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ABSTRACT

Structure learning algorithms often output a single estimated graph without offering
alternative candidates or a way to capture model uncertainty. This is limiting in
finite-sample settings with weak signals or noise, where multiple structures can
explain the data equally well. In this work, we propose Top-K Structure Search
with Solution Path, an algorithm that systematically tracks the evolution of edge
weights across a range of values of the /; sparsity regularization parameter \. By
scoring candidate structures with the Bayesian Information Criterion (BIC), our
method ranks and returns the Top-K most plausible structures. Unlike traditional
approaches that yield a single solution, our framework provides a ranked set of
candidates, enabling better uncertainty assessment. Experiments on synthetic and
real-world datasets demonstrate the effectiveness of our approach in capturing
structural variability. This highlights the advantage of leveraging solution paths for
structure learning, especially in scenarios where committing to a single graph is
unreliable. Our framework offers a complementary perspective on structure learn-
ing by considering multiple candidate solutions, thereby mitigating the practical
instability of solely relying on a single result.

1 INTRODUCTION

Bayesian structure learning aims to identify plausible dependency structures among variables from
observational data. A common limitation is that most algorithms return only a single “best” result,
even though multiple structures may explain the data equally well, particularly in finite-sample or
noisy settings. This single-graph focus obscures structural uncertainty and can mislead downstream
inference, for instance in gene regulatory network reconstruction, where multiple high-scoring
structures often arise due to limited samples and measurement noise (Friedman et al., 2000).

To address this, several works have proposed Top-K approaches that return multiple high-scoring
structures. Bayesian Model Averaging using the k-best Bayesian network structures was introduced in
Tian et al.[(2012), showing that averaging over multiple models can significantly improve predictive
performance compared to relying on one network. This idea was extended in|Chen & Tian|(2014)),
who developed a dynamic programming (DP) approach to compute the k-best equivalence classes of
Bayesian networks, where each equivalence class represents a set of networks that are indistinguish-
able from observational data. While exact and principled, this DP method is computationally intensive
and scales poorly with the number of variables. To improve scalability, (Chen et al.|(2016) proposed
an A*-based enumeration of equivalence classes via EC-graphs. While this approach avoids full
dynamic programming, the number of equivalence classes grows super-exponentially with the number
of variables, so even Top-K enumeration becomes computationally challenging for moderate-sized
networks (Chickering) [1996; Robinson, 2006). Together, these works highlight the importance of
Top-K structure learning because they demonstrate that multiple high-scoring structures can exist for
the same data, and considering them improves predictive performance, captures structural variability,
and prevents over-reliance on a single graph, while also underscoring the computational challenges
of exhaustive or near-exhaustive search.

In parallel, classical structure learning algorithms have focused on finding a single high-scoring
graph, such as a directed acyclic graph (DAG) or a Markov equivalence class (MEC). Constraint-
based methods such as PC (Spirtes et al.,|2000) use conditional independence tests to prune edges,
producing a graph consistent with observed independencies. While effective in the large-sample
limit, PC is sensitive to noise and limited data (Tsamardinos et al.,[2006). Score-based methods such
as GES (Chickering} 2002)) search over graphs by greedily adding or deleting edges to maximize a
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score, such as BIC. These approaches can capture more complex structures but are susceptible to
local optima. More recently, the BOSS algorithm (Andrews et al.,[2023)) introduced a score-based
search over variable orderings, improving efficiency by focusing on the top-ranked candidate orders
rather than traversing the entire graph space. However, like PC and GES, BOSS typically returns a
single solution, such as a DAG or a MEC, and does not directly capture structural uncertainty.

Motivated by these limitations, we propose Top-K Structure Search with Solution Path. Our framework
generates multiple candidate structures by tracing the evolution of edge weights along the solution
path of an ¢4 -regularized optimization problem. Structural changes occur at critical values of the
regularization parameter A, and the Top-K graphs are then selected based on their scores. Unlike
dynamic programming or A* search, our method does not require exhaustive exploration of the graph
space. Instead, it follows the solution path to efficiently identify multiple high-scoring structures and
reveals which edges consistently appear across the Top-K candidates and which edges vary, providing
insight into the confidence of different parts of the network.

