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Abstract

In this study based on an English fairytale cor-
pus, we interpret Semantic information (Seml)
in natural language as the difference of in-
formation between an informed and an unin-
formed system. Only an informed system con-
tains Seml and its amount is the information
difference between an informed and an unin-
formed system. This difference we were able
to show.

1 Introduction

In this empirical study, based on an English fairy-
tale corpus, we present an approach for measuring
semantic information (Seml) in natural language,
based on Shannon Information (Shannon, 1948)
(SD and inspired by the work of (Kolchinsky and
Wolpert, 2018) who determine the following: SIis
syntactic information (Synl) that quantifies statis-
tical states in a system, or, additionally, between
systems. In a linguistic context, we interpret the
concept of a system as consisting of a linguistic
production, a text or a corpus, and a language pro-
cessor (LP).

An important difference betwen Synl and
Seml is that the latter is meaningful information
(Kolchinsky and Wolpert, 2018) which goes be-
yond a linguistic system: Seml draws on extra-
linguistic contexts and may include, for example,
world knowledge, and only an informed system
contains Seml. It is vital for the semantic inter-
pretation, while an uninformed system lacks any
meaningful information.

Building upon Kolchinsky and Wolpert (2018)
framework, our approach hinges on the compari-
son between an informed LP and an uninformed
one. We predict that Seml will reduce the amount
of surprisal a LP has to cope with. Surprisal
is a type of information and consequently an in-
formed system, which is predicted to carry less
information than an uninformed one. This may

sound baffling, but our prediction means basically
that facilitates text processing. We assume that
Seml can be measured as the difference in sur-
prisal between an informed and an uninformed
system. The surprisal-difference between an un-
informed and an informed system indicates the de-
gree of Seml in the latter.

The proportionality relationship between pro-
cessing effort and surprisal was established by
(Hale, 2001). His Surprisal theory quantifies the
predictability of a word as its surprisal, i.e., its neg-
ative logarithm of probability given the context.

In other words, we attribute semantic surprisal
to an informed system, i.e., contextualised infor-
mation (Tribus, 1961; Hale, 2001; Levy, 2008;
Bentum, 2021) which we derive from semantic
contexts.!. For the calculation of semantic sur-
prisal, we employ a variant of the Topic Context
Model (TCM) Kolbl et al. (2020, 2021); Philipp
et al. (2022) (see Section 5). TCM outputs sur-
prisal from a distribution of topics within a corpus,
text or paragraph, and topics represent semantic
concepts in the ‘real” world. As surprisal in an un-
informed system, we use lexical surprisal, derived
from unigram probabilities of words. Lexical sur-
prisal is Synl and thus equivalent with SI.

2 Points of departure and relevant work

In addition to the above-mentioned work by
Kolchinsky and Wolpert (2018) and Hale (2001),
further inspirations for our study are the works
of Dretske (1981), and Floridi (2004, 2009).
These approaches handle information-differences
between two distinct systems and distinguish
meaningful and meaningless information. Floridi
(2004, 2009) terms this difference strongly se-
mantic information. Inspired by these works are,

!Surprisal has been shown to be an empirically confirmed
entity (e.g. DeLong et al. (2005); Bentum (2021)): it corre-
lates with processes and states in the brain which makes it a
concept of the Philosophy of Mind



among others, the studies of (Feldman and Peng,
2013; Peng et al., 2018; Rubino et al., 2016; Ven-
huizen et al., 2019) on idiom detection, translation-
classification and predictive language comprehen-
sion, respectively. These studies have in common
that information differences represent qualitative
differences between a baseline condition and a spe-
cial, surprising condition. For example, in (Feld-
man and Peng, 2013; Peng et al., 2018; Philipp
et al., 2023a) the baseline condition includes sen-
tences that can be understood literally, while the
surprising, deviant condition comprises idiomatic
sentences.

