation quality between Transformer-based architectures120

such as Pythia and SSMs such as Mamba across multiple metrics, including entropy, InfoNCE,121

LIDAR, and DiME. Figure 1 illustrates how these metrics vary as a function of model depth,122

represented as a percentage of the total number of layers, allowing for fair comparison between123

models of different depths.124

3

0 20 40 60 80 100
Depth Percentage

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
Pr

om
pt

 E
nt

ro
py

Normalized Prompt Entropy

Pythia
mamba

0 20 40 60 80 100
Depth Percentage

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Cu
rv

at
ur

e

Curvature

0 20 40 60 80 100
Depth Percentage

7.45

7.50

7.55

7.60

7.65

In
fo

NC
E

InfoNCE

0 20 40 60 80 100
Depth Percentage

2

4

6

8

10

12

14
LiD

AR

LiDAR

0 20 40 60 80 100
Depth Percentage

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Di
M

E

DiME

0 20 40 60 80 100
Depth Percentage

1

2

3

4

5

6

Di
M

E
di

vi
de

d
by

 P
ro

m
pt

 E
nt

ro
py

DiME divided by Prompt Entropy

Figure 1: Intermediate layers in Mamba show more stable representation values than Pythia,
which exhibits more pronounced changes. Representation evaluation metrics across layers in
Pythia 410M and Mamba 370M architectures. The x-axis is the depth percentage of the model to
allow fair comparison between models with different numbers of layers.

For entropy and LIDAR metrics, Pythia shows a significant reduction in values at intermediate layers,125

suggesting compression and information consolidation, while Mamba maintains more stable values,126

indicating less compression in intermediate representations. In contrast, Mamba exhibits lower127

values for the DiME and InfoNCE metrics than Pythia, implying less variability in intermediate128

representations.129

The effect and changes in these metrics across the intermediate layers are generally less pronounced in130

Mamba than in Pythia. This indicates that Mamba maintains more stable representations throughout131

its depth, whereas Pythia exhibits greater shifts and transformations in its intermediate representations,132

potentially leading to different strengths in how these models encode and utilize information for133

downstream tasks.134

4.3.2 Impact of Training Progression135

To understand how representation quality evolves during training, we use the training checkpoints136

provided by Pythia, examining how the metrics change across different layers as training progresses.137

Figure 2 shows the evaluation metrics for logarithmically spaced training checkpoints, from the initial138

step to the final step at 143k.139

The training dynamics reveal that the most significant changes occur in the intermediate layers.140

Specifically, the prompt entropy decreases in the middle layers during training, suggesting that the141

model learns to better compress and abstract the information within a prompt. This compression142

indicates that the model is becoming more efficient in representing complex information as training143

progresses. In contrast, the InfoNCE metric peaks in the middle layers, indicating increased distinc-144

tiveness of representations, while the LiDAR and DiME metrics both decrease, suggesting reduced145

variability in certain directions of the representation space.146

Interestingly, the metrics in the initial layers remain relatively stable throughout the training, which147

we believe supports the detokenization hypothesis discussed in (Lad et al., 2024). This indicates that148

the initial layers primarily focus on mapping input tokens to an initial embedding space, with little149

change in their representation dynamics during training.150

4.3.3 Prompt Entropy under Extreme Input Conditions151

To further understand how prompt entropy behaves under different input conditions, we examine the152

effect of increasingly extreme prompts on the model’s representations. Specifically, we analyze how153

the prompt entropy changes across layers of the Pythia 410M model when the input prompts exhibit154

high levels of token repetition, randomness, or increased length.155

4

0 10 20
Layer

0.4

0.5

0.6

0.7

0.8

Pr
om

pt
 E

nt
ro

py

Prompt Entropy

0 10 20
Layer

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Cu
rv

at
ur

e

Curvature

0 10 20
Layer

7.45

7.50

7.55

7.60

7.65

In
fo

NC
E

InfoNCE

0 10 20
Layer

5

10

15

20

LiD
AR

LiDAR

0 10 20
Layer

0

1

2

3

4

5

6

Di
M

E

DiME

0 10 20
Layer

0

1

2

3

4

5

6

7

Di
M

E
di

vi
de

d
by

 P
ro

m
pt

 E
nt

ro
py

DiME divided by Prompt Entropy

100

101

102

103

104

105

Tr
ai

ni
ng

 S
te

p

100

101

102

103

104

105

Tr
ai

ni
ng

 S
te

p

100

101

102

103

104

105

Tr
ai

ni
ng

 S
te

p

100

101

102

103

104

105

Tr
ai

ni
ng

 S
te

p

100

101

102

103

104

105

Tr
ai

ni
ng

 S
te

p

100

101

102

103

104

105

Tr
ai

ni
ng

 S
te

p

Figure 2: Training effects are most pronounced in the intermediate layers, with distinct dynamics
for different metrics. Representation evaluation metrics across layers at various training checkpoints,
ranging from step 1 to the final step at 143k. The x-axis represents the depth percentage of the model,
showing how training affects different layers, particularly in the intermediate stages.

