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Abstract

In computational pathology, self-supervised trained foundation models (FM) surpass su-
pervised ones in scale and performance. However, the benchmarking of FMs remains a
challenge due to the diversity in tasks and evaluation methods. To address this, we intro-
duce eva1, an open-source framework for evaluating computational pathology FMs. eva is
designed to be modular and adaptable to both off-the-shelf and customized datasets, met-
rics, evaluation protocols and model architectures. We benchmark leading pathology FMs
across diverse downstream classification tasks, establishing the first public reproducible
pathology FM leaderboard and advocating for standardized FM evaluation practices.
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1. Introduction

Computational pathology, leveraging whole slide images (WSI), holds significant promise for
advancing medical diagnostics and disease understanding (Song et al., 2023; Raciti et al.,
2023). Yet, the cost of acquiring labeled WSIs for training supervised models, typically
limited to specific tasks, highlights the need for more versatile approaches (Guan and Liu,
2021). Foundation models (FMs), trained on large unlabeled datasets, emerge as a viable
solution. The embeddings produced by FMs exhibit strong generalization capabilities, en-
abling them to perform well across a range of downstream tasks (Caron et al., 2021; Oquab
et al., 2024). However, their non-interpretable nature poses challenges in domain-specific
applicability, often leading to unclear and non-reproducible evaluation and benchmark-
ing practices. Despite the availability of public benchmark datasets (Veeling et al., 2018;
Kather et al., 2019; Aresta et al., 2019; Wei et al., 2021), standardization of metrics (Reinke
et al., 2022), and evaluations (Laleh et al., 2021; Chen et al., 2024; Vorontsov et al., 2024;
Kang et al., 2023), there remains a significant gap: the absence of a cohesive, open-source
framework that integrates these elements into a unified, reproducible evaluation process.

To this end, we introduce eva: an open-source framework for standardized, reproducible
and fair FM-evaluation across diverse pathology tasks. eva has built-in support for numer-
ous publicly available computational pathology datasets and models and is adaptable to
customization. Through this work, we show how eva seamlessly facilitates consistent pathol-
ogy FM evaluation, resulting in reliable outcomes regardless of model size or architecture.
This effort contributes to the development of a reproducible and transparent public model
leaderboard of pathology FMs. Ongoing work includes incorporating oncology-related tasks
for deeper insights into FM capabilities.

∗ All authors contributed equally. Names are ordered alphabetically.
1. eva is released under the Apache 2.0 license and is available at https://kaiko-ai.github.io/eva.
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2. Setup

2.1. Linear evaluation protocol
Table 1: Linear evaluation protocol.

Data transforms Scale and Crop
Backbone frozen
Hidden layers None
Dropout 0.0
Activation function None
Number of steps 12500
Batch size 4096
Learning rate 0.01
End learning rate 0.0
Early stopping [Number of steps] * 5%
Optimizer SGD
Momentum 0.9
Weight Decay 0.0
Nesterov momentum True
LR Schedule Cosine without warmup

To evaluate the learned visual representa-
tions of FMs on patch-level datasets, we fol-
low the widely used linear evaluation proto-
col (Kolesnikov et al., 2019; Chen et al., 2020;
Caron et al., 2021; Vorontsov et al., 2024), where
a linear classifier is trained on the embeddings of
a frozen FM backbone, and the validation/test
accuracy is used as a proxy for representation
quality. Through this method, we aim to de-
termine if the embedding space rendered by the
FMs captures enough information to solve di-
verse downstream tasks.

For consistency with prior literature and fair evaluation, we specify a set of simple
and robust default parameters to fit the projection head, avoiding bias towards specific
FM backbone architectures. In particular, we follow a configuration where an initial low
learning rate gradually diminishes to zero across numerous training iterations to ensure
convergence (Chen et al., 2020; Caron et al., 2021; Vorontsov et al., 2024). For smaller
datasets, where the proposed batch size is larger than the training dataset (e.g. BACH),
we reduce the batch size and linearly scale the learning rate accordingly. For further details
about the configuration, refer to Table 1.

While eva provides a broad range of standard metrics, in this article we report balanced
accuracy throughout the provided benchmarks. This choice aims to prevent number over-
flow and improve readability, while ensuring a fair representation of model performance,
particularly for class-imbalanced datasets. Additionally, we report the average over five
independent fitting runs using different seeds along with their standard deviation.

2.2. Datasets

We employ four widely-used patch-level classification benchmarks that encompass varying
numbers of samples, magnifications, and tissue types, providing valuable insight into the
generalizability and overall performance of a FM. A summary of their distinct characteristics
is outlined in Table 2.

