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Abstract
Generative models have recently achieved remarkable success and widespread adoption in
society, yet they often struggle to generate realistic and accurate outputs. This challenge
extends beyond language and vision into fields like engineering design, where safety-critical
engineering standards and non-negotiable physical laws tightly constrain what outputs are
considered acceptable. In this work, we introduce a novel training method to guide a
generative model toward constraint-satisfying outputs using ‘negative data’ – examples of
what to avoid. Our negative data generative model (NDGM) formulation easily outperforms
classic models, generating 1/6 as many constraint-violating samples using 1/8 as much data
in certain problems. It also consistently outperforms other baselines, achieving a balance
between constraint satisfaction and distributional similarity that is unsurpassed by any other
model in 12 of the 14 problems tested. This widespread superiority is rigorously demonstrated
across numerous synthetic tests and real engineering problems, such as ship hull synthesis
with hydrodynamic constraints and vehicle design with impact safety constraints. Our
benchmarks showcase both the best-in-class performance of our new NDGM formulation
and the overall dominance of NDGMs versus classic generative models. We publicly release
the code and benchmarks at https://github.com/Lyleregenwetter/NDGMs.

1 Introduction
Generative models have demonstrated impressive results in vision, language, and speech. However, even with
massive datasets, they struggle with precision, often generating physically impossible images or factually
incorrect text responses. These mistakes are examples of constraint violation; ideally, generative models
would be constrained to only generate valid ‘correct’ samples. While constraint violation is a nuisance
in image or text synthesis, it is a paramount concern in domains like engineering design with high-stakes
(including safety-critical) constraints. Generative models synthesizing designs for car or airplane components,
for example, may be subject to geometric restrictions (such as colliding components), functional requirements
(such as load-bearing capacity), industry standards, and manufacturing limitations.
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(a) Positive datapoints are
constraint-satisfying exam-
ples that generative models
should mimic.

(b) Negative datapoints are
constraint-violating exam-
ples that generative models
should avoid.

(c) Generative models are
classically trained using
only positive data, causing
them to ignore constraints.

(d) Negative data helps
generative models satisfy
constraints through tighter
density estimates.

Figure 1: Negative data helps generative models learn real-world data distributions, which often have gaps
in their support caused by constraints. For example, by examining bike frames with disconnected components,
a model can better learn to generate geometrically valid frames.

As generative models are increasingly applied to engineering problems, their blatant violation of objective,
ubiquitous, and non-negotiable constraints becomes increasingly problematic. We assert that this constraint-
violation issue is largely attributable to the fact that generative models are classically shown only ‘positive’
(constraint-satisfying) data points during training, and are never exposed to ‘negative’ (constraint-violating)
data points to avoid. Completely satisfying constraints using this training approach is equivalent to learning a
binary classification problem with only one class present in the data, a challenging task. Instead, by studying
negative data in addition to positive data, generative models can better avoid constraint-violating samples
during generation (Figure 1). This aligns with their distribution-matching objective since negative datapoints
should have near-zero density in the original real-world distribution that the model is trying to mimic. We
will refer to models that train using negative data as Negative-Data Generative Models, or NDGMs.

Although many existing generative modeling formulations, such as binary class-conditional models, can be
simply adapted into NDGMs, specialized NDGMs have also been proposed. The prior state-of-the-art (SOTA)
method suffers from two major shortcomings: It never specifically learns the density ratio between the positive
and negative data and it often suffers from mode collapse. We conceptualize and test a new NDGM that
overcomes these issues through the use of a multi-class discriminative model that learns individual density
ratios and a Determinantal-Point-Process (DPP)-based loss that encourages diverse sample sets. Through
extensive benchmarking, we demonstrate that our new formulation outperforms both simple baselines and
the current state-of-the-art NDGMs on highly non-convex test problems, a variety of real-world engineering
tasks, and high-dimensional image-based tasks. Our key contributions are summarized below.

(i) We introduce a new NDGM which significantly outperforms the constraint satisfaction of vanilla
generative models while addressing mode collapse issues in current NDGMs. These advancements
are enabled by estimating individual density ratios and introducing a diversity-based training loss.

(ii) We evaluate our model on an expansive set of benchmarks including specially-constructed test
problems, authentic engineering tasks featuring real-world constraints from engineering standards,
and a final high-dimensional topology optimization study. We compare our model to 10 baseline
training formulations spanning adversarial models, variational autoencoders, and diffusion models.

(iii) We demonstrate that our model frequently achieves an unmatched tradeoff between constraint
satisfaction and distribution learning, in some cases attaining 95-98% lower constraint violation than
classic generative models, while achieving top-three distributional similarity scores.

(iv) We show that our NDGM model can significantly outperform vanilla models, generating 1/6 as many
constraint-violating samples using only 1/8 as much data. This makes our model an excellent choice
in data-constrained problems involving constraints.
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2 Background
In this section, we discuss constraint satisfaction in generative models for engineering design and then introduce
divergence minimization in generative models. For more background and related work, see Appendix B.

2.1 Constraints in Engineering and Design
Constraints are ubiquitous in design. A designer creating ship hulls, for example, must adhere to a medley of
geometric constraints, performance requirements, and safety regulations from authoritative bodies. Generating
constraint-satisfying designs can be exceedingly difficult. As many practitioners turn to data-driven generative
models to tackle engineering problems (Regenwetter et al., 2022a), this difficulty remains (Woldseth et al.,
2022; Regenwetter et al., 2023). For example, even a generative model that sees 30k examples of valid ship
hulls can only generate valid hulls with a 6% success rate in our experiments.

The overwhelming majority of deep generative models in design do not actively consider constraints (Woldseth
et al., 2022; Regenwetter et al., 2022a), despite constraint satisfaction being an explicit goal in many of
the design problems they address (Oh et al., 2019; Nie et al., 2021; Bilodeau et al., 2022; Chen et al., 2022;
Chen & Fuge, 2019; Cheng et al., 2021). Several engineering design datasets feature constraint-violating
designs (Regenwetter et al., 2022b; Bagazinski & Ahmed, 2023; Giannone & Ahmed, 2023; Mazé & Ahmed,
2023), and many others have checks for validity (Whalen et al., 2021; Wollstadt et al., 2022), allowing datasets
of constraint-violating (negative) designs to be curated. In some cases, datasets of positive examples are even
created through search by rejecting and discarding negative samples (Bagazinski & Ahmed, 2023; Regenwetter
et al., 2022b), making negative data essentially free. In any problem where negative data is available or can
be generated, NDGMs can be applied.

2.2 Divergence Minimization in Generative Models
Before discussing divergence minimization in NDGMs, we first discuss divergence minimization in conventional
generative models. Let pp(x) be the (positive) data distribution and pθ(x) the distribution sampled by the
generative model. Given N samples from pp(x), the objective of generative modeling is to find a setting
θ∗ of θ, such that, for an appropriate choice of discrepancy measure, p∗

θ ≈ pp. A common choice for this
discrepancy measure is the Kullback–Leibler or KL divergence:

KL[pθ∥pp] =
∫
pθ(x)

[
log pθ(x)

pp(x)

]
dx. (1)

To minimize the discrepancy, we find θ∗ as the solution to the following optimization problem:

θ∗ = arg min
θ

KL[pθ∥pp]. (2)

In practice, direct optimization of Eq. (2) is often intractable. As such, it is common in deep generative
modeling to learn θ by using either a tractable lower bound to a slightly different variant of Eq. (2) (Kingma
& Welling, 2013; Burda et al., 2015; Ho et al., 2020; Sønderby et al., 2016) or by using plug-in or direct
estimators of the divergence measure (Casella & Berger, 2002; Sugiyama et al., 2012a; Gutmann & Hyvärinen,
2010; Srivastava et al., 2017; Goodfellow et al., 2014; Srivastava et al., 2023; Poole et al., 2019). In both
of these cases, under certain conditions, as N → ∞, theoretically, it holds that, θ → θ∗. However, since
N is limited, there remains a finite discrepancy between the model and data distributions. This mismatch
often manifests in pθ allocating high probability mass in regions where pp may not have significant empirical
support. In domains such as engineering design, where invalid (negative) designs tend to be very close to the
valid (positive) designs, this leads to the generation of invalid designs with high probability. This lack of
precision underpins the relatively limited success of deep generative models in the engineering design domain
(Regenwetter et al., 2023).

Divergence minimization in GANs. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
Arjovsky et al., 2017; Mohamed & Lakshminarayanan, 2016; Srivastava et al., 2017; Nowozin et al., 2016) are
a powerful framework for generating realistic and diverse data samples. GANs have two main components:
a generator fθ, which generates samples according to the density pθ, and a discriminator fϕ, which is a
binary classifier. The generator learns to generate synthetic data samples by transforming random noise into
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meaningful outputs, while the discriminator aims to distinguish between real and generated samples. The
standard GAN loss can be written as:

L(θ, ϕ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))]. (3)

Training a GAN involves iterating over minθ maxϕ L(θ, ϕ). GANs can also be interpreted in terms of
estimating the density ratio (Gutmann & Hyvärinen, 2010; Srivastava et al., 2017) between the data and
the generated distribution r(x) = pp(x)/pθ(x). This ratio can be estimated by a discriminative model as
rϕ = fϕ(x)/(1 − fϕ(x)) and rϕ = 1 gives us pθ = pp. The optimal discriminator prediction and generator
distribution are:

fϕ(x) = pp(x)
(pθ(x) + pp(x)) , p

∗
θ(x) = pp(x). (4)

Divergence minimization in other generative models. Many other types of generative models similarly
minimize divergence between pθ and pp. These models include popular likelihood-based models like Variational
Autoencoders (VAEs) (Kingma & Welling, 2013) and Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020). We will not discuss the mathematics behind divergence minimization for these likelihood-based
models, but we do benchmark several variants in our results. In general, we refer to unaugmented GANs,
VAEs, and DDPMs as ‘vanilla’ models throughout the paper.

