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Abstract

In this study based on an English fairytale cor-001
pus, we interpret Semantic information (SemI)002
in natural language as the difference of in-003
formation between an informed and an unin-004
formed system. Only an informed system con-005
tains SemI and its amount is the information006
difference between an informed and an unin-007
formed system. This difference we were able008
to show.009

1 Introduction010

In this empirical study, based on an English fairy-011

tale corpus, we present an approach for measuring012

semantic information (SemI) in natural language,013

based on Shannon Information (Shannon, 1948)014

(SI) and inspired by the work of (Kolchinsky and015

Wolpert, 2018) who determine the following: SI is016

syntactic information (SynI) that quantifies statis-017

tical states in a system, or, additionally, between018

systems. In a linguistic context, we interpret the019

concept of a system as consisting of a linguistic020

production, a text or a corpus, and a language pro-021

cessor (LP).022

An important difference betwen SynI and023

SemI is that the latter is meaningful information024

(Kolchinsky and Wolpert, 2018) which goes be-025

yond a linguistic system: SemI draws on extra-026

linguistic contexts and may include, for example,027

world knowledge, and only an informed system028

contains SemI. It is vital for the semantic inter-029

pretation, while an uninformed system lacks any030

meaningful information.031

Building upon Kolchinsky and Wolpert (2018)032

framework, our approach hinges on the compari-033

son between an informed LP and an uninformed034

one. We predict that SemI will reduce the amount035

of surprisal a LP has to cope with. Surprisal036

is a type of information and consequently an in-037

formed system, which is predicted to carry less038

information than an uninformed one. This may039

sound baffling, but our prediction means basically 040

that facilitates text processing. We assume that 041

SemI can be measured as the difference in sur- 042

prisal between an informed and an uninformed 043

system. The surprisal-difference between an un- 044

informed and an informed system indicates the de- 045

gree of SemI in the latter. 046

The proportionality relationship between pro- 047

cessing effort and surprisal was established by 048

(Hale, 2001). His Surprisal theory quantifies the 049

predictability of a word as its surprisal, i.e., its neg- 050

ative logarithm of probability given the context. 051

In other words, we attribute semantic surprisal 052

to an informed system, i.e., contextualised infor- 053

mation (Tribus, 1961; Hale, 2001; Levy, 2008; 054

Bentum, 2021) which we derive from semantic 055

contexts.1. For the calculation of semantic sur- 056

prisal, we employ a variant of the Topic Context 057

Model (TCM) Kölbl et al. (2020, 2021); Philipp 058

et al. (2022) (see Section 5). TCM outputs sur- 059

prisal from a distribution of topics within a corpus, 060

text or paragraph, and topics represent semantic 061

concepts in the ‘real’ world. As surprisal in an un- 062

informed system, we use lexical surprisal, derived 063

from unigram probabilities of words. Lexical sur- 064

prisal is SynI and thus equivalent with SI. 065

2 Points of departure and relevant work 066

In addition to the above-mentioned work by 067

Kolchinsky and Wolpert (2018) and Hale (2001), 068

further inspirations for our study are the works 069

of Dretske (1981), and Floridi (2004, 2009). 070

These approaches handle information-differences 071

between two distinct systems and distinguish 072

meaningful and meaningless information. Floridi 073

(2004, 2009) terms this difference strongly se- 074

mantic information. Inspired by these works are, 075

1Surprisal has been shown to be an empirically confirmed
entity (e.g. DeLong et al. (2005); Bentum (2021)): it corre-
lates with processes and states in the brain which makes it a
concept of the Philosophy of Mind
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among others, the studies of (Feldman and Peng,076