We design three types of extreme prompts:156

1. Prompts with Increasing Token Repetition: We take 1000 regular prompts from the157

WikiText dataset and randomly replace tokens with a fixed token from the prompt at varying158

probabilities p. As p increases, the amount of repetition in the prompt increases.159

2. Prompts with Increasing Token Randomness: We randomly replace tokens in the prompts160

with random tokens from the vocabulary at varying probabilities p. This introduces increas-161

ing levels of randomness into the prompts.162

3. Random Prompts of Increasing Length: We generate random prompts by sampling tokens163

uniformly from the vocabulary, creating prompts of varying lengths T .164

Figure 3 illustrates how the normalized and unnormalized prompt entropy changes across layers for165

these extreme prompts. Our key findings are as follows:166

(1) Increasing token repetition leads to a decrease in entropy in the intermediate layers. As167

repetition increases, the model compresses redundant information, resulting in lower entropy values in168

the middle layers. This indicates that the model effectively identifies and encodes repetitive patterns.169

(2) Increasing token randomness results in higher entropy, especially in initial layers. Introducing170

random tokens increases the diversity of token representations, leading to higher entropy. The initial171

layers are more affected, suggesting sensitivity to input noise.172

(3) Prompt length affects entropy in both normalized and unnormalized forms. Unnormalized173

entropy naturally increases with prompt length due to more tokens. While not displayed, the174

normalized entropy shows sublinear growth, indicating that each additional token contributes less to175

the overall diversity as the prompt becomes longer.176

These observations highlight how extreme input conditions impact the model’s internal representa-177

tions, particularly in the intermediate layers. The model exhibits different compression and encoding178

behaviors depending on the nature of the input perturbations, which provides valuable insight into its179

processing mechanisms.180

4.4 Bimodal Behavior in Prompt Entropy181

While analyzing the average prompt entropy across different layers, we discovered an intriguing182

phenomenon: a clear bimodal distribution in the entropy values at certain layers in transformer183

models, but not SSMs. Figure 4 shows the entropy distributions for WikiText and the ai-medical-184

chatbot datasets(Vsevolodovna, 2024). Notably, a pronounced bimodal distribution is observed in the185

5

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

No
rm

al
ize

d
Pr

om
pt

 E
nt

ro
py

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t o

f T
ok

en
 R

ep
et

iti
on

(a) Repetition

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

No
rm

al
ize

d
Pr

om
pt

 E
nt

ro
py

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t o

f T
ok

en
 R

an
do

m
ne

ss

(b) Randomness

0 5 10 15 20
Layer

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Av
er

ag
e

Pr
om

pt
 E

nt
ro

py

64

128

256

512

1024

Pr
om

pt
 To

ke
n

Le
ng

th
 (l

og
 sc

al
e)

(c) Random Prompt Length

Figure 3: Prompt entropy across layers of Pythia 410M under different extreme input conditions.
(a) Increasing token repetition leads to decreased entropy in intermediate layers. (b) Increasing token
randomness results in higher entropy, especially in the initial layers. (c) Unnormalized prompt entropy
of random prompts increases with prompt length due to the larger number of tokens. These results
demonstrate how the model’s internal representations adapt to different types of input perturbations.

middle layers for the ai-medical-chatbot dataset. This behavior suggests that the model processes186

some prompts fundamentally differently than others at these intermediate stages. We investigated the187

causes of this behavior in Appendix A and ruled out prompt length, semantic complexity, or overlap188

with training data. The underlying cause is currently an open question.189

5 Discussion and Conclusion190

In this study, we thoroughly examined the quality of layerwise representations in LLMs, specifically191

comparing Transformer-based architectures and SSMs. Using a variety of evaluation metrics, includ-192

ing prompt entropy, curvature, InfoNCE, LIDAR, and DiME, we found several key insights into how193

these models process and encode information across different layers and under various conditions.194

Our findings indicate that intermediate layers consistently provide superior representations for195

downstream tasks compared to final layers. This highlights the importance of using intermediate196

representations for feature extraction and transfer learning applications. Additionally, significant197

architectural differences were observed: Transformers exhibited more dynamic changes in metrics198

such as entropy and InfoNCE in their intermediate layers, suggesting a higher degree of information199

compression and variability. In contrast, SSMs maintained more stable representations, reflecting a200

different approach to information encoding that emphasizes consistency.201

During training progression, the most substantial changes in representation quality occurred in the202

intermediate layers, with prompt entropy decreasing and InfoNCE peaking, indicating enhanced203

compression and distinctiveness of representations. This underscores the critical role of intermediate204

layers in the learning process and suggests potential avenues for optimizing training strategies to205

further improve representation quality.206

LLMs demonstrated distinct behaviors under extreme input conditions, such as increased token207

repetition, randomness, and prompt length. Transformers showed significant variations in entropy208

and other metrics in response to input perturbations, particularly in intermediate layers, whereas209