Our focus is on structure learning and the systematic exploration of high-scoring graph skeletons.
This reflects our practical goal of ranking candidate models and capturing structural variability, rather
than committing to a single graph.

Contributions. (1) We propose a principled framework to generate and rank multiple structures
along the solution path induced by varying the ¢; sparsity regularization parameter (\), using a
gradient-based method to efficiently trace structural changes. (2) We score structures using BIC or
likelihood, and quantify uncertainty by calculating both skeletal graph uncertainty and edge-level
uncertainty. (3) We empirically validate our approach on synthetic and real-world datasets.

Paper organization. In Section |2} we introduce the necessary preliminaries for our approach. In
Section 3] we present the proposed Top-K Structure Search with Solution Path method in detail.
Section §| covers our experimental evaluation, including both synthetic experiments and real-world
data experiments. Finally, in Section [5] we discuss key takeaways and outline the limitations and
directions for future work.

2 PRELIMINARIES

We first start with the formulation of the problem. Let G = (V, E) be a directed acyclic graph (DAG)
where the vertex set V. = {X7,..., X4} represents d random variables. The joint random vector is
denoted as X = (X7, ..., Xy) with an associated probability distribution Px. For each variable X,
define Xpa(i) as the set of its parents in G, meaning all variables X ; for which there exists a directed
edge X; — X; in E. Throughout this work, we assume the principle of causal sufficiency, implying
that there are no unobserved confounders.

We model the data-generating process as a linear structural equation model (SEM):
X=B"X+N,

where B € R9*4 is the weighted adjacency matrix of the graph G, and N = (Ny, ..., Ny) is a vector
of jointly independent noise variables. Each nonzero entry B;; # 0 encodes a direct causal effect
from X; to X, corresponding to an edge X; — X, in G. The diagonal entries of B are zero, and the
acyclicity of G ensures that (I — BT) is invertible.

Let z be the collection of n i.i.d. samples from the distribution of X. Given z, the objective of
a structure learning algorithm is to recover the structure of B, and hence the underlying DAG
G. The goal of the Top-K Solution Path method is to identify a set of K high-scoring candidate
structures, denoted as Gy,Go, ..., Gk, from observational data. These structures correspond to
plausible graphical models that explain the data well, providing a richer representation of uncertainty
in structure learning compared to a single-point estimate.

3 Topr-K SOLUTION PATH METHOD

In this section, we present the complete methodology behind the proposed Top-K Solution Path
framework. In Section we define the objective function that forms the basis of our optimization.
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Section [3.2] outlines the gradient-based optimization strategy used to minimize this objective. Sec-
tion [3.3] details the solution path method, which efficiently traces structural changes as the ¢; sparsity
regularization parameter () varies. In Section [3.4] we describe how the Top-K candidate struc-
tures are selected based on BIC scores. Finally, Section [3.5]introduces our approach for estimating
uncertainty in the discovered structures.

3.1 OBIECTIVE FUNCTION

We formulate the structure discovery task inspired by GOLEM (Graph Optimization via Linear
Equations Method) (Ng et al.,|2020), as minimizing a regularized objective composed of three parts:
a likelihood term, an ¢; sparsity-inducing penalty, and a soft acyclicity constraint.

Likelihood. The likelihood component is the average negative log-likelihood of a linear additive
Gaussian noise model:

d n
1 2 d 2
L(B;x) = 5 E log ( g (xl(k) — BiTx(k)) ) —log|det(I — B)| + §log <Z€> )
i=1 1

k=
where B € R%* is the weighted adjacency matrix, x the data, and (¥ is the k™ data point.
Sparsity constraint. To encourage sparse solutions and prevent overfitting, we include an /1 -penalty:

IBllx = Z” |Bij|-

DAG constraint. To enforce soft acyclicity, we add a smooth penalty function h(B) = tr(eB°?) —d,
where o denotes the Hadamard product (Zheng et al.,[2018)).

Final objective. The complete objective function to be minimized is:

Brr]}{in S(B;z) = L(B;x) + A||B||1 + ah(B),
c dxd

where )\ is the /1 sparsity regularization parameter and « is the coefficient that penalizes cycles.