2.3 Negative-Data Generative Models (NDGMs)
In this section, we discuss the NDGM framework. We explain how generative models can be adjusted to
exploit negative data to improve constraint satisfaction. Let pn denote the negative distribution i.e., the
distribution of constraint-violating datapoints. A key assumption in the negative data formulation is that pp
and pn have nearly mutually exclusive support. Instead of training using only the positive distribution pp,
we now seek to train a generative model using both pp and pn. In this section, we discuss several existing
methods to do so. These methods range from simple baselines like auxiliary classifiers to state-of-the-art
formulations like discriminator overloading.

2.3.1 Class Conditioning
Class conditional modeling is a simple approach to incorporate constraints into generative models, which is
popular in many design generation problems (Nie et al., 2021; Behzadi & Ilieş, 2021; Mazé & Ahmed, 2023;
Malviya, 2020; Heyrani Nobari et al., 2021). In conditional modeling, a generative model typically conditions
on the constraints denoted as c and learns a conditional distribution, p(x|c), where x represents the generated
output. ‘Off-the-shelf’ class-conditional models can be simple NDGMs, where the positive and negative
data each constitute one class. During inference, the model attempts to satisfy constraints by generating
conditionally positive samples. Broadly speaking, the negative data formulation for generative models can be
seen as a specific case of class-conditional generation. However, as we demonstrated in Appendix A, generic
class-conditional training formulations for generative models are not as effective as specialized NDGMs.

2.3.2 Classifier-Augmented Generative Models
Another common approach to actively satisfy constraints using generative models involves training a supervised
model to predict constraint satisfaction. After training, this supervised model is subsequently queried during
generative model training or inference. Often, this model predicts constraint violation likelihood, though it
can also predict intermediates that are combined in a more complex constraint check (Wang et al., 2022).
Typically, this classifier fψ learns:

fψ(x) = pn(x)
pn(x) + pp(x) . (5)

This frozen classifier can be incorporated into the training of a generative model by adding an auxiliary loss,
LPC to the generative model’s loss, LGM to calculate a total loss, LTot = LGM + λLPC , as in (Regenwetter
& Ahmed, 2022). Here, λ is some weighting parameter and LPC is expressed as:

LPC = Epθ(x)[log fψ(x)]. (6)

Pre-trained classifiers for constraints can also be applied during inference in certain models, such as in
diffusion model guidance (Mazé & Ahmed, 2023; Giannone & Ahmed, 2023). They can also work alongside a
trained generative model as a rejection-sampling postprocessing step, which is discussed in Appendix D.
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2.3.3 Discriminator Overloading (DO)
Discriminator overloading is a technique to directly incorporate negative data into GAN model training.
This formulation was proposed in two of the first papers to train a generative model using both positive and
negative data (though we have made slight modifications for generality): Rumi-GAN (Asokan & Seelamantula,
2020) and Negative Data Augmentation GAN (NDA-GAN) (Sinha et al., 2021). We refer to these formulations
as ‘discriminator overloading’ since the discriminator is ‘overloaded’ by learning to discriminate between (1)
positives and (2) fakes or negatives. As such, the discriminator estimates:

fϕ(x) = pp(x)
λpθ(x) + (1 − λ)pn(x) + pp(x) , (7)

with λ being a weighting parameter. As usual, the generator attempts to generate samples that are classified
as real, in this case indicating that they look similar to positive data and dissimilar to negative data. The
loss is expressed as:

L(θ, ϕ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))] + Epn(x)[1 − log(fϕ(x))]. (8)

In our benchmarks, we refer to GAN models trained using discriminator overloading as GAN-DO models.
Discriminator overloading is effective and can be considered the existing state-of-the-art in NDGMs. However,
as we will show, discriminator overloading has significant shortcomings which we address in our new training
formulation.

3 Methodology
NDGMs suffer from a widespread tendency toward mode collapse seen across a variety of baselines. Critically,
the state-of-the-art GAN-DO training formulation is particularly prone to this issue due to its conflation
of fakes and negatives during training. To address these shortcomings, we propose a new NDGM training
formulation that introduces two new innovations: First, and central to our approach, we propose to learn the
ratios between the positive, negative, and fake distributions individually, rather than conflating the negatives
and fakes. Second, we add an auxiliary diversity-based training objective to NDGM training which directly
mitigates mode collapse. We describe these innovations in detail below.

3.1 Learning Individual Density Ratios Using a Multi-Class Discriminator
GAN-DO learns a density ratio between pp and an amalgamation of pn and pθ. Rather than conflating
the negative data and fake samples, we instead advocate to learn pairwise density ratios between the three
distributions. Noting that multi-class classifiers are strong density ratio estimators (Srivastava et al., 2023),
we propose to learn these ratios using a multi-class discriminator. This multi-class discriminator model learns
to discriminate three classes: positive, negative, and fake, thereby learning their pairwise density ratios:

fϕ,c(x) = pc(x)
pp(x) + pθ(x) + pn(x) ∀ c ∈ p, n, θ. (9)

Note that fϕ,p is a reweighted version of Eq. 7. Though this multi-class formulation is similar to discriminator
overloading, instead of showing the discriminator a weighted amalgamation of fakes and negatives (as in DO),
the multi-class discriminator instead treats fakes and negatives as separate classes, and can potentially refine
its knowledge by distinguishing them. Complemented by a generator model which tries to maximize fϕ,p(xθ),
this classifier fulfills the role of the discriminator in an adversarial training formulation. Notably, fϕ,p/fϕ,n
estimates pp/pn, which is never directly learned in the discriminator overloading formulation.

We also note that there are numerous other solutions to learn density ratios between positive and negative
data distributions. For example, a direct estimator of pp/pn can operate alongside the classic discriminator in
a two-discriminator NDGM variant. We discuss the general motivation for density ratio learning in NDGMs
in Appendix B and the mathematical formulation behind the double discriminator variant in Appendix E.

3.2 Addressing Mode Collapse Using a Diversity-Based Loss
When augmented with validity-based training objectives, NDGMs tend to collapse in valid regions of the
sample space. This effectively allows them to excel in validity and precision, but struggle with recall and
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diversity. This tendency arises because a conservative NDGM will avoid regions of the distribution near
the constraint boundary, resulting in incomplete coverage. One approach to improve recall is to explicitly
encourage diversity of generated samples. Diversity is often a desired goal in generative modeling for
engineering design applications (Regenwetter et al., 2023). As Chen & Ahmed (2021a) note, incorporating
diversity can also help models generalize and avoid mode collapse. Determinantal Point Process (DPP)-based
diversity measures (Kulesza et al., 2012) have been used in a variety of generative applications in design (Chen
& Ahmed, 2021b; Nobari et al., 2021; Regenwetter & Ahmed, 2022) and elsewhere (Elfeki et al., 2019; Mothilal
et al., 2020).

The DPP loss is calculated using a positive semi-definite DPP kernel S. Entries of this matrix are calculated
using some modality- and problem-dependent similarity kernel, such as the Euclidean distance kernel.
The (i, j)th element of S can be expressed in terms of the similarity kernel k and samples xi and xj as
Si,j = k(xi, xj), and the loss as:

Ldiv(x) = − 1
B

logdet(S(x)) = − 1
B

B∑
i=1

log λi, (10)

where λi is the i-th eigenvalue of L and B is the number of samples in the batch. The loss is incorporated by
appending it to the overall loss term of the generative model LGM :

LTot(x) = LGM (x) + γ Ldiv(x), (11)

where γ is a weighting parameter modulating the diversity loss contribution. Adding this loss to NDGMs can
help the generative model achieve better coverage, an observation demonstrated in our experiments below.

3.3 GAN with Multi-Class Discriminator and Diversity Loss
We combine the above innovations into a new training formulation called GAN-MDD (Multiclass Discrimi-

nator + Diversity). The generator trains to generate samples which minimize:

Lθ(xθ, ϕ) = fϕ,p(xθ) + γ Ldiv(xθ). (12)

To illustrate the effectiveness of this specific formulation, we include ablation studies on diversity-augmented
generation in Section 4.3. Training pseudocode is included in Appendix C. In the upcoming Section 4, we
extensively benchmark GAN-MDD against baseline models and GAN-DO on a variety of problems.

4 Experiments and Results
We now present experiments on (i) 2D densities, where we benchmark 12 different models including ours,
the SOTA, baseline NDGMs, and vanilla models; (ii) A dozen diverse engineering tasks featuring real-world
constraints from regulatory authorities and engineering standards, where we demonstrate the potency of our
approach (iii) a high-dimensional free-form topology optimization problem where we explore the impact of
negative data quality. We also perform ablation studies and data-efficiency studies. We include significant
additional visualization and statistical testing for experimental results in Appendix A. Details on datasets
and model training are included in Appendix F.

4.1 Extensive Benchmarking on 2D Densities with Constraints
We first construct a pair of 2D densities as easy-to-visualize tests for NDGM models to visually showcase their
characteristics. Despite being low-dimensional and relatively structured, these problems are very challenging
for vanilla models and NDGMs alike.