Different models for the calculation of sur-
prisal have been employed, i.e., vector space rep-
resentations of words (Feldman and Peng, 2013;
Peng et al., 2018), n-gram models (Rubino et al.,
2016), distributed situation-state space models
(Venhuizen et al., 2019) and TCM (Kolbl et al.,
2020, 2021; Philipp et al., 2022, 2023a,b) that, as
mentioned above, is used in the present study.

3 Measuring semantic information

We start by defining a sysfem as a language pro-
cessor (LP) in an environment (a text/corpus/etc.).
Following ideas by Hale (2001), we base our def-
inition of Seml around the difficulty of the LP to
process a text. The idea is thus: the more infor-
mation (Seml) an LP has about a text, the less
difficulty, i.e., Synl will be involved in parsing
it. Another term for Synl in this context is sur-
prisal; a term that suggests that the quantity at
hand measures how surprising it is for the LP to
encounter a word. In this view, Synl exists within
an environment, while Seml is information about
it. In particular, Seml is information about a text
which helps reduce the surprisal that is measured
while an LP parses the text. To be able to measure
Seml thus requires us to compare two LPs: an in-
formed and an uninformed one. We assess their
respective processing difficulties by first consid-
ering the probability space of context-prediction
pairs they can process. This could be, for example,
bigrams where one word is known to the LP and
the other one is its prediction based on that. On
this space, we get three different distributions: the
(un-)informed distributions by the two LPs, and
the actual distribution directly taken from the text.

The processing difficulty can then be measured
by comparing the LPs’ distributions with the third
one. In the practical part of this paper, we used the

Kullback Leibler Divergence (KL) (Kullback and
Leibler, 1951), but other types of metrics, such
as perplexity, may also work. The interpretation
of KL is that it measures how well a distribution
P is approximated by another distribution (). In
terms of surprisal, it can be interpreted as the av-
erage surprisal an LP will experience working in
a P-distributed environment while expecting a Q-
distributed one. We denote it K L(P, ). Values
yielded by that operation are always non-negative
and reach 0 when they are identical. It is in gen-
eral not symmetric. We thus get the two values
KL(T,U) and KL(T,I) where U and I denote
the uninformed and informed distributions respec-
tively, and 7" denotes the ‘text’ or ‘true’ distribu-
tion. We can compare them using either Formula 1
or Formula 2.

KL(T,I)
KL(T,U) )
=logy KL(T,U) — logy KL(T', I)

SemlI = —logs

SemI = KL(T,U) — KL(T,I)  (2)

We deliberately give two formulae as possible
alternatives because they measure slightly differ-
ent things, each with the potential of having a
unique merit. Both formulae measure how effec-
tively semantic information has influenced the sys-
tem. However, Formula 1 can be regarded as the
relative version of Formula 2. Both can be inter-
preted giving the average reduction in the cost of
text processing per word. However, in Formula 2
we measure the exact number of reduced bits from
the average encoding length of a word, whereas
in Formula 1, we consider the reduced amount of
information relative to the average code lengths
given the uninformed distribution.

In stark contrast to Shannon information, in
the present setting there may be instances where
the information content is negative. This happens
when the informed LP experiences more process-
ing difficulties than the uninformed one. In such
cases, we may speak of ‘disinformation’ or ‘de-
ception’, wherein a misleading expectation com-
plicates the processing.

We emphasise that the specifics of how an LP
operates are not rigidly defined. This is on purpose
since different applications may call for different
notions of uninformedness or different modes of
operation of the LP.



4 Data

To test our prediction, we used an English fairytale
corpus from INESC-ID Human Language Tech-
nology Lab?(Lobo and De Matos, 2010). The
corpus comprises 410 stories with in total 83,845
words. The average number of words per fairy-
tale is 270. Preprocessing includes removing of
all punctuation and converting them to lowercase,
the words were already lemmatised. We split the
texts into 300 training texts and 110 test texts.