3.2 GRADIENT-BASED OPTIMIZATION

To compute the adjacency matrix B for different values of the ¢; sparsity regularization parameter
A, denoted by B(\), we employ a gradient-based optimization method. This approach is feasible
because our objective function is differentiable with respect to the entries of B.

We initialize the solution path at Anax, where the optimal solution is B = 0. Then, we gradually
decrease the value of A in small increments. For each new A;.1, we initialize from the previous
solution B(\;) and perform ¢ steps of gradient descent, restricted to the current active set A, to
minimize the objective function.

The update rule at each gradient step s € {0,...,g — 1} is:
BEHY = BG) _p IVRL(BYW; z) + My1sgn(B®) + aVh(B®)| |

BO = B(\t), B(Ay1) = BY.

Here, 7; is the adaptive learning rate, and the notation [-] 4, denotes that the gradient update is applied
only to the elements in the active set .A;. Any adaptive learning method can be used to choose 7,
such as those typically used in gradient-based optimization techniques.

The explicit gradient expressions are given by:

n (k) : (k)
OL(B; ) B _Zk:l (% - BiTl"(k)) Z;

OB, S (x(k) B BiTx(k:)>2

+((I-B)"),.,

¥

?

Veh(B) = (P°B)T 0 2B,
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3.3 SOLUTION PATH METHOD

In this subsection, we describe the solution path method used to obtain the adjacency matrix B across
different values of the sparsity regularization parameter A. We will cover these key aspects of the
method: the initial conditions used for optimization, the identification and evolution of the active set,
the tracking of changes in the adjacency matrix B, and the identification of critical points along the
solution path. Our method is inspired from other solution path based methods and the effect of Lasso
regularization on them (Rossetl |2004; [Park & Hastiel 2007; [Efron et al.l 2004 Tibshiranil [1996).

Initial Condition. We initialize the optimization at a sufficiently large sparsity regularization
weight, denoted \p,.x, for which the optimal solution is B = 0. At this value, the strong sparsity
penalty forces all entries of B to zero. The initial active set Ay, containing the indices with the largest
gradient magnitude at B = 0, is where the first nonzero weight will enter as A begins to decrease:

0L(B; 0L(B;
X0 = Amax = max OL(B;x) . Ap = arg max OL(B;x)
g 0Bij |p_g i 9Bi; |p—o
i#] ij

Starting from A, ax, We decrease A in small steps and track the evolution of non-zero weights in B as
they enter the model.

Active Set Update Rule. Given the current active set .A;, we update it to 4,1 in two steps:

(1) Removal: Elements with small magnitude are removed from the active set:

A, ={(i,j) € Ay ||Byj| = 6}, where d > 0.

(2) Addition: Elements not currently in the active set are added if their corresponding gradient
magnitude exceeds the regularization threshold:
B=B (/\t+1)}

This procedure enables the active set to adapt dynamically to the current solution and the underlying
optimization landscape.

OL(B;x)

At+1:AQU{(ivj)¢~A; OB,
j

i 7 Jy A1 < ‘

Solution Path Progression. We begin the solution path progression at ¢ = 0 with the initial
conditions A\g = Aax and the initial active set .Ag, which is determined based on the sparsity structure
at \g. The progression follows a uniform grid search approach over the A-space, decrementing \; by
a fixed step size € until \; reaches a sufficiently small threshold. The process is outlined as follows:

1. At each step, decrement the regularization parameter: A\;y1 = Ay — €.

2. Update the weight matrix B(A;41) using the gradient method, starting from B(\¢).
3. Update the active set A;41 from A; based on the solution B(A¢11).

4. Increment the iteration counter: t =t 4 1.

This process is repeated until A\; becomes sufficiently small, i.e., \; < €, at which point the solution
path progression terminates.

Identifying Critical Points. As ) decreases, edges in the learned structure progressively appear or
disappear, reflecting structural transitions. We define the set of critical points A as the values of A
at which any weight B;;(\) changes support—that is, switches from zero to nonzero or vice versa.
Specifically, for any pair (¢, j), a value )\ is considered a critical point if:

Bij(/\fC):O and BU(}\+<)7AO,
or
B“(/\—C)#O and Bij(/\—FC):O,
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for a sufficiently small ¢ > 0. These values capture points of structural change along the solution path.