Models. We test 11 variants of GAN, VAE, and DDPM models. Among these are: three vanilla models
(GAN, VAE, DDPM), trained only on positive data; three class conditional models (GAN, VAE, DDPM),
trained on both datasets in a binary class conditional setting as in Section 2.3.1; three models augmented with
a frozen pre-trained classifier to steer models during training (GAN, VAE) or during inference using guidance
(DDPM), as in Section 2.3.2; GAN with discriminator overloading as in NDA-GANs (Sinha et al., 2021) and
Rumi-GANs (Asokan & Seelamantula, 2020) (GAN-DO) (Section 2.3.3); Our multi-class-discriminator GAN
with diversity (GAN-MDD). Each model is tested six times.
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(a) Positive Data (b) Negative Data (c) DDPM (d) DDPM + Guidance

(e) VAE (f) GAN (g) GAN-DO (SOTA) (h) GAN-MDD (Ours)

Figure 2: Generated distributions from select generative models on Problem 1, a mixture of gaussians with
invalid region in the center of each mode. Positive data points and samples are shown in blue and negative
ones in black. Our proposed NDGM model, GAN-MDD learns the distribution most faithfully.

(a) Positive Data (b) Negative Data (c) DDPM (d) DDPM + Guidance

(e) VAE (f) GAN (g) GAN-DO (SOTA) (h) GAN-MDD (Ours)

Figure 3: Generated distributions from select generative models on Problem 2, a uniform distribution with
many circular invalid regions. Positive data points and samples are shown in blue and negative ones in black.
Our proposed NDGM model, GAN-MDD learns the distribution most faithfully.
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Figure 4: Comparison of F1 scores (↑) and invalidity rates (↓) for benchmarked models on Problem 1 (left)
and Problem 2 (right). Mean scores over six instantiations are plotted. Scores closer to the bottom left are
more optimal. Triangular markers indicate that the score lies off the plot in the indicated direction. Class
conditioning, classifier loss, and guidance are denoted with (CC), (CLF), and (Guided), respectively.

Metrics. We seek to measure each model’s reliability in constraint-satisfaction, distribution learning ability,
and ability to avoid mode collapse. We therefore score each model on three metrics: 1) Invalidity – the
fraction of generated samples that violate the constraints (negative samples). 2) F1 score for generative
models, a common distributional similarity metric proposed in Sajjadi et al. (2018). 3) DPP Diversity score, a
metric which highlights mode collapse and is measured as described in Section 3.2. The ideal model maximizes
F1 and minimizes invalidity and DPP diversity.

Results. Figures 2 and 3 plot the datasets and the generated distributions of a subset of the tested models.
All models are plotted in Figures 13 and 14 in Appendix A. Compared to baseline models, our GAN-MDD
model learns the best estimate of the data distribution while avoiding constraint-violating regions.

Figure 4 plots mean F1 scores and invalidity rates on both problems for all models. The scores confirm
that our GAN-MDD achieves an optimal tradeoff between statistical similarity and constraint satisfaction.
Table 7 contains the numerical scores, with mean and standard deviations over the six training runs, as well
as statistical significance testing using 2-sample t-tests. Our GAN-MDD model significantly outperforms
the state-of-the-art GAN-DO in distributional similarity and diversity while achieving similar constraint-
satisfaction performance.

4.2 Is Negative Data More Valuable than Positive Data?
Given an infinite amount of data, model capacity, and computational resources, generative models can
theoretically approach an exact recovery of the underlying data distribution, pp. In practical scenarios,
however, data and computational throughput are limited, particularly in fields like engineering design and
scientific research. Thus, simply increasing the volume of data is not a viable strategy to improve constraint
satisfaction. Fortunately, we find that NDGMs can be significantly more data-efficient than vanilla generative
models, giving them a significant advantage in data-constrained domains.

In Table 1 and Figure 5, we explore how the number of positive and negative training datapoints (Np and
Nn, respectively) affect invalidity rates on the 2D test problems. Full scores with standard deviations and
statistical tests are included in Table 8. To remove confounding factors, we benchmark a fixed-size GAN-MDD
model without diversity loss (note: GAN-MDD is equivalent to a vanilla GAN when trained with no negative
data). We test four model instantiations per dataset mixture.
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Table 1: Study of invalidity rates for GAN-MDD
trained with different numbers of positive datapoints
(Np) and negative datapoints (Nn). Note that GAN-
MDD without negative data (Nn = 0) trains as a vanilla
GAN. Diversity loss is turned off. Scores are averaged
over four instantiations. Lower is better. NDGMs can
generate significantly fewer constraint-violating samples,
even when trained on orders of magnitude less data.

Problem 1
Np = 1K Np = 4K Np = 16K

Nn = 0 10.7% 11.6% 11.9%
Nn = 1K 2.0% 0.7% 1.5%
Nn = 4K 0.5% 0.5% 0.5%
Nn = 16K 0.5% 0.7% 0.6%

Problem 2
Np = 1K Np = 4K Np = 16K

Nn = 0 6.0% 3.2% 3.3%
Nn = 1K 2.3% 1.6% 1.9%
Nn = 4K 0.6% 0.7% 0.7%
Nn = 16K 0.5% 0.2% 0.2%

Figure 5: Comparison of invalidity rate (↓) and
number of datapoints (↓) under various mixtures of
positive and negative data on Problem 2. Points
are labeled using their proportion of negative data.
Any amount of negative data tested improves per-
formance. Interestingly, a small proportion of nega-
tive data (20%) yields better constraint satisfaction
than higher proportions in this problem.

We find that for pure positive datasets, adding more data yields diminishing returns, while mixing in negative
data drastically improves constraint satisfaction. For example, in Problem 1, with Np = 1K, Nn = 1K,
GAN-MDD generates 1/6 as many invalid samples with 1/8 as much data compared to Np = 16K, Nn = 0.
On Problem 2 with Np = 4K, Nn = 1K, GAN-MDD generates 1/5 as many invalid samples with 1/3 as
much data compared to Np = 16K, Nn = 0. Since NDGMs can be significantly more data-efficient than
vanilla models, practitioners seeking to improve their generative models may attain much more value by
collecting even a small amount of negative data, rather than additional positive data. This study also prompts
an interesting research question: What is the optimal ratio of positive and negative data? A rigorous answer,
though certainly problem dependent, could lead to more efficient dataset generation and curation.

4.3 Ablation Study: Examining the Effect of Diversity Loss
In many negative data settings, a diversity-based training objective can serve to modulate the tradeoff
between constraint satisfaction and distributional similarity. To showcase this, we examine the performance
of GAN-MDD over a sweep of diversity loss weights (γ from Eq. 11). Simultaneously, we examine the
performance of GAN-DO augmented with our DPP-based diversity loss. These experiments illustrate the
effect of the diversity loss in modulating the tradeoff between constraint satisfaction and distributional
similarity. They also serve as an experimental ablation study to confirm the effect of our two NDGM
innovations: the multi-class discriminator (versus discriminator overloading) and the diversity-based loss.

We visually showcase distributions generated by GAN-MDD and GAN-DO under different weights of γ in
Figures 6 and 7. As expected, higher diversity yields better distributional similarity but poorer constraint
satisfaction in both models across both problems. GAN-MDD generates very neat distributions with higher
diversity, creating the most visually similar sampled distribution compared to the ground-truth distribution.
In contrast, GAN-DO never truly captures the ground truth distribution, despite overcoming its more
egregious distribution collapse issues.
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(a) γ = 0.0 (b) γ = 0.1 (c) γ = 0.2 (d) γ = 0.0 (e) γ = 0.1 (f) γ = 0.2

Figure 6: Generated distributions from by our GAN-MDD for Problem 1 (a-c) and Problem 2 (d-f),
demonstrating effect of diversity loss weight, λ. Diversity weight elegantly modulates the tradeoff between
distributional similarity and constraint satisfaction.

(a) γ = 0.0 (b) γ = 0.1 (c) γ = 0.2 (d) γ = 0.0 (e) γ = 0.1 (f) γ = 0.2

Figure 7: Generated distributions from the baseline GAN-DO for Problem 1 (a-c) and Problem 2 (d-f),
demonstrating effect of diversity loss weight, λ. Although adding diversity loss eases mode collapse issues,
GAN-DO with large diversity weight struggles with high invalidity.

Figure 8: Comparison of GAN-MDD and GAN-DO invalidity rates (↓) and F1 scores (↑) for a variety
of diversity weights on Problem 1 (left) and Problem 2 (right). Gray markers indicate scores for other
benchmarked models. Mean scores over six instantiations are plotted. Scores closer to the bottom left are
more optimal. Triangular markers indicate that the score lies off the plot in the indicated direction. Exact
scores are included in Table 9.

We present a summary of numerical scores in Figure 8, with full scores in Table 9. These scores illustrate
GAN-MDD’s widespread dominance across a variety of diversity weights. Across all weights tested, GAN-
MDD achieves significantly better distributional similarity scores than GAN-DO. Furthermore, for every
nonzero diversity weight, GAN-MDD achieves significantly better constraint satisfaction.
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4.4 Negative Data Generative Models Excel in Engineering Tasks
Generative models are commonly used to tackle engineering problems with constraints (Oh et al., 2019; Nie
et al., 2021), but are often criticized for their inability to satisfy them (Woldseth et al., 2022; Regenwetter
et al., 2023). To assess how NDGMs fare in real engineering problems, we have curated a benchmark
of a dozen diverse engineering tasks, which are discussed in detail in Appendix F. These problems span
numerous engineering disciplines including assorted industrial design tasks (compression spring, gearbox, heat
exchanger, pressure vessel), structural and material design tasks (Ashby chart, cantilever beam, reinforced
concrete, truss, welded beam), and several complex high-level design problems: Ship hulls with hydrodynamic
constraints; bike frames with loading requirements; automobile chassis with performance requirements in
impact testing. A variety of constraints are applied, including engineering standards from authoritative
bodies like the American Concrete Institute (ACI), the American Society of Mechanical Engineers (ASME),
and the European Enhanced Vehicle-Safety Committee (EEVC). As a select example, we visualize several
positive and negative datapoints from the FRAMED bike frame dataset Regenwetter et al. (2022b) in Fig. 9.