5 Probability distributions and Workflow
5.1 The distributions

For every text, we need a total of three distribu-
tions: an uninformed one, an informed one, and
the actual one. The uninformed distribution U has
to be independent of the text, the informed one [
has to depend on an informative token extracted
from the text, and the actual one 7' is the real dis-
tribution of words in the text.

For the uninformed distribution, we choose for
the probability function the relative frequency of
every word in the training corpus. Before normal-
ising however, we add 10717 to all words, includ-
ing those that do not make an appearance in the
training corpus, so as to prevent a division by 0
when the KL-divergence is computed. Hence, the
distribution is given by Formula 3.

N +10°17
Py(w) =

3)

Zwetraining and test corpus(N+10—17)

Where N is the number of occurrences of w
in the training corpus. For the informed distri-
bution, we make use to the Topic Context Model
(TCM) (Kolbl et al., 2020, 2021; Philipp et al.,
2022, 2023a,b)3. The TCM is an extended topic
model, calculating the probability of a word w
given a distribution of ropics for the text or corpus
the word appears in.

In this study, we employ the TCM based on La-
tent Dirichlet Allocation (Blei et al., 2003) (LDA).
We initialise LDA with n = 10 topics and train
it on the training corpus. This gives us for each
topic a probability distribution P(w;|t;) that indi-
cates the probability a word is associated to a spe-
cific topic. We can define the fopic space as the

https://www.hlt.inesc—id.pt/w/Fairy_
tale_corpus
*https://github.com/jnphilipp/tcm

simplex {(x1,22,...,25) € [0,1]"|> 2z, = 1}.
Then for each document d, its fopic vector vg is an
element of the topic space whose coordinates are
given by the probabilities P(t;|d) that any given
word in d is associated to topic t;. Now the in-
formed distribution for a word w given the topic
vector vg of a document is given by Formula 4.

Pr(wlvg) = > Plwlt)P(tild) 4
=1

5.2 Workflow

We compute Py once at the beginning and then
we compute for every document d in the test set
four probability functions: Pr, PI(Z), PI(”), and
P](m). Here, Pr is the probability function of T'.
The other three are three different informed dis-
tributions, each computed with a different topic

)

vector: PI(Z uses vy, 1.e., the correct topic vector;

P](“) uses v, i.e., the topic vector of the first doc-

ument in the test set; Pf(m) uses a randomly gen-
erated element of the topic space. Then we cal-
culate K L(T,U) and the three different versions
of KL(T,I). From these we calculate for each
K L(T, I) the pair of SemI measures given in For-
mulas 1 and 2.

6 Results

Figure 1 displays the values of the test set as cal-
culated via Formula 1. The left-most plot indi-
cates the distribution of the Seml values where the
correct topic vector was used for every document.
The middle plot indicates the values where one of
the topic vectors was fixed for every document.
Lastly, the right-most plot indicates the distribu-
tion in the case of randomly generated topic vec-
tors. We call these three cases (i), (ii), and (iii), cor-
responding to the probability functions P(i), Pl(ii),
and Pl(m) defined in Section 5.1 It can be seen that
correct topic vectors carry the highest amount of
semantic information and the randomly generated
topic vectors yield negative values; this indicates
that the LP is actively confused by the hint; the
average surprisal of every word grows. Interest-
ingly the mismatched topics still yield relatively
high values, albeit to a lesser extent.

The situation in Figure 2 is analogous but the
values were generated with Formula 2.

In all three cases, the difference in surprisal
values between the informed and systems is sig-
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Figure 1: Seml calculated with Formula 1. The amount
of Seml can be read off the y-axis.
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Figure 2: Seml calculated with Formula 2. The amount
of Seml can be read off the y-axis.

nificant (case (i): t = —8.9,p = 0; case (ii):
t=—7.6,p =~ 0;case (iii): t =43.1,p = 0).