The set of structures at these critical points, denoted E(A), forms the candidate pool for selecting the
Top-K structures.

3.4 ToP-K STRUCTURE SELECTION

Once we have the set of critical points A and the corresponding estimated weight matrices B (A), we
extract their binary adjacency matrices and perform regression, and then rank them based on their
BIC scores.

Binary Adjacency Matrix. For each estimated weight matrix B (M) at a critical point A € A, we
extract the corresponding graph structure by applying an element-wise threshold:

. if [B()\)| >
A = 1, 1f|B(>\~)| _’7"
0, otherwise

where g()\) is the binary adjacency matrix representing the inferred structure, and 7 > 0 is a small
constant controlling sensitivity to very weak edges.

Re-estimating Weights via Regression. To correct for the shrinkage introduced by Lasso regular-
ization, we re-estimate the weights using ordinary least squares, constrained to the support of the
inferred structure. Specifically, we solve the following optimization problem:

B(\) = arg mBi,n |z — BTz||% subjectto supp(B) C supp(A(N)),

|| denotes the Frobenius norm, and A()) is the
binary adjacency matrix. The resulting matrix B(\) contains the re-estimated weights.

where x € R?*™ is the observed data matrix,

Computing Likelihood and BIC Scores. Given the re-estimated weight matrix B()), we first
compute the average negative log-likelihood of the data under the model:

n

d
L(BO);2) = %Zbg ( (xz(*k) - E()\)iTﬂc(k)f) —log | det(I — B(\))| + glog <2nﬁe> .
i=1 3

=1

The total negative log-likelihood for n samples is then nL(B()); z).

From this, we calculate the Bayesian Information Criterion (BIC) score as:

BIC(B(X)) = 2n- L(B(\); ) + log(n) - |[E(B(V)),
where |E(B()))| is the number of edges in the inferred graph.

Sorting and Selecting Top-K Graphs. Each candidate graph in G(A) corresponds to a binary

adjacency matrix A()\) obtained by thresholding the estimated weights E()\) at a critical point A € A.
To identify the most plausible structures, we select the Top-K graphs with the lowest BIC scores:

Ag = argmin BIC(B(A)), Gk ={B(\) | A€ Ag}.
INTSK

These graphs represent the best candidates for the underlying structure, balancing fit and complexity.
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3.5 UNCERTAINTY QUANTIFICATION

To quantify uncertainty over the selected graph structures, we convert their BIC scores into a
probability-like distribution using a temperature-scaled exponential transformation.

Graph-Level Uncertainty. Let {gﬂ, e G k } denote the Top-K graphs corresponding to the weight
matrices {B(\1), ..., B(Ak)}. We define the relative probability of each graph as:

SIS exp (= BIC(B(Y))

Here, T' > 0 is a temperature parameter that modulates the sharpness of the distribution. A lower
T amplifies differences between BIC scores, favoring the top-scoring graph more strongly, while
a higher T yields a flatter distribution, expressing greater uncertainty. This scaling enables more
flexible and calibrated uncertainty estimates, especially when score differences are either too sharp or
too subtle. One practical heuristic is to set T" such that P(Q K) = 5% K, ensuring that the top-ranked
graph receives a relatively high probability while still allowing meaningful contribution from all K
candidate graphs.

Higher P(g}) indicates stronger support for graph ék, while more uniform probabilities suggest
greater structural ambiguity.

Edge-Level Uncertainty. The probability of an edge (i, j) appearing in the structure is defined as:

K
edgelj ZP ( ]) 3)7
k=1

where [(-) is an indicator function. This represents a soft confidence score for the existence (but not
direction) of each edge, aggregated across the Top-K graphs.

This probabilistic framework offers a principled estimate of graph and edge-level uncertainty without
requiring computationally intensive resampling.