(a) Constraint-satisfying (positive) bike frames (b) Constraint-violating (negative) bike frames

Figure 9: Example visualization for bike frame engineering problem. The FRAMED bike frame dataset
describes a 37-dimensional 3D parametric CAD problem that defines dozens of geometric constraints
(disconnected components, negative tube thickness, etc.). Vanilla generative models generate a variety of
constraint-violating bikes, while NDGMs like GAN-MDD reliably generate valid bikes.

Table 2: Invalidity rates, F1 Scores, and diversity scores for 12 engineering datasets. We benchmark a
vanilla GAN, a GAN with discriminator overloading (DO), and a GAN with a multi-class discriminator and
diversity loss (MDD). Best models are underlined. The number of models beaten in pairwise tests is totaled
in the last row. Lower invalidity rates and diversity scores are better, while higher F1 scores are better.

Invalidity (%) ( ↓ ) F1 Score ( ↑ ) Diversity Score ( ↓ )

Dataset GAN
(base)

DO
(sota)

MDD
(ours)

GAN
(base)

DO
(sota)

MDD
(ours) GAN DO

(sota)
MDD
(ours)

Ashby Chart 1.54 1.12 0.63 0.959 0.960 0.922 10.30 10.26 10.19
Bike Frame 4.77 2.85 5.46 0.681 0.684 0.731 3.17 3.06 1.28
Cantilever Beam 4.16 2.51 3.00 0.845 0.818 0.875 1.25 1.94 0.94
Car Impact 4.78 1.92 3.84 0.883 0.844 0.893 0.54 1.12 0.36
Comp. Spring 1.49 0.77 1.06 0.960 0.956 0.962 10.84 10.83 10.84
Concrete Beam 1.03 0.16 1.14 0.957 0.954 0.956 10.33 10.31 10.29
Gearbox 0.33 0.02 0.07 0.899 0.872 0.891 5.32 5.89 4.56
Heat Exchanger 5.35 3.77 3.68 0.876 0.869 0.867 4.82 5.12 4.64
Pressure Vessel 1.30 0.11 0.95 0.947 0.944 0.932 9.42 9.39 9.35
Ship Hull 93.97 93.54 92.05 0.769 0.708 0.713 11.06 11.09 11.05
Three-Bar Truss 0.32 0.00 0.34 0.938 0.948 0.957 14.32 14.28 14.19
Welded Beam 1.74 0.67 0.53 0.955 0.936 0.850 9.44 9.37 9.30
Pairwise Wins* 0 14 9 7 2 9 3 3 17

*Number of models statistically significantly outperformed in pairwise comparisons. Details in Tables 3-5.
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We evaluate a vanilla GAN, the state-of-the-art GAN-DO, and our GAN-MDD. We measure invalidity rate,
F1 score, and DPP diversity scores over seven training runs for each problem. For each problem and metric,
we evaluate whether models are significantly (p < 0.05) superior to one another using one-sided 2-sample
t-tests. A summary of benchmarking results is presented in Table 2, with detailed results in Tables 3, 4,
and 5. We summarize key results as follows:

• Invalidity Score: GAN-DO and GAN-MDD are the highest performers in invalidity score, sig-
nificantly outperforming a vanilla GAN in almost all problems. GAN-DO is more often the top
performer, but sometimes falls short of GAN-MDD.

• F1 Score: GAN-MDD is the winner in distributional similarity by a small margin over the GAN.
However, the state-of-the-art GAN-DO falls significantly short of both the GAN and GAN-MDD in
many problems.

• Diversity Score: GAN-MDD is the overwhelming winner in diversity score, significantly outper-
forming both the GAN and GAN-DO in the majority of problems, and achieving the highest mean
score in all but one problem.

In summary, our GAN-MDD is able to achieve significantly better sample validity and diversity than vanilla
models while maintaining generally comparable distributional similarity scores. In contrast, the state-of-the-
art GAN-DO is able to achieve marginally higher sample validity, but does so at the expense of distributional
similarity and sample diversity.

Table 3: Means and standard deviations of invalidity rate for engineering datasets over seven tests. Lower
scores are better. Problems are sorted by GAN’s invalidity rate. A model’s symbol (✓/✗/✝) is shown if
statistically significant in a pairwise comparison. Best mean scores are bolded.

GAN
(baseline)

DO
(sota)

MDD
(ours)

DO ✝
GAN ✗

MDD ✓
GAN ✗

MDD ✓
DO ✝

Three-Bar Truss 0.32±0.51% 0.00±0.00% 0.34±0.49% – – ✝
Gearbox 0.33±0.09% 0.02±0.02% 0.07±0.05% ✝ ✓ ✝
Concrete Beam 1.03±0.97% 0.16±0.14% 1.14±0.46% ✝ – ✝
Pressure Vessel 1.30±0.32% 0.11±0.07% 0.95±0.29% ✝ ✓ ✝
Comp. Spring 1.49±1.00% 0.77±0.67% 1.06±0.58% – – –
Ashby Chart 1.54±0.97% 1.12±0.39% 0.63±0.17% – ✓ ✓
Welded Beam 1.74±0.89% 0.67±0.39% 0.53±0.14% ✝ ✓ –
Cantilever Beam 4.16±0.87% 2.51±0.79% 3.00±0.62% ✝ ✓ –
Bike Frame 4.77±1.21% 2.85±0.63% 5.46±3.39% ✝ – ✝
Car Impact 4.78±0.55% 1.92±0.48% 3.84±0.78% ✝ ✓ ✝
Heat Exchanger 5.35±1.00% 3.77±0.70% 3.68±0.82% ✝ ✓ –
Ship Hull 93.97±0.64% 93.54±0.97% 92.05±2.31% – ✓ –
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Table 4: Means and standard deviations of F1 score for engineering datasets over seven tests. Higher
scores are better. Problems are sorted by GAN’s F1 score. A model’s symbol (✓/✗/✝) is shown if statistically
significant in a pairwise comparison. Best mean scores are bolded.

GAN
(baseline)

DO
(sota)

MDD
(ours)

DO ✝
GAN ✗

MDD ✓
GAN ✗

MDD ✓
DO ✝

Comp. Spring 0.960±0.003 0.956±0.004 0.962±0.005 ✗ – ✓
Ashby Chart 0.959±0.007 0.960±0.005 0.922±0.014 – ✗ ✝
Concrete Beam 0.957±0.002 0.954±0.004 0.956±0.005 – – –
Welded Beam 0.955±0.006 0.936±0.013 0.850±0.025 ✗ ✗ ✝
Three-Bar Truss 0.938±0.022 0.948±0.012 0.957±0.005 – ✓ ✓
Pressure Vessel 0.947±0.012 0.944±0.013 0.932±0.013 – ✗ –
Gearbox 0.899±0.023 0.872±0.021 0.891±0.018 ✗ – ✓
Car Impact 0.883±0.017 0.844±0.041 0.893±0.010 ✗ – ✓
Heat Exchanger 0.876±0.035 0.869±0.023 0.867±0.021 – – –
Cantilever Beam 0.845±0.038 0.818±0.027 0.875±0.018 – ✓ ✓
Ship Hull 0.769±0.082 0.708±0.273 0.713±0.248 – – –
Bike Frame 0.681±0.030 0.684±0.025 0.731±0.015 – ✓ ✓

Table 5: Means and standard deviations of diversity score for engineering datasets over seven tests. Lower
scores are better. Problems are sorted by GAN’s diversity score. A model’s symbol (✓/✗/✝) is shown if
statistically significant in a pairwise comparison. Best mean scores are bolded.

GAN
(baseline)

DO
(sota)

MDD
(ours)

DO ✝
GAN ✗

MDD ✓
GAN ✗

MDD ✓
DO ✝

Car Impact 0.54±0.10 1.12±0.39 0.36±0.06 ✗ ✓ ✓
Cantilever Beam 1.25±0.38 1.94±0.55 0.94±0.15 ✗ ✓ ✓
Bike Frame 3.17±0.40 3.06±0.29 1.28±0.24 – ✓ ✓
Heat Exchanger 4.82±0.41 5.12±0.21 4.64±0.45 – – ✓
Gearbox 5.32±0.20 5.89±0.26 4.56±0.35 ✗ ✓ ✓
Pressure Vessel 9.42±0.02 9.39±0.02 9.35±0.02 ✝ ✓ ✓
Welded Beam 9.44±0.03 9.37±0.02 9.30±0.08 ✝ ✓ ✓
Concrete Beam 10.33±0.07 10.31±0.03 10.29±0.05 – – –
Ashby Chart 10.30±0.03 10.26±0.02 10.19±0.03 ✝ ✓ ✓
Comp. Spring 10.84±0.07 10.83±0.04 10.84±0.08 – – –
Ship Hull 11.06±0.78 11.09±0.85 11.05±0.72 – – –
Three-Bar Truss 14.32±0.07 14.28±0.08 14.19±0.03 – ✓ ✓
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4.5 Examining Negative Data Quality in High-Dimensional Constrained Engineering Problems
Having tested a variety of tabular engineering problems, we next consider whether our proposed methods
can translate to higher-dimensional domains such as images. We examine a common engineering design
problem known as topology optimization (TO), which seeks to optimally distribute material in a spatial
domain to achieve a certain objective (often minimizing mechanical compliance) (Sigmund & Maute, 2013).
Simply put, TO is often used to create structures with high rigidity and low weight. The use of generative
models for TO is very popular (Shin et al., 2023), but existing methods have been criticized for significant
shortcomings (Woldseth et al., 2022) related to constraint satisfaction, such as generated topologies not being
fully connected. Disconnected topologies tend to be highly sub-optimal and are impractical to fabricate.