SSMs maintained more stable representations. This suggests that transformers are more adaptable210

and sensitive to diverse input scenarios, while SSMs offer greater robustness and consistency. A par-211

ticularly intriguing observation was the presence of bimodal entropy distributions in the intermediate212

layers, especially within the ai-medical-chatbot dataset. Despite extensive investigations, the cause of213

this bimodality remains unresolved.214

In conclusion, our research advances the understanding of internal representation dynamics in LLMs,215

highlighting the pivotal role of intermediate layers and the distinct behaviors of different architectures.216

These findings not only contribute to the theoretical knowledge of model representations, but also217

offer practical guidance for optimizing model design, training, and application. Future work should218

delve deeper into the causes of phenomena such as bimodal entropy distributions and explore219

the development of new metrics tailored specifically to LLMs to further enhance representation220

evaluation.221

6

References222

Kumar K Agrawal, Arnab Kumar Mondal, Arna Ghosh, and Blake Richards. α-ReQ: Assessing223

representation quality in self-supervised learning by measuring eigenspectrum decay. Advances in224

Neural Information Processing Systems, 35:17626–17638, 2022.225

Guillaume Alain. Understanding intermediate layers using linear classifier probes. arXiv preprint226

arXiv:1610.01644, 2016.227

Francis Bach. Information theory with kernel methods. IEEE Transactions on Information Theory,228

69(2):752–775, 2022.229

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,230

and Siva Reddy. LLM2Vec: Large language models are secretly powerful text encoders. arXiv231

preprint arXiv:2404.05961, 2024.232

Ido Ben-Shaul, Ravid Shwartz-Ziv, Tomer Galanti, Shai Dekel, and Yann LeCun. Reverse engineering233

self-supervised learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine234

(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 58324–58345. Cur-235

ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/236

2023/file/b63ad8c24354b0e5bcb7aea16490beab-Paper-Conference.pdf.237

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric238

Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.239

Pythia: A suite for analyzing large language models across training and scaling. In International240

Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.241

Paul Boes, Jens Eisert, Rodrigo Gallego, Markus P Müller, and Henrik Wilming. Von neumann242

entropy from unitarity. Physical review letters, 122(21):210402, 2019.243

Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent. Guillotine244

regularization: Why removing layers is needed to improve generalization in self-supervised245

learning. arXiv preprint arXiv:2206.13378, 2022.246

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra. Sudden247

drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in mlms. arXiv preprint248

arXiv:2309.07311, 2023.249

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for250

contrastive learning of visual representations. In International conference on machine learning, pp.251

1597–1607. PMLR, 2020a.252

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum253

contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.254

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,255

and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint256

arXiv:2403.02181, 2024.257

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,258

Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for259

language modeling. arXiv preprint arXiv:2101.00027, 2020.260

Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. Rankme: Assessing261

the downstream performance of pretrained self-supervised representations by their rank. In262

International conference on machine learning, pp. 10929–10974. PMLR, 2023.263

Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data264

using infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1):535–548, 2014.265

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv266

preprint arXiv:2312.00752, 2023.267

John A Hartigan and Pamela M Hartigan. The dip test of unimodality. The annals of Statistics, pp.268

70–84, 1985.269

7

https://proceedings.neurips.cc/paper_files/paper/2023/file/b63ad8c24354b0e5bcb7aea16490beab-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b63ad8c24354b0e5bcb7aea16490beab-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b63ad8c24354b0e5bcb7aea16490beab-Paper-Conference.pdf

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and270

Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint271

arXiv:2009.03300, 2020.272

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob273

Steinhardt. Measuring massive multitask language understanding. Proceedings of the International274

Conference on Learning Representations (ICLR), 2021.275

Eghbal Hosseini and Evelina Fedorenko. Large language models implicitly learn to straighten neural276

sentence trajectories to construct a predictive representation of natural language. Advances in277

Neural Information Processing Systems, 36, 2024.278

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan279

Zhao, Kai Mei, Yanda Meng, Kaize Ding, et al. Exploring concept depth: How large language280

models acquire knowledge at different layers? arXiv preprint arXiv:2404.07066, 2024.281

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of inference?282

arXiv preprint arXiv:2406.19384, 2024.283

Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. Linguistic284

knowledge and transferability of contextual representations. arXiv preprint arXiv:1903.08855,285