Consistent with common benchmark practices for self-supervised models evaluation (He
et al., 2019; Caron et al., 2021), the linear head is trained on the embeddings of the training
set, evaluated on the validation, and where applicable, on the test (e.g. PCam). All image
patches undergo an identical sequence of transformations: the larger image dimension is
scaled to 224 before being center cropped to a 224×224 patch, ensuring the original aspect
ratio is maintained without distortion. Finally, the pixel values are normalized with the
same normalization constants applied during training.
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Table 2: Summary of patch-level benchmarks classification datasets.
Dataset # patches size magnification (µm/px) classes tissue type

BACH (Aresta et al., 2019) 400 2048×1536 20× (0.42 µm/px) 4 Breast
CRC (Kather et al., 2019) 107,180 224×224 20× (0.50 µm/px) 9 Colorectal
MHIST (Wei et al., 2021) 3,152 224×224 5× (2.00 µm/px)2 2 Colorectal
PCam (Veeling et al., 2018) 327,680 96×96 10× (0.97 µm/px)2 2 Breast

3. Leaderboard

We utilized eva to benchmark a set of open-source models on patch-level pathology tasks.
The resulting scores are presented in Table 3. Notably, pathology image pre-trained FMs
(below the dashed line) consistently outperformed those based on common images (above the
dashed line) across all datasets. The leaderboard shows that there is no consistent winner
across all benchmark datasets, emphasizing the importance of measuring performance over a
diverse set of downstream tasks when developing FMs. Finally, the consistently low standard
deviation values indicate that the linear heads converged under the defined configuration,
validating the suitability of the linear protocol for evaluation purposes.

Table 3: Linear probing evaluation of FMs, averaged balanced accuracy (and standard de-
viation) over five runs with different random initializations for each dataset.

Model BACH CRC MHIST PCam/val PCam/test

ViT-S16 (random init weights) 0.410 (±0.009) 0.617 (±0.008) 0.501 (±0.004) 0.753 (±0.002) 0.728 (±0.003)
DINO ViT-S16 (Caron et al., 2021) 0.695 (±0.004) 0.935 (±0.003) 0.831 (±0.002) 0.864 (±0.007) 0.849 (±0.007)
DINO ViT-B8 (Caron et al., 2021) 0.710 (±0.007) 0.939 (±0.001) 0.814 (±0.003) 0.870 (±0.003) 0.856 (±0.004)
DINOv2 ViT-L14 (Oquab et al., 2024) 0.707 (±0.008) 0.916 (±0.002) 0.832 (±0.003) 0.873 (±0.001) 0.888 (±0.001)

DINO(p = 16) (Kang et al., 2023) 0.801 (±0.005) 0.934 (±0.001) 0.768 (±0.004) 0.889 (±0.002) 0.895 (±0.006)

Phikon (Filiot et al., 2023) 0.725 (±0.004) 0.935 (±0.001) 0.777 (±0.005) 0.912 (±0.002) 0.915 (±0.003)
UNI (Chen et al., 2024) 0.814 (±0.008) 0.950 (±0.001) 0.837 (±0.001) 0.936 (±0.001) 0.938 (±0.001)
DINO ViT-S16 (kaiko.ai et al., 2024) 0.797 (±0.003) 0.943 (±0.001) 0.828 (±0.003) 0.903 (±0.001) 0.893 (±0.005)
DINO ViT-S8 (kaiko.ai et al., 2024) 0.834 (±0.012) 0.946 (±0.002) 0.832 (±0.006) 0.897 (±0.001) 0.887 (±0.002)
DINO ViT-B16 (kaiko.ai et al., 2024) 0.810 (±0.008) 0.960 (±0.001) 0.826 (±0.003) 0.900 (±0.002) 0.898 (±0.003)
DINO ViT-B8 (kaiko.ai et al., 2024) 0.865 (±0.019) 0.956 (±0.001) 0.809 (±0.021) 0.913 (±0.001) 0.921 (±0.002)
DINOv2 ViT-L14 (kaiko.ai et al., 2024) 0.870 (±0.005) 0.930 (±0.001) 0.809 (±0.001) 0.908 (±0.001) 0.898 (±0.002)

4. Conclusion & Future Work

We introduced eva, a versatile evaluation framework designed for easy, reliable and re-
producible pathology FM benchmarking. It inherently supports a diverse range of public
datasets, models, and a variety of metrics, while also offering flexibility for incorporating
custom ones. All results in table 3 can be reproduced3. We are currently working on
adding support for slide-level benchmark datasets together with segmentation tasks and
other oncology-relevant modalities such as radiology.
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2. downsampled from 40× (0.25 µm/px)
3. https://kaiko-ai.github.io/eva/latest/user-guide/advanced/replicate_evaluations/
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