(a) Positive (connected) Topologies (b) Procedurally-Generated Negatives (c) Rejection-Sampled Negatives

Figure 10: Topology optimization is a challenging structural engineering problem that searches for optimal
placements of material. Valid (positive) structural topologies are completely continuous (left). Invalid
(negative) topologies have floating material and can be procedurally-generated by artificially adding small
floating patches of material (middle). They can also be collected through rejection-sampling of topologies
created by a generative model (right). Constraint violation is annotated with red circles.

We train NDGMs using disconnected topologies as negative data, using the classification guidance dataset
from Mazé & Ahmed (2023). The positive data is comprised of optimized, spatially continuous structures,
while the negative data is largely comprised of procedurally-generated negatives with artificially-added floating
components. For comparison, we create an alternative negative dataset by replacing procedurally-generated
negatives in the dataset with rejection-sampled topologies generated by a vanilla GAN trained on the positive
data. A simple continuity check flags any discontinuous topologies to add to the rejection-sampled negative
dataset. We hypothesize that these rejection-sampled negatives are “harder” negatives (closer to the positive
distribution) and are hence more informative than the procedurally-generated negatives.

Table 6: Means and standard deviations of performance metrics for the topology optimization problem
over six tests with pairwise statistical significance comparisons. Lower scores are better. A model’s symbol
(✓/✗/✝) is shown if statistically significant in a pairwise comparison. Best mean scores are bolded.

Metric Negative
Dataset

GAN
(baseline)

DO
(sota)

MDD
(ours)

DO ✝
GAN ✗

MDD ✓
GAN ✗

MDD ✓
DO ✝

Invalidity
Rate (%)

Procedural 32.8±2.5 28.2±8.7 17.6±5.7 – ✓ ✓
Rejection 32.8±2.5 15.5±1.6 14.8±0.8 ✝ ✓ –

Violation
Mag. (10−3)

Procedural 2.01±0.29 3.03±0.67 2.78±0.45 ✗ ✗ –
Rejection 2.01±0.29 2.23±1.26 1.14±0.12 – ✓ ✓

Diversity
Score

Procedural 14.49±0.06 14.44±0.14 14.36±0.10 – ✓ –
Rejection 14.49±0.06 14.52±0.13 14.38±0.10 – ✓ ✓
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(a) GAN using
no negatives

(b) GAN-DO using
procedural negatives

(c) GAN-DO using
rejected negatives

(d) GAN-MDD using
procedural negatives

(e) GAN-MDD using
rejected negatives

Figure 11: Visualization of topologies generated by a GAN trained only on positive topologies and
GAN-DO/GAN-MDD models additionally trained on procedurally-generated negatives or rejection-sampled
negatives. Valid samples are marked with a blue check mark while invalid samples are marked with a red X.
Additional samples are visualized in Figures 15 through 19.

We run five types of experiments: GAN models trained on only positive data, GAN-DO and GAN-MDD
trained on procedurally-generated data, and GAN-DO and GAN-MDD trained on rejection-sampled data.
Some generated samples are visualized in Figure 11. We evaluate six instantiations of each experiment and
evaluate pairwise comparisons using 2-sample t-tests with p < 0.05 significance. In evaluating models, we
measure the proportion of generated topologies with disconnected components (invalidity rate), as well as
the average fraction of image pixels disconnected from the largest continuous structure in each generated
topology (violation magnitude). To identify mode collapse, we also measure DPP in the pixel space (diversity
score). Numerical scores are presented in Table 6. These results suggest several noteworthy conclusions:

1. For both types of negative data, GAN-MDD outperforms GAN-DO in mean scores in every metric.
This difference is statistically significant for invalidity rate on procedurally-generated negatives and
for violation magnitude and diversity score on rejection-sampled negatives.

2. GAN-DO significantly outperforms the vanilla GAN in invalidity rate only for rejection-sampled
negatives, suggesting that it is more sensitive to negative data quality than our GAN-MDD. As seen
in Figure 12, GAN-DO can suffer from severe mode collapse. GAN-DO scores are also the most
variable, indicating unpredictable training, stability, and convergence.

3. All NDGMs trained on rejection-sampled negatives achieve better mean scores in every metric than
any NDGM trained on procedurally-generated negatives. This indicates that negative data quality
can be even more impactful than the choice of NDGM type. It also highlights the potency of rejection
sampling as a negative data sampling strategy when a black-box constraint check is available.

In summary, our benchmarking on the topology optimization problem illustrates the potency of GAN-MDD
on a high-dimensional image-based problem but also illustrates the importance of negative data quality in
NDGM performance. Best practices to generate high-quality negative data remain an open research area.
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Figure 12: A batch of 32 random topologies generated by a select GAN-DO instantiation trained on
rejection-sampled negatives. Samples fall under just a handful of data modes, indicating egregious mode
collapse. A similar grouping is shown for a GAN-DO model trained on procedurally-generated negatives in
Figure 20.

5 Discussion & Conclusion
Adding pairwise density ratio estimation and diversity to NDGMs. We presented a new NDGM
formulation, GAN-MDD which estimates individual density ratios, rather than conflating fakes and negatives
as done in the current SOTA. Our model also incorporates a DPP-based diversity loss. These innovations
empower GAN-MDD to achieve an optimal tradeoff between constraint satisfaction and distributional
similarity, allowing it to outperform baseline models and existing NDGMs alike, across a variety of problems.
GAN-MDD manages to generate 1/6 as many constraint-violating samples using only 1/8 as much data.

GANs versus diffusion models using negative data. Despite the growing popularity of diffusion models,
GANs remain state of the art in many engineering design problems. On the challenging 2D problems we
benchmarked, we find that: 1) vanilla DDPMs struggle to learn constraints and 2) DDPMs using guidance
based on negative data can only achieve good constraint satisfaction at the expense of distributional similarity.
This preliminary study indicates that DDPMs struggle to achieve as optimal of a tradeoff between constraint
satisfaction and distributional similarity as our specialized adversarial NDGM model, at least in some
problems. We look forward to future research which advances the capabilities of negative data diffusion
models.

NDGMs are underutilized. We believe NDGMs are underutilized in engineering design. This assertion is
substantiated by several observations: 1) The widespread use of vanilla models in engineering design despite
their limitations (Regenwetter et al., 2022a). 2) The relatively low cost of collecting negative data versus
positive data in many engineering contexts. 3) The overwhelming dominance of NDGMs over vanilla models
in our engineering benchmarks. 4) The data-efficiency improvements we demonstrated using negative data.

Generating high-quality negative data. Selecting strategies to generate negative data is an important
research question. In the final case study on topology optimization, rejection-sampling resulted in “stronger”
negative data than the procedural generation method. It also required access to an oracle (constraint
evaluator), which may be unavailable or prohibitively expensive in some applications. However, there are
not always cheap, viable procedural generation approaches for negative data either. Effective negative data
generation remains largely problem-dependent and the relative quality of negative data generation approaches
is not necessarily straightforward. We anticipate that domain-agnostic methods to generate high-quality
negative data could pair well with NDGMs and expand their impact.
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Leveraging negative data for classifier-based rejection sampling. Negative data can be used to
train supervised binary classification models to predict constraint satisfaction. These classifiers can then be
applied during generative model inference to iteratively reject and regenerate any samples projected to violate
constraints until a sufficiently large sample set is attained. If the generative model has a very low validity
rate, this can increase the inference cost by orders of magnitude and add significant stochasticity to the
generation process. To generate a single ship hull, for example, we estimate that a vanilla generative model
would take a projected 33 times longer, or 222 times longer in a reasonable bad-case scenario, compared
to an NDGM. Although expensive, this rejection sampling approach yields extremely strong validity rates,
surpassing even the most accurate NDGMs. Though in many senses an apples-to-oranges juxtaposition,
comparing NDGMs with rejection sampling offers hints about the theoretical limits of NDGM performance.
Classifier-based rejection sampling using negative data is discussed in more detail in Appendix D.

Limitations. As we demonstrate, NDGMs are sensitive to the quality of their negative training data.
Although negative data is often cheaper than positive data in engineering design problems, generating
high-quality negative data may be challenging in some domains. In other domains, sourcing any kind of
negative data may be impossible. In domains where high-quality negative data is unavailable, NDGMs will
naturally be impractical.

6 Conclusion
In this paper, we presented a new Negative-Data Generative Model (NDGM), GAN-MDD, that innovates
over previous methods by learning individual pairwise density ratios and avoiding mode-collapse using a
diversity-based loss. In extensive benchmarks across constructed tests and a dozen real engineering problems,
we demonstrated that GAN-MDD outperforms 10 other formulations. Moreover, it is data-efficient, generating
1/6 as many invalid samples using 1/8 as much data as a vanilla model. Finally, we showed that GAN-MDD
can excel in challenging high-dimensional problems. GAN-MDD’s data efficiency and optimal balance
between distributional similarity and constraint satisfaction make it significantly more practical than existing
generative models for engineering and design tasks. Thus, we advocate for and anticipate the more widespread
use of NDGMs in constrained generative modeling problems.
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A Additional Visualization and Statistical Testing for Main Experiments
A.1 2D Experiments

(a) Positive Data (b) Negative Data (c) GAN-MDD (Ours)

(d) GAN-DO (e) GAN (f) Cond. GAN (g) GAN + Clf. (h) DDPM

(i) Cond. DDPM (j) DDPM + Guid. (k) VAE (l) Cond. VAE (m) VAE + Clf.

Figure 13: Visual comparison of our GAN-MDD against all 10 baseline models on (Problem 1). Positive
data points and samples are shown in blue and negative ones in black.