2019.286

Xing Han Lù. Bm25s: Orders of magnitude faster lexical search via eager sparse scoring, 2024. URL287

https://arxiv.org/abs/2407.03618.288

Edward Ma. Nlp augmentation. https://github.com/makcedward/nlpaug, 2019.289

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture290

models, 2016.291

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. MTEB: Massive text embed-292

ding benchmark. arXiv preprint arXiv:2210.07316, 2022. doi: 10.48550/ARXIV.2210.07316.293

URL https://arxiv.org/abs/2210.07316.294

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive295

coding. In International Conference on Learning Representations (ICLR), 2018.296

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector297

canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural298

information processing systems, 30, 2017.299

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,300

regularization, optimization, and beyond. MIT press, 2018.301

Ravid Shwartz-Ziv. Information flow in deep neural networks. arXiv preprint arXiv:2202.06749,302

2022.303

Ravid Shwartz Ziv and Yann LeCun. To compress or not to compress—self-supervised learning and304

information theory: A review. Entropy, 26(3):252, 2024.305

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.306

arXiv preprint arXiv:1703.00810, 2017.307

Ravid Shwartz-Ziv, Randall Balestriero, Kenji Kawaguchi, Tim GJ Rudner, and Yann LeCun. An308

information theory perspective on variance-invariance-covariance regularization. Advances in309

Neural Information Processing Systems, 36:33965–33998, 2023.310

Oscar Skean, Jhoan Keider Hoyos Osorio, Austin J Brockmeier, and Luis Gonzalo Sanchez Giraldo.311

DiME: Maximizing mutual information by a difference of matrix-based entropies. arXiv preprint312

arXiv:2301.08164, 2023.313

Oscar Skean, Aayush Dhakal, Nathan Jacobs, and Luis Gonzalo Sanchez Giraldo. FroSSL: Frobenius314

norm minimization for self-supervised learning. In European Conference on Computer Vision,315

2024.316

8

https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2210.07316

Vimal Thilak, Chen Huang, Omid Saremi, Laurent Dinh, Hanlin Goh, Preetum Nakkiran, Joshua M317

Susskind, and Etai Littwin. LiDAR: Sensing linear probing performance in joint embedding ssl318

architectures. arXiv preprint arXiv:2312.04000, 2023.319

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.320

Ruslan Magana Vsevolodovna. Ai medical chatbot dataset, 2024. URL https://huggingface.321

co/datasets/ruslanmv/ai-medical-chatbot.322

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang, and Weiran Huang. Large language model323

evaluation via matrix entropy. arXiv preprint arXiv:2401.17139, 2024.324

Zhanghao Zhouyin and Ding Liu. Understanding neural networks with logarithm determinant entropy325

estimator. arXiv preprint arXiv:2105.03705, 2021.326

9

https://huggingface.co/datasets/ruslanmv/ai-medical-chatbot
https://huggingface.co/datasets/ruslanmv/ai-medical-chatbot
https://huggingface.co/datasets/ruslanmv/ai-medical-chatbot

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Prompt Entropy

0

5

10

15

20

25

De
ns

ity

Layer 0
Wikitext Dataset
Medical Dataset
Wikitext Mean
Medical Mean

0.0 0.2 0.4 0.6 0.8 1.0

Layer 9

0.0 0.2 0.4 0.6 0.8 1.0

Layer 24

(a) Pythia 410M

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Prompt Entropy

0

5

10

15

20

25

De
ns

ity

Layer 0
Wikitext Dataset
Medical Dataset
Wikitext Mean
Medical Mean

0.0 0.2 0.4 0.6 0.8 1.0

Layer 34

0.0 0.2 0.4 0.6 0.8 1.0

Layer 48

(b) Mamba 370M

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Prompt Entropy

0

5

10

15

20

25

De
ns

ity

Layer 0
Wikitext Dataset
Medical Dataset
Wikitext Mean
Medical Mean

0.0 0.2 0.4 0.6 0.8 1.0

Layer 4

0.0 0.2 0.4 0.6 0.8 1.0

Layer 32

(c) Llama3 8B

Figure 4: Bimodal distribution of prompt entropies observed in intermediate layers. The
distributions of prompt entropies for WikiText and ai-medical-chatbot datasets are shown for Pythia,
Mamba, and Llama3 models. The middle column highlights the layer with the highest Dip Test score
(Hartigan & Hartigan, 1985), which measures the degree of multimodality in the entropy distribution.