2013; Peng et al., 2018; Rubino et al., 2016; Ven-077

huizen et al., 2019) on idiom detection, translation-078

classification and predictive language comprehen-079

sion, respectively. These studies have in common080

that information differences represent qualitative081

differences between a baseline condition and a spe-082

cial, surprising condition. For example, in (Feld-083

man and Peng, 2013; Peng et al., 2018; Philipp084

et al., 2023a) the baseline condition includes sen-085

tences that can be understood literally, while the086

surprising, deviant condition comprises idiomatic087

sentences.088

Different models for the calculation of sur-089

prisal have been employed, i.e., vector space rep-090

resentations of words (Feldman and Peng, 2013;091

Peng et al., 2018), n-gram models (Rubino et al.,092

2016), distributed situation-state space models093

(Venhuizen et al., 2019) and TCM (Kölbl et al.,094

2020, 2021; Philipp et al., 2022, 2023a,b) that, as095

mentioned above, is used in the present study.096

3 Measuring semantic information097

We start by defining a system as a language pro-098

cessor (LP) in an environment (a text/corpus/etc.).099

Following ideas by Hale (2001), we base our def-100

inition of SemI around the difficulty of the LP to101

process a text. The idea is thus: the more infor-102

mation (SemI) an LP has about a text, the less103

difficulty, i.e., SynI will be involved in parsing104

it. Another term for SynI in this context is sur-105

prisal; a term that suggests that the quantity at106

hand measures how surprising it is for the LP to107

encounter a word. In this view, SynI exists within108

an environment, while SemI is information about109

it. In particular, SemI is information about a text110

which helps reduce the surprisal that is measured111

while an LP parses the text. To be able to measure112

SemI thus requires us to compare two LPs: an in-113

formed and an uninformed one. We assess their114

respective processing difficulties by first consid-115

ering the probability space of context-prediction116

pairs they can process. This could be, for example,117

bigrams where one word is known to the LP and118

the other one is its prediction based on that. On119

this space, we get three different distributions: the120

(un-)informed distributions by the two LPs, and121

the actual distribution directly taken from the text.122

The processing difficulty can then be measured123

by comparing the LPs’ distributions with the third124

one. In the practical part of this paper, we used the125

Kullback Leibler Divergence (KL) (Kullback and 126

Leibler, 1951), but other types of metrics, such 127

as perplexity, may also work. The interpretation 128

of KL is that it measures how well a distribution 129

P is approximated by another distribution Q. In 130

terms of surprisal, it can be interpreted as the av- 131

erage surprisal an LP will experience working in 132

a P -distributed environment while expecting a Q- 133

distributed one. We denote it KL(P,Q). Values 134

yielded by that operation are always non-negative 135

and reach 0 when they are identical. It is in gen- 136

eral not symmetric. We thus get the two values 137

KL(T,U) and KL(T, I) where U and I denote 138

the uninformed and informed distributions respec- 139

tively, and T denotes the ‘text’ or ‘true’ distribu- 140

tion. We can compare them using either Formula 1 141

or Formula 2. 142

SemI = −log2
KL(T, I)

KL(T,U)

= log2KL(T, U)− log2KL(T, I)

(1) 143

SemI = KL(T,U)−KL(T, I) (2) 144

We deliberately give two formulae as possible 145

alternatives because they measure slightly differ- 146

ent things, each with the potential of having a 147

unique merit. Both formulae measure how effec- 148

tively semantic information has influenced the sys- 149

tem. However, Formula 1 can be regarded as the 150

relative version of Formula 2. Both can be inter- 151

preted giving the average reduction in the cost of 152

text processing per word. However, in Formula 2 153

we measure the exact number of reduced bits from 154

the average encoding length of a word, whereas 155

in Formula 1, we consider the reduced amount of 156

information relative to the average code lengths 157

given the uninformed distribution. 158

In stark contrast to Shannon information, in 159

the present setting there may be instances where 160

the information content is negative. This happens 161

when the informed LP experiences more process- 162

ing difficulties than the uninformed one. In such 163

cases, we may speak of ‘disinformation’ or ‘de- 164

ception’, wherein a misleading expectation com- 165

plicates the processing. 166

We emphasise that the specifics of how an LP 167

operates are not rigidly defined. This is on purpose 168

since different applications may call for different 169

notions of uninformedness or different modes of 170

operation of the LP. 171
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4 Data172

To test our prediction, we used an English fairytale173

corpus from INESC-ID Human Language Tech-174

nology Lab2(Lobo and De Matos, 2010). The175

corpus comprises 410 stories with in total 83,845176

words. The average number of words per fairy-177

tale is 270. Preprocessing includes removing of178

all punctuation and converting them to lowercase,179

the words were already lemmatised. We split the180

texts into 300 training texts and 110 test texts.181

5 Probability distributions and Workflow182

5.1 The distributions183

For every text, we need a total of three distribu-184

tions: an uninformed one, an informed one, and185

the actual one. The uninformed distribution U has186

to be independent of the text, the informed one I187

has to depend on an informative token extracted188

from the text, and the actual one T is the real dis-189

tribution of words in the text.190

For the uninformed distribution, we choose for191

the probability function the relative frequency of192

every word in the training corpus. Before normal-193

ising however, we add 10−17 to all words, includ-194

ing those that do not make an appearance in the195

training corpus, so as to prevent a division by 0196

when the KL-divergence is computed. Hence, the197

distribution is given by Formula 3.198

PU (w) =
N + 10−17∑

w∈training and test corpus(N+10−17)