Problem 1 Problem 2
Inval. (%) (↓) F1 (↑) Diversity (↓) Inval. (%) (↓) F1 (↑) Diversity (↓)

VAE 25.51±0.57 0.397±0.017 15.01±0.02 14.19±0.58 0.751±0.007 14.36±0.02
VAE-Cond 26.64±1.05 0.389±0.009 15.05±0.01 14.23±0.44 0.755±0.003 14.36±0.01
VAE-Clf 0.05±0.06 0.458±0.012 15.05±0.04 0.06±0.13 0.345±0.072 15.42±0.19
DDPM 8.60±0.65 0.820±0.021 14.86±0.02 14.97±0.68 0.848±0.005 13.92±0.04
DDPM-Cond 8.30±0.55 0.814±0.020 14.94±0.01 11.44±0.81 0.858±0.005 13.98±0.02
DDPM-Guid 0.26±0.04 0.404±0.014 14.07±0.03 5.92±0.54 0.821±0.017 14.10±0.02
GAN 8.32±3.23 0.596±0.109 15.17±0.08 4.39±0.55 0.859±0.007 14.09±0.02
GAN-Cond 8.13±1.02 0.725±0.075 15.06±0.03 5.24±1.18 0.850±0.008 14.05±0.07
GAN-Clf 1.06±1.14 0.609±0.139 15.14±0.11 2.22±0.94 0.749±0.101 14.30±0.20
GAN-DO 0.25±0.24 0.493±0.054 15.11±0.11 0.52±0.06 0.754±0.018 14.34±0.03
GAN-MDD (ours) 0.40±0.13 0.700±0.028 14.99±0.05 0.73±0.19 0.830±0.008 14.16±0.02
GAN-MDD Rank 4 4 4 3 5 6

Table 7: Detailed scores for 2D problems. Model scores that beat or are beaten by GAN-MDD’s scores to
p < 0.05 significance are colored maroon or light blue, respectively.
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(a) Positive Data (b) Negative Data (c) GAN-MDD (Ours)

(d) GAN-DO (e) GAN (f) Cond. GAN (g) GAN + Clf. (h) DDPM

(i) Cond. DDPM (j) DDPM + Guid. (k) VAE (l) Cond. VAE (m) VAE + Clf.

Figure 14: Visual comparison of our GAN-MDD against all 10 baseline models on (Problem 2). Positive
data points and samples are shown in blue and negative ones in black.

A.2 Dataset Size

Table 8: Tabulated version of the dataset size study presented in the main paper, showing standard deviations
over the four runs. Scores significantly (p < 0.05 using a 2-sample t-test) better than the corresponding GAN
trained with the same amount of positive data are bolded. Lower is better. The relatively large deviation
seen in vanilla models may explain the slight counterintuitive increase in invalidity rate with more data in
Problem 1.

(a) Models

Negative
Samples

GAN 0
GAN-MDD 1K
GAN-MDD 4K
GAN-MDD 16K

(b) Problem 1

Positive Samples
1K 4K 16K

10.7% ± 5.3% 11.6% ± 2.9% 11.9% ± 1.6%
2.0% ± 2.3% 0.7% ± 0.2% 1.5% ± 0.8%
0.5% ± 0.3% 0.5% ± 0.3% 0.5% ± 0.2%
0.5% ± 0.3% 0.7% ± 0.5% 0.6% ± 0.3%

(c) Problem 2

Positive Samples
1K 4K 16K

6.0% ± 1.5% 3.2% ± 1.3% 3.3% ± 0.7%
2.3% ± 0.7% 1.6% ± 0.7% 1.9% ± 0.7%
0.6% ± 0.2% 0.7% ± 0.3% 0.7% ± 0.2%
0.5% ± 0.1% 0.2% ± 0.1% 0.2% ± 0.1%
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A.3 Diversity Loss Ablation Studies

Problem 1 Problem 2
Inval. (%) (↓) F1(↑) Diversity (↓) Inval. (%) (↓) F1 (↑) Diversity (↓)

GAN-DO (γ = 0.0) 0.25±0.24 0.493±0.054 15.111±0.110 0.52±0.06 0.754±0.017 14.343±0.027
GAN-DO (γ = 0.1) 0.63±0.26 0.629±0.013 14.854±0.019 1.36±0.15 0.817±0.010 14.201±0.011
GAN-DO (γ = 0.2) 0.80±0.14 0.645±0.014 14.766±0.020 2.94±0.29 0.836±0.004 14.097±0.015
GAN-MDD (γ = 0.0) 0.33±0.27 0.627±0.1587 15.119±0.178 0.84±0.38 0.829±0.010 14.165±0.024
GAN-MDD (γ = 0.1) 0.40±0.13 0.700±0.028 14.988±0.045 0.73±0.19 0.830±0.008 14.159±0.016
GAN-MDD (γ = 0.2) 0.55±0.15 0.794±0.013 14.716±0.010 2.01±0.28 0.858±0.008 14.043±0.011

Table 9: Scores for GAN-DO and GAN-MDD on Problem 1 and Problem 2 over a variety of diversity loss
weights. Mean scores and standard deviations over six instantiations are shown.

A.4 Topology Optimization
We visualize more samples generated by GAN, GAN-DO and GAN-MDD, annotating validity.

Figure 15: Randomly-selected topologies generated by GAN with constraint violations annotated.

26



Figure 16: Randomly-selected topologies generated by GAN-DO trained on procedurally-generated negative
data with constraint violations annotated.

Figure 17: Randomly-selected topologies generated by GAN-DO trained on rejection-sampled negative data
with constraint violations annotated.
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Figure 18: Randomly-selected topologies generated by GAN-MDD trained on procedurally-generated
negative data with constraint violations annotated.

Figure 19: Randomly-selected topologies generated by GAN-MDD trained on rejection-sampled negative
data with constraint violations annotated.
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Figure 20: A batch of 32 random topologies generated by GAN-DO trained on procedurally-generated
negatives. Topologies are manually grouped into just a handful of data modes, indicating severe mode
collapse.
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B Extended Background and Related Work
Constraints in Engineering Problems. Generally, we can categorize the constraint information of
engineering problems into four types (Regenwetter et al., 2023).

(i) No Constraint Information: No information about constraints is given or can be collected, and
learning constraints is typically infeasible or extremely challenging in a finite data regime.

(ii) ‘Negative’ Dataset of Invalid Designs: A collection of constraint-violating negative designs is available.
Our method leverages such negative data to learn a constraint-satisfying generative model.

(iii) Constraint Check: A black-box ‘oracle’ is available to determine whether a design satisfies constraints.
This check may be computationally expensive, limiting its use.

(iv) Closed-form Constraints: An inexpensive closed-form constraint is available. In such scenarios, direct
optimization is often favored over generative models in design problems. In other cases, constraint-
enforcing rules can be built into the model structure, an approach used in some generative models
for molecular design (Cheng et al., 2021; Imrie et al., 2020).

We note that each level of constraint information is strictly more informative than the previous. In this paper,
we focus on the scenario in which a limited dataset of negative samples is available (ii) or can be generated
using an oracle (iii), but closed-form constraints are not available. This scenario is common in applications
such as structural design, mobility design (e.g., cars, bikes, ships, airplanes), and material synthesis.

Density Ratio Estimation. Density Ratio Estimation (DRE) (Sugiyama et al., 2012b) is a critical
technique in machine learning, particularly when evaluating distributions is infeasible or is computationally
expensive (Mohamed & Lakshminarayanan, 2016). DRE techniques are heavily employed for generative
modeling and score matching estimation (Goodfellow et al., 2014; Gutmann & Hyvärinen, 2010; Srivastava
et al., 2023; Choi et al., 2022). In the context of GANs (Goodfellow et al., 2014; Arjovsky et al., 2017),
the DRE methodology forms the underlying basis for their operation. A well-known technique for DRE
is probabilistic classification Sugiyama et al. (2012b), where a binary classifier is used to learn the ratio.
However, accurately performing DRE with finite samples is particularly challenging in high-dimensional
spaces. To overcome this challenge, prior works have employed a divide-and-conquer approach. An example of
this is the Telescoping Density Ratio Estimation (TRE) method (Gutmann & Hyvärinen, 2010; Rhodes et al.,
2020), which divides the problem into a sequence of easier DRE sub-problems. Despite its success, there are
limitations to this approach, especially when the number of intermediate bridge distributions is increased.
Noise contrastive estimator (NCE (Gutmann & Hyvärinen, 2010)) and hybrid generative models (Srivastava
et al., 2023; 2017; Rhodes et al., 2020) are also based on the density ratio as underlying methodology, providing
a flexible paradigm for large scale generative modeling.