7 Conclusion and future work

This pilot study yielded the predicted results and
thus provided clues to the substance of the pre-
diction: an LP that is supplied with a token car-
rying semantic information performs better than
one that is not. A reduction of surprisal is evident
for matching and fixed topic vectors as contexts,
whereas an increase can be observed with random
topic vectors. For the fixed topic vectors, the re-
duction in each document is smaller than that for
matching topic vectors, but it still occurs. The first
part can be explained by the fact that fairytales are
similar enough to still supply some semantic infor-
mation, but not as much as a precise topic vector

ever could. One could say that the LP was made
aware of the fact that it is processing a fairytale,
but not which one. Any future work should in-
clude comparisons between genres to see if this ef-
fect does in fact become stronger with less closely
related texts. In the case of random topic vectors,
we can see that wrong expectations lead to confu-
sion on the part of the LP.

However, it should be noted that the connection
between surprisal and semantics is not straightfor-
ward. The reduction of surprisal can only give an
indirect indication of semantics: for text process-
ing, which is always also about meaning, seman-
tic surprisal ensures a lower processing effort, that
is, the LP has to process not so much information.
Seml in our interpretation represents the amount
of higher certainty in language processing. The as-
sumption that the difference in surprisal between
informed and uninformed systems has a semantic
quality is plausible, since this difference is not due
to purely structural semantic differences in the sys-
tem, i.e., texts, which is why the difference is also
not a syntactic but a semantic one.

In this study, we restricted ourselves to comput-
ing the Seml values of given informing (or dis-
informing) tokens. However, the results indicate
this method’s potential for applications knowledge
extraction: among a set of tokens, the one with
the highest semantic information may reveal use-
ful knowledge about the underlying text. Also,
there may be many different types of informative
token besides topic vectors, such as keywords or
text genre.

Moreover, our concept of semantic informa-
tion implies that knowledge about a system would
have to be taken into account, which can be sub-
sumed under the term world knowledge. These are
desiderata of future research.

Limitations

The fairytale corpus is quite small; future studies
would have to be based on larger corpora. The
same goes for the literary genre, future corpora
would need to use different genres. Moreover, our
concept of semantic information implies that ad-
vanced knowledge about a system, i.e., knowledge
of the world, would have to be taken into account.
After all, our pilot study does not provide yet the
data basis for incorporating our findings into prac-
tical applications, such as the automatic detection
of disinformation.



References

Martijn Bentum. 2021. Listening with great expecta-
tions: A study of predictive natural speech process-

ing. Ph.D. thesis, [SI]:[Sn].

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993-1022.

Katherine A DeLong, Thomas P Urbach, and Marta
Kutas. 2005. Probabilistic word pre-activation dur-
ing language comprehension inferred from electri-
cal brain activity. Nature neuroscience, 8(8):1117—
1121.

Fred Dretske. 1981. Knowledge and the Flow of Infor-
mation. MIT Press.

Anna Feldman and Jing Peng. 2013. Automatic detec-
tion of idiomatic clauses. In Computational Linguis-
tics and Intelligent Text Processing: 14th Interna-
tional Conference, CICLing 2013, Samos, Greece,
March 24-30, 2013, Proceedings, Part I 14, pages
435-446. Springer.

Luciano Floridi. 2004. Outline of a theory of strongly
semantic information. Minds and machines, 14:197—
221.

Luciano Floridi. 2009. Philosophical conceptions of in-
formation. In Formal theories of information: From
Shannon to semantic information theory and general
concepts of information, pages 13-53. Springer.

John Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. In Proceedings of the second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, pages 1-8. Association for Computa-
tional Linguistics.

Artemy Kolchinsky and David H Wolpert. 2018. Se-
mantic information, autonomous agency and non-
equilibrium statistical physics.  Interface focus,
8(6):20180041.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79-86.