A Investigation into Bimodal Distribution of Entropies327

To determine the underlying cause of this bimodal distribution of prompt entropies, we conducted328

several experiments to see if specific properties of the dataset could explain this phenomenon. Our329

goal was to understand whether the bimodality was related to characteristics such as prompt length,330

semantic complexity, or overlap with training data.331

Effect of Prompt Length Initially, we hypothesized that the bimodality might be caused by332

variations in prompt length. If one mode corresponded to shorter prompts and the other to longer333

prompts, it could indicate different processing strategies. However, since the entropy values were334

normalized and theoretically invariant to length, this was unlikely. Upon further analysis, we335

confirmed that prompt length did not significantly correlate with the observed bimodality.336

Manual Examination of Prompts We then manually examined prompts from each mode of the337

distribution to identify any distinguishing features, such as difficulty or specific types of medical338

terminology. Despite this effort, we found no significant differences between the prompts in either339

mode. Both modes contained a similar range of medical complexity and varied use of terminology,340

10

suggesting that the model’s entropy was not merely a reflection of the difficulty or specificity of the341

input.342

Training Set Overlap Next, we investigated whether the low entropy mode might be associated343

with prompts that were very similar to samples seen during training. Given that both the ai-medical-344

chatbot dataset and PILE (Gao et al., 2020) (which Mamba, Pythia, and possibly Llama3 were trained345

on) contained medical articles from PubMed, we hypothesized that overlap with training data could346

lead to more confident, lower-entropy representations. To test this, we implemented a BM25 index347

(Lù, 2024) to quickly search for identical or highly similar articles between the two datasets.348

While we did find identical articles between the ai-medical-chatbot dataset and PILE, these articles349

were evenly distributed across both modes of the bimodal entropy distribution. This suggests that350

the presence of training set overlap does not explain the bimodal behavior, and the underlying cause351

remains an open question.352

B Representation Evaluation Metrics353

B.1 Token Embedding Diversity Metrics354

Token embedding diversity metrics evaluate the variability and richness of the representations at the355

token level within a single sequence. These metrics are designed to capture how distinctively each356

token is represented within the context of the entire prompt, providing insight into how effectively357

the model encodes information and differentiates between different parts of the input.358

Prompt Entropy Following Wei et al. (2024), we use the α-order matrix-based entropy (Giraldo359

et al., 2014) as a surrogate for Rényi entropy. For a sequence of token representations Z ∈ RL×d, the360

Gram matrix is KZ = ZZ⊤. The entropy is computed as:361

Sα(Z) =
1

1− α
log

(
L∑

i=1

(
λi(KZ)

tr(KZ)

)α
)
. (1)

In this context, prompt entropy measures the diversity and dispersion of token embeddings within a362

given sequence. Higher entropy values imply a richer and more varied representation of the tokens,363

suggesting that the model captures more nuanced information across the sequence. This helps in364

understanding how effectively the model encodes diverse features and maintains the complexity of365

the input, making it a useful metric for evaluating the quality of intermediate layer representations.366

Unless otherwise specified, we use the limit case of α = 1 in our calculations. Details and behavior367

for different α are shown in Appendix D.368

Curvature As introduced by Hosseini & Fedorenko (2024), curvature measures the change in369

direction between adjacent token embeddings. To calculate curvature, we first we calculate the370

difference between two adjacent vectors as vk = zk+1 − zk. The average curvature of a prompt is:371

C̄ =
1

L− 2

L−2∑
k=1

arccos

(
v⊤
k+1vk

∥vk+1∥∥vk∥

)
. (2)

B.2 Augmentation Invariance Metrics372

These metrics assess the robustness of representations to input augmentations. Because augmentation373

may change the length of the tokenized prompt, the token embedding diversity metrics described374

in B.1 are no longer suitable. Instead, we average the tokens to get a single vector representing each375

prompt and use the metrics described below to measure the similarity between two augmentations376

of the same prompt. We refer to the two batches of augmented prompts as Z1 ∈ RN×D and377

Z2 ∈ RN×D, where N is the batch size and row i in both matrices correspond to the same original378

prompt. We provide full details and examples of the augmentation process in Appendix F.379

11

InfoNCE We compute a mutual information lower bound using the InfoNCE loss (Oord et al.,380

2018) between two views. This loss is widely used to train augmentation-invariant networks in381

self-supervised learning for vision and is well-suited to capturing the semantic similarity underlying382

the augmented prompts (Chen et al., 2020a,b; Shwartz Ziv & LeCun, 2024; Ben-Shaul et al., 2023).383

DiME Similarly to infoNCE, the quantity DiME (Skean et al., 2023; Chen et al., 2023) can be used384

to measure a mutual information-like between the two augmented batches of prompts. DiME is based385

on the matrix-based entropy described in Eq. 1. Roughly put, DiME measures the quality of the386

pairings between Z1 and Z2 as compared to between Z1 and ΠZ2 for some permutation matrix Π. A387

low value of DiME means the row pairings between Z1 and Z2 are no better than random pairings.388