4 EXPERIMENTS

We conduct extensive experiments on both synthetic and real-world data to evaluate the performance
of our method. On synthetic datasets, we systematically vary key parameters such as the number
of samples n, the Top-K value K, graph density p, and the number of variables d. We compare
our method against standard structure learning algorithms including GES, PC, BOSS and Top-K
A*. Evaluation is performed by comparing the skeleton of the predicted graph to the skeleton of
the ground truth graph, using metrics such as precision, recall, F1 score, and accuracy. We use the
L-BFGS-B algorithm from scipy.optimize for gradient-based optimization. For Top-K A*, we
use a simple cost-based heuristic on synthetic data and a more informed lower-bound heuristic on the
Sachs dataset, as the latter provides better pruning in noisy real-world settings. All experiments are
run on a standard CPU machine, and each individual run typically completes in under a few minutes
for smaller d values. We use violin plots in seaborn to visualize the distribution of metrics.

4.1 SYNTHETIC DATA EXPERIMENTS

Experimental Setup. We evaluate our method in a challenging setting where edge weights are
sampled from the ranges [—0.4, —0.1] U [0.1,0.4], and Gaussian noise variances are uniformly
sampled from the interval [0.1,0.3]. This setup corresponds to a low signal-to-noise ratio (SNR),
weak causal effects, and small sample sizes—a regime where many existing algorithms tend to
perform poorly. Our approach is particularly well-suited for this scenario, as it is designed to
handle noisy data and subtle dependencies by considering multiple candidate solutions rather than
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committing to a single estimated structure. For Top-K A* and our method, we generate the Top-K
candidate structures and select the one with the highest skeleton accuracy as the representative
structure to compare against other algorithms. The number of runs for each experiment is 100, except
for the experiments varying the number of variables d, where the number of runs is reduced depending
on d for computational reasons.

Effect of Sample Size (n). We evaluate performance across different sample sizes n €
{20, 50, 100}, focusing on the small-sample regime, while keeping other parameters fixed: d = 6,
K =5, and p = 0.4. As shown in Figure[I] our method consistently outperforms others, especially
when 7 is small. While all methods improve as n increases, our gains are most pronounced in
low-data settings due to increased robustness.
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Figure 1: Comparison of methods as sample size n varies.

Effect of number of Top-K structures (K). To evaluate the impact of considering multiple
candidate structures, we fix a low sample size n = 20 and vary K € {1,5,10}, keeping other
parameters fixed: d = 6 and p = 0.4. As shown in Figure[2] performance improves steadily with
larger K, demonstrating the benefit of exploring multiple structures rather than relying on a single
estimate—especially in low-data regimes.
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Figure 2: Comparison of methods as the K value varies.

Effect of Graph Density (p). We analyze performance across varying graph densities p €
{0.2,0.5,0.8}, representing sparse to dense structures, while keeping other parameters fixed: d = 6,
n = 100, and K = 5. As shown in Figure 3] our method consistently performs well across all
densities and shows strong performance even in dense graphs, where accurately recovering the
structure is generally more challenging.
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Figure 3: Comparison of methods as graph density p varies.
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Effect of Number of Variables (d). For smaller networks with d € {5, 10, 15}, we fix the sample
size to n = 100, the number of candidate structures to K = 5, and the edge density to p = 0.4. We
perform 30 runs for each of these experiments. As shown in Figure[d] our method performs well in
these smaller problem sizes and consistently outperforms the baseline algorithms.
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Figure 4: Comparison of methods as the number of variables d varies (for smaller d).

For larger networks with d € {30, 50,60}, we keep n = 100 and p = 0.3, while adjusting the number
of candidate structures to K = 10 for d = 30 and K = 15 for d = 50 and d = 60. To mitigate
the increased computational complexity, we perform 10 runs for each experiment. Since Top-K
A* and GES become computationally expensive, they are omitted for high d. Figure [3]illustrates
that our method maintains strong performance as the dimensionality d increases. While precision is
lower compared to other methods—due to our solution path-based approach capturing more false
positives—the recall improves substantially. This leads to a higher F1 score, and overall accuracy is
also usually better.
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Figure 5: Comparison of methods as the number of variables d varies (for larger d).

4.2 REAL-WORLD DATA EXPERIMENTS

In this section, we evaluate our method and compare it to other algorithms using the Sachs
dataset (Sachs et al., 2005). The Sachs dataset contains n = 853 samples and d = 11 variables,
representing protein signaling pathways in cells. The ground truth skeleton of the structure is shown
in Figure[6] where the black lines represent the true edges.