Density Ratio Estimation in the Negative Data Context. Let pn denote the negative distribution
i.e., the distribution of constraint-violating datapoints. Instead of training using only the positive distribution
pp, NDGM formulations seek to train a generative model pθ using both pp and pn. Assuming mutual absolute
continuity of pp, pθ and pn, and starting from first principles, we can now re-write Eq. 2 as:

arg min
θ

∫
pθ(x) [log pθ(x) − log pp(x)] dx

= arg min
θ

∫
pθ(x)

[
log pθ(x) − log pp(x) +

(
log pn(x)

pn(x)

)]
dx

= arg min
θ

∫
pθ(x)

[
log pθ(x)

pn(x) − log pp(x)
pn(x)

]
dx. (13)

While the solution for Eq. 13 is the same as the solution for Eq.2 i.e. pθ∗ = pp, the model is now directly
incentivized to allocate the same amount of probability mass to the samples from pn as does the data
distribution pp. This ensures that when trained using finite N , the model avoids allocating high probability
mass to invalid samples. In other words, training under Eq. 13 encourages the model to minimize its
discrepancy with respect to pp such that its discrepancy with respect to pn matches exactly that of pp and pn.
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Generative Models for Engineering Design. Generative models have recently seen extensive use in
design generation tasks (Regenwetter et al., 2022a). Generative Adversarial Nets, for example, have seen
extensive use in many applications. In Topology Optimization, generative models (Li et al., 2019; Rawat &
Shen, 2019; Oh et al., 2018; 2019; Sharpe & Seepersad, 2019; Nie et al., 2021; Yu et al., 2019; Valdez et al.,
2021; Mazé & Ahmed, 2023) are often used to create optimal topologies, potentially bypassing time-consuming
iterative solvers. In computational materials design GANs (Tan et al., 2020; Yang et al., 2018; Zhang et al.,
2021; Mosser et al., 2017; Lee et al., 2021; Liu et al., 2019), VAEs (Cang et al., 2018; Li et al., 2020; Liu
et al., 2020; Wang et al., 2020; Xue et al., 2020; Tang et al., 2020; Chen & Liu, 2021), and other models
are used to generate synthetic data to better learn process-structure-property relations (Bostanabad et al.,
2018). A variety of generative models have been applied to 2D shape synthesis problems (Yilmaz & German,
2020; Chen & Fuge, 2018; Chen et al., 2019; Chen & Fuge, 2019; Nobari et al., 2022; Li et al., 2021; Dering
et al., 2018), such as airfoil design, and 3D shape synthesis problems (Shu et al., 2020; Nobari et al., 2022;
Brock et al., 2016; Zhang et al., 2019) such as mechanical component synthesis in engineering design. Finally,
generative models have been proposed as a method to tackle various miscellaneous product and machine
design tasks (Deshpande & Purwar, 2019; Sharma & Purwar, 2020; Regenwetter et al., 2021; Deshpande &
Purwar, 2020).

Constraint Satisfaction in Machine Learning. From a general point of view, Constraint Satisfaction
Problems (CSPs) have been long studied in computer science and optimization about optimal allocation,
graph search, games, and path planning (Russell, 2010). However, such constraints are mostly related to
algorithmic complexity and memory allocation. In generative design, the goal of constraint satisfaction differs
as it aims to achieve both high-performance designs and diverse distribution coverage through probabilistic
modeling (Regenwetter et al., 2022a). Recently, Neural Constraint Satisfaction (Chang et al., 2023) has been
proposed to deal with objects in a scene to solve intuitive physics problems (Smith et al., 2019; Hamrick
et al., 2018). In the CAD domain, structured models to handle constraints have been proposed (Seff
et al., 2021; Para et al., 2021). Conditional generative models have been proposed for structural topology
optimization (Nie et al., 2021), leveraging physical fields (Nie et al., 2021; Mazé & Ahmed, 2023), dense
approximations (Giannone & Ahmed, 2023), and trajectory alignment (Giannone et al., 2024) for high-quality
candidate generation. These approaches rely on explicit constraint satisfaction. Instead, we focus on implicit
constraint satisfaction, leveraging a dataset of invalid configurations to enhance the model capacity to generate
valid designs.

C Pseudocode
Pseudocode for our GAN-MDD training formulation is shown below:

Algorithm 1 GAN-MC Training Procedure
while step ≤ nsteps do

Sample Pbatch ∼ Pdataset and Nbatch ∼ Ndataset
Sample ϵ ∼ N(0, 1)
Gbatch = Generator(ϵ)
DP
preds = Discriminator(Pbatch)

DN
preds = Discriminator(Nbatch)

DG
preds = Discriminator(Gbatch)

loss_fn = CategoricalCrossEntropy()
D_loss = loss_fn(DG

preds, 0) + loss_fn(DP
preds, 1) + loss_fn(DN

preds, 2)
Diversity_loss = DPP(Gbatch)
G_loss = loss_fn(DG

preds, 1) + γ · Diversity_loss
Optimize(Discriminator, D_loss)
Optimize(Generator, G_loss)
step = step+ 1

end while
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D Comparison to Rejection Sampling
In constrained generation problems, rejection sampling is a simple, yet powerful strategy to ensure constraint
satisfaction. Unfortunately, a black-box constraint check is not always available and may be prohibitively
costly. In the negative data domain, negative data provides an opportunity to train a supervised constraint
evaluation surrogate which can be used during rejection sampling, generally at lower cost than a query to a
ground-truth constraint oracle. To generate a batch of samples, the generative model and predictive model
will be queried in a loop, discarding and predicted invalid samples and collecting predicted valid samples
until a sufficient number of predicted valid samples is accumulated.

D.1 Benchmarking
We benchmark a vanilla GAN, VAE, and DDPM in this manner, training a supervised classifier using the
negative data then applying the classifier during inference. Figure 21 and Table 10 present the scores, while
Figures 22 and 23 show the distribution plots. Rejection sampling outperforms GAN-MDD and GAN-DO
(and most baselines) in terms of invalidity rate. Noting that a supervised classifier has a much simpler
task than a constrained generative model, we would not expect NDGMs to learn constraints boundaries
more precisely than classifiers. Thus, it is unrealistic to expect NDGMs to beat this rejection sampling
baseline in constraint satisfaction scores. However, vanilla models augmented by rejection sampling still often
underperform NDGMs in F1 score.

Figure 21: Comparison of F1 scores (↑) and invalidity rates (↓) for GAN-MDD and GAN-DO against
rejection sampling baselines (“+RS”) on Problem 1 (left) and Problem 2 (right). Gray markers indicate
scores for other models benchmarked in the main paper. Mean scores over six instantiations are plotted.
Scores closer to the bottom left are more optimal. Triangular markers indicate that the score lies off the plot
in the indicated direction.

Problem 1 Problem 2
Inval. (%) (↓) F1 Score (↑) Diversity (↓) Inval. (%) (↓) F1 Score (↑) Diversity (↓)

VAE+RS 0.037±0.042 0.396±0.007 14.976±0.010 0.067±0.032 0.789±0.002 14.393±0.004
GAN+RS 0.047±0.055 0.634±0.050 15.071±0.060 0.037±0.018 0.853±0.015 14.157±0.031
DDPM+RS 0.017±0.021 0.797±0.006 14.829±0.013 0.080±0.059 0.870±0.005 14.086±0.017

Table 10: Detailed scores for vanilla models with rejection sampling on Problem 1 and Problem 2. Best
scores are bolded. Mean scores and standard deviations over six instantiations are shown.
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(a) Positive Data (b) VAE+RS (c) GAN+RS (d) DDPM+RS

Figure 22: Generated distributions for vanilla models on Problem 1 after rejection sampling using a classifier
trained to distinguish negative and positive data.

(a) Positive Data (b) VAE+RS (c) GAN+RS (d) DDPM+RS

Figure 23: Generated distributions for vanilla models on Problem 2 after rejection sampling using a classifier
trained to classify negative vs. positive data.

D.2 Rejection Sampling Carries Significant Inference-Time Costs
Rejection sampling using a predictive model carries significant downsides when deployed in practice. Most
notably, the number of model calls is expected to at least double, and it may increase by orders of magnitude
if the generative model’s validity rate is very low. Furthermore, the inference time of the model will be
stochastic. For a model with validity rate v, the expected mean and variance of the number of function calls
(nc) is:

E[nc] = 2
v

; /, /, V ar[nc] = 4(1 − v)
v2 (14)

Shown in Table 11 are some reference statistics for a GAN trained on Problem 1 and a GAN trained on the
ship hull engineering problem. Rejection sampling increases the expected number of model calls from 1 to
2.18 for Problem 1, and to 33.17 for the ship hull problem. For models with low validity rate, such as the
ship hulls, there is extreme uncertainty in the number of function calls necessary to generate a valid sample.
As shown, in one of a thousand inference runs, we expect an inference run that requires at least 222 calls to
the model.

Inference memory costs also increase, further complicating real-time deployment of generative models.This
combination of factors can make rejection sampling less practical for real-time deployment of generative
models. These significant downsides motivate the further exploration and development of NDGMs.

Naturally, NDGMs can also be used with rejection sampling to accelerate inference due to their higher
validity rates and sometimes superior distribution learning. Nonetheless, rejection sampling serves as a useful
reference point for projecting the frontier of NDGM modeling capabilities, assuming perfect generation based
on the quality of constraint boundary estimates learned by supervised models.
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Problem 1 Ship Hull
GAN Model Validity Rate (%) 91.68 6.07
Expected number of model calls 2.182 33.17
Variance in number of model calls 0.396 4081
99.9th percentile number of model calls 6 222

Table 11: Inference statistics for Problem 1 and ship hull. As seen for the ship hull design problem, low
model validity rates cause expected number of model calls and unpredictability to skyrocket.

E Double Discriminator Training Formulations
E.1 Formulation
Though using GAN-MDD’s multi-class discriminator to learn pairwise density ratios between pp, pn, and pθ is
simpler, we can also accomplish the task using multiple discriminative models. For example, fϕ can estimate
the ratio pp/pθ (a standard GAN discriminator), while fψ estimates pn/pθ. The loss is then expressed as:

L(θ, ϕ, ψ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))]
− λEpn(x)[log fψ(x)] − λEpθ(x)[1 − log(fψ(xθ))].

(15)

Here, λ ∈ [0, 1] is a tuning parameter adjusting the weight of the negative data’s contribution to the loss and
avoiding instability. Optimal discriminators learn:

fϕ(x) = pp(x)
(pθ(x) + pp(x)) , fψ(x) = pn(x)

(pθ(x) + pn(x)) . (16)

The rationale behind the double discriminator algorithm is intuitive when viewed as an expansion of a vanilla
GAN. The generator aims for its samples to be classified as positive by the original discriminator and not as
negative by the extra discriminator.