LiDAR The LiDAR quantity (Thilak et al., 2023) was proposed to act as a representation quality389

metric. Unlike matrix-based entropy which looks at the principal component variances, LiDAR uses390

the linear discriminant component variances. To compute the linear discriminant analysis (LDA)391

matrix, LiDAR uses augmentations to construct the class scatter matrix. In our setting, we use N392

classes (each corresponding to different prompt) with J samples per class (each sample within a393

class being a different augmentation of the same prompt). Due to the more complex requirements of394

computing the LDA matrix, we use J = 16 rather than J = 2 like in DiME or infoNCE.395

C Architectural Details396

In this section, we elaborate on the specific architectures of Transformers and State Space Models397

(SSMs). We outline the mathematical foundations, including the weight matrices, attention mecha-398

nisms for Transformers, and the state transition matrices for SSMs. Detailed equations and parameter399

configurations are provided to facilitate replication and deeper understanding.400

C.1 Transformer401

The Transformer architecture (Vaswani, 2017) utilizes self-attention mechanisms. Given an input x,402

the key (K), query (Q), and value (V) matrices are computed as:403

Q = xWQ, K = xWK , V = xWV , (3)

where WQ,WK ∈ Rd×dk and WV ∈ Rd×dv are learned weights.404

The attention weights are calculated using:405

A = softmax

(
QK⊤
√
dk

+M

)
, (4)

where M is a mask to enforce causality in autoregressive tasks.406

The output is then:407

y = AV. (5)

C.2 State Space Models408

SSMs (Gu & Dao, 2023) model sequences using recurrent dynamics. The hidden state ht and output409

yt at time t are updated as:410

ht = Aht−1 +Bxt, (6)
yt = Cht +Dxt, (7)

where A ∈ Rn×n, B ∈ Rn×d, C ∈ Rd×n, and D ∈ Rd×d are learned parameters.411

12

D Behavior of Matrix-based Entropy for different choices of α412

One way to interpret Eq. 1 is as the α-order Rényi entropy of the Gram matrix eigenvalues1. Notice413

how each eigenvalue is divided by tr(KZ) before being raised to the α power. This is so that the414

eigenvalues of KZ sum to one (because tr(·) =
∑n

i=1 λi(·)), which is a necessary condition to415

treat the eigenvalues as a probability distribution. Furthermore, each eigenvalue of KZ signifies416

the variance of samples in a particular principal component direction Scholkopf & Smola (2018).417

If entropy is low, then the eigenvalues form a heavy-tail distribution which implies that a few418

components dominate the variance of samples in Z. On the other hand, at maximum entropy, the419

eigenvalues form a uniform distribution and samples are spread equally in all directions. Matrix-based420

entropy is reminiscent of the LogDet entropy which uses the determinant of KZ to capture how much421

"volume" a dataset occupies Shwartz-Ziv et al. (2023); Zhouyin & Liu (2021). The LogDet entropy422

is given by SLogDet(Z) = log det(KZ) − log 2. One can use Jensen’s inequality to show that the423

LogDet entropy is a lower bound of Eq 1 when limα→1 (Appendix J.4 of Shwartz-Ziv et al. (2023)).424

Depending on the choice of α, several special cases of matrix-based entropy can be recovered. In425

particular, when limα→1 it equals Shannon entropy (also referred to as von Neumann entropy in426

quantum information theory Bach (2022); Boes et al. (2019)), and when α = 2 it equals collision427

entropy. Interestingly, the case of α = 2 can be calculated without explicit eigendecomposition Skean428

et al. (2024). We show in the Appendix Figure 7 how varying values of α affects the matrix-based429

entropy of Gram matrices with eigenvalues distributed with a β-power law such that λi = i−β . It is430

shown that for larger values of α, smaller eigenvalues contribute more to the entropy.431

E Dataset Details432

E.1 Wikitext Dataset433

We used the wikitext dataset Merity et al. (2016) for the majority of our experiments in Section 4.3.434

This was downloaded from Salesforce/wikitext on huggingface. The dataset consists of 100 million435

tokens scraped from the Featured articles on wikipedia. We filtered out prompts which were less than436

30 tokens or were wikipedia section headings.437

E.2 AI-Medical-Chatbot Dataset438

We also used the medical instruction dataset called ai-medical-chatbot Vsevolodovna (2024) which439

downloaded from ruslanmv/ai-medical-dataset on HuggingFace. An example from this dataset is:440

You are an AI Medical Assistant Chatbot, trained to answer medical questions.441

Below is an instruction that describes a task, paired with an response442

context. Write a response that appropriately completes the request.443

444

Instruction:445

What is the resurgent sodium current in mouse cerebellar Purkinje neurons?446

447

Context:448

FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons.449

F Prompt Augmentations450

For the augmentation-invariance metrics such as infoNCE, LiDAR, and DiME, we use the NLPAug451

library Ma (2019) to augment our prompts. We use three types of augmentations.452

• The SplitAug augmentation randomly splits words into two parts by adding a space.453

• The RandomCharAug augmentation randomly inserts, substitutes, swaps, or deletes charac-454

ters.455

1The non-zero eigenvalues of the Gram matrix ZZT are equivalent to those of the covariance matrix ZTZ.
Using the covariance matrix instead of the Gram matrix in Eq. 1 makes no difference and is more computationally
efficient if D < N .