The outputs of PC, GES, and BOSS are identical, all producing the same skeleton shown in Figure 7}
In this figure, green lines represent true positive edges, while dotted grey lines indicate false negatives.
In contrast, our method’s 7th-best skeleton (Figure [8) achieved the highest accuracy and significantly
outperformed others in F1 score, as shown in Figure[T0] In Figure[§] light green lines are correct
edges shared by all methods, dark green lines are additional true positives predicted only by our
method, and red lines are false positives. Looking at the structures generated by our Top-K method in
Figure [0} we observe that the Top-2 skeleton is the same as the one predicted by other algorithms.
The Top-7 skeleton has the highest accuracy and F1 score among other candidate structures. This
demonstrates the benefit of considering Top-K structures, as it allows us to explore multiple structures.
Additionally, most of the weights in the network are small, which makes our method more effective.

5 DISCUSSION

Our method introduces a Top-K solution path framework for structure learning that leverages contin-
uous optimization and model diversity. By exploring a family of candidate graphs across the sparsity
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Figure 6: Ground truth skeleton Figure 7: Skeleton output of PC, Figure 8: Top-7 Skeleton output
for the Sachs dataset GES and BOSS of Top-K Method

Evaluation Metrics for Top-K Structures on the Sachs Dataset
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Figure 9: Evaluation metrics for the Top-K Struc- the Sachs dataset

tures on the Sachs dataset

regularization parameter \ and selecting the Top-K highest-scoring structures, we achieve robust
performance, particularly in low-data, weak causal links, and noisy regimes.

In terms of computational complexity, our approach scales as O(gd>n/¢), where g is the number of
gradient steps per A point and € is the granularity of the A grid. This cost is independent of K, as the
Top-K structures are selected from a precomputed candidate pool.

A key strength of our approach lies in its suitability for real-world scenarios where many causal
links are weak—common in domains such as biology, economics, and social sciences. These weak
edges may be missed by methods focused on a single graph. In contrast, our method retains multiple
plausible structures, allowing such weak but meaningful relationships to appear in at least some of the
top candidates. This offers a more nuanced view of the underlying dependencies and complements
traditional approaches. Moreover, while our method and Top-K A* perform similarly in terms of
accuracy and other metrics, Top-K A* quickly becomes computationally infeasible as the number of
variables increases, whereas our approach remains tractable even for higher-dimensional settings.
This scalability is a central advantage of our method.

Limitations and Future Work. While effective, our method requires setting hyperparameters
such as the A\ grid resolution € and the number of top solutions K. Finding a principled way to
select these values remains an open challenge, and future work could explore adaptive or data-driven
tuning schemes. Another promising direction is to develop hybrid models that combine standard
single-solution methods with our Top-K framework, which would enable reliable identification
of both strong and weak causal links. While our experiments focus on small and moderate-sized
graphs, handling very large networks may benefit from additional algorithmic improvements such as
parallelization or sparsity-aware heuristics. Importantly, existing Top-K methods based on dynamic
programming or A* search quickly become computationally infeasible as d grows, whereas our
approach can scale to larger graphs by following the solution path. Incorporating domain knowledge
through constraints or priors could further enhance interpretability. Finally, validation on more
real-world datasets will help establish broader applicability.
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A DETAILED EXAMPLE

We now walk through a concrete example to illustrate the application of our method in detail. The
setting is as follows:

* Number of nodes: d = 5

» Sample size: n = 100

* Graph density: p = 0.4

* Number of top structures considered: K = 3

o Step size: € = Apax/100

The true weighted adjacency matrix By, used to generate the data is:

0 025 026 0 0
0 0 019 0.16 0
Bre= 10 0 0 0 0
O 0 0 0 0
0O 0 0 0 0

This corresponds to a directed acyclic graph (DAG) where node 1 influences nodes 2 and 3, and node
2 influences nodes 3 and 4. The remaining nodes do not have outgoing edges.

Solution Path: B; Weights vs Lambda (A)
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Figure 11: Solution path of edge weights B;; versus regularization strength \.