(3)199

Where N is the number of occurrences of w200

in the training corpus. For the informed distri-201

bution, we make use to the Topic Context Model202

(TCM) (Kölbl et al., 2020, 2021; Philipp et al.,203

2022, 2023a,b)3. The TCM is an extended topic204

model, calculating the probability of a word w205

given a distribution of topics for the text or corpus206

the word appears in.207

In this study, we employ the TCM based on La-208

tent Dirichlet Allocation (Blei et al., 2003) (LDA).209

We initialise LDA with n = 10 topics and train210

it on the training corpus. This gives us for each211

topic a probability distribution P (wi|ti) that indi-212

cates the probability a word is associated to a spe-213

cific topic. We can define the topic space as the214

2https://www.hlt.inesc-id.pt/w/Fairy_
tale_corpus

3https://github.com/jnphilipp/tcm

simplex {(x1, x2, . . . , xn) ∈ [0, 1]n|
∑

xk = 1}. 215

Then for each document d, its topic vector vd is an 216

element of the topic space whose coordinates are 217

given by the probabilities P (ti|d) that any given 218

word in d is associated to topic ti. Now the in- 219

formed distribution for a word w given the topic 220

vector vd of a document is given by Formula 4. 221

PI(w|vd) =
n∑

i=1

P (w|ti)P (ti|d) (4) 222

5.2 Workflow 223

We compute PU once at the beginning and then 224

we compute for every document d in the test set 225

four probability functions: PT , P
(i)
I , P

(ii)
I , and 226

P
(iii)
I . Here, PT is the probability function of T . 227

The other three are three different informed dis- 228

tributions, each computed with a different topic 229

vector: P (i)
I uses vd, i.e., the correct topic vector; 230

P
(ii)
I uses v0, i.e., the topic vector of the first doc- 231

ument in the test set; P (iii)
I uses a randomly gen- 232

erated element of the topic space. Then we cal- 233

culate KL(T, U) and the three different versions 234

of KL(T, I). From these we calculate for each 235

KL(T, I) the pair of SemI measures given in For- 236

mulas 1 and 2. 237

6 Results 238

Figure 1 displays the values of the test set as cal- 239

culated via Formula 1. The left-most plot indi- 240

cates the distribution of the SemI values where the 241

correct topic vector was used for every document. 242

The middle plot indicates the values where one of 243

the topic vectors was fixed for every document. 244

Lastly, the right-most plot indicates the distribu- 245

tion in the case of randomly generated topic vec- 246

tors. We call these three cases (i), (ii), and (iii), cor- 247

responding to the probability functions P (i)
I , P (ii)

I , 248

and P
(iii)
I defined in Section 5.1 It can be seen that 249

correct topic vectors carry the highest amount of 250

semantic information and the randomly generated 251

topic vectors yield negative values; this indicates 252

that the LP is actively confused by the hint; the 253

average surprisal of every word grows. Interest- 254

ingly the mismatched topics still yield relatively 255

high values, albeit to a lesser extent. 256

The situation in Figure 2 is analogous but the 257

values were generated with Formula 2. 258

In all three cases, the difference in surprisal 259

values between the informed and systems is sig- 260
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Figure 1: SemI calculated with Formula 1. The amount
of SemI can be read off the y-axis.
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Figure 2: SemI calculated with Formula 2. The amount
of SemI can be read off the y-axis.

nificant (case (i): t = −8.9, p ≈ 0; case (ii):261

t = −7.6, p ≈ 0; case (iii): t = 43.1, p ≈ 0).262

7 Conclusion and future work263

This pilot study yielded the predicted results and264

thus provided clues to the substance of the pre-265

diction: an LP that is supplied with a token car-266

rying semantic information performs better than267

one that is not. A reduction of surprisal is evident268

for matching and fixed topic vectors as contexts,269

whereas an increase can be observed with random270

topic vectors. For the fixed topic vectors, the re-271

duction in each document is smaller than that for272

matching topic vectors, but it still occurs. The first273

part can be explained by the fact that fairytales are274

similar enough to still supply some semantic infor-275

mation, but not as much as a precise topic vector276

ever could. One could say that the LP was made 277

aware of the fact that it is processing a fairytale, 278

but not which one. Any future work should in- 279

clude comparisons between genres to see if this ef- 280

fect does in fact become stronger with less closely 281

related texts. In the case of random topic vectors, 282

we can see that wrong expectations lead to confu- 283

sion on the part of the LP. 284

However, it should be noted that the connection 285

between surprisal and semantics is not straightfor- 286

ward. The reduction of surprisal can only give an 287

indirect indication of semantics: for text process- 288

ing, which is always also about meaning, seman- 289

tic surprisal ensures a lower processing effort, that 290

is, the LP has to process not so much information. 291

SemI in our interpretation represents the amount 292

of higher certainty in language processing. The as- 293

sumption that the difference in surprisal between 294

informed and uninformed systems has a semantic 295

quality is plausible, since this difference is not due 296

to purely structural semantic differences in the sys- 297

tem, i.e., texts, which is why the difference is also 298

not a syntactic but a semantic one. 299

In this study, we restricted ourselves to comput- 300

ing the SemI values of given informing (or dis- 301

informing) tokens. However, the results indicate 302

this method’s potential for applications knowledge 303

extraction: among a set of tokens, the one with 304

the highest semantic information may reveal use- 305

ful knowledge about the underlying text. Also, 306

there may be many different types of informative 307

token besides topic vectors, such as keywords or 308

text genre. 309

Moreover, our concept of semantic informa- 310

tion implies that knowledge about a system would 311

have to be taken into account, which can be sub- 312

sumed under the term world knowledge. These are 313

desiderata of future research. 314

Limitations 315

The fairytale corpus is quite small; future studies 316

would have to be based on larger corpora. The 317

same goes for the literary genre, future corpora 318

would need to use different genres. Moreover, our 319

concept of semantic information implies that ad- 320

vanced knowledge about a system, i.e., knowledge 321

of the world, would have to be taken into account. 322

After all, our pilot study does not provide yet the 323

data basis for incorporating our findings into prac- 324

tical applications, such as the automatic detection 325

of disinformation. 326
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