13

• The Keyboard augmentation randomly substitutes characters with other characters that are456

at a distance of one as measured on a QWERTY keyboard. For instance, the character "k"457

may be replaced with "i", "l", "m", or "j".458

We use the pseudocode below to do our augmentations using three types of augmentations, using459

the default library settings for each type. When computing augmentation-invariance metrics like460

infoNCE or DiME, we use the two augmented prompts rather than using one augmented prompt461

alongside the original prompt. Note that these augmentations may change the token length T of a462

prompt.463

464

aug = naf.Sequential([465

naw.SplitAug(p=0.3),466

nac.RandomCharAug(p=0.3),467

nac.KeyboardAug(p=0.3),468

])469

(aug_A, aug_B) = aug.augment(prompt, num_augmentations=2)470

471

prompt -> "The quick brown fox jumps over the lazy dog."472

473

aug_A -> "The quDUk b rown fox wEmps o ver the l azy dog."474

aug_B -> "The qTuXi bro wn fox uVm)s ob3r the la_k dog."475

G Extreme Prompts476

G.1 Increasing Repetition477

We take regular prompts from the wikitext dataset, tokenize them, and then for each token we478

randomly replace it with probability p. We draw replacements tokens by sampling a random token479

from within the prompt. We show examples below for varying levels of p.480

• (p = 0) Mint records indicate the first gold dollars were produced on May 7...481

• (p = 0.1) Mint records indicate the first gold dollars were Mint Mint May 7...482

• (p = 0.5) Mint records Mint Mint Mint gold dollars were Mint Mint Mint 7...483

• (p = 1.0) Mint Mint Mint Mint Mint Mint Mint Mint Mint Mint Mint Mint Mint...484

G.2 Increasing Randomness485

We take regular prompts from the wikitext dataset, tokenize them, and then for each token we ran-486

domly replace it with probability p. We draw replacements uniformly from the tokenizer distribution.487

We show examples below for varying levels of p. Unlike the character-level random noise added to488

prompts in Section with random noise discussed in Appendix F which might change the number of489

tokens T of the prompt, the token-level random noise used here does not do so.490

• (p = 0) Mint records indicate the first gold dollars were produced on May 7...491

• (p = 0.1) Mint records indicate salivary first gold dollars were produced on May NaCl...492

• (p = 0.5) Mint records Dallas actively first dollars persufors on Mayder129 18...493

• (p = 1.0) arf emulsion minorensteinorianmega_TOStack potsRecip Installifykeeping...494

G.3 Random Prompts with Certain Length495

To make a random prompt of a specific length T , we sample T tokens uniformly from the Pythia496

tokenizer distribution. Such a prompt may look like the following for T = 16: "Proposition497

Sequencespecific Exp fibers brows Club overviewNos toss Thinking traderMulti indoorlis".498

We show how random prompt representations evolve over Pythia training checkpoints in Figure 8.499

The random prompts we use are of length 512 tokens. It is readily observed that the prompt entropy500

is flat across layers in the beginning of training. As training progresses, the model compresses more501

and more near the final layers.502

14

0.85 0.90

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: 0.25

Layer 0

0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.43

Layer 1

0.0 0.2 0.4

0.4

0.5

0.6

0.7

0.8

0.9

Corr: 0.11

Layer 2

0.0 0.2 0.4

0.4

0.5

0.6

0.7

0.8

0.9

Corr: 0.07

Layer 3

0.0 0.2 0.4 0.6

0.4

0.5

0.6

0.7

0.8

0.9

Corr: 0.03

Layer 4

0.0 0.2 0.4 0.6

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: 0.00

Layer 5

0.0 0.2 0.4 0.6

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.03

Layer 6

0.00 0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.06

Layer 7

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.09

Layer 8

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.10

Layer 9

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: -0.13

Layer 10

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.14

Layer 11

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.15

Layer 12

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.17

Layer 13

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.19

Layer 14

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: -0.21

Layer 15

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.23

Layer 16

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.26

Layer 17

0.25 0.50 0.75

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.29

Layer 18

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.31

Layer 19

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: -0.32

Layer 20

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.34

Layer 21

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.36

Layer 22

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.38

Layer 23

0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.39

Layer 24

0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: -0.41

Layer 25

0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.42

Layer 26

0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.44

Layer 27

0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.45

Layer 28

0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.46

Layer 29

0.4 0.6 0.8
Entropy

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Corr: -0.47

Layer 30

0.6 0.8
Entropy

0.4

0.5

0.6

0.7

0.8

0.9

Corr: -0.48

Layer 31

0.84 0.86 0.88
Entropy

0.4

0.5

0.6

0.7

0.8

0.9

Corr: 0.09

Layer 32

0.75 0.80
Entropy

0.4

0.5

0.6

0.7

0.8

0.9

Corr: 0.09

Layer 33

Figure 5: Entropy vs Accuracy of LLama3-8B on MMLU tasks. Each point represents a task in
MMLU