Figure [T1]illustrates the solution path of the weights against the sparsity regularization parameter
A. Initially, for high values of ), all weights are zero. As A decreases from A, the regularization
becomes weaker and certain weights begin to emerge—first gradually, and then more rapidly as A
continues to drop.
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Visualization of £(Byye), £(0), £(B(A)), and S(B(A))
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Figure 12: Objective function values as a function of the regularization parameter \.

Figure [12]shows how the objective functions are minimized as \ decreases. As the regularization
weakens, the model fits the data more closely, reflected in the gradual reduction of the objective
values. However, a decreasing objective function value does not necessarily imply recovery of the
true underlying structure. This may be due to overfitting, where the model captures noise or spurious
relationships in the data rather than the genuine structural connections.

BIC Score vs Critical Lambda (A)
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Figure 13: BIC scores of graphs after regression plotted against the critical lambda values (A).

Figure[13]displays the BIC scores of the graphs obtained after performing regression, plotted against
the critical lambda values (A). We observe that the lowest BIC score corresponds to the second
highest lambda value, indicating that this graph is considered the top-1 structure. The top-2 and top-3
structures correspond to the fourth highest and third highest lambda values, respectively.
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Evaluation Metrics for Top-K Structures
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Figure 14: Evaluation metrics for the Top-K structures.

Figure [T4]shows the evaluation metrics for the Top-K structures. Notably, the top-2 structure matches
the true skeleton structure, emphasizing the importance of considering multiple candidate structures

rather than relying on a single point estimate.

Comparison of Methods (d=5, n=100, K=3, Density=0.4)
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Figure 15: Comparison of predicted structures from other methods versus our Top-K approach.

Figure [I3]illustrates that all other methods predict the same structure, which corresponds to the top-1
structure identified by our method. This shows alignment of the top-1 candidate from our approach
with the outputs of existing methods.
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CACHACD,
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Figure 16: Output structure of the GES, PC, and BOSS algorithms.

In Figure we present the output structure obtained from standard algorithms such as GES, PC,
and BOSS. Notably, all three methods recover the same structure, capturing the edges between nodes
1-2 and 1-3 correctly. However, the additional edges between nodes 2—-3 and 2—4 present in the true
graph are not identified by these methods. This limitation underscores the potential of our approach
to recover more subtle structural dependencies that may be overlooked by traditional methods.

By setting 7* = 0.56 in our method, we obtain the Top-3 graph probabilities as [0.61, 0.22, 0.17].

The corresponding edge uncertainty matrix is:

0 1.00 100 0 O
0 0 039 022 0
0 O 0 0 O
0 O 0 0 O
0 O 0 0 O

We observe that the top-1 structure, as well as the predictions from other baseline methods, include
only the skeletal edges between nodes (1, 2) and (1, 3). However, our top-2 structure additionally
recovers the edges (2, 3) and (2, 4), which are ignored by other approaches. Notably, our uncertainty
quantification assigns a 22% probability to the top-2 graph—corresponding to the true structure—and
the edge uncertainty matrix shows that these additional edges have non-negligible probabilities (0.39
and 0.22, respectively), suggesting they cannot be completely dismissed. This highlights the value of
our approach in not only identifying high-confidence edges but also uncovering plausible yet subtle
connections that other methods might overlook. This helps achieve higher recall, sometimes at the
cost of lower precision, but overall the F1 score still dominates, demonstrating the robustness of our
method.

B TEMPERATURE SCALING FOR MEANINGFUL UNCERTAINTY

QUANTIFICATION
Proposition 1. Let P = {p1,p2,...,pK } be a discrete probability distribution over K outcomes,
ordered such that p1 > ps > --- > pxg =7 >0, and Zfil p; = 1. Let
K
H(P) := —Zpi Inp;, Hupin(K,7):= min H(P).
‘ P:pg=t
=1 P12 2PK
Then, choosing
1
TToK
ensures the entropy satisfies the lower bound
Hmin(Kv T) > 1
In K -2

i.e., at least half of the maximum possible entropy.

Proof. Consider the extremal distribution where one outcome has most of the mass and the remaining
K — 1 outcomes each have mass 7:

p=1-(K-1)1, pp=---=pg=r1.
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Substituting 7 = we have

1
cK”>
K-1 1 1

1

S T E T T
P cK c+cK

As K - o0, pp — 1 — % and the entropy becomes
Hpin(K,7) = —p1lnpy — (K — 1)7ln7T
K-1
c

=—pilnp; + (Inc+1In K).