We benchmark this double discriminator variant below, titled GAN-DDD (double discriminator + diversity).
In practice, we also find that an alternate formulation that combines this simple two-discriminator concept
with discriminator overloading (DO) also works well in many cases. The alternative formulation consists of
the classic discriminator, fϕ estimating pp/pθ and an overloaded discriminator, fψ estimating (pp + pθ)/pn.
The total loss function is then expressed as:

L(θ, ϕ, ψ) = Epp(x)[log fϕ(x)] + Epθ(x)[1 − log(fϕ(xθ))]
+ λEpp(x)[log fψ(x)] + λEpθ(x)[log fψ(xθ)] + λEpn(x)[1 − log(fψ(x))].

(17)

Once again, λ is a weighting parameter modulating the contribution of the negative data. For more details
on the training algorithms, see Appendix C.

E.2 Testing
We benchmark GAN-DDD on the 2D test problems using a negative data weight of λ = 0.4. Scores are shown
in Figure 24 while plots of its generated distributions are shown in Figure 25. Although it performs very
well in Problem 1, GAN-DDD generates many invalid samples in Problem 2. In general, we find that the
careful tuning of the negative data weighting parameter and diversity loss weighting parameter (λ and γ,
respectively) have significant impacts on the tradeoff between distributional similarity and validity. Therefore,
we generally recommend GAN-MDD as a simpler off-the-shelf method, even though GAN-DDD may perform
better in specific scenarios.
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Figure 24: Comparison of GAN-DDD’s F1 scores (↑) and invalidity rates (↓) to baselines on Problem 1
(left) and Problem 2 (right). Gray markers indicate scores for other models benchmarked in this paper, with
a few selectively annotated. Mean scores over six instantiations are plotted. Scores closer to the bottom left
are more optimal. Triangular markers indicate that the score lies off the plot in the indicated direction.

(a) Positive Data (b) GAN-DO (SOTA) (c) GAN-MDD (Ours) (d) GAN-DDD (Ours)

(e) Positive Data (f) GAN-DO (SOTA) (g) GAN-MDD (Ours) (h) GAN-DDD (Ours)

Figure 25: Comparison of GAN-DDD’s generated distributions with those of GAN-DO and GAN-MDD on
Problem 1 and Problem 2.
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F Details on Datasets, Models, and Training
F.1 2D Experiments
F.1.1 Dataset Details
Problem 1: Datapoints are randomly sampled from one of six modes, each of which is a 2D Gaussian.
Distribution centers are spaced at an equal radius. Points in close proximity to the center of any distribution
are labeled as negatives, while others are labeled as positives. Sampling is performed until 10k positive
samples and 10k negative samples are acquired, and any excess in the oversampled class is discarded.

Problem 2: Datapoints are uniformly sampled. A square grid of ‘centerpoints’ is overlaid over the distribution.
Datapoints within a specified proximity to a ‘centerpoint’ are considered negative, while all others are labeled
as positive. Sampling is performed until 10k positive samples and 10k negative samples are acquired, and any
excess in the oversampled class is discarded.

F.1.2 Training Details
All tested networks (encoder, decoder, generator, DDPM noise model, auxiliary discriminator) are deep
networks with one hidden layer of 400 neurons and ReLU activations. A batch size of 256 is used throughout.
Models are trained using the Adam optimizer (Kingma & Ba, 2014) with a learning rate 3 · 10−4. Models are
trained for 10000 epochs. The noise dimension for the GAN and latent dimension for the VAE are set at 8.
Diversity weights are set at 0.1.

F.2 Engineering Experiments
F.2.1 Dataset Details
Several of the engineering datasets were compiled and described in Yu et al. (2024). For all datasets in this
section, optimization objectives are not utilized.

Ashby Chart: Taken from (Jetton et al., 2023), this problem explores physically feasible combinations of
material properties, according to known physical materials from an Ashby chart. The constraint function
combines an analytical constraint and a lookup from an Ashby chart. Material properties considered are
density, yield strength, and Young’s modulus. Material classes included are foams, natural materials, polymers,
composites, ceramics, and metals. 1k positive samples and 1k negative samples are selected using uniform
random sampling.

Bike Frame: The FRAMED dataset (Regenwetter et al., 2022b) is comprised of 4292 in-distribution (positive)
human-designed bicycle frame models. FRAMED also contains 3242 constraint-violating (negative) designs,
some of which were human-designed and some of which were synthesized by generative models. FRAMED
also contains 10095 generative model-synthesized valid designs that are not assumed to be in-distribution
and are thus unused in this benchmark. Constraints consist of a set of empirical geometric checks and a
black-box 3D reconstruction check. Constraints are unified using an all-or-nothing approach. Validity scores
on this dataset are only evaluated using empirical checks.

Cantilever Beam: This problem considers the design of a five-component stepped cantilever beam. The
thickness and height of each of the five components are the design variables, while the lengths of each
component are given (fixed). Taken from (Gandomi & Yang, 2011), this problem has numerous geometric
constraints and an overall constraint limiting the total deflection allowed by the design under a simple
concentrated load at the tip of the beam. 1k positive samples and 1k negative samples are selected using
uniform random sampling.

Car Impact: This problem quantifies the performance of a car design under a side impact scenario based on
European Enhanced Vehicle-Safety Committee (EEVC) procedures (Gandomi et al., 2011). The car chassis
is represented by 11 design parameters. Critical deflection, load, and velocity thresholds are specified for
various components of a crash dummy, constituting 10 constraints. 1k positive samples and 1k negative
samples are selected using uniform random sampling.

Compression Spring: This problem, taken from (Gandomi & Yang, 2011), centers around the design of a
helical compression spring parameterized over coil diameter, wire diameter, and number of spring coils. A
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constraint on free length and a constraint on displacement under a compressive load are specified. 1k positive
samples and 1k negative samples are selected using uniform random sampling.

Concrete Beam: Taken from (Gandomi & Yang, 2011), this problem centers around the design of a simply
supported concrete beam under a distributed load case. The beam is parameterized using a cross sectional
area, base length, and height and is subject to a safety requirement indicated in the American Concrete
Institute (ACI) 319-77 code. 1k positive samples and 1k negative samples are selected using uniform random
sampling.

Gearbox: This gearbox (speed-reducer) design problem, taken from (Gandomi & Yang, 2011) features
7 parameters describing key geometric components like shaft diameters, number of teeth on gears, and
face width of gears. Nine constraints are given, spanning considerations like bending stress on gear teeth,
transverse stress and deflection on shafts, and surface stresses. 1k positive samples and 1k negative samples
are selected using uniform random sampling.

Heat Exchanger: This problem, sourced from (Yang & Gandomi, 2012) considers the design of a heat
exchanger involving eight design parameters and six constraints focused on geometric validity. 1k positive
samples and 1k negative samples are selected using uniform random sampling.

Pressure Vessel: This cylindrical pressure vessel design problem is taken from (Gandomi & Yang, 2011).
The pressure vessel is parametrized according to four parameters, namely the cylinder thickness, spherical
head thickness, inner radius, and cylinder length. Four geometric and structural constraints are specified in
accordance with American Society of Mechanical Engineers (ASME) design codes. 1k positive samples and
1k negative samples are selected using uniform random sampling.

Ship Hull: The SHIPD Dataset (Bagazinski & Ahmed, 2023) is comprised of 30k valid (positive) ship hull
designs and 20k invalid (negative) ship hull designs. The SHIPD dataset includes numerous constraints
spanning geometric rules and functional performance targets, focusing on various types of hydrodynamic
performance.

Three-Bar Truss: Taken from (Yang & Gandomi, 2012), this truss design problem considers the design of
a three-beam truss parameterized by the length of two of the beams (symmetry specifies the length of the
third). The system is subject to one geometric constraint and two maximum stress constraints. 1k positive
samples and 1k negative samples are selected using uniform random sampling.

Welded Beam: Taken from (Gandomi & Yang, 2011), this problem concerns a cantilever beam welded to
a flat surface under a simple concentrated load at the tip of the beam. The beam is parametrized using a
weld thickness, welded joint length, beam thickness, and beam width. Five structural constraints are given,
specifying a maximum shear stress, bending stress, buckling load, and deflection, as well as a geometric
constraint on the beam. 1k positive samples and 1k negative samples are selected using uniform random
sampling.

F.2.2 Training Details
All tested networks (encoder, decoder, generator, DDPM noise model, classifier) are deep networks with
one hidden layer of 400 neurons and ReLU activations. A batch size of 256 is used throughout. Models are
trained using the Adam optimizer (Kingma & Ba, 2014) with a learning rate 3 · 10−4. Models are trained for
10000 epochs. The noise dimension for the GAN and latent dimension for the VAE are set at 8. Diversity
weights are tuned by selecting the highest score from 10 increments tested.

F.3 Topology Optimization Experiments
F.3.1 Dataset Details
The GAN was trained exclusively on 32436 valid (connected) topologies generated through iterative optimiza-
tion (SIMP) (Bendsøe & Kikuchi, 1988). The GAN-MDD and GAN-DO models are trained on a medley
of disconnected topologies generated by iterative optimization (2564), and either procedurally-generated
synthetic topologies (35000) or GAN-generated disconnected topologies (92307). Synthetic topologies were
sourced directly from the classification dataset of (Mazé & Ahmed, 2023). The GAN used to generate
disconnected topologies for rejection was the exact GAN benchmarked in the paper. Topologies were checked
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for continuity and rejected samples were added to the negative dataset. All positive and negative data were
augmented sevenfold using horizontal and vertical flips, as well as quarter-turn rotations, prior to training.

F.3.2 Training Details
The model architectures of the GAN, GAN-DO and GAN-MDD are identical except for the final output
dimension of the discriminator. Both the generator and discriminator are simple 5-layer convolutional neural
networks. The generator has 3.6M parameters, while the discriminator has 2.8M parameters. For more
architectural details, we refer the reader to the codebase. The latent dimension is 100, batch size is 128, and
learning rate for both models is 3 · 10−4, using the adam optimizer Kingma & Ba (2014).
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