15

0.80 0.85 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.05

Layer 0

0.80 0.85 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.05

Layer 1

0.85 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.05

Layer 2

0.85 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.04

Layer 3

0.85 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.04

Layer 4

0.850 0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.05

Layer 5

0.850 0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.06

Layer 6

0.850 0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.07

Layer 7

0.850 0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.05

Layer 8

0.850 0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.07

Layer 9

0.850 0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.07

Layer 10

0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.10

Layer 11

0.875 0.900 0.925
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.11

Layer 12

0.875 0.900 0.925 0.950
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.13

Layer 13

0.88 0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.14

Layer 14

0.875 0.900 0.925 0.950
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.15

Layer 15

0.88 0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 16

0.88 0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.18

Layer 17

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.18

Layer 18

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 19

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.18

Layer 20

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 21

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.16

Layer 22

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.14

Layer 23

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.13

Layer 24

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.10

Layer 25

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.09

Layer 26

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.06

Layer 27

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.06

Layer 28

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.06

Layer 29

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.06

Layer 30

0.90 0.92 0.94
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.07

Layer 31

0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.10

Layer 32

0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.11

Layer 33

0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.13

Layer 34

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.14

Layer 35

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.16

Layer 36

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.16

Layer 37

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.16

Layer 38

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.14

Layer 39

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.13

Layer 40

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.14

Layer 41

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.11

Layer 42

0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.15

Layer 43

0.86 0.88 0.90 0.92
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 44

0.84 0.86 0.88 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.22

Layer 45

0.84 0.86 0.88 0.90
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.21

Layer 46

0.825 0.850 0.875 0.900
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.18

Layer 47

0.825 0.850 0.875 0.900
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.19

Layer 48

0.825 0.850 0.875 0.900
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.20

Layer 49

0.825 0.850 0.875
Entropy

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.22

Layer 50

0.825 0.850 0.875
Entropy

0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.20

Layer 51

0.825 0.850 0.875
Entropy

0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.20

Layer 52

0.800 0.825 0.850 0.875
Entropy

0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.21

Layer 53

0.80 0.85
Entropy

0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.20

Layer 54

0.80 0.85
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.19

Layer 55

0.80 0.85
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 56

0.80 0.85
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 57

0.80 0.85
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.18

Layer 58

0.80 0.85
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.17

Layer 59

0.80 0.85
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.16

Layer 60

0.75 0.80
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.12

Layer 61

0.75 0.80
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.08

Layer 62

0.70 0.75
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.10

Layer 63

0.6 0.7
0.15

0.20

0.25

0.30

0.35

0.40

Corr: -0.10

Layer 64

0.35 0.40 0.45
0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Corr: -0.15

Layer 65

Figure 6: Entropy vs Accuracy of Mamba2-8B on MMLU tasks

16

0 2 4 6 8 10
Beta for eigenvalue power law

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
En

tro
py

Entropy of Power Law Eigenvalues
=0.125
=0.5
=1
=2
=3
=10

LogDet

Figure 7: The behavior of Eq. 1 for varying values of α on Gram matrices with eigenvalues distributed
with a β-power law such that λi = i−β .

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

No
rm

al
ize

d
Pr

om
pt

 E
nt

ro
py

103

104

105

Tr
ai

ni
ng

 S
te

ps

Figure 8: Behavior of random prompt representations as model is training

17

	Introduction
	Related Work
	Methodology
	Definitions
	Architectures
	Representation Evaluation Metrics

	Experiments
	Intermediate Layers Yield Better Representations for Downstream Embedding Tasks
	Downstream Performance is Negatively Correlated with Entropy
	Experimental Setup for Quantifying Representation Quality
	Differences Between Architectures
	Impact of Training Progression
	Prompt Entropy under Extreme Input Conditions

	Bimodal Behavior in Prompt Entropy

	Discussion and Conclusion
	Investigation into Bimodal Distribution of Entropies
	Representation Evaluation Metrics
	Token Embedding Diversity Metrics
	Augmentation Invariance Metrics

	Architectural Details
	Transformer
	State Space Models

	Behavior of Matrix-based Entropy for different choices of
	Dataset Details
	Wikitext Dataset
	AI-Medical-Chatbot Dataset

	Prompt Augmentations
	Extreme Prompts
	Increasing Repetition
	Increasing Randomness
	Random Prompts with Certain Length