Dividing by In K,

- + In K

Hypin(K,7)  —p1lnp; K —1 Inc
In K In K cK )

Taking K — oo, this ratio approaches % Thus, setting ¢ = 2 gives

Hmin(K7 T) 1

lim ——— = -
K—oo In K 2’
ensuring the entropy is at least half the maximum possible In K. This makes 7 = % a natural and
meaningful choice for preserving uncertainty. O

Temperature Scaling for Graph Uncertainty. Let {,C'jl, . ,Q\ K} denote the top-K candidate

graph structures corresponding to the solutions {B(\1), ..., B(Ax)}, ordered by increasing BIC
score. We define a temperature-scaled probability distribution over these graphs as:

exp (—% : BIC(E()\k)))
S vexp (~gh - BICBB() )

This softmax-like formulation assigns higher weight to graphs with lower BIC while introducing a
tunable smoothness via the temperature parameter 7' > 0. As 7' — 0, the distribution concentrates
on the best-scoring graph; as T' — oo, it approaches a uniform distribution.

P(Gr) =

To ensure meaningful contribution from not only the top-1 graph but also the remaining candidates in
the Top-K set, we enforce a minimal entropy constraint. Specifically, we require the entropy of this
distribution to be at least half of the maximum possible entropy, i.e.,

H(P) > %an.

This choice ensures that the distribution is not overly peaked and that even the K-th graph meaning-
fully contributes to the uncertainty quantification process. It provides a balance between confidence
in top-ranked structures and robustness through structural diversity.

Using Proposition we achieve this entropy lower bound by setting the tail probability 7 = P (QA K)

to
1

2K’
which, in turn, guides the choice of the temperature 7" via calibration on the BIC values. An empirical

plot of the constant (optimal) cin 7 = % across different values of K is shown in Figure , from
which we observe optimal c values between 2 and 4.

T =

C DETAILED DISCUSSION REGARDING ALGORITHM

C.1 CHOOSING K

Choosing the number of Top-K structures to retain along the solution path is important for identifying
a diverse and relevant set of candidate graphs.
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Optimal c vs K for Minimum Entropy Condition
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Figure 17: Optimal values of ¢ vs. number of graphs K to achieve desired entropy floor.

 Effect of Sample Size: As the sample size increases, the confidence in estimated structures
also increases. Therefore, a smaller X may be sufficient, since fewer candidates are likely
needed to cover the meaningful structural variations.

* Effect of Number of Nodes: As the number of nodes grows, the number of possible edges
increases rapidly. A larger K may help to capture a broader set of structural changes and
dependencies that emerge due to the increased model complexity.

* Effect of Graph Density: Denser graphs tend to have more transitions along the solution
path. Increasing K in such cases can help capture more of these edges.

* Dependence on e: The value of K does not directly depend on the grid size ¢, as long as €
is sufficiently small to capture all critical points along the solution path. Once the solution
path is well-resolved, increasing grid resolution further should not affect the necessary value
of K.

C.2 CHOOSING €

The parameter e controls the granularity of the \-grid along the regularization path. It determines
how finely the solution path is sampled and how many structural changes can be detected.

* Effect of Sample Size: While more samples improve the accuracy of the estimated edge
weights and the resulting structures, they do not directly affect the number of critical points
along the solution path. Therefore, the choice of € is largely independent of the sample size.

 Effect of Number of Nodes and Density: As the number of nodes or the density of the
graph increases, more structural changes are likely to occur along the path. In such settings,
a smaller € (i.e., finer grid) may be necessary to accurately capture the critical points where
these changes happen.

C.3 LIMITATION AND POTENTIAL SOLUTION

While our algorithm excels in recall and F1 score by capturing a wide range of plausible edges, this
often comes at the cost of lower precision for a higher number of variables. In contrast, other structure
learning algorithms may achieve higher precision but lower recall. This observation motivates a
potential hybrid approach: combining the high-precision edges identified by alternative methods with
the high-recall structures discovered through our Top-K solution path method. Such a hybrid model
could yield better overall structural accuracy and is a promising direction for future work.
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