Max Kolbl, Yuki Kyogoku, J. Nathanael Philipp,
Michael Richter, Clemens Rietdorf, and Tariq
Yousef. 2020. Keyword Extraction in German:
Information-theory vs. Deep Learning. In Proceed-
ings of the 12th International Conference on Agents
and Artificial Intelligence - Volume 1: NLPinAl,
pages 459—464. INSTICC, SciTePress.

Max Kolbl, Yuki Kyogoku, J. Nathanael Philipp,
Michael Richter, Clemens Rietdorf, and Tariq
Yousef. 2021. The semantic level of shannon
information: Are highly informative words good
keywords? a study on german. In Roussanka
Loukanova, editor, Natural Language Processing
in Artificial Intelligence - NLPinAI 2020, volume

939 of Studies in Computational Intelligence (SCI),
pages 139-161. Springer International Publishing.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126—1177.

Paula Vaz Lobo and David Martins De Matos. 2010.
Fairy tale corpus organization using latent semantic
mapping and an item-to-item top-n recommendation
algorithm. In LREC, volume 10, pages 1472-1475.

Jing Peng, Anna Feldman, and Ekaterina Vylomova.
2018. Classifying idiomatic and literal expressions
using topic models and intensity of emotions. arXiv
preprint arXiv:1802.09961.

J Nathanael Philipp, Max Kolbl, Erik Daas, Yuki Kyo-
goku, and Michael Richter. 2023a. Perplexed by id-
ioms? In Knowledge Graphs: Semantics, Machine
Learning, and Languages, pages 70-76. IOS Press.

J. Nathanael Philipp, Max Ko&lbl, Yuki Kyogoku, Tariq
Yousef, and Michael Richter. 2022. One step be-
yond: Keyword extraction in german utilising sur-
prisal from topic contexts. In Intelligent Computing,
pages 774-786, Cham. Springer International Pub-
lishing.

J. Nathanael Philipp, Michael Richter, Erik Daas, and
Max Kolbl. 2023b. Are idioms surprising? Pro-
ceedings of the 19th Conference on Natural Lan-
guage Processing (KONVENS 2023).

Raphael Rubino, Ekaterina Lapshinova-Koltunski, and
Josef van Genabith. 2016. Information density and
quality estimation features as translationese indica-
tors for human translation classification. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
960-970, San Diego, California. Association for
Computational Linguistics.

Claude Elwood Shannon. 1948. A mathematical the-
ory of communication. The Bell system technical
Jjournal, 27(3):379-423.

Myron Tribus. 1961. Information theory as the basis
for thermostatics and thermodynamics.

Noortje J Venhuizen, Matthew W Crocker, and Harm
Brouwer. 2019. Semantic entropy in language com-
prehension. Entropy, 21(12):1159.


https://doi.org/10.5220/0009374704590464
https://doi.org/10.5220/0009374704590464
https://doi.org/10.5220/0009374704590464
https://doi.org/10.1007/978-3-030-63787-3{_}5
https://doi.org/10.1007/978-3-030-63787-3{_}5
https://doi.org/10.1007/978-3-030-63787-3{_}5
https://doi.org/10.1007/978-3-030-63787-3{_}5
https://doi.org/10.1007/978-3-030-63787-3{_}5
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1007/978-3-031-10464-0_53
https://doi.org/10.1007/978-3-031-10464-0_53
https://doi.org/10.1007/978-3-031-10464-0_53
https://doi.org/10.1007/978-3-031-10464-0_53
https://doi.org/10.1007/978-3-031-10464-0_53
https://doi.org/10.18653/v1/N16-1110
https://doi.org/10.18653/v1/N16-1110
https://doi.org/10.18653/v1/N16-1110
https://doi.org/10.18653/v1/N16-1110
https://doi.org/10.18653/v1/N16-1110

	Introduction
	Points of departure and relevant work
	Measuring semantic information
	Data
	Probability distributions and Workflow
	The distributions
	Workflow

	Results
	Conclusion and future work

